Development Experiences of a Component-based System

Magnus Larsson’, Ivica Crnkovic?

1ABB Automation Products AB, LAB, 721 59 Visteras, Sweden
Magnus.Larsson@mdh.se

Malardalen University, Department of Computer Engineering, 721 23 Vésteras, Sweden,
lvica.Crnkovic@mdh.se

Abstract

Building software systems with reusable components
brings many advantages. If the reuse concept is utilized
on several levels of a system development, the
development becomes more efficient, the reliability of the
products is enhanced, and the maintenance requirement is
significantly reduced. The levels of reuse are spread out
from the reuse of source code and common libraries,
through the reuse of large business components, up to the
reuse of the standard products in the configuration of
large systems. Designing, developing and maintaining
components for reuse is, however, a very complex process
which places high requirements not only for the
component functionality and flexibility, but also for the
development organization. In this paper, we discuss the
different levels of component reuse, and certain aspects of
component development. As an illustration of reuse
issues, we present a successful implementation of a
component-based system, which is widely used for
industrial process control.

1 Introduction

Reuse and an open component-based architecture are
the keys to the success of systems with a long lifecycles.
Designing a system that supports this approach, requires
more effort in the design phase and the time to market
might be longer, but in the long run, the reusable
architecture will prove profitable. The reuse concept can
be used on different levels: On a low level it is a reuse of
source-code, and small-size components. More reuse is
obtained with larger components encapsulating business
functions. Finally, the integration of complete products in
complex systems can be seen as the highest level of reuse.
On each level of reuse there are specific demands on the
reusable components, on the component management and
on the integration process.

This paper describes important issues related to the
development and maintenance of reusable components
and as an example uses the ABB Advant industrial
process control system. In chapter 2 we give an overview

of the Advant system design and in chapter 3 the main
characteristics of Advant reusable components. Chapter 4
outlines all the development and maintenance aspects of a
component based system, which must comply with
customer requirements. During evolution of the system
new technologies were developed which resulted in the
appearance on the market of many components with the
same functionality as the proprietary ones. The fact that
new components must be incorporated into the existing
systems introduces new demands on the system
development process. These new issues are discussed in
chapter 5.

2 ABB Advant Open Control System

ABB is a global electrical engineering and technology
company, serving customers in power generation,
transmission and distribution, in industrial automation
products, etc. The ABB group is divided into companies,
one of which, ABB Automation Products AB, is
responsible for development of industrial automation
products. The automation products encompass several
families of industrial process-control systems including
both software and hardware.

The main characteristics of these products are
reliability, high quality and compatibility. These features
are results of responses to the main customers
requirements: The customers require stable products,
running around the clock, year after year, which can be
easily upgraded without impact on the existing process.
To achieve this, ABB uses a component-based system
approach designing the extendable and flexible systems.

The Advant Open Control System (OCS) [1] is
component-based to suit different industrial applications.
The range includes systems for Power Utilities, Power
Plants and Infrastructure, Pulp and Paper, Metals and
Minerals, Petroleum, Chemical and Consumer Industries,
Transportation systems, etc. An overview of the Advant
system is shown in Figure 1.

Business System

Information .
Management Operator Station
Station
Process Process Process
Controller Controller Controller

Figure 1. An overview of the conceptual architecture

of the Advant open control system.

Advant OCS performs process control and provides
business information by assembling a system of different
families of Advant products. Process information is
managed at the level of process controllers. The process
controllers are based on a real-time operating system and
execute the control loops. The Operator Station (OS) and
Information Management Station (IMS) gather and
supervise product information, while the business system
analysis information for optimization of the entire
processes. Advant products use standard and proprietary
communication protocols to satisfy real-time
requirements.

2.1 Designing for Reuse

The Advant system architecture is designed for reuse.
Different products such as Operator and Information
Management Stations are used as system components in
assembling complete systems. Examples of the products
are. The two operator station versions, Master OS and
MOD OS are used in building different types of operator
applications.

Having up-to-date information at the right time and in
the right place is critical to the success of any industrial
operation and Advant OCS therefore includes information
management functions with real-time insight into all
aspects of the process controlled. Advant Information
Management has an SQL-based relational database
accessible to resident software and all surrounding
computers. Historical data acquisition reports, versatile
calculation packages and a application programming
interface (API) for proprietary and third party applications
are examples of the functionality provided. Advant
components have access to process, production and
quality data from any Process Control unit in a plant or in
an Intranet domain.

2.1.1 Scalability. Advant OCS can be configured in a
multitude of ways, depending on the size and complexity
of the process. The initial investment can consist of stand-
alone process controllers and, optionally, local operator
stations for control and supervision of separate machines
and process sections. Subsequently, several process
controllers can be interconnected and, together with
central operator and information management stations
build up a control network. Several control networks can
be interconnected to give a complete plant network which
can share centrally located operator, information and
engineering workplaces.

2.1.2 Openness. The system is further strengthened by
the flexibility to add special hardware and software for
specific applications such as weighing, fixed- and
variable-speed motor drives, safety systems and product
quality measurements and control in for example the
paper industry. Second- and third party administrative,
information, and control can also be easily incorporated

2.1.3 Cost-effectiveness. The step-by-step expansion
capability of Advant OCS allows users to add new
functionality without making existing equipment obsolete.
The system’s self-configuration capability eliminates the
need for engineers to enter or edit topology descriptions
when new stations are physically installed. New units can
be added while the system is in full operation. With
Advant OCS, system expansion is therefore easy and
cost-effective.

2.2 Designing with Reuse

Designing with reuse of existing components has many
advantages [2]. The software development time can be
reduced and the reliability of the products increased.
These were important prerequisites for the Advant OCS
development.

Advant OCS products can be assembled in many
different configurations for use in various branches of
industry. Specific systems are designed with the reuse of
Advant OCS products and other external products. This
means which customers get a tailor-made system that
meets their needs. External products and components can
be used together with the Advant OCS due to the
openness of the system. For example a satellite
communication component, which is used to transmit data
from the offshore station to the supervision system inland,
can be integrated with the Advant OCS (Figure 2).

Offshore
ol Well
/\ Supervision
Information Safety Input Satellite
Management System Devices Communication
Station
Figure 2. Solution for an offshore oil production

platform.

The offshore system in Figure 2 uses the Information
Management Station to gather all relevant data from the
oil producing process and this is then transmitted to the
headquarters on shore via the external satellite
component. A safety component is used to provide a more
secure system. Another component is the well supervision
unit which monitors the oil wells.

Component-based systems for different types of
applications can be easily designed and produced because
of the open and scalable architecture of Advant OCS.

2.3 Experiences

The Advant system is a successful system that can be
used to build different types of process automation
systems. It has effective build and integration procedures.
The main reason for the success is - component-based
architecture and the component features (flexibility,
robustness, stability and compatibility).

However, the cost to achieve these features has been
high. To be able to suit the requirements of an open
system, new ABB products had always to be backward
compatible. It would have been easier to develop a new
system that did not have to be compatible with the
previous systems. To guaranty that the system is
backward compatible works as a warranty that the current
system will integrate with new products and this makes
the system trustworthy. The system is carefully designed
and a lot of effort has been put in test and maintenance.

Development with big components that are easy to
reuse increase the efficiency significantly compared to
reusing a smaller component that could have been
developed in-house to the same cost as buying it. The
Advant OCS products are examples of big components
that have been used to assembly process automation
systems.

3 Reusable Components

3.1 Components

The Advant OCS products are component based to
minimize the maintenance and development cost. Figure 3
shows the component architecture of the operator station.

| Operator Station

. —
[
Functional Components \‘\k

v User Interface (UIS)
Object Management
v v \
\

0S-Base functions
\5| C-++ Component
\ Y

Standard Operating System

Y
Real-time Operating System

Figure 3. The operator workstation is assembled from

components.

The operator station consists of a specific number of
functional components and of a set of standard Advant
components. These components use the User Interface
System (UIS) component. Object Management Facility
(OMF) is a component which handles the infrastructure
and data management. OMF is similar to CORBA [3] in
that it provides a distributed object model with data,
operation and event services. The UxBase component
provides drivers and other specific operating system
functions. Helper classes for strings, lists, pointers, maps
and other general-purpose classes are available in the
C++_complib component. The components are built upon
operating systems, one, a standard system(such as Unix or
Windows), and the other a proprietary real-time system.

To illustrate different aspects of component-based
development and maintenance, we shall further look at
two components:

- Object Management Facility (OMF), a business type of
component with a high-level of functionality and a complex
internal structure;

- C++_complib is a basic and a very general component.

3.2 Object Management Facility (OMF)

OMF is object-oriented middle-ware for industrial
process automation. It encapsulates real-time process
control entities of almost every conceivable description
into objects that can be accessed from applications

running on different platforms, for example Unix and
Windows NT. Programming interfaces are available for
many languages such as C, C++, Visual Basic, Java,
Smalltalk and SQL while interfaces to the IEC 1131-3 [4]
process control languages are under development. OMF is
also adapted to Microsoft Component Object Model
(COM) via adapters and another component called OMF
COM aware. The adapters for OPC (OLE for Process
Control) [6] and OLE Automation are also implemented.
Thanks to all these software interfaces, OMF makes
process and production data available to the majority of
computer programmers and users i.e. even to those not
necessarily involved in the industrial control field. For
instance, it is easy to develop applications in Microsoft
Word, Excel and Access to access process information.
OMF has been developed for demanding real-time
applications, and incorporates features, such as real-time
response, asynchronous communications, standing queries
and priority scheduling of data transfers. On one side
OMF provides industry-standard interfaces to software
applications, and on the other, it offers interfaces to many
important communication protocols in the field (see
Figure 4), including MasterNet, MOD DCN, TCP/IP and
Fieldbus Foundation. These adapters make it possible to
build homogeneous control systems out of heterogeneous
field equipment and disparate system nodes.

Advant OS Desktop system
Advant COM application
Components OMF-COM aware
OMF OMF
Process || ———-—- Process
controller controller
Figure 4. Many different components and products

use the OMF component.

OMF reduces the time and cost of software
development by providing frameworks and tools for a
wide range of platforms and environments. These utilities
are well integrated into their respective surroundings,
allowing developers to retain the tools and utilities they
prefer to work with.

3.3 C++_complib

C++_complib is a class library that contains general-
purpose classes, such as containers, string management
classes, file management classes, etc. The C++_complib
library was developed when no standard libraries, such as
STL [5], were available on the market. The main purpose
of having this library was to improve the efficiency and
the quality, and to get the uniform usage of the basic

functions. The c++_complib library is reused whenever
possible even in cases where similar services are
supported by a specific platform or development package.
The library was ported to several platforms, and in some
cases the implementation part had small variations. The
declaration part is the same on all platforms.

4 Different Reuse Aspects

4.1 Component generality and efficiency

Reuse principles place high demands on the reusable
components. The components must be sufficiently general
to cover the different aspects of their use. At the same
time they must be concrete and simple enough to serve a
particular requirement in an efficient way. Developing a
reusable component requires three to four times more
resources than developing a component, which serves a
particular case [7]. In the case of C++_complib, the
situation was simpler, because the requirements from the
theoretical point of view were clear. It was relatively easy
to define the interface, which was used by different
components in the same way. The situation was more
complicated with complex components, such as OMF.
Although the basic concept of component functionality
was clear, the demands on the component interface and
behavior were different in different components and
products. Some components required a high level of
abstraction, others required the interface to be on a more
detailed level. These different types of requirements have
led to the creation of two levels of components: OMF
base, including all low-level functions, and OMF
framework, containing only a higher level of functions
and with more pre-defined behavior and less flexibility.

4.2 Evolution of Functional Requirements

The development of reusable components would be
easier if functional requirements did not evolve during the
time of development. As a result of new requirements for
the products, new requirements for the components will
be defined. The more reusable a component is, the more
demands are placed on it from products using that
component. A number of the requirements coming from
different products, may be the same or very similar, but
this is not necessarily the case for all requirements passed
to the components. In addition to the requirements stated
from the products, a component also collects demands on
the internal behavior (for example code improvement,
improvement of the maintainability, etc.). This means that
the number of requirements of reusable components grow
faster than of particular products or of a non-reusable
piece of software. To satisfy these requirements the
components must be updated more rapidly and the new

versions must be released more frequently than the
products using them.

The evolution process is illustrated in Figure 5. The
first graph shows the growing number of requirements for
certain products. The number of requirements of a
common component grows faster. Some of the product
requirements are satisfied with each new release of a
product, which are shown as steps on the second graph.
The component satisfying the requirements by its
releases, which normally precede the releases of each
product.

A

Requirements

Componem/
/

/ Product P2
MM

>
Time
A
Requirements satisfied in the releases
Component
I |—| Product P2
I——
I Product P1
I >
Time
Figure 5. To satisfy the requirements the reusable

component must be modified more often.

Indeed this was the case with both components we are
analyzing here: New functions and classes were required
from C++_complib, and new adapters and protocol
support were required from OMF. The development time
for these components was significantly shorter than for
products: While new versions of a product are typically
released each six months, new versions of components are
released as least twice as often.

4.3 Migration Between Different Platforms

During their several years of development, Advant
products have been ported on different platforms. The
reasons for this were the customer requirement, that the
products should run on specific platforms, and general

trends in the growing popularity of certain operating
systems. Of course, at the same time, new versions and
variants of the platform already used appeared, supporting
new, better and cheaper hardware. Figure 6 shows the
migration path of Advant products on different platforms.

HP-UX 8.x
i Digital UNIX
/ HP-UX 9.x
Win NT 35 Open VMS
Win NT 4.0 | 4
HP-UX 10.x
Win NT 2000
¢ v v v
Figure 6. Different platforms supported by OMF.

As an important part of the reuse concept was to keep
the high-level components unchanged as far as possible, it
was decided to encapsulate the differences between
operating systems in low-level components. This concept
works, however, only to some extent. The minimal
activity required for each platform is to rebuild the system
for that platform. To make it possible to rebuild the
software on every platform, standard-programming
languages C and C++ have been used. Unfortunately,
different implementations of the C++ standard in different
compilers, caused problems in the code interpretation and
required the rewriting of certain parts of the code. To
ensure that standard system services are available on all
platforms, the POSIX standard has been used. POSIX
worked quite well on different Unix platforms, but much
less so on Windows NT. The second level of
compatibility problem was Graphical User Interface
(GUI). The main dilemma was whether to use exactly the
same GUI on every platform, or to use the standard "look
and feel" GUI for each platform. This question applied
particularly on NT in relation to Unix platforms.
Experience has shown that it is not possible to give a
definitive answer. In some cases it was possible to use the
same GUI and the same graphical packages, but in
general, different GUIs were implemented.

The main work regarding to the reuse of code on
different platforms was performed on low-level
components, such as UxBase and OMF. While UxBase
provides different low-level packages for every platform

(for example different drivers), OMF capsulated the
differences directly in the code using conditional
compilation. OMF itself is designed in such a way that it
was possible to divide the code into two layers. One layer
is specific for each operating system, and the other layer,
with the business logic, is implemented for all of the
supported platforms. Reuse issues on different platforms
for C++_complib were easier, strictly the package
contains general algorithms, which are not hard connected
to a specific operating system. Some problems appeared
however, related to different characteristics of compilers
on different platforms.

4.4 Compatibility

One of the most important factors for successful
reusability is the compatibility between different versions
of the components. A component can be replaced easily
or added in new parts of a system if it is compatible with
its previous version. The compatibility requirements are
essential for Advant products, since smooth upgrading of
systems, running for many years, is required.
Compatibility issues are relative simple when changes
introduced in the products are of maintenance and
improvement nature only. Using appropriate test plans,
including regression tests, functional compatibility can be
tested to a reasonable extent. More complicated problems
occur when new changes introduced in a reusable
component eliminate the compatibility. In such a case,
additional software, which can manage both versions,
must be written.

A typical example of such an incompatible change, is a
change in the communication protocol between OMF
clients and servers. All different versions of OMF must be
able to talk to each other to make the system flexible and
open (Figure 7 It is possible to have different
combinations of operating systems and versions of OMF
and it still works. This has been solved with an algorithm
that ensures the transmission of correct data format. If two
OMF nodes have the same version, they talk in their
native protocol.

OMF 1.0 »| OMF10
OMF 2.0 »| OMF20
Figure 7. Different versions of OMF must be

compatible with all older versions.

If an old OMF node talks with a new, the new OMF is
responsible for converting the data to the new format, this

being designated RMIR (“receiver makes it right™). If a
new OMF sends data to an older, the older OMF can not
convert the data since it is unaware of the new protocol.
In this case the newer OMF must send in the old protocol
format, SMIR ("sender makes it right"). This algorithm
builds on that fact all machines know about each other
and that they also know what protocol they talk.
However, if an OMF-based node does not know of the
other node then it can always send in a predefined
protocol referred to as “well known format”. All nodes do
recognize this protocol and can translate from it. This
algorithm minimizes the number of data conversions
between the nodes.

In the case of C++_complib the problems with
compatibility were somewhat different. New demands on
the same classes and functions appeared because of new
standards and technology. One example is the use of C++
templates. When the template technology became
sufficiently mature, the new requirements were placed for
C++_complib: All the classes were to be re-implement as
template classes. The reason for this was the requirement
for using basic classes in a more general and efficient
way. Another example was a Unicode support in addition
to ASClI-support. These new functions were added by
new member-functions in the existing classes and by
adding new classes using the inheritance mechanism for
reusing the already existing classes.

45 Development Environment

When developing reusable components several
dimensions of the development process must be
considered:

- Support for development of components on different
platforms;

- Support for development of different variants of components
for different products;

- Support for development and maintenance of different
versions of components for different product versions.

To cope with these types of problems, it is not
sufficient to have appropriate product architecture and
component design. Development environment support is
also essential.

The development environment must permit an efficient
work in the project - editing, compiling, building,
debugging and testing. Parallel and distributed
development must also be supported, because the same
components are to be developed and maintained at the
same time on different platforms. This requires the use of
a powerful Configuration Management (CM) tool, and
definition of an advanced CM-process.

The CM process support exists on two levels. First on
the source-code level, where source-code files are under
version management and binary files are built. The
second level is the product integration phase. The product
built must contain a consistent set of the component
versions. For example, Figure 8 shows an inconsistent set
of components. The product version P1-V2 uses the
component versions C1-V2 and C2-V2. At the same time
the component version C1-V2 uses the component
version C2-V1, an older version. Integrating different
versions of the same component may cause unpredictable
behavior of the product.

Product P1,
Version V1

Product P1,
Version V2

Component C1,
Version V1

Component C1,
Version V2

Component C2, Component C2,
Version V1 Version V2
Figure 8. An inconsistent component integration.

Another important aspect of CM in developing
reusable component is Change Management. Change
management keeps track of changes on the logical level,
for example error reports, and manages their relations
with implemented physical changes (i.e. changes of
source code, documentation, etc.). Because change
requests (for example functional requirements or error
reports) come from different products, it is important to
register information about the source of change requests.
It is also important to relate a change request from one
product to other products. The following questions must
be answered: What impact can the implemented change
have on other products? If en error appears in one
product, does it appear in other products? Possible
implications must be investigated, and if necessary, the
users of the products concerned must be informed.

The development environment designated Software
Development Environment (SDE) [8] is used in
developing Advant products. It is an internally built
program package, which encapsulates different tools, and
provides support for parallel development. The CM tool,
based on RCS [9] provides support for all CM disciplines,
such as Change Management, WorkSpace Management,
Build Management, etc. SDE runs on different platforms,
with slightly modified functions. For example, the build
process is based on Makefiles and autoconf on Unix
platforms, while Microsoft Developer Studio with
additional Project Settings is used on Windows NT. The

main objective of SDE is to keep the source-code in one
place under version control. Using baselines, and change
requests, the different versions of components are
managed. The whole development process is complex and
requires an organized and planned support, but it is
unavoidable for an efficient and successful development
of and with reusable components.

5 A New Paradigm -Standard Components

In recent years the demands of customers on systems
have changed. Customers require integration with
standard technologies and the use of standard applications
in the products they buy. This is a definite trend on the
market but there is little awareness of the possible
problems involved. An improper use of standard
components can cause severe problems, especially in
distributed real-time and safety-critical systems, with
long-period guarantees. In addition to these new
requirements, time-to-market demands have become a
very important factor.

These factors and other changes in software and
hardware technology have introduced a new paradigm in
the development process [10]. The development process
is focused now on the use of standard and de-facto
standard components, outsourcing, COTS and the
production of components. At the same time, final
products are no longer closed, monolith systems, but are
instead component-based products that can be integrated
with other products available on the market.

This new paradigm in the development process and
marketing strategy has introduced new problems and
raised new questions:

- The development process has been changed.
Developers are now not only designers and
programmers, they are also integrators and marketing
investigators. Are the new development methods
established? Are the developers properly educated?

- What are the criteria for the selection of a component?
How can we guarantee that a standard component
fulfills the product requirements?

- What are the maintenance aspects? Who is responsible
for the maintenance? What can be expected of the
updating and upgrading of components? How can we
satisfy the compatibility and reliability requirements?

- What is the trend on the market? What can we expect
to buy not only today but also on the day we begin
delivering our product?

- When developing a component, how can we guarantee
that the "proper" standard is used? Which standard
will be valid in five, ten years?

All these questions must be considered before
beginning a component-based development project.
Josefsson [11] presents certain recommendations to the
component integrator for use as guidelines: Test the
imported component in the environment where it is to run
and limit the practical number of component suppliers to
minimize the compatibility problems. Make sure that the
supplier is evaluated before a long-term agreement is
signed.

The focus of development environment support should
be transferred from the “edit-build-test” cycle to the
“component integration-test” cycle. Configuration
management must give more consideration to rune-time
phase [12].

5.1 Replacing Internal Component With
Standard Components

In the middle of the eighties, ABB Advant products
were completely proprietary systems with internally
developed hardware, basic and application software. In
the beginning of the nineties, standard hardware
components and software platforms were purchased while
the real-time additions and application software were
developed internally. The system is now developed
further using components based on new, standard
technologies.

During this development, further new components
become available on the market. ABB faced this issue
more than once. At one point in time, it was necessary
abandon the existing solutions in a favor of new solutions
based on existing components and technologies. To
illustrate the migration process we the discuss possibility
of replacing OMF and C++_complib with standard
components.

Experience from these examples showed that it is
easier to replace component if the replacement process is
made in small incremental steps. Allowing the new
component to coexist with the old one makes it easier to
be backward compatible and the change will be smooth.

5.2 Replacing OMF with DCOM

Moving from a UNIX based system to a system based
on Windows NT had serious affect on the system
architecture. Microsoft components using a new object
model were available, namely COM/DCOM [13]. DCOM
has functionality similar to that of OMF and this became a

new issue when DCOM was released. Should ABB
continue to develop its proprietary OMF or change to a
new standard component? The problem was that DCOM
did not have all the functionality of OMF and vice versa.
The domains overlap only partially as shown in Figure 9

Object Creation Subscription

Object Communication

Figure 9. The functionality domains of OMF and

DCOM do not overlap completely.

A subscription of data with various capabilities can be
made in OMF, and this subscription functionality is not
supported by DOCM. On the other hand, DCOM can
create objects when they are required and not like OMF
where objects are created before the actual use of them.
Both technologies support object communication and in
this area it is easier to replace OMF. with DCOM.

If the decision was made to continue with OMF, all the
new components that run on top of COM could not be
used, which would drastically reduce the possibilities of
integration with other, third-party components. On the
other hand, it would require considerable work to make
the current system run on top of COM. This was the
dilemma of COM vs. OMF.

To begin with OMF was adapted to COM with an
adapter designated OMF COM aware. This functionality
helped COM developers access OMF objects and vice
versa. However, this solution to the problem using two
different object models was not optimal since it added
overhead in the communication. Nor it was possible to
match the data types one to one, which made the solution
limited. A decision was taken to build the new system on
COM technologies with proprietary extensions adding the
functions missing from COM. All communication with
the current system was to be through the OMF COM.
Adapters are very useful when a new component is to
used in parallel with an existing one [14]. This solution
makes it easy to remove the old OMF and replace it with
COM in small steps over time.

5.3 Replacing C++_complib with STL

To switch from C++_complib to STL [5] was much
easier because STL covers almost all the C++_complib
functions and provides additional functionality. Still,
much work reminded do since all the code using
C++_complib had to be changed to be able to use STL
instead. The decision was taken to continue using both
components and to use STL whenever new functionality
was added. After a time the use of old components was
reduced and the internal maintenance cost reduced. In
some cases in the same components both libraries were
used, which gave some disadvantages, especially in the
maintenance process.

6 Conclusion

The Advant OCS has been used as an example of a
successful component based system and we have shown
what it means to develop with components that fit into a
large software system. A careful design and awareness of
future demands on components are necessary to be able
to integrate the existing system with new technologies.
When Advant OCS was developed no one really though
about Windows NT and ABB had to pay the price for that
when it suddenly became clear that Windows NT would
be the next operating platform. It was possible to move
from one platform to another, but the cost was greater
than if the design would have been more independent
from the platform. We have shown certain problems with
developing reusable components and given examples for
this. The experiences from the development of Advant
OCS has been that it is better to put more effort to create
an open and extendable architecture than to rush the
development focusing on only current technologies.

7 References

[1] Advant, ABB
http://www.advantocs.com

Automation Products,

[2] Sommerville I., Software Engineering, Addison-Wesely,
1999

[3] CORBA, http://www.corba.org

[4] International Electrotechnical Commision
Programmable Controllers Part 3,
Languages, IEC 1131-3, IEC Geneva.

(1992),
Programming

[5] Austern M., Generic Programming and the STL,
Addison-Wesely, 1999

[6] OPC Foundation, http://www.opcfoundation.org

(7]

(8]

[]

[10]

[11]

[12]

[13]

[14]

Szyperski C., Component Software, Addison Wesely,
1999

Crnkovic 1., Experience with Change-Oriented SCM
Tools, Software Configuration Management ICSE’97
Symposium, 1997, proceedings, Springer

Tichy W., RCS - A System for Version Control, Software
and Practice Experience, 15(7):635-654, 1985

Aoyama M.: New Age of Software Development: How
Component-Based Software Engineering Changes the
Way of Software Development, 1998 International
Workshop on CBSE

Josefsson M., Oskarsson O., Programvarukomponenter i
praktiken — att kdpa tid och prestera mer, Report from
Sveriges Verkstadsindustrier 1999

Larsson M., Crnkovic 1., New Challenges for
Configuration Management, System Configuration
Management Symposium, 1999, proceedings, Springer

Box D., Essential COM, Addison-Wesley, ISBN 0-201-
63446-5

Rine D., Nada N., Jaber K., Using Adapters to Reduce
Interaction Complexity in Reusable Component-Based
Software Development, Proceedings of the fifth
symposium on software reusability, ACM Press, 1999

