
COXER – A Test-Case Generation Tool
for Timed Systems

Anders Hessel1 and Paul Pettersson1,2

1 Department of Information Technology, Uppsala University, P.O. Box 337,
SE-751 05 Uppsala, Sweden. E-mail: {hessel,paupet}@it.uu.se.

2 Department of Computer Science and Electronics, Mälardalen University, P.O. Box 883,
SE-721 23, Västerås, Sweden. E-mail: Paul.Pettersson@mdh.se.

Abstract. COXER is a new test-case generation tool for timed systems. It gen-
erates test cases from a timed automata model of a system to be tested, and a
coverage criteria expressed in an observer language. In this paper, we describe
the current architecture of the tool, its input languages, and a case study in which
the tool has been applied in an industrial setting to test that a WAP gateway con-
form to its specification.

1 Introduction

COXER 3 is a tool for model-based testing of real-time systems, developed at Uppsala
University since 2005. It allows its users to automatically generate test suites from timed
automata specifications of real-time and embedded systems. The generated test suites
can be compiled into test programs that can be used to automate the execution of a
system under test. The main features of the COXER tool are:

– A framework for develoing a test generation tools extending an existing model
checker. I our case, we have used the verifier of the UPPAAL tool [6].

– An observer language [2] that is expressive enough to describe a large set of cover-
age criteria, including structural criteria, such as location or edge coverage, data-
flow criteria, e.g., definition-use pairs, and semantic coverage, such as states or
projection of states. Thus, the tool is not limited to a number of predefined criteria,
but rather to the expressiveness of the observer language. Together with the COXER
tool, we distribute examples of observer specifying a set of popular coverage crite-
ria.

– A query language that is used to specify from which automaton or automata of a
model a test suite should be generated. In addition, the level of required coverage
(a natural number or the maximum possible coverage) can be specified.

– An efficient test suite generator that generates a test suite with full feasible cov-
erage. COXER uses a novel global algorithm that uses knowledge about the total
coverage found in the currently generated state space to guide and prune the re-
maining exploration [4].

3 More information about the COXER tool is available on the home page http://www.-
uppaal.org/cover/.



¬def(X)

def(X,E,P)

use(X,E1,P1)

gotdef(X,E,P)

du(E,P,E1,P1)

Fig. 1. A graphical representation of a
def-use observer.

observer du(varid X;) {
node gotdef(varid, edgeid, procid);
node du(edgeid, procid, edgeid, procid);

rule start to gotdef(X,E,P) with def(X,E,P);
rule gotdef(X,E,P) to gotdef(X,E,P) with no def(X);
rule gotdef(X,E,P) to du(E,P,E1,P1) with use(X,E1,P1);

accepting du;
}

Fig. 2. A def-use observer with specifiable variable(s).

– The COXER tool is compatible with the file format for representing models in the
UPPAAL tool. Thus, users can use the graphical editor of UPPAAL to specify system
specifications, and generate test cases in COXER.

– A configurable post processor that helps users to format the generated test suite to
contain desired information in XML format.

2 Input Languages

The modeling language of COXER is based on the model of timed automata [1] or more
specifically, the networks of timed automata extended with data variables supported by
the UPPAAL tool [6]. For the behavior model and the parsing of the model language
COXER benefits from code written for the verifier of the UPPAAL tool. The COXER
specific parts are independent of UPPAAL and could be used in similar model-checkers
supporting other automata models.

A model of a system often consists of a controller part, specifying the behavior of
the system to be tested, and an environment part specifying the components surrounding
the controller. We require that the controller part is modeled deterministically so that
for a given state and input, a unique response and target state of the controller can be
anticipated. This property is called DIEOU-TA (i.e., Deterministic, Input Enabled, and
Output Urgent Timed Automata) [3]. The automata in the surrounding environment can
be modeled non-deterministically as an ordinary network of timed automata.

The UPPAAL verifier has a query language where a user can specify properties in a
subset of Timed CTL, e.g., “exists eventually P.l1” which is true if a state is reachable
from the initial state in which automaton P is in location l1 . The COXER tool extends
the language with the prefix cover that is used to instruct the tool to generate a test
suite which fulfills a coverage criterion specified by an observer.

In COXER, coverage criteria are specified in an observer language [2]. An observer
is a monitoring automaton formally describing a coverage criterion. A given observer
is refereed to using its name and its parameters, e.g., “cover du({x,y})”, where du is
the name of the observer, and the argument {x, y} is a set of variable identifiers in the
system model. By convention, COXER in this case assumes that the observer is specified
in a file named “du.obs”. An example of a coverage criteria described as an observer is



COXER

UPPAAL Observer
Engine

Services

Coverage

alt.

Custom

Generator
Script

COXER

UPPAAL
Wrapper

Query

Observer

Model

Config

.xml
Suite

Test
Script(s)

Fig. 3. COXER Architecture and Environment

shown in Fig. 1. The same observer specified in the input language of COXER is shown
in Fig. 2. We refer the reader to [2] for a description of the observer language used in
COXER.

A cover query can have an optional restrict statement which takes a set of
automata as argument. When used, the statement instructs the COXER tool to compute
new coverage only if at least one of the specified automata are involved in a gener-
ated model transition. Our experiments shows that this simple optimization can reduce
the time for test suite generation substantially. We have also seen that it can often be
applied, since typically only a part of a model specifies the controller to be tested.

3 Tool Overview

In this section, we describe the COXER tool architecture focusing on the main additions
to UPPAAL. The work flow of the tool and the internal COXER architecture is shown in
Fig. 3. The user specifies a Model file and a Query file as input. If a query is prefixed by
the keyword cover, it specifies an Observer file to be used. The observer is handled by
the Observer Engine. The COXER Services collects all generated traces that covers part
of the coverage criteria, and thus might become part of the test suite. After termination
the traces are either passed to an external Custom Script Generator or, if a configuration
file (Config) is specified, they are compiled into a test suite in XML format (.xml Suite).

To generate and select test cases, COXER performs state-space exploration by on-
the-fly reachability analysis of the timed automata (symbolic) state-space combined
with coverage information. During the analysis, a successor state is generated in two
steps. In the first step a (symbolic) successor state is generated by UPPAAL. In the
second step, the COXER Services updates the coverage information attached to the state,
with help of the Observer Engine. The coverage information is stored and manipulated
using bit vector representation managed by Coverage in Fig. 3. The interpretation of
the bit vectors are known by Observer Engine that performs the observer status update.



When the Observer Engine calculates observer successors it is dependent on a set
of macros used in the observer, to monitor the state and the changes taking place in a a
model transition. For example, the observer in Fig. 1 uses the macro def(X, E, P ), the
macro is true with solution X = x,E = e, P = p, if variable x is defined in automaton
p on edge e and there are no other restrictions on X , E, and P .

In COXER the UPPAAL Wrapper translates the UPPAAL model transitions to a
generic macro evaluation system used in Observer Engine. The interface of Observer
Engine can be implemented for other models without modifying Observer Engine inter-
nally. In this way, COXER can be used to extend other model-checkers or interface with
other tools with little effort. In Fig. 3, the parts that are UPPAAL specific are positioned
inside a dashed box.

4 Case Study

The COXER tool has been applied in a large case study in cooperation with Ericsson,
where a WAP Gateway has been tested [5]. The software of the session layer (WSP)
and the transaction layer (WTP) of the WAP stack were modeled in detail. The model
also contained automata modeling abstract behavior and assumption imposed on the
environment, such as a web sever and terminals using the gateway.

In the case study, we used COXER to produce a test suite with full feasible coverage
of edge coverage, switch coverage, and projected state coverage. To perform the actual
testing, a complete test bed was built that supports automated generation and execution
of tests. It takes as input a network of timed automata, an observer automaton together
with the other configuration files, and uses the COXER tool to generate an abstract test
suite. The test suite is compiled into a script program that is executed by a test execution
environment developed by Ericsson.

References
1. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.
2. J. Blom, A. Hessel, B. Jonsson, and P. Pettersson. Specifying and generating test cases using

observer automata. In J. Gabowski and B. Nielsen, editors, Proc. 4th Int. Workshop on Formal
Approaches to Testing of Software 2004 (FATES’04), volume 3395 of LNCS, pages 125–139.
Springer–Verlag, 2005.

3. A. Hessel, K. G. Larsen, B. Nielsen, P. Pettersson, and A. Skou. Time-Optimal Real-Time
Test Case Generation using UPPAAL. In A. Petrenko and A. Ulrich, editors, Proc. 3rd Int.
Workshop on Formal Approaches to Testing of Software 2003 (FATES’03), volume 2931 of
LNCS, pages 136–151. Springer–Verlag, 2004.

4. A. Hessel and P. Pettersson. A global algorithm for coverage-based test suite generation. In
Accepted for the 3rd Workshop on Model-Based Testing 2007 (MBT07).

5. A. Hessel and P. Pettersson. Model-Based Testing of a WAP Gateway: an Industrial Study.
In L. Brim and M. Leucker, editors, Proceedings of 11th International Workshop on Formal
Methods for Industrial Critical Systems, volume 4346 of LNCS, pages 116–131. Springer–
Verlag, 2007.

6. K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int. Journal on Software Tools
for Technology Transfer, 1(1–2):134–152, 1997.


