

4th FPGAworld CONFERENCE

SEPTEMBER 11 AND 13
LUND AND STOCKHOLM,

SWEDEN

EDITORS
Lennart Lindh and Vincent J. Mooney III

PROCEEDINGS 2007

The FPGAworld Conference addresses all aspects of digital and hardware/software system
engineering on FPGA technology. It is a discussion and network forum for researchers and
engineers working on industrial and research projects, state-of-the-art investigations,
development and applications. The proceedings contain the academic presentations and some of
the industrial presentations (from 2007); for more information see
(www.fpgaworld.com/conference).

ISSN 1404-3041 ISRN MDH-MRTC-215/2007-1-SE

SPONSORS

Copyright and Reprint Permission for personal or classroom use are allowed with credit to
FPGAworld.com. For commercial or other for-profit/for-commercial-advantage uses, prior

permission must be obtained from FPGAworld.com.

Additional copies of 2007 or prior Proceedings may be found at www.FPGAworld.com or at
Malardalens University library (www.mdh.se), ISSN 1404-3041 ISRN MDH-MRTC-215/2007-1-SE

2007 PROGRAM COMMITTEE

Academic Programme Chair
Vincent J. Mooney III, Georgia Institute of Technology, USA

Academic Programme Committee Members
Ketil Roed, Bergen University College, Norway
Lennart Lindh, Mälardalen University, Sweden
Adam Postula, University of Queensland, Australia
Pramote Kuacharoen, National Institute of Development Administration, Thailand

Publicity Chair
David Kallberg, FPGAworld, Sweden

Industrial Programme Chair
Lennart Lindh, Mälardalen University, Sweden

Industrial Programme Committee Members
Solfrid Hasund, Bergen University College
Kim Petersén, HDC, Sweden
Mickael Unnebäck, OpenCores, Sweden
Fredrik Lång, EBV, Sweden
Niclas Jansson, BitSim, Sweden
Göran Bilski, Xilinx, Sweden
Adam Edström, Elektroniktidningen, Sweden
Kristina Kristoffersson, Arrow, Sweden
Espen Tallaksen, Digitas, Norway
Göran Rosén, Actel, Sweden
Tommy Klevin, ÅF, Sweden
Tryggve Mathiesen, BitSim, Sweden
Fredrik Kjellberg, Net Insight, Sweden
Daniel Stackenäs, Altera, Sweden
Martin Olsson, Synective Labs, Sweden
Lars-Goran Lindstrom, Prevas, Sweden
Ola Wall, Synplicity, Sweden
Torbjorn Soderlund, Xilinx, Sweden

General Chair
Lennart Lindh, FPGAworld, Sweden

General Chairman’s Message

The FPGAworld program committee welcomes you to the 4th FPGAworld
conference. This year’s conference is held in Electrum-Kista, Stockholm,
and Lund, Ideon, Sweden. We hope that the conferences provide you
with much more then you expected. This year it is the third time we have
academic reviewed papers; this is an important step to incorporate the
academic community into the conference program. Due to the high
quality, 6 out of the 10 papers submitted this year were accepted.

We will try to balance academic and industrial presentations (Stockholm),
exhibits and tutorials to provide a unique chance for our attendants to
obtain knowledge from different views. This year we have the strongest
program in FPGAworld´s history. Also, industrial papers were submitted
then accepted.

The FPGAworld 2007 conference is bigger than the FPGAworld 2006
conference.

All are welcome to submit industrial/academic papers, exhibits and
tutorials to the conference, both from academic and industrial
backgrounds. Together we can make the FPGAworld conference exceed
even above our best expectations!

Please check out the website (http://fpgaworld.com/conference/) for
more information about FPGAworld 2007. In addition, you may contact
David Källberg (david@fpgaworld.com) for more information.

Lennart Lindh

General Program Chair

Preliminary programme for FPGAworld 2007 Stockholm

8:30 – 12:30

08:30 -
09:00

Registration

09:00 -
09:15

Conference Opening
Lennart Lindh, FPGAworld

09:15 -
10:00

Keynote Session
Research Trends in Hardware/Software Codesign of

Embedded Operating Systems for FPGAs
Dr. Vincent J. Mooney III

Georgia Institute of Technology, USA

10:00 -
10:30

Coffee Break

10:30 -
11:30

Exhibitors Presentations

11:30 -
12:30

Lunch Break, Sponsored by Mentor Graphics

Preliminary programme for FPGAworld 2007
Stockholm

12:30 – 19:00

*Paper part of Academic Program

Presentation; “Busy Generation in a large Trigger Based Data Acquisition System” will be
schedule in the final programme *

Chair Fredrik Lång EBV Elektronik
Chair Vincent J Mooney,

Georgia Institute of
Technology

Chair
Kim Petersén, HDC

12:30
-

14:30

Session A1
VHDL is still the best language for FPGA

verification

Session A2
Development of complex FPGA
applications require new design

technologies

Session A3
Digital Data Processor for a Synthetic

Aperture Radar

Session A4
Thinking Ouitside The Flow: Creating
Customized Backend Tools For Xilinx

Based Designs *

Session B1
OBSAI RP3-01 6.144 Gbps
Interface Implementation *

Session B2

A Dynamically
Reprogrammable CSA-

Generic Platform Architecture
*

Session B3
Application of ASM++

methodology on the design of
a DSP processor *

Session B4

The Effect of Dependence
Graphs’ Size and Complexity,

in the Implementation of
Processor Arrays on FPGA

Devices *

Session C1
Product Presentation

The Dini Group

Session C2
Tools: Keeping up with the

FPGA Challenge
Synplicity

Session C3

Product Presentation
Atmel

Session C4

Product Presentation
Digitas AS, Data Respons

Session
D2

Altera
Innovate
Nordic
Contest

14:30
15:00 Coffee Break

Chair Ola Wall
Synplicity

Chair Lena
Engdahl, Altera

Chair Lars Sageryd
EBV Elektronik

15:00
-

16:30

Session A5
Atmel CAP: ARM processors with a

dedicated interface to Altera/Xilinx FPGAs

Session A6
Next generation ARM Industrial Standard

processor for FPGA designs

Session A7
Leveraging spreadsheets for integrating

FPGA Integration in a Board design flow

Atmel
Product

Demonstration
Workshop

Session C5
SystemVerilog for Design and

Verification

Session C6
PowerExploration made possible by

C/C++ Synthesis

Session C7
Product Presentation

Xilinx

Session
D3

Altera
Innovate
Nordic
Contest

16:30 Exhibition & Snacks Sponsored by Altera

Programme FPGAworld 2007 Lund

08:30
09:00

Lund, Registration

09:00
09:15

Conference opening, Lennart Lindh and David Källberg, FPGAworld

09:15
-

10:00

Keynote Session

Redefining the FPGA for the Next Generation

Paul Evans, European Marketing Manager, Xilinx

10:00
10:30

Coffee Break

10:30
-

11:30
Exhibitors Presentation

11:30
-

13:00
Lunch Break

Session Chair
Tryggve Mathiesen, BitSim

Session Chair
Lars Sageryd, EBV Elektronik

13:00
-

14:30

Session A1
The GRLIB VHDL IP library and its usage

in LEON3 based developments

Session A2

Leveraging spreadsheets for integrating
FPGA Integration in a Board design flow

Session A3

Development of complex FPGA applications
require new design technologies

Session C1
Product Presentation

The Dini Group

Session C2

Tools: Keeping up with the FPGA
Challenge, Synplicity

Session C3

Product Presentation
Atmel

14:30
15:00

Coffee Break

Session Chair
Per Henricsson, Elektroniktidningen

Session Chair
Ola Wall, Synplicity

15:00
-

16:00

Session A4

Atmel CAP: ARM processors with a
dedicated interface to Altera/Xilinx FPGAs

Session A5

Next generation ARM Industrial Standard
processor for FPGA designs

Session C4

SystemVerilog for Design and
Verification

Session C5

PowerExploration made possible by
C/C++ Synthesis

16:00 Exhibition & Snacks

Exhibition 2007

Stockholm - Kista
1. BitSim
2. Acal
3. Arrow
4. Altera - Innovate Nordic
5. Synplicity
6. EBV Elektronik
7. Avnet Silica, XILINX
8. EWE AB
9. The Dini Group
10. Actel
11. The Mathworks
12. Digitas AS
13. Atmel

Lund - Ideon
1. BitSim
2. Acal
3. Arrow
4. Synplicity
5. EBV Elektronik
6. Avnet Silica, XILINX
7. EWE AB
8. The Dini Group
9. Gaisler Research
10. Actel
11. The Mathworks
12. Atmel

TABLE OF ACADEMIC PROCEEDINGS
CONTENTS

Session B1

OBSAI RP3-01 6.144 Gbps Interface Implementation *
A cost-efficient digital hardware implementation for high speed RP3-01 serial interface at 6.144 Gbps is presented for
OBSAI compliant BTS systems. Such data rate represents a 8x increment of the lowest RP3-01 rate and it might enable
transmission of multiple wide-band carriers across multi-node RRH network infrastructures for use in WiMAX 802.16e-2005
and 3GPP LTE wireless applications. The implementation is based on Altera P2SGX90FF1508 FPGA device, which
transceivers handles the electrical physical layer. The optical physical layer is implemented by Finisar SFP+
FTLX8571D3BCL devices. The upper layers of the RP3-01 protocol stack are implemented using Radiocomp’s OBSAI RP3-
01 IP core. The implementation is backward compatible with existing RP3-01 line rates and the design methodology of the
IP core makes it usable also on lower cost FPGA families. The FPGA design flow is based on Altera Quartus II
programming environment for simulations, synthesis and mapping onto the target device. The system’s performance is
measured with internal BER counters and eye diagram evaluation using Agilent 86105 DCA. Keywords: OBSAI RP3-01,
6.144 Gbps, Remote Radio Head, High Speed.

Session B2

A Dynamically Reprogrammable CSA-Generic Platform Architecture *
This paper suggests a set of reusable hardware functional blocks and a platform architecture composed of such, for
implementing a wide range of combinatorial search algorithms with a relevant development speed-up. Their conception was
based on careful analysis of various classical algorithms of that kind, amongst which important similarities and differences
have been identified. An overview of the relevant grounding is presented.
Making use of a control unit reprogramming strategy and a recently developed prototyping platform, the proposed hardware
architecture is easily combined with a software application running in any general-purpose computer, allowing the user to
load different combinatorial search algorithms, submit new problem instances and get the correspondent results, all in run-
time.

Session B3

Application of ASM++ methodology on the design of a DSP processor *
This article presents the application of a graphical methodology used to develop a Digital Signal Processor designed for
FPGA. The instruction set and main features of this processor are introduced. Then, a modified Algorithmic State Machine
methodology, named ASM++, is applied to fully describe the processor implementation. This processor has been simulated
and physically tested on Xilinx Spartan-3 devices, achieving 37.5~75 MIPS and up to 150 MOPS running at 75 MHz.

Session B4

The Effect of Dependence Graphs’ Size and Complexity, in the Implementation of
Processor Arrays on FPGA Devices *
Dependence graphs (DGs) constitute the initial step of an algorithm to a systolic array (SA) transformation. The derivation
of the intermediate signal flow graph representation from the DG using proper scheduling and projection vectors, is crucial
for the final form of the generated SA. In this paper, a set of DG to SA transformations and its further implementation on
FPGAs are presented. Examining the generated results the implemented architectures are evaluated with respect to their
constituting logic elements and their timing performance.

Busy Generation in a large Trigger Based Data Acquisition System
This paper gives an overview of a specific trigger and data acquisition system used in experimental nuclear physics, and
describes one of its many components, which generates the busy signal. It is a FPGA based device that continuously keeps
track of the number of issued triggers and computes the number of free buffers in the Front End Electronics.

THINKING OUTSIDE THE FLOW: CREATING CUSTOMIZED BACKEND TOOLS FOR
XILINX BASED DESIGNS
This paper is intended to serve as an introduction to how to build a customized backend tool for a Xilinx based design flow.
A Python based library called PyXDL is presented which allows a user to manipulate XDL files which contain a placed and
routed design. Three different tools are presented which uses this library, ranging from a simple resource utilization viewer
to a tool which will insert a logic analyzer into an already routed design, thus avoiding a costly complete rerun of the place
and route tool.

OBSAI RP3-01 6.144 Gbps Interface Implementation
Christian F. Lanzani∗

RADIOCOMP ApS
and

Technical University of Denmark, NET•COM•DTU

Abstract

A cost-efficient digital hardware implementation for
high speed RP3-01 serial interface at 6.144 Gbps is
presented for OBSAI compliant BTS systems. Such
data rate represents a 8x increment of the lowest RP3-
01 rate and it might enable transmission of multi-
ple wide-band carriers across multi-node RRH network
infrastructures for use in WiMAX 802.16e-2005 and
3GPP LTE wireless applications. The implementation
is based on Altera EP2SGX90FF1508 FPGA device,
which transceivers handles the electrical physical layer.
The optical physical layer is implemented by Finisar
SFP+ FTLX8571D3BCL devices. The upper layers
of the RP3-01 protocol stack are implemented using
Radiocomp’s OBSAI RP3-01 IP core. The implemen-
tation is backward compatible with existing RP3-01
line rates and the design methodology of the IP core
makes it usable also on lower cost FPGA families. The
FPGA design flow is based on Altera Quartus II pro-
gramming environment for simulations, synthesis and
mapping onto the target device. The system’s perfor-
mance is measured with internal BER counters and eye
diagram evaluation using Agilent 86105 DCA.

Keywords: OBSAI RP3-01, 6.144 Gbps, Remote
Radio Head, High Speed.

INTRODUCTION

New approaches are recently being introduced in
wireless infrastructure networks for distributing and
de-centralizing Base Transceiver Station (BTS) nodes.
Such approaches aims at reducing the relative capital
(CAPEX), operating (OPEX) expenditures and the
development efforts while increasing system perfor-
mances and flexibility by defining a modular and
standardized internal BTS architecture and interfaces.
The BTS is an integral part of the radio access
network and is the bridge between the handset and the
wireless infrastructure core network. In a distributed
BTS network architecture, the radio module is remote

∗email: cla@com.dtu.dk

relative to the channel card (base-band processing) and
communicates with the channel card via a standardized
digital optical interface. Distance ranges over the fiber
vary from indoor coverage up to a few kilometers.
This is done to improve site performances and reduce
site footprint as well as enable high efficiency sector
coverage with multiple remote radio nodes.
The Open Base Station Architecture Initiative
(OBSAI) [1] defines a modular architecture with
standardized functions split and inter-module inter-
faces into a modern wireless BTS. OBSAI defines
the Remote Radio Head (RRH) concept as a radio
module connected to the base-band through the
Reference Point 3-01 (RP3-01) interface, as defined in
[2]. The RP3-01 interface realizes a high speed optical
communication link between the Local Converter (LC)
module and a RRH. This interface is used to provide
bi-directional transfer of digitized base-band radio data
together with control and air-interface synchronization
information [2].
Emerging wireless standards like WiMAX 802.16e-2005
[4] and 3GPP Long Term Evolution (LTE) [5] enhance
throughput and radio signal quality performance also
by defining wide-band radio channels and advanced
modulation schemes for uplink and downlink channels.
Currently, RP3-01 interface definitions set the line
rates up to 3.072 Gbps [1], which is a bottle-neck
to provide wide-band carrier support in multi-node
RRH setups. The impact that a 6.144 Gbps data
rate increment will have on the existing RP3 standard
specifications is as today under consideration as a
number of challenges exist in defining a cost-efficient
solution. These challenges are the identification
of suitable technologies for the physical layer, the
protocol design choices, the definition of electrical
specifications for compliance and the evaluation of
the system performances and limitations for such
interfaces.
This work describes a suitable physical layer technol-
ogy and the design choices required to demonstrate
an optical 6.144 Gbps RP3-01 interface which requires
minimal changes to the existing OBSAI standard. The
design is targeting an FPGA-based implementation

usable for both BTS and RRH applications. The test
setup consists of a full-duplex point-to-point optical
communication at 6.144 Gbps between two Altera
Stratix II GX Audio/Video (SIIGXAV) evaluation
boards using Enhanced Small Form-Factor pluggable
(SFP+) transceiver modules and a RP3-01 engine.
The RP3 bus clock and frame synchronization (SYNC)
signals [3] are provided externally and the signal’s
quality is measured via internal Bit Error Rate (BER)
counters in the design blocks and the signal eye
diagram using Agilent 86105 equipment.

This paper is organized as follows: Section II out-
lines the bandwidth increment requirements for multi-
node wide-band carriers RRH networks. Section III de-
scribes RP3-01 functional architecture and blocks. Sec-
tion IV briefly describes the SFP+ transceiver technol-
ogy benefits and shows measurements of the optical sig-
nal performances. Section V describes briefly the GX
transceivers features shows measurements of their elec-
trical performances. Section VI illustrates the RP3-01
design considerations for 6.144 Gbps and for low cost
FPGA-based implementations. Section VII illustrates
the hardware test setup and BER measurement results.
The conclusions are given in Section VIII.

II - BANDWIDTH REQUIREMENTS

In [4] a number of Orthogonal Frequency Division Mul-
tiple Access (OFDMA) profiles and radio channel band-
widths up to 28 MHz are defined in WiMAX [5]. 3GPP
LTE [5] also supports a number of profiles and radio
channels with bandwidths up to 20 MHz. Each channel
bandwidth is associated with its base-band digital sam-
ple rate, where the samples are given in In-phase (I) and
Quadrature (Q) format of 16 bits each at the RP3-01
stage [2]. For such wireless standards, performance op-
timization on the radio link can be achieved by exploit-
ing advanced Multiple-Input Multiple-Output (MIMO)
antenna techniques1, which is increasing the number of
antenna carriers required into a single radio node. Site
coverage optimization can be obtained by exploiting
multiple RRH in a number of possible topologies, like
daisy-chaining, ring or tree-and-branch.
RP3-01 link has a limited support in terms of band-
width available to transport multiple wide-bad radio
carriers signals across multiple RRH nodes using mul-
tiple virtual RP3 links [2]. Table 1 shows an example
of how many (X) wide-band carriers at 20 MHz can be
transported over a 3.072 Gbps virtual RP3 link [2]. In
this case the whole link is allocated for the same stan-

1MIMO technology configurations offers significant increases
in data throughput and link range without requiring additional
channel bandwidth or transmit power, giving thus higher spectral
efficiency and link reliability reduced fading.

dard data and we assume that the RP3 virtual channel
is specified by parameters (index,module) with value
(0,1) [2].

WiMAX LTE
Line Rate 3.072 Gbps 3.072 Gbps
Channel BW 20 MHz 20 MHz
Sample Rate 22.4 Msps 30.72 Msps
Carriers (X) 2 2

Table 1: Amount of 20 MHz carriers to fit into a virtual
RP3 link at 3.072 Gbps.

In case of modern radio setups using MIMO tech-
niques, the amount of carriers (X) [2] required per
RRH node can be 2 (2x2 MIMO) or 4 (4x4 MIMO)
for common configurations. Thus current OBSAI RP3-
01 line rate definitions2 are not sufficient to provide
bandwidth enough3 to support multi wide-band carri-
ers across multiple RRH nodes as shown in Table 1. A
6.144 Gbps line rate would allow the bandwidth incre-
ment necessary for supporting multi node RRH network
architectures.

III - IMPLEMENTATION ARCHITECTURE

The functional architecture of the RP3-01 interface de-
sign is represented in Fig.1, showing the split between
the physical and the higher layers (Application, Trans-
port, Data Link).

SERDES
8b10b coding

(Altera GX)

RP3-01
Data Link
Transport

Application
Layers

(Radiocomp IP)

Optical
SFP+

(Finisar)

TXP/TXN

RXP/RXN

RP3-01
Physical Layer

To
Baseband/RF

To BTS/RRH

RP3-01 Protocol Stack

Figure 1: OBSAI RP3-01 6.144 Gbps architecture and data-

path.

In this implemenation the RP3-01 physical layer con-
sists of high speed Stratix II GX transceivers and of
optical SFP+ transceivers, while the logical layers are
part of the Radiocomp’s IP. The higher layer (Appli-
cation) can be interfaced with Base-band or RF cards,
while the lower layer (Data Link) is interfaced with the

2Existing OBSAI RP3-01 rates are 768 Mbps, 1536 Gbps and
3.072 Gbps.

3Mapping of WiMAX and LTE digitized radio samples into
the OBSAI RP3-01 link is done using (index,module) and dual
bit maps algorithm as defined in [2].

Copyright c©FPGAworld.com 2007 2

physical layer. The whole high speed design is hosted
from the SIIGXAV evaluation board.

IV - SFP+ OPTICAL TRANSCEIVER TECHNOLOGY

The SFP (Small Form-Factor Pluggable) compact opti-
cal transceivers are commonly used in optical commu-
nications for both telecommunication and data com-
munication applications and they are Commercial-Off-
Ther-Shelf (COTS) available devices with capability
for data rates up to 4.25 Gbps. The latest genera-
tion of such transceivers, called Enhanced Small Form-
Factor Pluggable (SFP+), has been designed within
the same form-factor for higher data rates up to 10
Gbps, for lower power consumption, less complexity,
and as a lower cost alternative to the 10-Gbps XFP
form factor4. The measurements have been done using
FTLX8571D3BCL 10Gbps 850nm Multimode Datacom
SFP+ Transceiver. Optimized results may be achieved
in the near future by using the FTLF8528P2BNV 8.5
Gbps Short-Wavelength SFP+ transceivers. In Fig.4
and Fig.5 are shown the eye diagram measurements of
RP3-01 optical signals at 3.072 Gbps and 6.144 Gbps
rates respectively on the SIIGXAV. The signal mea-
sured consist of valid RP3-01 frame structure5 with
data in every RP3-01 message slot.

These measurements are taken using Agilent 89105
DSO equipment over 1 m distance with multimode
850 nm fiber. The instrument has been configured with
a 153.6 MHz trigger reference locked to the transmitted
data, which consist of valid RP3-01 data messages. At
3.072 Gbps rate a 3.125 Gbps rate filter is applied. At
6.144 Gbps a 9.125 Gbps rate filter is applied, since the
6.250 Gbps filter option was not currently installed in
the instrument.
In [2] the indicative minimum values for eye mask com-
pliance relative to the eye width for transmitter and
receiver are 0.656 UI and 0.45 UI respectively. The
eye diagram measurement at 3.072 Gbps rate shows a
peak-to-peak jitter value at 48.71 ps with a eye width
value at 0.848 Unit Interval (UI).
The eye diagram measurement at 6.144 Gbps rate
shows a peak-to-peak jitter value at 60.16 ps with a
eye width value at 0.685 UI.

V - HIGH SPEED SERDES TECHNOLOGY

The physical electrical layer is implemented by the
Altera Stratix II GX device family, which combines up

410 Gigabit Small Form Factor Pluggable - Vendors in the
cost-sensitive 10-Gigabit Ethernet (10 GbE) market are making
a strong push to standardize SFP+ technology for use in 10 GbE
applications and similar as an alternative to the XFP form factor.

5Which includes frame boundary marking characters (K28.7)
and Message Group boundary marking characters (K28.5).

Figure 2: 3.072 Gbps RP3-01 optical signal.

Figure 3: 6.144 Gbps RP3-01 optical.

to 20 duplex channels capable of operating between
600 Mbps and 6.375 Gbps into a single FPGA. The
low power transceivers offer optimal signal integrity
and provide a number of features such as Dynamic
Pre-emphasis, Equalization and Adaptive Equalization
to simplify board design. The transceivers also provide
optimal jitter performance, meaning they comply
electrically with the majority of serial standards being
used today, including many of the telecom standards.
For OBSAI RP3/RP3-01 applications, they offer
compliance to the XAUI electrical interface specified
in Clause 47 of IEEE 802.3ae-2002 [10] up to 3.072
Gbps and to the Common Electrical I/O (CEI) for
both the Short Reach and Long Reach 6.25 Gbps
standards (CEI-6G-SR and CIE-6G-LR) [6], which is a
candidate standard recommendations for applications
above 3.072 Gbps.
The GX transceiver includes dedicated digital building
blocks to support the PCS-sublayer of many key
protocols, this means many of the physical layers of
a protocol can be built inside the transceiver. In the
case of OBSAI RP3/RP3-01, the 8b10b encoding and
word alignment blocks are embedded in the transceiver
block and do not need to use dedicated FPGA logic.

Copyright c©FPGAworld.com 2007 3

The relevant GX transceiver configuration used is as
it follows:

Parameter (tx/rx) Value
double data mode true
data rate 6144
protocol 6G basic
equalizer 0
preemphasis 0
8b10b enc/dec cascaded
ref clk 153.6 MHz
rx cru pll tx clk

Table 2: GX Transceiver configuration

Also dynamical reconfiguration of each transceiver
from one operating mode to another is supported. This
mode reconfiguration involves reconfiguring of the data
rate, data path, or both [7]. For this implementation a
fixed double-width data-path of 32-bits is chosen and
only data rate settings are set being dynamically recon-
figurable from the user6.
Fig.2 and Fig.3 shows the eye diagram measurements
of 3.072 Gbps and 6.144 Gbps electrical signals respec-
tively on the SIIGXAV7. The signal measured consist
of valid RP3-01 frame structure8 with data in every
RP3-01 message slot.

These measurements are taken using Agilent 89105
DSO equipment that has been configured with a 153.6
MHz trigger reference locked to the transmitted data,
which consist of valid RP3-01 data messages.
In [2] the indicative minimum values for eye mask
compliance relative to the eye width for transmitter
and receiver are 0.656 UI and 0.45 UI respectively.
The eye diagram measurement at electrical 3.072 Gbps
rate shows a peak-to-peak jitter value at 34.28 ps with
a eye width value of 0.913 Unit Interval (UI).
The eye diagram measurement at electrical 6.144 Gbps
rate shows a peak-to-peak jitter value at 39.29 ps with
a eye width value at 0.810 UI.

VI - RP3-01 TIMING AND CONFIGURATION

The OBSAI BTS has a reference system clock (SCLK)
of 30.72 MHz [3]. This is used as a convenient frequency
for operations at a value eight times multiple of the

6In case of dynamic reconfiguration enabled in double-width
mode, only the 768 Mbps line rate is not supported from the
transceivers since only line rates between 1 Gbps and 6.25 Gbps
are allowed.

7These measurements are performed with the standard ana-
log pre-emphasis and equalization settings on the ALT2GXB
Megawizard.

8Which includes frame boundary marking characters (K28.7)
and Message Group boundary marking characters (K28.5).

Figure 4: 3.072 Gbps RP3-01 electrical signal.

Figure 5: 6.144 Gbps RP3-01 electrical signal.

WCDMA chip rate9. The RP3-01 interface reference
frequency is different from SCLK, since an overhead of
3 bytes per RP3 message and control bandwidth are
defined in [2], and the next convenient way if getting
this extra bandwidth is a higher frequency reference
multiple of 12.5 (×10/8) times the SCLK, thus 38.4
MHz. The RP3-01 byte clock frequency is a multiple
of 38.4 MHz and it is defined being a factor of 10 the line
rate used due to the 8b10b coding and phase locked to
SCLK [2]. Table 3 illustrates the core clock frequencies
according to the data path chosen.

Rate (Mbps) 8DP clk (MHz) 32DP clk (MHz)
6144 614.4 153.6
3072 307.2 76.8
1536 153.6 38.4
768 76.8 19.2

Table 3: OBSAI RP3-01 core clock frequencies for 8-
bits and 32-bits data paths reespectively.

In order to run design into lower cost FPGA tech-
nology while maintaining the same serial throughput,
higher data-path parallelization is chosen to lower the
operating core clock frequency. In this design 6.144

9The WCDMA chip rate is 3.84 Mcps.

Copyright c©FPGAworld.com 2007 4

Gbps and 32 bits data-path are chosen, giving a 153.6
MHz frequency.
This operating frequency enable usage of the RP3-01 IP
block also in low-cost Altera Cyclone II and Cyclone III
families, which internal logic supports maximum oper-
ating frequencies of around 167 MHz [8] and around 180
MHz [9] respectively. In this case an external physical
layer is required.
The RP3-01 frame structure parameters are defined in
[2] and reported in Table 4, and they are invariant for
WCDMA, WiMAX and LTE configurations. i defines
the frame structure according to the line rate used, and
it takes integer values according to Table 5. IIn this im-
plementation value eighth (i=8) is chosen. Thus only
reconfiguration of i and of the core clock frequency is
required to enable dynamic line rate re-configuration
from the RP3-01 IP core.

M MG N MG K MG i
21 1920 1 variable

Table 4: RP3-01 Frame structure for WCDMA, 802.16
and LTE.

Line Rate (Mbps) i
768 1
1536 2
3072 4
6144 8

Table 5: Line rate and “i” values definition.

VII - TEST SETUP AND RESULTS

The test setup block architecture is illustrated in Fig.6
where two SIIGXAV boards are connected to imple-
ment a full duplex optical communication at 6.144 Gbps
of valid RP3-01 traffic. The measurements was also per-
formed at 3.072 Gbps for comparing the 6.144 Gbps line
rate results to the existing RP3 specifications Setup op-
tions for the RP3-01 IP and GX transceivers are done
via DIP switches. External clock generator is used to
generate 153.6 MHz for both the boards and the trigger
signal to the 89105 DSO.

The Pseudo Random Bit Sequence (PRBS) genera-
tor blocks implements a simple 3-bytes counter for the
RP3-01 message header and a 16-bytes counter for the
RP3-01 message payload for each message slot10 in a
Message Group. A PRBS validator checks the received
messages counters values and the BER counter mea-
sures the amount of bit errors received. A picture of
the setup while it is running is given in Fig. 7, where
the 7-segments display on each board shows the BER
counter values and the LED bank shows that the sys-

10RP3/RP3-01 message slot size is defined as 19 bytes [2].

GXB
TX

GXB
RX

8b10
enc

8b10
dec

PRBS
Gen

PRBS
Check

RP3-01

RP1
Generator

SFP+
FTLX8571D3BCL

Agilent
89105

Altera SIIGX Audio/Video Evaluation Board

I/O
(PB,LEDs,DIP)

153.6 MHz
CLK

SYNC

TRIGGER

TXP/TXN
1.5-PV PCML

RXP/RXN
1.5-PV PCML

controls

EP2SGX90FF1508

GXB
TX

GXB
RX

8b10
enc

8b10
dec

PRBS
Gen

PRBS
Check

RP3-01 SFP+
FTLX8571D3BCL

I/O
(PB,LEDs,DIP)

TXP/TXN
1.5-PV PCML

RXP/RXN
1.5-PV PCML

controls

EP2SGX90FF1508

153.6 MHz
CLK

SYNC

Figure 6: Block diagram of the test setup.

tem is operating correctly according to the mapping in
Table 6.

LED Signal High Low
1 TX PLL unlocked locked
2 RX PLL unlocked locked
3 RP3-01 RX IDLE false true
4 RP3-01 RX SYNC false true
5 PRBS Errors present not present
6 LCV Errors present not present
7 RE-SYNC on off
8 N.A. - -

Table 6: Status LED signals mapping.

The results indicates that the transmission at 6.144
Gbps over each link is error free (zero value is constant
on both the receivers end) measured over a time window
of a few hours. It is possible to verify the correct op-
erational status of the interface through the LED bank
status indication that are mapped as indicated in Table
6 and they all shows “low” logic values as expected.

Copyright c©FPGAworld.com 2007 5

Double-click
here to edit
text.

Full
synchronization
achieved

Full
synchronization
achieved

BER = 0

BER = 0

Figure 7: Hardware setup.

VIII - CONCLUSIONS

A 6.144 Gbps OBSAI RP3-01 point-to-point full-duplex
transmission test setup was built running at 153.6 MHz.
The OBSAI RP3-01 IP is supporting all OBSAI RP3-01
line rates, including the 6.144 Gbps one via register in-
terface requiring reconfiguration only of the core clock
frequency and frame structure parameter i. Stratix II
GX dynamic channel reconfiguration also is support-
ing multiple rate configurations and backward compat-
ibility with 3.072 Gbps link have been demonstrated

using SFP+ FTLX8571D3BCL optical transceivers as
RP3-01 physical layer. The measurements of the sig-
nal integrity compare the 3.072 Gbps with the 6.144
Gbps eye diagram with acceptable eye quality, proving
an error-free communication with internal BER mea-
surements.

ACKNOWLEDGMENTS

Thanks to Radiocomp ApS for permission of using part
of their RP3-01 IP core. Thanks to Altera for providing
evaluation boards and software tools and discussions.
Thanks to Finisar and Laser2000 for providing SFP+
FTLX8571D3BCL samples. Thanks to Agilent for pro-
viding the 86100 measurement equipment. Thanks to
Bob Blake and Akshaya Trivedi from Altera, Laurent
Drozin from Finisar, Henrik Wessing and Lara Scolari
from COM for valuable discussions and reviews.

TRADEMARKS

FinisarTM, AlteraTM, RadiocompTMand AgilentTMare
registered trademarks.

REFERENCES

[1] [www.obsai.com]

[2] [www.obsai.com], “RP3 Specification v4.0”

[3] [www.obsai.com], “RP1 Specification v2.0”

[4] [www.ieee802.org], “802.16e-2005 WirelessMAN”

[5] [www.3gpp.org/Highlights/LTE/LTE.htm]

[6] [www.t10.org/ftp/t10/document.05/05-210r0.pdf]

[7] [http://www.altera.com/literature/hb/stx2gx/stxiigx sii5v2 01.pdf],
“Stratix II GX Transceiver User Guide”

[8] [http://www.altera.com/literature/hb/cyc2/cyc2 cii5v1.pdf],
“Cyclone II Device Handbook, Volume 1”

[9] [http://www.altera.com/literature/hb/cyc3/cyc3 ciii5v1.pdf],
“Cyclone III Device Handbook, Volume 1”

[10] “IEEE 802.3ae Standard for Information Technol-
ogy Local &Metropolitan Area Networks Part 3:
Carrier sense multiple access with collision detection
(CSMA/CD) access method and physical layer speci-
fications – Media Access Control (MAC) Parameters,
Physical Layer, and Management Parameters for 10
Gb/s Operation”

Copyright c©FPGAworld.com 2007 6

A Dynamically Reprogrammable CSA-Generic Platform Architecture
Bruno Pimentel

Department of Electronics and Telecommunications and Informatics / IEETA
University of Aveiro, Portugal

brunopimentel@ua.pt

Abstract

This paper suggests a set of reusable hardware functional
blocks and a platform architecture composed of such, for
implementing a wide range of combinatorial search
algorithms with a relevant development speed-up. Their
conception was based on careful analysis of various
classical algorithms of that kind, amongst which important
similarities and differences have been identified. An
overview of the relevant grounding is presented.
Making use of a control unit reprogramming strategy and a
recently developed prototyping platform, the proposed
hardware architecture is easily combined with a software
application running in any general-purpose computer,
allowing the user to load different combinatorial search
algorithms, submit new problem instances and get the
correspondent results, all in run-time.

1. Introduction

Combinatorial search algorithms (CSAs) continue to
evolve in response to important combinatorial optimization
problems (COPs) that arise within different areas, namely
synthesis, optimization and testing of digital circuits [1, 2],
mapping, placing and routing for integrated circuits design
components [3], topology and cartography [4], artificial
intelligence [5], etc. Some of the CSAs gain big relevance
because they provide solution for classical COPs, such as
determining a shortest or longest path within graphs, graph
coloring, Boolean function optimization and minimal
coverage problems, which have wide application scopes.
Hardware accelerators have been developed, but each COP
is commonly addressed independently. In order to get the
speed-up that hardware can provide, designing effort is
generally targeted to CSA-specific accelerators, despite the
significant similarities one can find amongst them.
The approach carried out in this research began with the
detailed identification of those similarities as well as the
differences. By taking advantage of the former and finding
the best way to cope with the latter, the objective was to
achieve:
− A thorough set of hardware component

specifications which are reusable for a wide range
of CSAs;

− A reprogrammable platform architecture able to
enforce different CSA specifications provided in
run-time.

2. Overview on CSAs

Before pointing out important similarities and differences
amongst CSA implementations, let us consider some CSA
examples, each addressing a different classical COP.
The Matrix Covering (MC) problem consists of finding the
smallest row set of a given binary matrix that includes at
least one value 1 in each column [6]. The approximate
algorithm proposed in [7] to solve this problem is depicted
in Fig. 1. When the algorithm has finished, the solution is
the set of rows that have been removed.

Identify a column C
which has the minimal

number N of 1s

Yes

No

No

Yes

Remove row R
and all columns
with a 1 in row R

Unsolvable

All columns
removed?

N=0?

Solution found
Identify a row R,

with a 1 in column C,
which has the most 1s

Fig. 1 - Approximate algorithm for the MC problem

Fig. 2 demonstrates the resulting steps of this algorithm
with a practical example, depicting the 3 iterations of the
algorithm cycle which lead to the solution. The row and
the columns which are removed at each iteration are
presented with a black background while a grey
background indicates previously removed matrix parts. In
the first iteration, row 5 gets to be removed because no
other row contains more values 1 and then columns A, C
and F are removed, as these contain a value 1 in that row.
With 2 more iterations the algorithm reveals the solution
composed of the removed rows 2, 5 and 8.

8
7
6
5
4
3
2
1

a)

0
1
0
1
0
0
0
0
A

0
0
0
0
1
0
1
0
B

0
0
0
1
0
0
1
0
C

1
0
0
0
0
1
0
0
D

1
0
1
0
0
0
0
1
E

0
0
0
1
0
1
0
1
F

01100080110008
00000170000017
01000060100006
10010151001015
00001040000104
10100031010003
00011020001102
11000011100001
FEDCBAFEDCBA

c)b)

Fig. 2 - Solving a MC problem instance example

The Boolean Satisfiability (SAT) problem consists of
determining whether the variables of a given Boolean

formula can be assigned in such a way as to make the
formula evaluate to true. Conversion between Boolean
formulas expressing SAT problem instances and their
equivalent ternary matrices can be found in [8]. SAT-
solving CSAs are typically based on operations over such
matrices. In this approach, solving the problem
corresponds to finding a ternary vector which is orthogonal
to every row in the matrix that expresses the problem
instance at hand. Note that i) a ternary value is either 0, 1
or “don’t care” and that ii) two ternary vectors are
considered orthogonal if at least one of their pairs of
homologous elements is composed of a 0 and a 1.
Throughout the solving process, it is some times possible
(and advantageous) to simplify the matrix obtaining an
equivalent. This simplification is called reduction and it
does not change the search route. However, when no
further reduction operations can be performed, the solver
might have to try alternative paths in order to check
whether there is one which leads to a solution. The set of
operations that determine which path to follow is called
selection. When a chosen path fails, it is necessary to
backtrack and select another, if available. Such a strategy
requires a CSA like the one shown in Fig. 3.

Reduction

Yes

No

No

Yes

Unsolvable

Solution
foundHas the

problem been
solved?

Z

Recursive
call of Z

Selection

Is it known
that the problem is

not solvable?

Fig. 3 - Basic combinatorial search algorithm

This generic algorithm can be used to solve many COPs,
and it was used for the SAT solver presented in [8], in
which the “Has the problem been solved?” condition test is
verified if all matrix rows have been deleted and the “Is it
known that the problem is not solvable?” condition test is
verified if all matrix columns have been deleted. The
reduction rules used in that example are the following:

1. If a column contains just “don’t care” values, it
must be deleted from the matrix;

2. All rows that are orthogonal to an intermediate
vector w (that incrementally forms a solution)
must be removed from the matrix. All columns
that correspond to the components of the vector w
with values 1 and 0 must be deleted from the
matrix;

3. If the matrix contains a row with just one
component 0 (1) with an index i, then the element
i of the vector w must be assigned the value 1 (0),
i.e. the inverted value;

4. If there is a column j in the matrix without values
1 (0) then the element j of w must be assigned the
value 1 (0).

Finally, the selection rule used in this example was the
following: A column Cmax is selected that contains the
maximum number of values 1 (let us designate this N1) and
0 (let us designate this N0); i.e. Cmax has a minimum
number of “don’t care”s. If N1 ≥ N0, then the value 0 for
the column Cmax is included in w. If N0 > N1, then the
value 1 for the column Cmax is included in w. This creates a
sub-matrix that will be examined in the next step. If this
path fails, the solver backtracks and repeats the attempt
including the alternative value for the column Cmax in
vector w.
Fig. 4 illustrates the resulting search steps when applying
these rules to a practical example matrix, representing
“don’t care” values with the character “-“. Once again, the
rows and columns which are removed at each iteration are
presented with a black background while a grey
background indicates previously removed matrix parts.
When an element of vector w is assigned a value, its cell is
also highlighted with a black background.

10-0w:10--w:00-0w:

-1--5-1--5-1--5
100141001410014
1--131--131--13
0--020--020--02
0--110--110--11
DCBADCBADCBA

f)e)d)

00-0w:00--w:-0--w:

-1--5-1--5-1--5
100141001410014
1--131--131--13
0--020--020--02
0--110--110--11
DCBADCBADCBA

c)b)a)

Fig. 4 - Solving a SAT problem instance example

Let us focus on the selection rules only. After Fig. 5-a, no
more reduction can take place and there are still rows and
columns left, so in Fig. 5-b the value 0 for column D is
included in vector w. Then, some reduction takes place and
after Fig. 5-d there is still one row left (namely row 2),
which means a solution was not yet found, but all columns
have been removed, meaning this search path cannot
provide a solution. Thus, the algorithm backtracks in order
to try the search path alternative to the one chosen in Fig.
5-b. This time (Fig. 5-e), the value 1 for column D is
included in vector w and then reduction rules are applied
again. Finally (Fig. 5-f), all rows have been removed,
meaning a solution has been found. Vector w (“0-01”, at
the end) has been constructed throughout this process and
is now orthogonal to all given matrix rows.
The Graph Coloring (GC) problem consists of assigning
one color to each vertex of a given graph, using the

minimum number of colors and taking into account that
connected vertices must be assigned different colors.
Solvers for the GC problem are also commonly based on
algorithms that execute condition tests and operations over
matrices that express the problem instances. In this third
example, let us focus on how a graph that has to be colored
can be converted to a ternary matrix in such a way that
solving the problem over the matrix is equivalent to
solving the problem over the graph. As shown in previous
research [9], this conversion can be done using the
following steps:

1. Have a matrix with N rows and N columns, N
being the number of vertices in the graph;

2. Fill the main diagonal up with 0s;
3. Within the lower triangle (as filling the upper one

would be redundant and unnecessary), insert a 1
in every cell with coordinates corresponding to
connected edges in the graph;

4. Exclude every column that has no cells with a 1
(keeping track of which vertex each column
corresponds to);

5. Fill all empty cells up with “don’t care” values.
Fig. 5 presents a practical example of this conversion
method. The graph that has to be colored (Fig. 5-a) is
composed of 8 vertices and 11 edges. Fig. 5-b shows the
results of this conversion right until the initial 8x8 matrix
gets reduced. At step 4, columns E, G and H (highlighted
with a black background) get excluded and the final 8x5
ternary matrix is presented in Fig. 5-c.

1 6

4

5

2

3

7

8

a) Graph to be converted

01H
0111G

011F
011E

0111D
0C

0B
0A

HGFEDCBA

b) Conversion at step 4

--1--H
11-1-G
01--1F
-1-1-E
-0111D
--0--C
---0-B
----0A
FDCBA

c) Resulting matrix
d) An optimal solution

1 6

4

5

2

3

7

8

Fig. 5 - Converting a GC problem instance example

As mentioned above, two ternary vectors are considered
orthogonal if at least one of their pairs of homologous
elements is composed of a 0 and a 1. The method used to
convert graphs to matrices guarantees that connected
vertices correspond to orthogonal rows. Therefore, solving

the GC problem corresponds to discovering a set with the
minimum number of row subsets, each one having no
orthogonal pair of rows and together including all rows.
The number of compiled row subsets expresses the
minimum number of colors the given graph requires, while
rows grouped in a same subset correspond to vertices
assigned the same color.
The exact algorithm presented in [9] is based on four steps
that are common for combinatorial search problems and
that are repeated sequentially until the solution is found:

1. Reduction: the matrix is reduced as much as
possible applying some pre-established rules;

2. Splitting: the problem is decomposed in less
complicated sub-problems;

3. Termination: The current step is terminated as
soon as a new incomplete solution is of the same
order (i.e. contains the same number of colors) as
any previous solution that has already been found.

4. Search for the optimal result: steps 1, 2 and 3 are
repeated until all possible solutions have been
implicitly examined.

Because what was addressed so far already constitutes a
good CSA overview (for our goal), let us skip other details
on the GC algorithm and move on.

3. Similarities and Differences amongst CSA

Implementations

Matrices are clearly the data structure most used as cores
of COP solvers and the reason for this is the combination
of 2 facts:
− Usually, any COP can be expressed in several

equivalent mathematical formulations based on
different standard data structures [10], such as
graphs, matrices and Boolean functions;

− Matrices are the standard data structure which has
proven itself more advantageous for storing and
processing in digital systems [10].

Binary and ternary matrices are the most used in CSAs,
e.g. in those considered in the previous section. If we think
of digital circuits (with which designers can achieve best
time performances), while a binary value requires a single
bit that explicitly states its value, a ternary value can be
coded using 2 bits. Thus, 2 binary matrices can be used to
compose a ternary matrix.
A second criterion regarding the matrix CSA core divides
COP solvers in 2 groups: one with simple access to the
matrices (by rows or by columns) and the other one
needing dual access (by rows and by columns). All 3 CSAs
considered in the previous section make use of ternary
matrices.
Combining these 2 criteria, 4 CSA classes emerge with
direct correspondence to 4 kinds of matrix: Single Access
Binary Matrix (SABM), Single Access Ternary Matrix
(SATM), Dual Access Binary Matrix (DABM) and Dual
Access Ternary Matrix (DATM). Again in the context of
digital circuits, aiming for good time performance
provided by RAM-based logic-vector arrays, dual access to

a matrix calls for a replication of its data. One copy is
organized as an array of rows and the second as one of
columns. As a result, the number of RAM-based logic-
vector arrays used to implement COP solvers in function
of matrix and matrix access types is presented in Table 1.

Table 1 - Number of logic-vector arrays in function of

matrix and matrix access types
 Binary Matrix Ternary Matrix

Simple
Access

(SABM Class)
1 array required

(SATM Class)
2 arrays required

Dual
Access

(DABM Class)
2 arrays required

(DATM Class)
4 arrays required

As mentioned before, a CSA usually starts with a matrix
that expresses the problem instance to solve (the search
tree root) and then rows and columns are removed as the
algorithm runs forward in some search path. Eventually it
can backtrack, which implies recovering rows and columns
that were previously removed. This requirement is
commonly satisfied with the use of masks, which are easily
implemented with logic-vectors. A row mask contains 1 bit
per matrix row, indicating whether that row has been
removed or not. The same approach is applied for the
column mask. The use of masks has nevertheless an
implication: the operations over rows and columns must be
designed in such a way as to correctly cope with partial
vectors.
Regarding the problem instances, there are 2 kinds of
COPs: those for which any instance is solvable (e.g. the
GC problem), and those for which there are instances with
no solution (e.g. the SAT problem). Depending on the kind
of COP, it becomes possible to conceive solving CSAs
from 3 algorithmic flow (AF) categories:
− Single path;
− Preemptive search tree;
− Exhaustive search tree.

Single path algorithms do not use backtracking, resulting
in somewhat simple algorithms, like the approximate one
considered for the MC problem (Fig.1). Search tree AF
solvers require a more complex algorithm to support
testing alternative paths. With preemptive search tree
algorithms, such as the one considered for the SAT
problem (Fig. 3), the search ends as soon as the first
solution is found. With exhaustive search tree algorithms,
such as the one considered for the GC problem, all
branches of the search tree which can provide a solution
are tested as to ensure that an optimal one is found. Note
that both search tree AFs may include pruning techniques
to shorten the search.
CSAs can be quite different from one another and their
constituting steps can have completely different meanings
(within the context of how they approach the problem).
Still, because the data structures they manipulate are, as
mentioned above, basically the same, the operations used
as basic blocks to implement those CSAs are in fact very

much the same. Examples of generally used micro-
operations (the most basic ones) are the following:
− Remove a row/column;
− Read a row/column;
− Count 1s/0s in a binary/ternary vector;
− Find the address of the first 0/1 in a binary/ternary

vector;
− Check whether 2 binary/ternary vectors are

orthogonal;
− Combine 2 binary/ternary vectors.

There are also composed operations (compilations of
micro-operations) which are still very commonly used,
such as:
− Find the row/column with the most/least 0s/1s in a

matrix;
− Count the number of rows/columns which have no

0s/1s in a matrix;
− Check whether there are any matrix rows/columns

orthogonal to some binary/ternary vector;
− Combine all rows/columns of a matrix which are

combinable with some binary/ternary vector.

4. Reusable Functional Blocks

Taking into account the similarities and differences
amongst CSA implementations, the following functional
blocks were prepared:

1. Memory permitting to store both binary and
ternary matrices and to provide access addressing
either lines or columns;

2. Mask registers making it possible to use the same
storage for handling initial matrices and their sub-
matrices, which result from removing rows and/or
columns;

3. Stacks for managing forward and backward
propagation steps, which permit to sequentially
construct sub-matrices and to return back to any
intermediate sub-matrix if required;

4. General-purpose registers over which operations
can be executed when required (namely by a
control unit enforcing some algorithm);

5. Operational Unit (OU) implementing a variety of
generic basic operations over binary and ternary
vectors with and without mask as a parameter;

6. Reprogrammable Control Unit (RCU) to enforce
CSAs by activating the operations on an OU. The
algorithm enforced can be dynamically replaced
through reconfiguration of the control circuit,
which is modeled by a Reconfigurable
Hierarchical Finite State Machine [11]. An
example of such machine for implementing
operations over Boolean and ternary vectors was
considered in detail in [12];

7. User Agent (UA) circuit to allow testing,
debugging and interacting with the desired system
through a general-purpose computer.

Parameterization on the considered FBs was provided so as
to make them fit any required scale, e.g. depending on the

available hardware resources and on the targeted matrix
maximum dimensions.
There are many varieties of the operations required for
CSAs, for example: use or not the contents of a mask
register; store (in a general-purpose register) or not store
the result; use just one vector of a binary matrix or two
vectors of a ternary matrix. However the number of such
operations is limited and thus the proper reusable interface
can be described.
Because the use of masks has different implications in
each operation implemented by the OU, they are provided
as a parameter and handled internally.

5. CSA-Generic Platform Architecture

Fig. 6 depicts the CSA-generic platform architecture
developed. For the reasons previously presented, 4 binary
vector arrays permit to store the problem instance matrices
(left hand size of Fig. 6) for any of the 4 COP solver
classes addressed:
− SABM, using Rows ones;
− SATM, using Rows ones and Rows zeros;
− DABM, using Rows ones and Columns ones;
− DATM, using all 4 binary arrays.

The binary matrices stored in Columns ones and Columns
zeros must be the exact transposes of those stored in Rows
ones and Rows zeros, respectively, and they are used only
with DABM or DATM solvers, as SABM and SATM ones
access the matrix only by rows.
With SABM solvers, Rows ones are used to explicitly map
values 1 and values 0. With SATM solvers, Rows ones and
Rows zeros map with 1s values 1 and values 0,
respectively, while “don’t care” values are implicitly
mapped where neither 1s nor 0s are. With dual access

matrix solvers, this approach is also applied for Columns
ones and Columns zeros.
Row/Column addresses are used for reading or writing a
whole row/column. In a binary context, these operations
require one binary register to read from or to write to,
while in a ternary context, 2 binary vectors are required.
Row/Column masks indicate with 1s the rows/columns
that the algorithm has set as removed from the matrix. In
fact, the whole initial matrix remains stored until the
algorithm finishes and stores a new one; only the FBs that
implement the operations over its rows and columns take
the correspondent masks into account in order to produce
the correct result.
An OU is used to operate over stacks, masks, addresses,
rows, columns and general-purpose registers, as required
by the algorithms that the RCU carries out.
A UA interacts with a general-purpose computer (e.g.
using USB or Bluetooth), allowing the user to:
− Reprogram the RCU with a new CSA as explained

in [11];
− Send a new problem instance (in the form of a

matrix) which is stored in the logic-vector arrays;
− Get back the solver results.

Various stacks are used to store and restore context and
HFSM support variables as the RCU calls and returns from
different hierarchical level modules.
The architecture is adjustable in respect to the following
parameters:
− Supported CSA classes (implicating a different

number of logic-vector arrays and different
available operations on the OU);

− Matrix dimensions;
− Stacks depth;
− Number of general-purpose registers;

0011
Column mask

0011
Reg. for row zeros

1100
Reg. for row ones

Reg. for column ones
0011

Reg. for column zeros
0100

Row mask
0100

Columns zerosColumns ones
01000011
00000010
10100000
00101001

00100001
10000000
00111100
00001001

Rows zerosRows ones

Read / Write
Column

Read / Write
Row

registers
1000
0111

…
1100

Column address
11

10
Row address

Fig. 6 - The dynamically programmable CS
User Agent

Operational Unit

uses

uses

uses

uses

Reprogrammable
Control Unit

Operations
over binary

vectors

Operations
over ternary

vectors

Operations over
binary vectors
using masks

Stacks for masks and
general-purpose registers

Stacks for HFSM modules
and statesOperations

over stacks

Operations over
ternary vectors
using masks

Store
new

matrix

Reprogram
with new CSA

Return
result

CSA
enforcement

A-generic platform architecture proposed

− Some other parameters regarding the RCU which
can be found and explained in [11].

6. Validation, Implementation, Test and Future Work

The proposed architecture is composed of 2 main
components:
− The control component, composed of the RCU and

the UA together with the software application;
− The operational component, which is composed of

all the other FBs and implements the whole set of
operations over the data structures considered.

The operational component and all interaction between its
FBs have been validated in a software application
programmed in C# in which each FB was described by a
class that emulates the behavior expected from its
hardware implementation. Using the same objects, the
application ran all 3 CSA-solvers considered in section 2:
for MC, SAT and GC. A special class emulated the RCU
behavior to validate enforcing those different algorithms.
After validation, the architecture’s operational component
was implemented and successfully tested using Handel-C
[13] system-level specification language and the recently
developed DEITUA-S3 prototyping board [14], which
incorporates a Xilinx Spartan-3 FPGA (namely a
XC3S400). The 4 binary vector arrays for storing the
matrix were implemented using the FPGA’s embedded
block RAM. A USB interface was used for data exchange
between the hardware platform and the software.
Hardware RCU and the UA modules were designed using
VHDL, whilst a software application to interact with the
UA was developed in C#. The expected run-time RCU
reprogramming was successfully achieved.
In future work, a set of good compromises regarding the
assignment of the architecture’s parameters, taking the
available FPGA resources and subtle CSA classes
specialization into account, will be determined. For each
resulting platform, various tests will be carried out, with
the control and the operational components integrated, and
compare the results with other solutions. The Handel-C
code produced to implement the FBs and the platforms
will be made available online [15].

7. Conclusions

The significant applicability of combinatorial search
algorithms in many different areas stimulates the
implementations of hardware accelerators to run them.
Despite the strong and frequent similarities that can be
found amongst those algorithms, solver implementations
are usually problem-specific.
On the groundings of a thorough analysis of combinatorial
search algorithms, a set of reusable functional blocks and a
dynamically reprogrammable platform architecture
supporting a wide range of those algorithms were
developed. Such tools allow for significant reduction of
solvers design time, as the design process can be realized

at a high level of abstraction without losing sight of the
details of a particular problem or reducing performance.

Acknowledgments

The author would like to acknowledge Valery Sklyarov, Iouliia
Skliarova and Manuel Almeida for their valuable collaboration.

References

[1] G. De Micheli, “Synthesis and Optimization of Digital

Circuits”, McGraw-Hill, Inc., 1994.
[2] M.A. Breuer, M. Sarrafzadeh, F. Somenzi, “Fundamental

CAD Algorithms”, IEEE Trans. on Computer Aided Design
of Integrated Circuits and Systems, vol. 19, no. 12, Dec.
2000, pp. 1449-1475.

[3] N. Togawa, M. Yanagisawa, T. Ohtsuki, “Maple-opt: a
performance-oriented simultaneous technology mapping,
placement, and global routing algorithm for FPGAs”, IEEE
Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 17, no. 9, Sep. 1998, pp. 803-818.

[4] T. Tambouratzis, “A consensus-function artificial neural
network for map-coloring”, IEEE Trans. on Systems, Man
and Cybernetics, Part B, vol. 28, no. 5, Oct. 1998, pp. 721-
728.

[5] A.D. Zakrevski, “Combinatorial Problems over Logical
Matrices in Logic Design and Artificial Intelligence”,
Electrónica e Telecomunicações, vol. 2, no. 2, 1998, pp.
261-268.

[6] A.D. Zakrevski, “Algorithms of Synthesis of Discrete
Automata”, Moscow: Science, 1971, (in Russian).

[7] A.D. Zakrevskij, “Logical Synthesis of Cascade Networks”,
Moscow: Science, 1981.

[8] I. Skliarova, A.B. Ferrari, “The Design and Implementation
of a Reconfigurable Processor for Problems of
Combinatorial Computation”, Journal of Systems
Architecture, Special Issue on Reconfigurable Systems, vol.
49, 2003, pp. 211-226.

[9] V. Sklyarov, I. Skliarova, B. Pimentel, “Modeling and FPGA-
based implementation of graph coloring algorithms”, Proc. of the 3rd
International Conference on Autonomous Robots and
Agents - ICARA’2006, Palmerston North, New Zealand,
Dec. 2006, pp. 443-448.

[10] I. Skliarova, “Reconfigurable Architectures for Problems of
Combinatorial Optimization”, Ph.D. Thesis, University of
Aveiro, Portugal, January 2004.

[11] V. Sklyarov, I. Skliarova, “Reconfigurable Hierarchical
Finite State Machines”, Proc. of the 3rd International
Conference on Autonomous Robots and Agents -
ICARA’2006, Palmerston North, New Zealand, Dec. 2006,
pp. 599-604.

[12] V. Sklyarov, I. Skliarova, A. Oliveira, A.B. Ferrari, “A
Dynamically Reconfigurable Accelerator for Operations over Boolean
and Ternary Vectors”, Proc. of the EUROMICRO Symposium
on Digital System Design - DSD’2003, Antalya, Turkey,
Sep. 2003, pp. 222-229.

[13] Celoxica, “Handel-C for hardware
design”, available at www.celoxica.com.

[14] M. Almeida, B. Pimentel, V. Sklyarov, I. Skliarova, “Design
Tools for Rapid Prototyping of Embedded Controllers”,
Proc. of the 3rd International Conference on Autonomous
Robots and Agents - ICARA’2006, Palmerston North, New
Zealand, Dec. 2006, pp. 683-688.

[15] IEETA homepage, available at www.ieeta.pt.

http://www.ieeta.pt/%7Eiouliia/Papers/2006/ICARA2006016_v2.pdf
http://www.ieeta.pt/%7Eiouliia/Papers/2006/ICARA2006016_v2.pdf
http://www.ieeta.pt/%7Eiouliia/Papers/2003/170_sklyarov_v.pdf
http://www.ieeta.pt/%7Eiouliia/Papers/2003/170_sklyarov_v.pdf
http://www.ieeta.pt/%7Eiouliia/Papers/2003/170_sklyarov_v.pdf

Application of ASM++ methodology on the design of a DSP processor

S. de Pablo, S. Cáceres, J.A. Cebrián
University of Valladolid

E.T.S.I.I., Paseo del Cauce, s/n
47011 Valladolid (Spain)

sanpab@eis.uva.es

 M. Berrocal
eZono AG

Winzerlaerstrasse 2
07745 Jena (Germany)
manuel@ezono.com

Abstract

This article presents the application of a graphical
methodology used to develop a Digital Signal Processor
designed for FPGA. The instruction set and main
features of this processor are introduced. Then, a
modified Algorithmic State Machine methodology,
named ASM++, is applied to fully describe the
processor implementation. This processor has been
simulated and physically tested on Xilinx Spartan-3
devices, achieving 37.5~75 MIPS and up to 150 MOPS
running at 75 MHz.

1. Introduction

Most intellectual property (IP) modules are designed
as synchronous digital circuits using a standard hardware
description language (HDL), usually VHDL or Verilog.
Designers usually prefer a text-based tool to describe
their circuits because editing and managing texts is
easier than dealing with the arrangement of schematics.
Compared to schematic entry, productivity is increased,
mostly when parametrical modules are required.

To assist designers in their daily job, several visual
tools have been developed to facilitate the circuit
behavior description and understanding, namely Finite
State Machines (FSM) and Algorithmic State Machine
(ASM) [1], [3]. However, these tools are limited in their
scope, so they are applied only on small state machines
and circuits.

This paper presents several modifications of standard
ASM diagrams with the aim of applying this
methodology to design real-life circuits, document them
and ease their supervision [8]. As an example, this
methodology has been successfully applied in the design
of an FPGA based DSP processor.

2. The DSPuva18 processor

The DSPuva18 processor is based on the former
DSPuva16 [6], a Digital Signal Processor developed for

Power Electronic applications [2]. These are the main
features of this new processor and their improvements:

• Its computational instructions are executed using
two clock cycles, rather than four [6], thanks to the
use of an FPGA hardwired multiplier.

• Its control instructions (call, ret, jp, …) are usually
executed in one clock cycle.

• It has adaptive conditional jumps and returns: it
introduces one or two wait states to leave previous
operations to finish.

• The program length can be up to 64K instructions.
• It can execute from 16 to 128 nested subroutines.
• The data memory is up to 64K words, with fast

direct and indirect access (two clock cycles).
• It has direct access to 256 ports/devices.
• The instruction set, as shown in table 1, has been

designed around 17 basic instructions, but most of
these instructions lead to more possibilities.

• It has access to immediate constants in program
code to ease filter implementation.

• An implicit access to last port used, with write back
capability, has been introduced to speed up filters.
It allows up to four operations per instruction.

• The range of fixed-point registers and values can be
selected at instantiation time between ±1, ±2, ±4
and ±8. This feature eases in-circuit debugging.

As can be seen, some of these features are common
with other processors, but other ones are new. The basic
instruction set of this processor is shown below.

Table 1. DSPuva18 basic instruction set.

OpCode Mnemonic Function

0000 dddd dddd dddd call <destination-address> Jump to a subroutine.

0001 dddd dddd dddd goto <destination-address> Unconditional jump.

0010 0fff dddd dddd jpFLAG <relative-jump> Conditional jump.

0010 1fff •••• •••• retFLAG Conditional return.

0011 kkkk kkkk kkkk imm K12 Prepare a constant.

0100 kkkk kkkk nnnn rN = port(K8) Read from a direct port.

0101 kkkk kkkk nnnn port(K8) = rN Write to a direct port.

0110 •••• bbbb nnnn rN = mem({rB,K16}) Read from memory.

0111 •••• bbbb nnnn mem({rB,K16}) = rN Write to memory.

1000 sfff bbbb nnnn ifFLAG rN = [–]{rB,K16} Conditional assignment.

1001 xxxx bbbb nnnn rN = fx({rN,*LP},{rB,K16}) Extra functions.

1010 nnnn bbbb aaaa rN = {rA,*LP} + {rB,K16} Addition.

1011 nnnn bbbb aaaa rN = {rA,*LP} – {rB,K16} Subtraction.

1100 nnnn bbbb aaaa rN = {rA,*LP} * {rB,K16} Multiply two values.

1101 nnnn bbbb aaaa rN = – {rA,*LP} * {rB,K16} Multiply and change sign.

1110 nnnn bbbb aaaa rN += {rA,*LP} * {rB,K16} Positive accumulation.

1111 nnnn bbbb aaaa rN –= {rA,*LP} * {rB,K16} Negative accumulation.

This basic instruction set is extended as seen on tables

2 and 3. Additionally, most instructions allow the use of
a register ('rB') or a 16-bit constant ('K16'), easing
constant coefficient filter implementation. This constant
is built using four bits of the current instruction and
twelve bits of the previously executed 'imm' instruction.

At the same time, a completely new feature has been
added: when 'r0' is addressed as register 'rA', the last port
used ('*LP') is read, the read value is used instead of r0's
value, and then it is written back to the same port. As
seen later, this feature speed up the implementation of
large filters, requiring just one instruction per tap.

The control instructions of this processor are easy to
understand. First of all, 'call' and 'goto' execute an
absolute jump to a 4K to 64K address in one clock cycle.
As long as only twelve bits are available to give the
destination address, its value is multiplied by 1, 2, 4, 8 or
16, depending on the processor model, thus allowing
larger programs. Consequently, all subroutines must be
aligned to a reachable address, but the assembler can do
it easily using the '#align' directive.

Conditional jumps and returns are a bit different (see
the eight available conditions on table 2, that shows
conditional assignments): they execute their task, but
they wait one clock cycle for arithmetic and logic
operations to finish, and two clock cycles for
multiplications. This way, the use of interleaving 'nop'
instructions is avoided. When unconditional 'jp' or 'ret' is
used, it is executed in one clock cycle.

The access to external data is fast and flexible. The
processor can address up to 256 direct ports, usually
related to physical devices or small memories, maybe
shared with other FPGA processors. When large
amounts of data must be used, the processor implements
a dedicated interface enabling the use of synchronous
FPGA memories like Xilinx BlockRAM or Altera M4K
and M-RAM. It can address up to 64K words per page,
and different pages may be selected using a page-register
controlled through a port. All these accesses are
executed using two clock cycles.

This processor can conditionally load a register with a
constant or the value of another register (see table 2),
and it also implements more functions as shown in
table 3. Right and left shifts are a bit different than

expected because most used shifts are the shortest ones,
thus using shifts by 7, 3, 2 and 1 rather than 8, 4, 2 and 1
it is on average better. The 'max' and 'min' instructions
are also useful, particularly "rN = abs(rN)" is recognized
by the assembler and replaced by "rN = max(rN,–rN)".
All these instructions use two clock cycles for their
execution, like additions and subtractions; their results
are immediately available in the following instruction.

The four multiplying instructions, with optional
positive or negative accumulation, are executed using
only two clock cycles, but the result cannot be used as an
operand, except for accumulation, at the following
instruction. If required, a one clock 'nop' (an assembler
macro replaced by "jp <next-address>") must be added.

Table 2. Conditional assignments of DSPuva18.

OpCode Mnemonic Function

1000 0000 bbbb nnnn rN = {rB,K16} Load a register.

1000 0001 bbbb nnnn ifV rN = {rB,K16} Load if oVerflow.

1000 0010 bbbb nnnn ifEQ rN = {rB,K16} Load if EQual to 0.

1000 0011 bbbb nnnn ifNE rN = {rB,K16} Load if Not Equal to 0.

1000 0100 bbbb nnnn ifGT rN = {rB,K16} Load if Greater Than 0.

1000 0101 bbbb nnnn ifGE rN = {rB,K16} Load if Greater or Equal.

1000 0110 bbbb nnnn ifLE rN = {rB,K16} Load if Less or Equal.

1000 0111 bbbb nnnn ifLT rN = {rB,K16} Load if Less Than 0.

1000 1000 bbbb nnnn rN = –{rB,K16} Load changing sign.

1000 1001 bbbb nnnn ifV rN = –{rB,K16} Load if oVerflow.

1000 1010 bbbb nnnn ifEQ rN = –{rB,K16} Load if EQual to 0.

1000 1011 bbbb nnnn ifNE rN = –{rB,K16} Load if Not Equal to 0.

1000 1100 bbbb nnnn ifGT rN = –{rB,K16} Load if Greater Than 0.

1000 1101 bbbb nnnn ifGE rN = –{rB,K16} Load if Greater or Equal.

1000 1110 bbbb nnnn ifLE rN = –{rB,K16} Load if Less or Equal.

1000 1111 bbbb nnnn ifLT rN = –{rB,K16} Load if Less Than 0.

Table 3. Extra instructions of DSPuva18.

OpCode Mnemonic Function

1001 0000 bbbb nnnn rN = rB >> 7 Right shift seven bits.

1001 0100 bbbb nnnn rN = rB >> 3 Right shift three bits.

1001 1000 bbbb nnnn rN = rB >> 2 Right shift two bits.

1001 1100 bbbb nnnn rN = rB >> 1 Right shift one bit.

1001 0001 bbbb nnnn rN = rB << 7 Left shift seven bits.

1001 0101 bbbb nnnn rN = rB << 3 Left shift three bits.

1001 1001 bbbb nnnn rN = rB << 2 Left shift two bits.

1001 1101 bbbb nnnn rN = reverse rB Reverse all bits.

1001 0010 bbbb nnnn rN = {rN,*LP} and {rB,K16} Logic AND.

1001 0110 bbbb nnnn rN = {rN,*LP} or {rB,K16} Logic OR.

1001 1010 bbbb nnnn rN = {rN,*LP} xor {rB,K16} Logic XOR.

1001 1110 bbbb nnnn rN = not rB Logic NOT.

1001 0011 bbbb nnnn rN = min ({rN,*LP},{rB,K16}) Minimum of two values.

1001 0111 bbbb nnnn rN = max({rN,*LP},{rB,K16}) Maximum of two values.

1001 1011 bbbb nnnn rN = min({rN,*LP},–{rB,K16}) Minimum changing sign.

1001 1111 bbbb nnnn rN = max({rN,*LP},–{rB,K16}) Maximum changing sign.

A program example that implements an infinite

impulse response filter (IIR) is shown below. Most
instructions of this filter execute up to four operations: a
read from last used port (through '*LP'), a write back of
the read value to the same port (so it reads an old sample
or output from a FIFO and returns it to the same FIFO
for the next filter update), a fixed-point 18x18 product
and a positive 32-bit accumulation. This means 37.5
MIPS and 150 MOPS running at 75 MHz.

/*
 Demonstration program of DSPuva18 for FPGAworld'2007
 2007/08/27 Santiago de Pablo (sanpab@eis.uva.es)
*

/

#model E // Programs up to 64K instructions
#range 8 // DSP values between +-8.0
#include “uva18std.h” // Several definitions

// IIR filter implementation:
// Input X values are available at port 200.
// Output Y values are written at port 201.
// Old X values are stored in a small FIFO at port 202.
/

/ Old Y values are stored in a small FIFO at port 203.

 #define IN_X 200
 #define OUT_Y 201
 #define FIFO_X 202

#define FIFO_Y 203

 #define YC1 0.9345
 // Define also YC2...YC4 and XC0...XC5 constants.

0x0000: // Programs begins here after reset
 call InitFilter // Prepare the filter
Loop: call UpdateFilter // 14 + 2x(NX + NY) clks

 jp Loop // Infinite loop (2 MSPS at 70 MHz)

#align
InitFilter:
 // First reset FIFO_X and FIFO_Y (not done here)
 // Then load dummy values as old samples
 r1 = 0.0
 port(FIFO_Y) = r1 // Load four values on FIFO_Y:
 port(FIFO_Y) = r1 // they are y4, y3, y2 & y1.
 port(FIFO_Y) = r1
 port(FIFO_Y) = r1
 port(FIFO_X) = r1 // Load five values on FIFO_X:
 port(FIFO_X) = r1 // they are x5, x4, x3, x2 & x1.
 port(FIFO_X) = r1
 port(FIFO_X) = r1
 port(FIFO_X) = r1
 ret

#align
UpdateFilter:
 r2 = port(FIFO_Y) // Read y4 value (and loose it later)
 r1 = r2 * YC4 // … and multiply y4 by its coefficient
 r1 = r1 + *LP * YC3 // Get y3 and multiply it by its coefficient
 r1 = r1 + *LP * YC2 // Get y2 and multiply it by its coefficient
 r1 = r1 + *LP * YC1 // Get y1 and multiply it by its coefficient
 r2 = port(FIFO_X) // Read x5 value (and loose it later)
 r1 = r1 + r2 * XC5 // … and multiply x5 by its coefficient
 r1 = r1 + *LP * XC4 // Get x4 and multiply it by its coefficient
 r1 = r1 + *LP * XC3 // Get x3 and multiply it by its coefficient
 r1 = r1 + *LP * XC2 // Get x2 and multiply it by its coefficient
 r1 = r1 + *LP * XC1 // Get x1 and multiply it by its coefficient
 r2 = port(IN_X) // Get a new x0 value (from an A/D?)
 r1 = r1 + r2 * XC0 // … and multiply x0 by its coefficient
 port(FIFO_X) = r2 // Put x0 value on its FIFO for later use
 port(FIFO_Y) = r1 // Put y0 value on its FIFO for later use
 port(OUT_Y) = r1 // Output of the IIR filter (to a D/A?)
 ret // Finish

3. ASM++ diagram of DSPuva18

The design of this processor has been entirely done
using ASM++ diagrams. These diagrams, proposed at
[8] and described further here, are an extension of
Algorithmic State Machines [1], [3], a methodology used
forty years ago for the development of microprocessors.
As can be seen with this example, the ASM++ diagrams
are now fully capable of describing whole IP modules.

This diagram and the manually generated equivalent
code use Verilog 2001, but VHDL may be used instead.
An ASM++ compiler that accept standard Verilog and
VHDL languages for input and output is in progress.

The first ASM++ box of this design, as seen below on
Fig. 1, is a "code box", able to introduce Verilog or
VHDL code. It is used in this case to describe the
processor interface.

Figure 1. Design header using Verilog.

Afterwards, a second code box specifies several
internal signals. As long as this box has global meaning,
other signals would be and will be declared later.

Figure 2. Declaration of several signals.

The third box introduces a first difference between

ASM++ and the pure code. It specifies global defaults
for synchronous and asynchronous internal signals and
outputs. If the user does not assign anything to a
synchronous signal in a state the default behavior is to
keep its last value; for an asynchronous signal the
compiler must implement a don't care logic value.
Designer can easily change this default behavior using
this box.

Figure 3. Default values of signals and outputs.

The following two code boxes are a combinational

instruction decoder implemented using a C-like
"#define" compiler directive. Other directives are also
available to include files and other purposes.

Figure 4. Instruction decoder.

After all these definitions, a box is used to specify the
synchronism of this circuit. In this case there is a unique
clock signal, named 'clk', but several clocks may be used
instead. Then, three branches are initiated: the first one is
a state machine named "ControlUnit"; the second one
contains several synchronous and asynchronous
components that assist at any time to the previous state
machine; the last one is the data path of this processor,
also described as an independent thread. Any
dependence between branches may be implemented
using the name of the state of each thread. This example
shows how easily ASM++ diagrams may describe multi-
clocked or multi-threaded circuits.

Figure 5. Parallel circuits description.

The first branch, which state variable is named

'ControlUnit' as seen on Fig. 6, begins with an
asynchronous reset sequence controlled by the active
high 'reset' signal. This box increases the ASM
possibilities: standard diagrams cannot describe properly
reset sequences.

Then, a first state named 'Main', which begins with an
oval "state box", executes several overlapped operations
from the previous instruction and decodes the current
instruction. For 'call', 'goto', 'jp' and 'ret' instructions only
one clock is needed, so the next state is 'Main' again;
other instructions require a 'Second' state.

Figure 6 shows more ASM++ features:
– Synchronous operations, those that are executed

when the current clock cycle finishes, like "SP <=
SP + 1", are described using a rectangular box
anywhere. This is a difference with traditional
ASM diagrams, where only unconditional
operations use these boxes at the beginning of any
clock cycle.

– Asynchronous operations, executed all through the
current clock cycle, like "nextPC <= PC + 1", use a
box with bent sides. This is a nice feature, that
shows the difference in the behavior between
synchronous and asynchronous signals. When
Verilog language is used, the equal operator ('=')
may also be used for asynchronous assertions.

– Conditions are expressed in the same way than
standard ASM diagrams, but also multiple output
decisions are included.

– The use of VHDL/Verilog expressions allows an
easy implementation of complex functions, like a
register file or a returning address stack, that need
vector notation.

Figure 6. Processor control unit (I).

The following state named 'Second', seen at Fig. 7,

executes all computational instructions after receiving
operands from the previous clock cycle. Actually, this
state just activates all the required control signals,
because data path and external devices do the real job.

Figure 7. Processor control unit (II).

Readers are kindly invited to translate this state

machine to HDL code1, either using VHDL or Verilog.

1 During the translation process, at least two processes or always
blocks are needed, one of them for all clk-dependent synchronous
operations and the other one, unconnected from the former, for the
asynchronous operations. ASM++ diagrams join both worlds.

Then, the relationship between ASM++ and HDL arises,
and the advantages of using a graphical tool to design
and/or document complex circuits also becomes clear.

To complete control tasks a second thread is more
than convenient (see Fig. 8). Several operations must be
done during or at the end of all clock cycles. Writing
these operations in the previous thread is at least
uncomfortable and prone to mistakes. Real life circuits
require the possibility of writing parallel threads, but
standard ASM diagrams cannot do it.

A second detail of Fig. 8 is that, from the point of
view of the 'PC' signal, this is a state-less state machine:
it needs no state at all because it has just one state.
Additionally, the only reference to a clock here is the
rectangular box used for 'PC'; in absence of it, this could
be a clock-less thread, a pure-combinational circuit
properly described using ASM++ diagrams.

Figure 8. Processor control unit (III).

Following figures, from 9 to 13, implement the data

path of this processor. First of all, a register file keeps
the 32-bit values of r0 to r15 registers. Its design is based
on two dual-ported distributed memories, allowing up to
four asynchronous reads and one synchronous write on
every clock cycle; only three reads are actually needed.
During the state 'Second', if 'aluCE' signal is asserted,
two operands are stored at register 'regA' and 'regB' for
their operation during the following 'Main' state.

Figure 9. Processor data path (I).

After operand selection, several computational units

calculate different results throughout the clock period: a

right or left shifted value, a logic or arithmetic result [4],
[7], and an update value used for conditional
assignments and maximum and minimum evaluation.

Figure 10. Processor data path (II).

The core of this processor, a fixed-point 18x18

multiplier with 32-bit result, is described below in such a
way that most synthesis tools infer a wired synchronous
multiplier: it registers two operands during one clock
cycle and gives the product of them at the end of the
following cycle. This segmentation stage introduces a
one clock latency, so a 'nop' or any dummy instruction
must be used before retrieving the product result.

Figure 11. Processor data path (III).

When all partial results are available, they are
multiplexed in order to store the final value in the
register file and to update flags. In these diagrams, it is
not important if a signal like 'busN' has been used before
its declaration (see Figs. 9 and 12).

Figure 12. Processor data path (IV).

Figure 13. Processor data path (V).

4. Conclusions

This article has presented a small and easy to
understand digital signal processor developed using
Verilog and ASM++ diagrams for FPGA. Throughout
this paper, the capabilities of ASM++ for the
development and documentation of IP modules has
arisen. Additionally, supervision of complex designs
would be ease when using this methodology. Compared
with classic HDL description, the learning curve of
ASM++ is shorter and the possibility of mixing
synchronous and asynchronous signals is also a great
advantage.

The proposed DSP processor executes all its
instructions in one or two clock cycles, achieving up to
150 MOPS at 75 MHz on Xilinx Spartan3 devices. It
introduces several new features: a variable code length
between 4K and 64K, a variable range at implementation
time between ±1 and ±8 for numerical values, a
transparent access to constants and a built-in read with
write back capability to speed up filter implementation.
This processor is currently been used in power
electronics applications.

5. Acknowledgments

The authors would like to acknowledge the partial
financial support of eZono AG at Jena, Germany, ISEND
SA at Boecillo, Valladolid, Spain, and the regional
government, Junta de Castilla y León, under grants
VA004B06 and VA021B06.

References

[1] C.R. Clare, Designing Logic Using State Machines,
McGraw-Hill, 1973. Referenced by [5].

[2] epYme workgroup, online at http://www.dte.eis.uva.es/
epYme, last updated on August 2007.

[3] D.D. Gajski, Principles of Digital Design, Prentice Hall,
Upper Saddle River, NJ, 1997.

[4] J. Gray, “Designing a Simple FPGA-Optimized RISC
CPU and System-on-a-Chip”, DesignCon’2001, online at
http://www.fpgacpu.org/gr/index.html, 2001.

[5] S. Leibson, “The NMOS II Hybrid Microprocessor:
Fusing silicon, ceramic, and aluminium with rubber baby
buggy bumpers”, online at http://www.hp9825.com/html
/hybrid_microprocessor.html, revised on August 2007.

[6] S. de Pablo et al., “A soft fixed-point Digital Signal
Processor applied in Power Electronics”, FPGAworld
Conference 2005, Stockholm, Sweden, 2005.

[7] S. de Pablo et al., “A very simple 8-bit RISC processor
for FPGA”, FPGAworld Conference 2006, Stockholm,
Sweden, 2006.

[8] S. de Pablo et al., “A proposal for ASM++ diagrams”,
10th Workshop on Design and Diagnostics of Electronic
Circuits and Systems (DDECS 2007), Kraków, Poland,
2007.

The Effect of Dependence Graphs’ Size and
Complexity, in the Implementation of Processor

Arrays on FPGA Devices.
Stavros Dokouzyannis

Department of Electrical and
Computer Engineering

Aristotle University of Thessaloniki,
Greece

Email: dok@auth.gr

Argiris Mokios
Department of Electrical and

Computer Engineering
Aristotle University of Thessaloniki,

Greece
Email: amok@ee.auth.gr

Abstract—Dependence graphs (DGs) constitute the initial step
of an algorithm to a systolic array (SA) transformation. The
derivation of the intermediate signal flow graph representation
from the DG using proper scheduling and projection vectors,is
crucial for the final form of the generated SA. In this paper, a
set of DG to SA transformations and its further implementation
on FPGAs are presented. Examining the generated results the
implemented architectures are evaluated with respect to their
constituting logic elements and their timing performance.

I. I NTRODUCTION

Since the appearance of the first computer in the early
50s, it was clear that parallel computations is an attractive
alternative to sequential computations. While sequentialcom-
putations are dominated by a single calculation model, i.e.,
von Neumman’s model, that incorporates the basic principles
of Turing’s study in a practical design, in parallel computations
there is a plethora of different processor arrays models. They
can be categorized in four major types, i.e., systolic arrays
that are regular arrays with synchronous data flow, wavefront
arrays that have asynchronous data flow, simple instruction
multiple data (SIMD) arrays, and multiple instruction multiple
data (MIMD) arrays. Processor arrays are very important for
a wide area of applications (e.g., digital signal processing
(DSP), image processing, image compression etc.), that require
high performance intensive computations, because of their
regular structure and ease of hardware realization. Numerous
algorithms and architectures have been developed the past 3
decades targeting these applications, some examples are given
below.

In the region of DSP, Kortke [1] presented affine recurrence
equations mappings onto local memory processor array sys-
tems, consisting of TMS320C40 and TMS320C44 processing
elements (PEs). Lange [2] explored the use of CORDIC pro-
cessors as a design element for processor arrays, implementing
real time DSP applications algorithms.

In image processing, Johannesson [3], [4] developed two
processor arrays architectures called radar video image proces-
sor (RVIP) and infra-red VIP (IVIP), targeted in radar image

processing and autonomous vehicle navigation applications
respectively. Lin [5] presented proper parallel algorithms for
contour extraction and its approximation with line segments.
The algorithms were implemented to MasPar MP-2 processor
array, which comprises fromp×p PEs and two level memory,
corresponding to local memory and I/O memory. Tang [6]
presented a horizontal-vertical regional integration algorithm
implementation, on a processor array architecture. Finally
Frimou [7] implemented a pel-recursive motion estimation
algorithm in a processor array, where every PE consists off
an initialization, a routing, and an updating part.

In video compression, Mayer [8] presented a video decod-
ing architecture, which uses regular hardware and software.
Baglietto [9] proposed a motion estimation block matching
algorithm, implemented onto a parallel processor array, used
to calculate motion estimation in compression algorithms like
H.261 and MPEG-1 & 2.

Although numerous implementations were presented, most
of them were targeted on custom VLSI processor arrays and
only a small fraction was realized on FPGA devices. In this
paper, a complete platform for the implementation of regular
iterative algorithms (RIAs) onto FPGA devices is utilized in
order to study the interrelation between the embedded archi-
tectures and the capacity of the targeted devices. As shown
is Section III, the presented matrix by matrix multiplication
algorithm implementations, reach and in a lot of cases exceed
the FPGA devices’ resource limits. In Section IV, the timing
characteristics of the generated architectures are examined.
The conclusions of this work are summarized in Section V.

II. SCOPE OF THEWORK.

In this paper the effect of the DG’s size and complexity, on
the basic implementation logic elements and the input/output
resources and on the time performance of the implemented
architectures is studied. In order to examine this behaviora
platform that consists of four implementation stages is utilized.

As shown in Fig. 1, at first the RIA, in DG form, is written
in a text file using the graph description interchange format

GDIF file

HEARTS

SIS
+

FlowMap/FlowPack

T-Vpack

VPR

placement &
routing files

Logic optimization

Tecnology mapping

FFs and LUTs into
Logic Blocks packing

Placement & Routing

RIA to systolic
array mapping

Fig. 1. Platform flow

Fig. 2. Island type FPGA

(GDIF) [10]. HEARTS [11] reads the file, converts the DG in a
systolic array and outputs aBLIF file format. SIS [12] reads the
BLIF file and performs technology mapping through FlowMap
and FlowPack [13]. A newBLIF file consisting of LUTs and
flip flops is produced. The file is read by T-Vpack [14] and
is converted into logic blocks. Next, it will be used by VPR
[15], along with an FPGA architecture definition file, for the
generation of placement and routing files.

An island type FPGA architecture is used, where an array
of logic blocks is surrounded from interconnection lines, as
shown in Fig. 2. The I/O pads are uniformly allocated in
the perimeter of the device. The structure of the logic block
(LB), used in the presented test-cases is of the clustered based
logic block (CLB) type and is presented in Fig. 3b. Each
CLB consists of four basic logic elements (BLEs), which are
connected to the 16 input of the cluster. The BLE shown in
Fig. 3a, consists of a 4-LUT and a register, that feeds a two
input multiplexer.

In order to create the test-cases, DGs that compute the
product of two matrices were generated, with sizes ranging
from 4 × 4 to 8 × 8, constituting of elements with bit
sizes: 8, 12, 16, 24, and 32. The DGs that perform these
computations have dimensions4 × 4 × 4 - 8 × 8 × 8,
respectively. For every DG the implementation process was

(a) Basic Logic Element

(b) Cluster Based Logic Block

Fig. 3. FPGA model

TABLE I
HEARTS LUTS RESULTS FOR[0 0 1]T − [1 1 1]T VECTORS.

Element bit Size
DG Size 8 12 16 24 32
4x4x4 3504 7568 13168 28976 50928
5x5x5 5495 11855 20165 45335 79655
6x6x6 7932 17100 29724 65340 114780
7x7x7 10185 23303 40495 88991 156303
8x8x8 14144 30464 52928 116288 204224

performed for 3 different couples of projection and scheduling
vectors, namely:[0 0 0]T − [1 1 1]T , [0 1 0]T − [1 1 1]T , and
[1 0 0]T − [1 1 1]T .

III. T HE EFFECT OF THEDG’S SIZE AND ITS INPUT BIT

SIZE IN THE IMPLEMENTATION MODULES.

In this section we examine the evolution of the basic
implementation modules, i.e., the number of LUTs, and the
communication resources, i.e., the number of input and output.
The required data are collected, during the execution of the
platform, through the usage of specifically created scripts.
Tables I, II, and III, present the results derived from the
application of the first pair of vectors. Each table corresponds
to the results collected from the execution of the previously
introduced toolsHEARTS , FlowMap and FlowPack. Tab. I
contains in each column the trade-off between the number of
logic gates and the DG size, and in each row the trade-off
between the number of logic gates and the elements’ bit size
of the input matrices. Tab. II and III contain in each column
the trade-off between the number of LUTs and the DG size,
and in each row the trade-off between the number of LUTs
and the elements’ bit size of the input matrices. Similar tables
are formed for the other two pairs of vectors.

Closely examining these tables, it is noted that the number
of used LUTs decreases, during the implementation process
(starting from HEARTS and ending in FlowPack) for every
projection and scheduling vector pair. On the contrary the
number of utilized LUTs is increasing during the implemen-
tation of larger DGs or the increment of the number of bits

TABLE II
FLOWMAP LUTS RESULTS FOR[0 0 1]T − [1 1 1]T VECTORS.

Element bit Size
DG Size 8 12 16 24 32
4x4x4 3056 6896 12272 27632 49136
5x5x5 4775 10775 19175 43175 76775
6x6x6 6876 15516 27612 62172 110556
7x7x7 9359 21119 37583 84623 150479
8x8x8 12224 27584 49088 110528 196544

TABLE III
FLOWPACK LUTS RESULTS FOR[0 0 1]T − [1 1 1]T VECTORS.

Element bit Size
DG Size 8 12 16 24 32
4x4x4 2352 5104 8880 19536 34224
5x5x5 3675 7975 13875 30525 53475
6x6x6 5292 11484 19980 43956 77004
7x7x7 7203 15631 27195 59829 104811
8x8x8 9408 20416 35520 78144 136896

TABLE IV
LUTS RESOURCES% GAIN IN TECHNOLOGY MAPPING STAGE FOR

[0 0 1]T − [1 1 1]T VECTORS.

Element bit Size
DG Size 8 12 16 24 32
4x4x4 32.88% 32.55% 32.56% 32.58% 32.80%
5x5x5 33.12% 32.72% 31.19% 32.67% 32.87%
6x6x6 33.28% 32.84% 32.78% 32.73% 32.91%
7x7x7 29.28% 32.92% 32.84% 32.77% 32.94%
8x8x8 33.48% 32.98% 32.89% 32.80% 32.97%

TABLE V
LUTS RESOURCES% GAIN IN TECHNOLOGY MAPPING STAGE FOR

[0 1 0]T − [1 1 1]T AND [1 0 0]T − [1 1 1]T VECTORS.

Element bit Size
DG Size 8 12 16 24 32
4x4x4 36.65% 35.29% 34.70% 34.07% 33.94%
5x5x5 36.13% 30.72% 34.40% 33.86% 33.78%
6x6x6 35.79% 34.66% 34.21% 33.72% 37.15%
7x7x7 35.54% 34.48% 34.06% 33.62% 33.59%
8x8x8 35.36% 34.35% 33.96% 33.54% 33.54%

that represent the elements of the input matrices.
Analyzing furthermore the contents of the tables, the per-

centage value of the optimization level succeeded during the
technology mapping stage, is calculated. The percentage value
refers to the decrement of the circuit resources initially consid-
ered as logic gates and finally as LUTs. Tab. IV and V display
the percentage values for the vector pairs. The implementa-
tions derived from the application of[0 0 0]T] − [1 1 1]T and
[0 1 0]T − [1 1 1]T , have the same optimization level, because
the systolic arrays that are generated have the same geometry
and differ only in the direction of the applied input and derived
output.

The required Input/Output resources are stored in Tab. VI
and VII, where each column contains the trade-off between the
summation of the I/O and the DG size, and each row contains
the trade-off between the summation of the I/O and the bits
size that corresponds to the utilized input data precision.The
equations that calculate the numbers of input and output are

TABLE VI
INPUTS/OUTPUTSRESULTS FOR[0 0 1]T − [1 1 1]T VECTORS.

Element bit Size
DG Size 8 12 16 24 32
4x4x4 321 481 641 961 1281
5x5x5 481 721 961 1441 1921
6x6x6 673 1009 1345 2017 2689
7x7x7 897 1345 1793 2689 3585
8x8x8 1153 1729 2305 3457 4609

TABLE VII
INPUTS/OUTPUTSRESULTS FOR[0 1 0]T − [1 1 1]T AND

[1 0 0]T − [1 1 1]T VECTORS.

Element bit Size
DG Size 8 12 16 24 32
4x4x4 225 337 449 673 897
5x5x5 321 481 641 961 1281
6x6x6 433 649 865 1297 1729
7x7x7 561 841 1121 1681 2241
8x8x8 705 1057 1409 2113 2817

PI = a · x + 1 and PO = 32 · a respectively, wherea
is the number of bits andx is the number input or output
variables used in the systolic array. The maximum I/O pin
number and the maximum number of LUTs for 4-LUT FPGA
architectures, based on the current VLSI technology, is 1203
and 79040 correspondingly for ALTRERA’s Startix devices
[16] and 960 and 178176 for Xilinx’s Virtex-4 devices [17].
According to these numbers, there are limitations imposed to
the systolic array architectures that can be implemented. For
the models studied in this paper, it is obvious that the if the
DG is projected to[0 0 1]T direction, then it is impossible to
implement products of matrices greater than5× 5 with 16-bit
elements and greater that4×4 with 24-bit elements. It is also
noted that there can be no implementation of DGs between
4 × 4 × 4- 8 × 8 × 8 with 32-bit elements for the specified
projection vector.

In the case where projection vectors[010]T and[100]T are
used, the limitations are displayed in matrices with size7× 7
with 16-bit elements,5 × 5 with 24-bit elements, and4 × 4
for 32-bit elements.

Defining asabsolutenumber of LUTs and I/O for each
FPGA device, the number of LUTs and I/O that are used for
the implementation of the DG for every vector pair and asused
number of LUTs and I/O, the number of LUTs and I/O that
an FPGA device consists of, a utilization study is performed.

Comparing the values of absolute and used LUTs and I/O
for every pair of vectors, graphs are generated that depict the
evolution of the number of LUTs and the number of I/O,
in accordance to the DG size and the input data bit size.
The graphs are shown in Fig. 4a, 4b, 5a and 5b, where an
extra surface is added to denote the upper bound of LUTs or
I/O respectively. From the difference between the two graphs
on each figure and the evaluation of the graphs for every
pair of vectors, the advantages and disadvantages of each
architecture with respect to the implementation elements and
the communication resources, are derived.

The architecture that is generated from the projection vector

 4
 5

 6
 7

 8 8
 12
 16

 24
 32

 0
 50000
 100000
 150000
 200000
 250000
 300000
 350000

of LUTs

Total LUTs
Used LUTs
LUTs Limit

DG size

Element
bit size

of LUTs

(a) LUTs utilization plot,

 4
 5

 6
 7

 8 8
 12
 16

 24
 32

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

of I/O

Total I/O
Used I/O

I/O Limit

DG size

Element
bit size

of I/O

(b) I/O utilization plot,

Fig. 4. FPGA resources utilization plots for[0 0 1]T − [1 1 1]T .

 4
 5

 6
 7

 8 8
 12
 16

 24
 32

 0
 20000
 40000
 60000
 80000
 100000
 120000
 140000

of LUTs

Total LUTs
Used LUTs
LUTs Limit

DG size

Element
bit size

of LUTs

(a) LUTs utilization plot,

 4
 5

 6
 7

 8 8
 12
 16

 24
 32

 0
 500

 1000
 1500
 2000
 2500
 3000

of I/O

Total I/O
Used I/O

I/O Limit

DG size

Element
bit size

of I/O

(b) I/O utilization plot,

Fig. 5. FPGA resources utilization plots for[0 1 0]T − [1 1 1]T and [1 0 0]T − [1 1 1]T .

[0 0 1]T , as shown from Fig. 4a and 4b, uses less LUTs than
than those provided by the targeted FPGA device. As the DG
size increases, this phenomenon becomes more intense. Thus,
this architecture causes a potential loss in the usage of logic
elements that overcomes 50% of the total number of LUTs. In
the contrary the level of I/Os usage begins from 80% of the
total number of I/O and approximates 100%.

Evaluating the architectures that are derived from the projec-
tion vectors[0 10]T and[1 00]T by examining Fig. 5a and 5b,
it is noted that they utilize less I/O than those provided by the
targeted device. As the DG size decreases, this phenomenon
eliminates. Thus, these architectures cause a potential I/O
communication loss of 40%. Conversely, the level of used
logic elements begins from 89% of total logic and remains
in a high value approximating 100%.

IV. T HE EFFECT OF THEDG’S SIZE AND ITS INPUT BIT

SIZE IN THE TIMING CHARACTERISTICS OF THE

IMPLEMENTED MODELS.

In this section the timing characteristics of the implemented
architectures, in terms off the total logic delay, the totalnet
delay, and the critical path with respect to DG size and input

data bit size are examined. During the creation of the test-
cases and the derivation of the results, VPR was unable to
process the8×8 systolic arrays that multiply 32 bit elements.
In order to have complete and solid graphic representations
the values derived from the7× 7 systolic arrays that multiply
same size (i.e. 32 bit) elements, were used instead.

Forming2 − Dimensional graphic representations having
a constant DG size and a variable element bit size, the
differences that are presented on every form of delay, are
examined. Observing the graphical equations on Fig. 6a, 6b
and 6c it emerges that the architecture produced by projecting
the DG in the[0 0 1]T direction has a faster critical path than
the other architectures.

Moreover, it is observed that although the architectural
structure, before placement and routing, of the systolic arrays
derived from the projection vectors[0 1 0]T and [1 0 0] are
almost identical (see section III), the results from placement
and routing describe different timing characteristics foreach
architecture.

Finally, it is noted that the total net delay and the critical
path have incremental tendencies, with respect to the incre-

 5e-08

 1e-07

 1.5e-07

 2e-07

 2.5e-07

 3e-07

 3.5e-07

 8 12 16 24 32

s
e
c
o
n
d
s

Element bit size

001 Delays
010 Delays

100 Delays

(a) 4x4x4 DG,

 5e-08

 1e-07

 1.5e-07

 2e-07

 2.5e-07

 3e-07

 3.5e-07

 8 12 16 24 32

s
e
c
o
n
d
s

Element bit size

001 Delays
010 Delays

100 Delays

(b) 6x6x6 DG,

 5e-08

 1e-07

 1.5e-07

 2e-07

 2.5e-07

 3e-07

 3.5e-07

 4e-07

 4.5e-07

 8 12 16 24 32

s
e
c
o
n
d
s

Element bit size

001 Delays
010 Delays

100 Delays

(c) 8x8x8 DG,

Fig. 6. FPGA critical path plots for[0 0 1]T − [1 1 1]T , [0 1 0]T − [1 1 1]T

and [1 0 0]T − [1 1 1]T vectors.

ment of the DG size and/or the increment of the elements bit
size. Conversely, the total logic delay decreases with respect
to the increment of the elements bit size (Fig. 8b and 8d) and
increases with respect to the increment of the DG size (Fig.
8a and 8c). This phenomenon might be a result of the direct
association that exists between the BLEs and the logic delay.
Thus, a potential decrement of the BLE levels, that is faster
than the increment of the BLE’s delay, could have as a result
the decrement of logic delay.

V. CONCLUSIONS

The existence and the usage of a complete platform for the
transformation of regular algorithms into processor arrays and
their implementation onto FPGA devices, has many advan-

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 2.5e-07

 3e-07

 8 12 16 24 32

s
e
c
o
n
d
s

Element bit size

001 Delays
010 Delays

100 Delays

(a) 4x4x4 DG,

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 2.5e-07

 3e-07

 8 12 16 24 32

s
e
c
o
n
d
s

Element bit size

001 Delays
010 Delays

100 Delays

(b) 6x6x6 DG,

 0
 5e-08
 1e-07

 1.5e-07
 2e-07

 2.5e-07
 3e-07

 3.5e-07
 4e-07

 4.5e-07

 8 12 16 24 32

s
e
c
o
n
d
s

Element bit size

001 Delays
010 Delays

100 Delays

(c) 8x8x8 DG,

Fig. 7. FPGA net delay plots for[0 0 1]T − [1 1 1]T , [0 1 0]T − [1 1 1]T

and [1 0 0]T − [1 1 1]T vectors.

tages. During the implementation process numerous resultsare
derived, that with certain processing generate valuable feed-
back information to the designer. Acquiring this knowledge,
important decisions like the type of the architecture that is
going to be selected, in order to fulfil the design goals, are
easily made. Thus, it is possible to explore all the possible
architectures, based on the requirements for constraints in logic
and communication resources (LUTs, I/O, etc.), the demand
for high speed designs or the case where a trade-off of these
conditions is required.

During the experimentation with different models, the need
for the incorporation of DG partitioning methods intoHEARTS

was detected, in order to be able to design large and complex
architectures into current FGPA devices. This, along with the

 0
 1e-08
 2e-08
 3e-08
 4e-08
 5e-08
 6e-08
 7e-08
 8e-08
 9e-08
 1e-07

 8 12 16 24 32

s
e
c
o
n
d
s

Element bit size

001 Delays
010 Delays

100 Delays

(a) 5x5x5 DG,

 1e-08

 1.5e-08

 2e-08

 2.5e-08

 3e-08

 3.5e-08

 4 5 6 7 8

s
e
c
o
n
d
s

DG size

001 Delays
010 Delays

100 Delays

(b) 12 bit input data,

 0
 1e-08
 2e-08
 3e-08
 4e-08
 5e-08
 6e-08
 7e-08
 8e-08
 9e-08

 8 12 16 24 32

s
e
c
o
n
d
s

Element bit size

001 Delays
010 Delays

100 Delays

(c) 7x7x7 DG,

 2.5e-08
 3e-08

 3.5e-08
 4e-08

 4.5e-08
 5e-08

 5.5e-08
 6e-08

 6.5e-08
 7e-08

 4 5 6 7 8
s
e
c
o
n
d
s

DG size

001 Delays
010 Delays

100 Delays

(d) 24 bit input data,

Fig. 8. FPGA logic delay plots for[0 0 1]T − [1 1 1]T , [0 1 0]T − [1 1 1]T and [1 0 0]T − [1 1 1]T vectors.

enhancement of the library with more PEs models are going
to be the main future objectives for the development and
improvement of the platform.

REFERENCES

[1] M. Kortke, D. Fimmel, and R. Merker, “Parallelization ofalgorithms
for a system of digital signal processors,” inProc. 25th EUROMICRO
Conference, vol. 1, Sep.8-10 1999, pp. 46–50.

[2] A. de Lange, A. van der Hoeven, E. Deprettere, and P. Dewilde, “An
application specific IC for digital signal processing: the floating point
pipeline CORDIC processor,” inEuro ASIC ’90, May29/1Jun. 1990, pp.
62–67.

[3] M. Johannesson and M. Gokstorp, “Video-rate pyramid optical flow
computation on the linear SIMD array IVIP,” inProc. Computer
Architectures for Machine Perception, CAMP ’95, Sep.18-20 1995, p.
280287.

[4] M. Johannesson, A. Astrom, and P. Ingelhag, “The RIVP image pro-
cessor array,” inProc. Computer Architectures for Machine Perception,
Dec.15-17 1993, pp. 385–392.

[5] C. Lin, V. Prasanna, and A. Khokhar, “Scalable parallel extraction of
linear features on MP-2,” inProc. Computer Architectures for Machine
Perception, Dec.15-17 1993, pp. 352–361.

[6] Y. Tang, T. Li, and S. Lee, “VLSI implementation for HVRI algorithm
in pattern recognition,” inProc. of the Second International Conference
on Document Analysis and Recognition, Oct.20-22 1993, pp. 460–463.

[7] E. Frimou, I. Driessen, and E. Deprettere, “Parallel architecture for a
pel-recursive motion estimation algorithm,”IEEE Trans. Circuits Syst.
Video Technol., vol. 2, no. 2, pp. 159–168, Jun. 1992.

[8] A. Mayer, “The architecture of a processor array for video decompres-
sion,” IEEE Trans. Consum. Electron., vol. 39, no. 3, pp. 565–569, Aug.
1993.

[9] P. Baglietto, M. Maresca, A. Migliaro, and M. Migliardi,“Parallel
implementation of the full search block matching algorithmfor motion
estimation,” inProc, International Conference on Application Specific
Array Processors, Jul.24-26 1995, pp. 182–192.

[10] A. Mokios, “GDIF: A graph description interchange format,” Aristotle
University of Thessaloniki, Tech. Rep., 2006.

[11] ——, “HEARTS: A system for the automatic transformationof depen-
dence graphs to systolic arrays,” Aristotle University of Thessaloniki,
Tech. Rep., 2006.

[12] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “SIS:
A system for sequential circuit synthesis,” Berkeley Electronics Research
Laboratory, Tech. Rep., 1992.

[13] J. Cong and Y. Ding, “Flowmap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 13, pp.
1–13, Jan. 1994.

[14] A. S. Marquardt, V. Betz, and J. Rose, “Using cluster-based logic blocks
and timing-driven packing to improve FPGA speed and density,” in
Proc. of the 1999 ACM/SIGDA seventh international symposium on Field
programmable gate arrays, Monterey, California, Feb.21-23 1999, pp.
37–46.

[15] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool
for FPGA research,”Field-Programmable Logic and Applications, pp.
213–222, 1997.

[16] ALTERA, Stratix Architecture, ALTERA Corporation, jul 2005.
[Online]. Available: www.altera.com

[17] Xilinx, Virtex-4 User Guide, Xilinx, Inc., sep 2005. [Online]. Available:
www.xilinx.com

Busy Generation in a large Trigger Based Data Acquisition
System

M. Munkejord∗ A. Stangeland∗ J. Alme∗ W. Rauch† M. Richter∗

A. Rossebø∗ D. Röhrich∗ C. Soos‡ K. Ullaland∗

Abstract

This paper gives an overview of a specific trigger and data acquisition system used in
experimental nuclear physics, and describes one of its many components, which generates the
busy signal. It is a FPGA based device that continuously keeps track of the number of issued
triggers and computes the number of free buffers in the Front End Electronics.

I INTRODUCTION

The Large Hadron Collider at CERN accelerates
two separate, circular beams of nuclei. The two
beams move in opposite directions and at four
points they intersect, allowing for collisions. AL-
ICE (A Large Ion Collider Experiment) [1] is
placed at one of these points and comprises sev-
eral detectors. Recording and transfer of event
data will be controlled through trigger signals,
which are based on inputs from fast detectors.
The Time Projection Chamber (TPC) [2] is one of
the main tracking detectors in ALICE. It has ap-
proximately 560000 channels and generates data
at a rate of up to 25 GB/s. For Lead-Lead colli-
sions the maximum interaction rate will be about
8 kHz. In proton-proton collisions it will be
higher, about 200 kHz in ALICE. Not all inter-
actions will be recorded and kept for later anal-
ysis, and it is the trigger system that controls
which. On average the collision rates will there-
fore be somewhat higher than the transfer rate to
the Data Acquisition System (DAQ). For this rea-

∗Department of Physics and Technology, University of
Bergen, Norway

†University of Applied Sciences, Frankfurt, Germany
‡CERN, European Organization for Nuclear Research,

Geneva, Switzerland

Figure 1: Illustration of ALICE

son the detector Front End Electronics (FEE) [3]
has some buffer memory. To prevent overflow in
the FEE buffers, a mechanism to halt the issuing
of new triggers is required. This is what is re-
ferred to as busy generation and will be provided
by a dedicated device called the Busy Box. The
Busy Box will be used in several of the detectors
of ALICE and it is the subject of this paper.

II THE TRIGGER SYSTEM

ALICE has one Central Trigger Processor (CTP)
[7]. It receives information from all sub detectors
and makes decisions on what triggers to issue. All

1

triggers are forwarded to the Local Trigger Units
which distribute them to the FEE over an optical
fiber channel. The global system clock will be
distributed over the same fiber. This clock signal
drives all of the digital electronics in the detec-
tor and runs at the nominal bunch crossing rate of
40.08 MHz. The clock is also used as reference
when creating Event IDs for collisions. Event IDs
will be distributed with the triggers and makes it
possible to compare data from different sub detec-
tors when analyzing events. Event IDs also play
an important role in the busy handling, as will be
explained later.

The hardware trigger system for ALICE has
three levels - Level 0, Level 1 and Level 2, and
they are issued in sequence. A trigger sequence
is started by a Level 0 trigger, which will be is-
sued once a collision has been detected. Some
time after that a Level 1 trigger will be issued if
the collision satisfies certain conditions. If not the
Level 1 trigger is suppressed, the trigger sequence
is aborted and any data recorded so far discarded.
Provided a Level 1 trigger was issued, a Level 2
trigger will be issued. The Level 2 trigger will in-
dicate whether the event was accepted or not. If
the event was accepted the FEE will mark the data
in its buffers for transmission to the DAQ sys-
tem. The DAQ system will receive the event data
whenever there is capacity available. If a Level 2
Reject trigger is issued then FEE will overwrite
its buffer when new triggers are received.

The TPC is constructed like a barrel filled with
gas (see figure 1). When particles from a collision
travels through the TPC, they will ionize the gas
in their path leaving a trail of ionized atoms. Elec-
tric fields will cause the freed electrons to drift to-
wards the ends of the barrel where they can be de-
tected. To fully record an event the TPC requires
about 90 µs. This makes the TPC a slow detector
and new collisions can occur while there still are
drifting electrons from a previous collision. How-
ever, during analysis one is able to distinguish up
to a certain number of events, the number depend-
ing amongst other things on the quality of the re-
construction algorithms. If too many collisions
occur after a trigger has been issued, the CTP will
issue a Level 2 Reject trigger and the data will

be discarded as explained earlier. This feature is
called the past-future protection and is meant to
discard data from events that can not be analyzed.

III BUSY HANDLING

The task of the Busy Box is to let the trigger sys-
tem know when the detector is busy and can not
handle new trigger sequences. As long as the busy
signal is asserted, the CTP will not issue addi-
tional trigger sequences. The generation of the
busy signal is a logical OR between two separate
processes inside the Busy Box. One is a simple
timer started whenever a Level 0 trigger is re-
ceived. In the case of the TPC the timer is set
to approximately 90µs, which is the time it takes
to record one event. The other process will flag
busy when all buffers on the FEE are occupied.

If a Level 2 Accept is issued for an event,
the FEE will tag the data with the Event ID and
push it over optical fibre links to DAQ computers.
These are regular PCs with special data adapters
called D-RORCs (DAQ-Read Out Receiver Card)
connected to a PCI bus. Instead of communi-
cating directly with the FEE to find the number
of buffers in use, the Busy Box queries the D-
RORCs. Once a D-RORC has received the data
for an event from the FEE, it extracts the Event
ID and transmits it upon request to the Busy Box
over LVDS lines. The Busy Box also extracts
the Event ID from the Level 2 Accept trigger, but
stores it in a local queue. Once an Event ID en-
ters the queue, the Busy Box will start polling the
D-RORCs and compare the Event ID from the
trigger with that from every D-RORC. If all the
Event IDs match it can be safely assumed that all
the corresponding buffers are freed, and the used
buffers counter will be decremented. In this way
the number of free FEE buffers can be calculated
indirectly.

Traditionally the FEE in the detectors has gen-
erated its own busy signals. For the TPC alone,
however, there are more than 4000 Front-End
Cards but only 216 D-RORC cards. Communi-
cating with the D-RORCs therefore significantly
reduces the need for connections. Also, the D-

2

LVDS

Busy (LVDS)

TTC

CTP

LTU Busy Box

DRORCFEE
DDL

Counting RoomDetector

Figure 2: Illustration of Busy Box concept

RORC cards are placed in a counting room, away
from the radiation environment close to the de-
tector. By also placing the Busy Box in the same
counting room easy access is assured.

IV BUSY BOX

In the case of the TPC, the Busy Box needs to
communicate with the 216 D-RORCs over 15 me-
ters TP (Twisted Pair) cables with RJ-45 connec-
tors. Many of the other sub detectors have fewer
data links and hence, fewer D-RORCs. For this
reason the Busy Box is made modular (see fig-
ure 3). The motherboard has 40 ports for RJ-
45 connectors. If more ports are needed, mez-
zanine cards with 48 ports can be attached with
ribbon cables. The boards/cards are built in stan-
dard 19” rack cases up to five units in height. The
logic resources are provided by one or two Virtex-
4 FPGAs, depending on the number of ports re-
quired. The Virtex-4 FPGA in the ff1148 package
was chosen because it has many IO pins, supports
LVDS and supports programming by SelectMAP
[6].

Attached to the motherboard is a DCS card.
The DCS card is part of the DCS (Detector Con-
trol System) which monitors, configures and con-
trols most of ALICE. The DCS card is mainly
composed of an Altera EPXA1 (containing a 32
bit ARM processor), 8 MB Flash ROM, 32 MB
SDRAM and an Ethernet transceiver. With these

components it is able to run a lightweight version
of Linux. Device drivers for Linux have been de-
veloped so that programming the FPGA with Se-
lectMAP from a remote location is possible. This
feature, although very handy for the Busy Box,
was initially developed for the FEE which resides
inside the detector and is unreachable once the ac-
celerator has been started. The DCS card also has
a 16 bit wide bus interface to both FPGAs, allow-
ing software to access memory mapped registers
inside the FPGAs. The DCS board provides con-
nectivity to the trigger system and the Detector
Control System.

The main requirements for the firmware are to
provide communication with the D-RORCs and
an interface to the DCS bus and triggers. In ad-
dition it will do most of the work of processing
the incoming messages from the D-RORCs. It is
essential to implement as many of the low-level
functions in firmware as possible since it is faster
than the software. There will be two versions of
the motherboard, with one or two FPGAs. The
first FPGA is connected to the first 120 of the
RJ45 ports and the second to the 96 remaining.
Since the number of ports will vary for different
Busy Boxes, the firmware is designed to be scal-
able at compile time (by generics) to include any
number of ports from 1 to 120. The two FPGAs
will operate in parallel, with some simple logic in
the first FPGA to coordinate the busy-signal.

Every received message from the D-RORCs
will be stored in memory that is available to the

Figure 3: Picture of the inside of the Busy Box

3

software. The firmware also provides registers
for transmitting messages to any or all of the
connected D-RORCs. This allows software to
communicate with the D-RORCs directly so that
higher level error handling can be done in soft-
ware. It is also very useful for debugging in the
development phase.

Messages from the D-RORCs will also be
pushed into a FIFO queue for processing by the
firmware. Internal status registers for each D-
RORC will be updated as messages are processed.
The information in these registers will be used to
determine when all D-RORCs have received data
for the current Event ID or, if not, determine the
next appropriate action.

As described earlier, the Busy Box will request
the Event IDs from the D-RORCs. It will re-
ceive messages from all active D-RORCs contain-
ing the requested Event ID or a message saying
that the Event ID has not been received yet. The
Busy Box will wait until it has received messages
from all D-RORCs or until a programmable time-
out runs out and then re-request from those that
had not received the Event ID. The firmware will
retry this procedure a few times before it sets ap-
propriate error registers and allows software to re-
solve the error or report it to the DCS.

The communication logic on both sides (Busy
Box and D-RORC) runs on 200 MHz. Dedicated
hardware inside the Virtex-4 called Digital Clock
Managers are used to generate this clock in the
Busy Box. The D-RORCs are referenced to the
clocks of their host computer. This means that the
two devices do not share clock source and clock
skew and jitter noise is to be expected. A proto-
col that includes a bit clock in the encoded sig-
nal is desirable but due to the large number of
receivers that have to be implemented into a sin-
gle FPGA, Non-Return-to-Zero encoding is used.
Currently, the receivers utilizes 5x oversampling
which gives a bit rate of 40 Mbps. The receivers
will push samples into a shift register long enough
to contain samples for a complete word. When
the receiver sees valid start and stop bits in the
samples, it will use majority gates to determine
the value of each bit and store the resulting bits
in an output buffer. Parity checks are also im-

plemented to maintain data integrity. A message
from a D-RORC to the Busy Box is 48 bits. To
make the protocol more tolerant of jitter and keep
the receivers small, the 48 bits are transmitted as
3 times 16 bit words (with a very short timeout
between the words). This allows the receiver to
resynchronize to the bit stream more often. It also
reduces the probability that noise from floating
inputs produce garbage data by accident because
it is less likely that this noise will produce three
valid words consecutively.

V VERIFICATION

The design has been tested in simulations with the
QuestaSim software. For this purpose testbenches
has been written in VHDL that emulates the de-
vices that the Trigger Busy Box firmware will in-
terface with. For some of the emulated devices,
a dedicated VHDL entity has been written, others
are emulated by VHDL procedures that drives the
signals of the interface. A main test sequence pro-
cess calls procedures that controls the emulators
to interact with Busy Box firmware. The main test
sequence can easily be modified to simulate spe-
cific scenarios. The testbench does not automat-
ically verify the result but gives the opportunity
to study the functional operation of the design in
operation.

The first priority of the hardware tests was
to verify a reliable communication between the
Busy Box and the D-RORC. Several test setups
have been used in the different stages of devel-
opment. The first was a loopback test where the
Busy Box transmitted messages to itself through a
TP cable. By using the DCS board to access reg-
isters of the FPGA, messages can be sent, and the
received messages can be read out and verified by
software.

After some modifications to the firmware the
Busy Box was brought to CERN for testing with
the D-RORC. These tests were concluded with
a ”proof-of-concept” test where software running
on the DCS board controlled the communications
of the Busy Box. The test included retrieval of
an event ID form the D-RORC and successfully

4

comparing it with the event ID which was sent
from the LTU in emulator mode.

Further test of the communication has been per-
formed with another FPGA based device were
firmware have been developed specifically to em-
ulate the D-RORC in the absence of the real D-
RORC and the remaining components of a real
test setup.

D−RORC

D−RORC

D−RORC

D−RORC

D−RORC

D−RORC

Trigger Busy Box

0

1

2

3

5

4

LTU

P
C

I bus of host com
puter

CTP emulator

Event Data

Busy

Triggers

Event IDs

DAQ Computer

FEE units for one TPC−sector

Figure 4: Illustration of test setup.

Integration tests at CERN

Recently tests have been performed with the
current Busy Box design at CERN in a real test
environment, including real components and sev-
eral channels. The setup is illustrated in fig-
ure 4. On the detector side four complete FEE-
units have been used simultaneously (the TPC has
a total of 216 FEE-units). The FEE sampled float-
ing inputs instead of real detector signals to sim-
ulate data, and on the trigger side a real LTU has
been used. The LTU receives the BUSY-output
from the Busy Box and passes it on to the CTP.
Trigger inputs to the LTU will come from the CTP
in the final setup, but so far a CTP emulator has
been used instead. The CTP emulator will issue
triggers at a variable rate, as is expected in the
real system under normal operation. In the test
the Busy Box verifies that all event data has been
successfully transfered to the D-RORCs by com-
paring the Event IDs from the D-RORCs with the
Event IDs from the trigger system.

VI CONCLUSION

The modular design of the Busy Box and its scal-
ability makes it possible to use it with several AL-
ICE sub-detectors. This also allows independent
testing of different functionalities and makes it
easy to add new or modify existing ones. Both
during development and integration of the Busy
Box in a detector system, the combination of soft-
ware and firmware gives flexibility. So far labo-
ratory tests have been performed to verify basic
functionality, and error handling will be added.
Further commissioning tests using more channels
will be performed in the near future.

REFERENCES

[1] ALICE Collaboration, Technical Proposal For A
Large Ion Collider Experiment at the CERN LHC.
CERN/LHCC 1995-71, 1995.

[2] ALICE Collaboration, Technical Design Report of the
Time Projection Chamber, CERN/LHCC 2000-001,
ALICE TDR 7, 7 January 2000. ISBN 92-9083-155-3
https://edms.cern.ch/file/398930/1/ALICE-DOC-
2003-011.pdf

[3] L. Musa et al., The ALICE TPC Front End Electron-
ics, in proc. of the IEEE Nuclear Science Symposium,
Portland, October 2003.

[4] ALICE Collaboration, Technical Design Report of
the Photon Spectrometer (PHOS) CERN/LHCC
99-4, ALICE TDR 2, 5 March 1999. ISBN 92-9083-
138-3 https://edms.cern.ch/file/398934/1/Cover-
Contents.pdf

[5] Rossebø Anders, BUSY-logikk for ALICE TPC, Mas-
ter thesis, University of Bergen, 2006.

[6] Xilinx Inc., Virtex-4 User Guide v.1.5, January 2006.

[7] D. Evans, S. Fedor, G. T. Jones, P. Jovanović, A.
Jusko, I. Králik, R. Lietava, L. Šándor, J. Urbán
and O. Villalobos Baillie for the ALICE collabora-
tion. http://lhc-workshop-2005.web.cern.ch/lhc-
workshop-2005/ParallelSessionB/51-
OrlandoVillalobosBaillie.pdf

[8] ALICE collaboration, Technical Design Report of
the Trigger, Data Acquisition, High-Level Trigger
and Control System, CERN-LHCC-2003-062, AL-
ICE TDR 010, CERN, 2004. ISBN 92-9083-217-7.
https://edms.cern.ch/document/456354/

5

[9] Wiki-page of the Experimental Nuclear Physics group
at the Department of Physics and Technology at the
Univerity of Bergen: http://web.ift.uib.no/k̃jeks/wiki/

[10] J. Alme, TTC receiver requirement specification v1.1,
University of Bergen, 02.03.2007.

6

THINKING OUTSIDE THE FLOW: CREATING CUSTOMIZED BACKEND TOOLS FOR
XILINX BASED DESIGNS

Andreas Ehliar ∗

Department of Electrical Engineering
Linköping University

Sweden
email: ehliar@isy.liu.se

Dake Liu

Department of Electrical Engineering
Linköping University

Sweden
email: dake@isy.liu.se

ABSTRACT

This paper is intended to serve as an introduction to how to
build a customized backend tool for a Xilinx based design
flow. A Python based library called PyXDL is presented
which allows a user to manipulate XDL files which contain a
placed and routed design. Three different tools are presented
which uses this library, ranging from a simple resource uti-
lization viewer to a tool which will insert a logic analyzer
into an already routed design, thus avoiding a costly com-
plete rerun of the place and route tool.

1. INTRODUCTION

Traditionally, users are not very interested in the inner work-
ings of the FPGA tool chain they are using. As long as ev-
erything is working correctly there is no perceived need to
invest time and effort on learning about obscure implemen-
tation details. Although most users have probably looked
at a routed design in for example Xilinx’ FPGA editor rela-
tively few users have modified such a design.

There are however large opportunities for those who are
interested in inspecting and modifying placed and routed de-
signs. For example, a design viewer could be constructed
that not only shows the slices of the design, like the floor-
planner does, but also figures out the functionality of a slice
and shows a symbol for a mux, adder, inverter, and so on.
This will allow a user to quickly see if the synthesizer has
created reasonable logic without having to load the FPGA
editor which usually shows much more detail than neces-
sary.

In terms of modifying a placed and routed design, most
users are probably interested in tools that are helpful for de-
bugging a design such as instrumenting a design to improve
the visibility of internal signals. The FPGA editor has in-
cluded functionality to insert probes into a design and route

∗Funded by the Stringent research center of the Swedish Foundation for
Strategic Research

those signals to external pins for a long time and the Chip-
Scope [1] product has improved on this functionality by al-
lowing the user to insert a full logic analyzer into the FPGA.

Finally, when the usage of partial reconfiguration of FP-
GAs is more widespread it is likely that already placed and
routed designs will have to be modified before deployment.

This paper presents a simple way to write useful pro-
grams capable of inspecting and modifying placed and
routed Xilinx designs. The used method is to use the xdl
tool to translate Xilinx proprietary NCD (Native Circuit De-
scription) files into XDL (Xilinx Design Language) text files
which can easily be processed by an application. A Python
library called PyXDL has been developed to analyze and
modify XDL files and three different backend tools written
in Python has been written to demonstrate the capabilities
of this library. The first tool can take a design and report
the resource utilization of individual modules in the design.
The second tool is a design viewer capable of showing the
type of logic in each LUT as described above. The final tool
allows a logic analyzer core to be inserted into an already
routed design and present a user interface over RS232.

While it might seem esoteric and cumbersome to write
your own backend tool the main parts of the Python library
and tools described in this paper were actually written over
a period of less than two weeks (except for the logic an-
alyzer core which was already written for another project
where it had to be manually instantiated in the RTL source
code). It is therefore feasible for even smaller developers to
write their own customized tools and we hope that this paper
might serve as an inspiration for like-minded developers.

2. RELATED WORK

As previously mentioned, the FPGA editor included in ISE
can show a design in more detail than most users care for. It
is also possible to change the design although this is proba-
bly impractical for larger changes. There is also a command
line version of the FPGA editor available called fpga edline

which is capable of executing scripts created by the FPGA
editor.

Unfortunately there is no documented way to control the
FPGA editor from a user written program. The included
scripting support is just a way to repeat previously defined
commands, the script language is not a complete program-
ming language. This makes it unsuitable for an application
that needs to read data from a design as opposed to making
changes to a design at fixed locations.

A much more interesting alternative is the JBits SDK [2]
from Xilinx. This allows Xilinx designs to be manipulated
from Java. In fact, it probably contains all the functionality
that a user could want in terms of design manipulation. It
isn’t publicly available and users have to ask for access to it.
The main drawback is that JBits has been discontinued and
there is no support at all for newer FPGAs in it (newer than
Virtex-II) and there seems to be little interest from Xilinx
to add such support. In fact, if JBits was publicly available
with support for all new FPGAs from Xilinx, there wouldn’t
have been any need to write this paper.

Finally, abits [3] is a tool similar in spirit to JBits which
allows Atmel bit streams to be manipulated.

3. THE XDL FORMAT

The XDL file format is an ASCII based translation of Xilinx’
proprietary NCD file format. It will typically contain two
types of statements, instances and nets. An instance can be
any logic element in the FPGA such as for example a slice,
ram block, or DSP block. It may or may not be placed at a
certain location. A net statement will describe the name of
a certain net and the instances it is connected to. It may also
contain routing information. An example of a very simple
XDL file is shown in Figure 1.

A drawback of the XDL file format is the scarcity of
documentation. Earlier releases of ISE such as 6.3 con-
tained written documentation about the file format [4]. Un-
fortunately this documentation has been removed in later
versions of ISE. Even so, some details of the XDL format
wasn’t documented in 6.3 either. Luckily some basic infor-
mation about the format is included in every XDL output file
created by the xdl tool unless the -noformat switch is given.

4. PYXDL - PYTHON BASED XDL
MANIPULATION LIBRARY

A Python based library called PyXDL has been developed
to simplify development of backend applications. The basic
idea behind the library is to convert a placed and routed de-
sign into XDL by using the xdl tool included in ISE. This file
can be modified as required and converted back into Xilinx
native NCD format. This allows small changes to be made
to a design without requiring a complete and often time con-

net "simple_net" ,
outpin "slice1" XQ ,
inpin "slice2" BX ,

;

inst "slice1" "SLICEL",unplaced ,
cfg "BXINV::BX CEINV::CE CLKINV::CLK

DXMUX::BX FFX:slice1_r:#FF
FFX_INIT_ATTR::INIT0" ;

inst "slice2" "SLICEL",unplaced ,
cfg "BXINV::BX CEINV::CE CLKINV::CLK

DXMUX::BX FFX:slice2_r:#FF
FFX_INIT_ATTR::INIT0" ;

Fig. 1. An example of a simple XDL file which shows two
slices each containing one flip flop connected by a wire.

suming synthesize, placement, and routing iteration. This is
accomplished by telling par (the place and routing tool) to
only route un-routed nets and only place unplaced instances.
(The guide-file feature of par is used for this purpose.) This
flow is illustrated in Figure 2.

4.1. Constraints

One problem which occurs when merging two designs, which
isn’t immediately obviously when looking at the XDL files,
is the constraints files. The timing constraints in these must
also be merged if reliable timing estimates is expected.

4.2. Resource analyzer script

The design resource analyzer is a small tool written for a de-
signer who wants to know the resource utilization of a cer-
tain module or modules in larger design. One way to figure
this out is to synthesize that particular module separately.
This method may or may not work depending on the prop-
erties of the larger design. For example, if the synthesizer
can determine that only relatively few values can appear on
a certain input port of a module included in a larger design,
the synthesizer could potentially remove large parts of the
module.

As hinted at in the previous section it would be better to
be able to analyze a large design directly to find the resource
usage of individual components. This is exactly what the re-
source analyzer script does as shown in Figure 3. The script
itself is very simple and the most complex part is actually
printing the design usage in a hierarchical and cumulative
fashion. This kind of XDL parsing, although easy, can still
lead to useful results. A regression test incorporating this
script could for example warn about a submodule which has

XDL (Routed)

Synthesizer (xst)

NGC

ngdbuild

NGD

map

NCD (Mapped)

xdl

Constraints (PCF)

xdl

XDL (Partially
routed)

par

NCD (Routed)

par

NCD (Routed)

XDL (Mapped)

Constraints (PCF)

Source code	 Constraints

Constraints (PCF)

NCD (Partially
routed)

Design to merge

PyXDL design merger

Fig. 2. The typical Xilinx flow augmented with the PyXDL
tool to merge a design such as a logic analyzer into a placed
and routed design. The new part of the flow is shown in gray.

Fig. 3. Using the resource analyzer script to view the re-
source utilization of various parts of a design.

grown (or shrinked) by a large factor when compared to the
previous run.

4.3. Design viewer

The design viewer is capable of viewing a design and show-
ing the configuration of the slices. It is similar in function-
ality to the floorplanner. In Figure 4 a part of an OpenRisc
based design is analyzed by the design viewer.

4.4. Logic analyzer

Putting a logic analyzers into a chip is not a new idea. Both
Xilinx and Altera already offers such products (ChipScope
and SignalTap). There are also some logic analyzers written
by hobbyists available on the net such as Fpgadbg [5].

The main idea behind this section is to show that it is
easy for any user to duplicate the main selling point of Chip-
Scope, i.e. the capability to insert a core into an already
synthesized and routed design. While it would be easy to
create a logic analyzer core which fully mimics ChipScope
by connecting to the internal boundary scan primitive we
did not intend this tool to be a ChipScope clone. Instead,
the intention was that this tool should be useful in systems
that might not easily be connected to a PC with a ChipScope
client such as remote systems. Therefore the logic analyzer
core is operated via a simple serial port interface.

An example of the output of the logic analyzer is shown
in Figure 6 and an example of a simple GUI which allows
the core to be easily inserted into a design is shown in Fig-
ure 7.

4.4.1. Implementation details

The design of the the logic analyzer is shown in Figure 5. It
consists of a simple 8 bit microcontroller which is responsi-
ble for presenting a text based user interface to a serial port.
The MCU is connected to a logic analyzer core via a Wish-
bone bus. This bus also creates an easy way to extend the

Fig. 4. An example of the output from the design viewer
when run on a OpenRisc 1200 based design.

functionality of this core with additional modules. The logic
analyzer is currently hardcoded for a maximum of 64 signals
which is stored to a 2 kilo-word large buffer.

The Python GUI allows the user to load an XDL design
and select which nets to monitor. After the user is satisfied
with the selection the program will load the synthesized ver-
sion of the logic analyzer and remove any elements which
will make it hard to merge the logic analyzer into the design
(e.g. IOBs and BUFGs). The appropriate flip-flops in the
logic analyzer is added as an extra destination of the selected
nets. The program memory of the MCU is also modified so
that net information such as name and width is available to
it. Finally, a user selected clock net is connected to all flip-
flops in the logic analyzer core.

The curious reader is also referred to Appendix A which
contains an example of how PyXDL can be used to merge a
small design into a large design.

4.5. Availability of PyXDL

The PyXDL library will be published under the GPL at
http://www.da.isy.liu.se/˜ehliar/pyxdl/
together with the sample applications described in the pre-
vious sections. The RTL code of the logic analyzer core
will also be made available under the MIT license so that

8 bit MCU

UART

Wishbone bus

Signals to monitorclkRS232

&

=

PM

Logic analyzer

Trig val

Memory

Trig mask

Ctrl

Fig. 5. An overview of the logic analyzer module.

users can use and distribute merged designs without worry-
ing about the stricter terms of the GPL license.

5. DISCUSSION

The applications presented in this paper shows only a few
of the many possibilities that could be tapped by a creative
designer. The applications described earlier could of course
be improved by improving them. The design viewer could
be improved to show more points of interest to a designer
such as clock domain crossings, pipeline depths, and per-
haps even show some sort of design complexity metrics for
different parts of the design (a long pipeline without feed-
back is far less complicated and probably easier to test and
verify than a state machine with many feedback paths).

The logic analyzer could be improved by adding addi-
tional modules to it such as counter modules for statistic
gathering. Another interesting addition would be to replace
the RS232 interface with another interface such as for ex-
ample Ethernet or USB.

5.1. Other possible applications

There are many other interesting applications which would
be possible to develop. One example would be for those in-
terested in very large FPGA designs that must be mapped
onto several FPGAs. A tool could be created that automati-
cally partitioned the XDL file into more than one FPGA.

A similar tool could be made that partitioned a design for
a large FPGA into different region of such an FPGA. The ad-
vantage of such a design would be that the time consuming

Fig. 6. The logic analyzer user interface showing instruction
fetches on a Wishbone bus. The analyzer has been set to
trigger when STB and ACK are both asserted.

placement and routing of the partitioned design could easily
be parallelized on a cluster of computers.

5.2. Remaining issues

There are unfortunately some issues that are hard to solve in
a satisfactory fashion. The main problem is that there is very
little information available about routing. Whereas place-
ment is relatively straightforward, reliably routing a design
requires detailed timing information about the internals of
the FPGA, something which Xilinx hasn’t released for mod-
ern FPGAs and most likely will not release for the foresee-
able future.

Another problem that any tool of this kind will face is
that the synthesized design isn’t exactly the same as the RTL
source code. The various optimizations employed by the
synthesizer will remove and rename many nets, making it
harder to find the correct signal/bus to inspect. This could be
mitigated if more back-annotation information was available
to the tools.

Finally, the PyXDL library has only been tested on Virtex-
4 based designs.

6. CONCLUSION

We have shown that it is easy to create powerful backend
tools for a Xilinx based design flow such as a logic analyzer
inserter. By manipulating the design file directly a time con-
suming full synthesis/placement/routing iteration is avoided

Fig. 7. The GUI used to insert the logic analyzer core into a
design.

and therefore increasing productivity. It is our intention that
this paper will inspire other designers to explore these pos-
sibilities as well.

7. REFERENCES

[1] Xilinx, “Chipscope pro,” http://www.xilinx.com/ise/optional
prod/cspro.htm.

[2] ——, “Jbits sdk,” http://www.xilinx.com/products/jbits/.

[3] A. Megacz, “A library and platform for fpga bitstream
manipulation,” Proceedings of IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’07),
2007.

[4] Xilinx, “Xilinx design language,” help/data/xdl/xdl.html in
ISE 6.3, 2000.

[5] W. Zabolotny, “Fpgadbg - a tool for fpga debugging,”
http://www.ise.pw.edu.pl/ wzab/fpgadbg/, 2006.

Appendix A. PYXDL EXAMPLE

This appendix contains an example of how to use PyXDL to merge a synthesized design into a larger design. The example
consists of a design which will monitor a signal and assert an external signal forever if an internal signal has ever been asserted
(e.g. an error signal of some sort). In order to shorten the example, the constraints file is not updated with the timing group
from the small design. Some values are also hardcoded instead of dynamically getting the values from the XDL files such as
the name of the clock networks.

PyXDL source code to merge a synthesized design (test.xdl)
into a large design (system.xdl):
from xdl import xdl,xdlnet

from pcf import pcf

from xdlutil import par with guide

largedes = xdl("system.xdl")

largedespcf = pcf("system.pcf")

Clock network for the large design

clocknet = largedes.netsbyname["clk i BUFGP"]

tinydes = xdl("test.xdl")

Unplace stuff we don’t need

tinydes.unplace design()

tinydes.remove unused dcminsts()

tinydes.remove inst("clk")

tinydes.remove net("clk")

Create a unique prefix for the other design so

that we don’t have to worry about name clashes

tinydes.add prefix("TEST/")

Convert flip flop in the IOB to an internal signal

myiob = tinydes.insts["TEST/testin"]

testinpin = tinydes.convert input to internal(myiob)

oldclknet = tinydes.netsbyname["TEST/clk BUFGP"]

Remove old clock network

tinydes.remove net("TEST/clk BUFGP")

tinydes.remove inst("TEST/clk BUFGP/BUFG")

Merge designs

largedes.mergedesign(tinydes)

Merge old clock network into new design

for pin in oldclknet.inpins:

largedes.add inpin to net(clocknet,pin[0],pin[1])

Select signal to monitor

thenet = largedesign.netsbyname["traceit/state r FFd1"]

largedes.add inpin to net(thenet,testinpin[0],

testinpin[1])

Add the IOB to the PCF constraint file and

select where to place it (at pin AC6)

largedespcf.addiob("TEST/testout","AC6")

Place and route the design

par with guide(largedes,largedespcf,"new.ncd","tmp")

Verilog source code for a simple monitor application. testout
will be asserted if testin has ever been asserted:

module test(

input clk,

input wire testin,

input wire rst,

output reg testout);

reg tmp,sample;

wire fbloop;

always @(posedge clk) begin

sample <= testin;

tmp <= fbloop;

testout <= tmp;

end

FD monitorfd(.C(clk),.D(fbloop | sample),

.Q(fbloop));

endmodule // test

 1

TABLE OF SOME INDUSTRIAL
PROCEEDINGS CONTENTS

1) Leveraging spreadsheets for integrating FPGA Integration in a Board design flow,
Abha Jain, S.Dharamarajan, Vikrant Khanna, Vikas Kohli, Cadence Design Systems, India.
This paper describes the limitations of integrating an FPGA in schematics driven board design flow and how some of these can be
effectively addressed in a spreadsheet based flow. Allegro System Architect© gives a spreadsheet based view of the design. The
advantages and ease of integrating an FPGA in a spreadsheet driven board flow are presented. A new methodology for managing large
pin-count FPGAs on the board and efficiently handling FPGA driven ECOs that come late in the design cycle, is also discussed.

2) A Digital Data Processor for SYNTHETIC Aperture Radar
Wouter Vlothuizen, Department Transceivers & Real Time Signal Processing, TNO Defence, Security and Safety, The Hague,
Netherlands, email: wouter.vlothuizen@tno.nl
Henk Medenblik, Department Transceivers & Real Time Signal Processing, TNO Defence, Security and Safety, The Hague, Netherlands,
email: henk.medenblik@tno.nl
This paper presents a Digital Data Processor (DDP) for Synthetic Aperture Radar (SAR). The DDP captures SAR data at a 1 GHz
sample rate and processes data at 350 MB/s. Data reduction is performed by a digital down converter, programmable decimating filter
and a fully programmable presummer. The total processing power amounts to 12.6 GOPS/s.
Configuration of the DDP on a pulse to pulse basis is achieved by means of a high speed LVDS serial data link capable of transferring up
to 500 k messages per second with deterministic timing. The DDP has been implemented on a commercial FPGA digitizer board.

3) AT91 CAP products Configurable Advanced Processors , Ulf Samuelsson, Atmel

Leveraging spreadsheets for integrating FPGA Integration in a Board design flow
Abha Jain, S.Dharamarajan, Vikrant Khanna, Vikas Kohli

Cadence Design Systems (India)
abhaj@cadence.com , rajan@cadence.com, vkhanna@cadence.com, vikas@cadence.com

Abstract

This paper describes the limitations of integrating

an FPGA in schematics driven board design flow and
how some of these can be effectively addressed in a
spreadsheet based flow. Allegro System Architect©
gives a spreadsheet based view of the design. The
advantages and ease of integrating an FPGA in a
spreadsheet driven board flow are presented. A new
methodology for managing large pin-count FPGAs on
the board and efficiently handling FPGA driven ECOs
that come late in the design cycle, is also discussed.

1. Introduction

FPGAs are no longer considered to be just a means
for fast prototyping. With the advent of high
performance, high density FPGAs, they are increasingly
being used in production boards, replacing even ASICs
in some cases [1, 2]. These high pin-count FPGAs are
advantageous since they are very adaptive to design
changes during and after the product development.
PCB technologies, like the support for high data rates,
high density interconnects with microvias and
embedded components also make it easy to use large
FPGAs in the board. Aggressive time-to-market dictates
that the FPGA and board designs proceed
concurrently. This poses the challenge of importing
and maintaining such high pin -count FPGAs in the
board design and need a tight PCB-FPGA design flow
integration. This integration requires effective and
efficient transfer of a large amount of data from one
design flow to the other [3].

FPGA driven ECO can happen to achieve timing

closure and it triggers a board synchronization and
verification cycle that is very time consuming [4].
Similarly, there can be a PCB driven ECO because of
signal integrity constraints or routing optimizations in
the board layout that will require the FPGA designers to
again achieve timing closure with the new pin
assignments. A broad picture of the PCB and FPGA
design flow and their interaction at various stages is
shown in Figure 1.

The following section will present the challenges of
concurrently designing FPGAs and its board. Section 3
explains the inherent limitations of the FPGA import and
PCB-FPGA integration in schematic driven flow.
Section 4 discusses the FPGA import and integration
with board design in a spreadsheet based environment.
Future needs for better PCB-FPGA design integration
discussed in Section 5.

2. Concurrent PCB-FPGA Design Challenge
Concurrent PCB and FPGA design demands certain

amount of transparency, large amount of data transfer
and proper synchronization of this data between the
two design flows.

 FPGA design flow needs to take in pin-assignment

recommendations and constraints from the board
layout. The layout should understand the FPGA design
rules, pin directions, pin-bank details, differential pins
and simulation models for pins, to facilitate effective pin
assignment recommendations with proper signal
integrity analysis and routing optimizations. A board
may use more than one such large pin-count FPGAs,
thereby, increasing the amount of data synchronization
involved.

There is also the challenge to achieve a high degree

of automation in the ECO process to make it error-free
so that precious time is not wasted in synchronizing the
board and the FPGA design. Any solution for the PCB-

PCB FLOW FPGA FLOW

BOARD
DESIGN

SPECIFICATIO
DESIGN

C FUNCTIONAL
SIMULATION

PCB LAYOUT
WITH

PHYSICAL
CONSTRAINTS

BOARD
SIMULATION

FOR SI,
TIMING AND

PERFORMANC
E CLOSURE

VERIFICATION

FPGA DESIGN
SPECIFICATIO

N
TOP BLOCK

WITH
LOGICAL
S

HDL DESIGN

FUNCTIONAL
SIMULATION

SYNTHESIS
PLACE &

ROUTE WITH
PINMAP

GENERATION
PHYSICAL

SIMULATION
FOR TIMING

CLOSURE
VERIFICATION

BOARD
FPGA

TRIGGER
FPGA P&R
ITERATION

TRIGGER
BOARD ECO

IMPORT
PART WITH
LIBRARIAN

INTEGRATION

FIGURE 1. Flow of PCB-FPGA integration.

FPGA integration must have an effective FPGA import
in the board flow and fairly automated ECOs to reduce
the time-to-market.

3. Limitations of the schematic based FPGA
import and PCB-FPGA integration

The problems in a schematic based FPGA import and
PCB-FPGA integration [4] are discussed here.

3.1 FPGA as a hierarchical block in schematic

Preliminary pin-assignment of the FPGA is the first
step in concurrent PCB and FPGA design process and
this step means generating the part along with the
symbol of the FPGA and instantiating the symbols in
the board design. This step has some problems in
schematic flow.

Hierarchical encapsulation: Most PCB designers
encapsulate the FPGA symbols within a hierarchical
block exposing the pins of the FPGA as ports of the
block. This insulates the top design from frequent
FPGA symbol changes, but hierarchical symbol does
not show the logical to physical pin mapping and this is
a serious limitation during debugging. It forces the use
of hierarchical design that increases the flow
complexity.

Block size and signal short: The hierarchical block
symbol size is an issue for a large pin-count FPGA .
Most schematic driven board flow does not support
splitting hierarchical block symbol. Power pins can be
removed from the hierarchical block symbol and
declared as globals, to reduce the size but this causes
an unintentional short of these power pins in case there
are more than one FPGA s in the same design.

 3.2 Split Symbols for FPGA in schematic

Front-end engineers can tackle the size of the FPGA
symbol inside the hierarchical block by splitting it into
multiple small symbols. Splitting the symbol has some
limitations.

Connecting through symbols: Split symbols are created
by Librarian during part generation. The split symbols
need to be individually placed and connected in the
schematic. Since the pin count is large and pins are split

over many symbols, this step is extremely tedious and
error-prone.

Updating connections in schematic: ECOs, whether
Board or FPGA driven, place tall demands on the
schematics flow. The designers need a design preview
showing the current state of the FPGA and the board.
They need some comprehensive way to figure out the
differences and trigger automatic updations of split
symbols and their connections in the board schematic.
Providing all this in a schematic based flow is very
difficult and hence, ECOs are still largely manual.

4. Spreadsheet based FPGA import
methodology

There are a number of advantages offered in a
spreadsheet based view of the design. This section
talks about the FPGA import methodology as
implemented in Allegro System Architect© and explain
ways to exploit the spreadsheet based view for easy
and highly automated ECOs.

4.1 Introduction to Spreadsheet view

Spreadsheet view presents the design and it’s
connectivity in the form a table. A table view helps
focus on design entry and the Front-end engineer need
not worry about schematics at this stage. A snapshot
of Cadence Allegro System Architect© presenting the
table view of the design is shown in Figure 2. It shows
the list of component instances and nets in the design
and their connectivity is shown in the connectivity
details pane.

The table is fully customizable with the user

deciding the visibility of columns, thereby making
optimum use of real-estate on the pane to avoid
cluttering. There are pattern matching filters for
columns with sorting capability. These features go a
long way in helping the designer in ma king connections
without being overwhelmed by the number of pins.
Auto-connection options are also available where the
user has the option of creating signals from the pin
names (same as pin name or with some prefix/suffix) and
making corresponding connections. There are a number
of other features provided in the tool that make design
entry very easy and automatic as compared to
schematics view. This is extremely useful when we have
large pin-count devices, especially large FPGAs.

 4.2 Importing FPGA through wizard
Allegro System Architect© can directly import the

FPGA into the board design using an Import FPGA
wizard. The wizard supports FPGA families from three
major FPGA vendors: Xilinx, Altera (Qu artus and
MaxplusII) and Actel. It guides the user through a
series of steps that take as input the FPGA files
supplied by the FPGA design team and automatically
generate a part from those files. Some steps in the
import process are shown in Figure 3. Once the wizard
finishes its job, the user has the option of automatically
adding any number of instances of that imported FPGA
part in the board design. The use of a wizard provides
seamless and direct FPGA import in the board design
and makes it very easy as compared to the existing
schematics based import methodology.

Figure 3(a) : FPGA Families and Import file

The user can create two types of parts during FPGA

import as shown in Figure 3(b): Custom and Standard .
In custom component, the pin names are generated
from the pins used in the logic mapped to the FPGA. In
standard component, the pin names are made from the

FPGA device pins. For standard component, the wizard
generates a logical-pin-name to physical-pin-number
mapping in the form of a file. This file is used to overlay
the logical pin name s over the physical pin names in the
spreadsheet view. This greatly simplifies the process of
making connections to the pins because the engineer
directly sees the logical pin to physical pin number
mapping.

Figure 3(b) : Standard and Custom Part

Using this import methodology helped in

overcoming the limitations of schematics based FPGA
import. There is no need to go outside the tool to create
FPGA parts, the logical-pin-name to physical-pin-
number mapping is available to the user, there is no
need for hierarchy or split symbols, unintentional short
of power pins is done away with and use of filters in
making connection makes the design entry very fast.

Component
List

Signal
List

Connectivit
y Details

Automatic
connection
feature

Filters

FIGURE 2: Spreadsheet View in Allegro System Architect.

4.3 Automatic Schematic Generation and
PCB-FPGA integration

Allegro System Architect© has a schematic generator
that takes the component connectivity from the design
files and symbols from the part libraries to automatically
generate a schematic view of the design. While the
board designer imports the FPGA in the design and
make connections, the Librarian can generate split parts
for the FPGA in parallel. Then the designer can
automatically generate the schematics and the utility
will automatically place and connect those split parts in
the schematic. The schematic can also be updated
automatically in preserve mode if there are updations in
FPGA symbols or their connectivity because of ECOs.
This degree of automation makes the schematic
generation and updation step very fast.

4.4 Update ECO through Import Wizard

The Board and the FPGA can go out of sync in two
scenarios: the board layout changed the FPGA pin-
assignment by swapping pins from the same pin-bank
or the FPGA team came up with a new pin assignment
or a pin model change.

Whenever the FPGA files undergo a change, the
board designer will need to update the FPGA part. In
Allegro System Architect©, we can handle FPGA
triggered Board ECOs. The import FPGA wizard has an
Update ECO option for updating the FPGA part. The
user is presented with a preview of the part differences
in a tabular form with an option of creating a new part.
Once this new part is created, the front-end engineer
has the option to update the old FPGA part and
preserve the connectivity in a Replace Compoent
wizard shown in Figure 4. This ECO will be much easier
in a spreadsheet view than in a schematic view because
symbols are not involved in updation. The schematic
view can be automatically updated by running the
schematic generation utility.

5. Future Direction

The use of spreadsheet view and its new
methodology for importing FPGA addresses some of
the PCB-FPGA integration challenges; we have to
address some requirements for complete PCB-FPGA
design flow integration.

Support for cache: We have to automatically recognize
the need for a Board ECO triggered by FPGA changes .
This can be done through caching. Automatic polling
at load time will tell the tool whether the imported FPGA

is stale or not by comparing the cached information
about the FPGA [1].
Layout Triggered FPGA ECO: In case FPGA pin
assignments are modified in the board layout, the user
should have the option of generating a vendor specific
pin map constraints file which can be taken in by the
FPGA vendor’s P&R tool to update the FPGA [1,2,3].
Recognizing Pin Banks and LVDS in board design
flow: Current FPGA architectures group pins with
common characteristics into banks that share same IO
standard model. They also have support for LVDS (Low
Voltage Differential Signal) pins. The current PCB-
FPGA integration at the front-end must have support
for pin banks and LVDS pin-pair data so that this can
be annotated to the board layout, where this can be
understood and handled [1, 2, 3].

6. References
[1] Philippe, G., Methodologies for Efficient FPGA
Integration into PCBs, White Paper on Xilinx FPGAs, March
2003. http://www.xilinx.com
[2] Irwin, R., FPGA-PCB co-design means more than just
data transfer, FPGA and Programmable Logic Journal,
Altium.
http://www.fpgajournal.com/articles/20040824_altium.htm
[3] Morris, K., Board with FPGAs , FPGA and Programmable
Logic Journal, Altium,
http://www.fpgajournal.com/articles/boardwithfpgas.htm
[4] Dharmarajan, S., Integrate FPGA & System Design using
ConceptHDL, Xcell Journal, Issue 32, Second Quarter 1999
http://www.xilinx.com/xcell/xl32/xl32_19.pd

FIGURE 4: Replace Dialog for FPGA ECO

A DIGITAL DATA PROCESSOR FOR SYNTHETIC APERTURE RADAR

Wouter Vlothuizen

Department Transceivers & Real Time Signal
Processing

 TNO Defence, Security and Safety
 The Hague, Netherlands

 email: wouter.vlothuizen@tno.nl

Henk Medenblik

Department Transceivers & Real Time Signal
Processing

 TNO Defence, Security and Safety
 The Hague, Netherlands

 email: henk.medenblik@tno.nl

ABSTRACT

This paper presents a Digital Data Processor (DDP) for
Synthetic Aperture Radar (SAR). The DDP captures SAR
data at a 1 GHz sample rate and processes data at 350
MB/s. Data reduction is performed by a digital down
converter, programmable decimating filter and a fully
programmable presummer. The total processing power
amounts to 12.6 GOPS/s.

Configuration of the DDP on a pulse to pulse basis is
achieved by means of a high speed LVDS serial data link
capable of transferring up to 500 k messages per second
with deterministic timing. The DDP has been implemented
on a commercial FPGA digitizer board.

1. INTRODUCTION

Synthetic aperture radar (SAR) provides a capability for all
weather, day and night ground observation of static objects.
Moving target indication (MTI) adds the capability to detect
moving objects . Within the MiniSAR project TNO Defence
Security and Safety, located in the Netherlands, is
developing a combined SAR/MTI radar system operating
on X-band (3 cm wavelength).
This scalable and modular radar system has an active
electronically steered antenna array and makes use of
commercial off-the-shelf components where relevant. It is
designed for use within small airborne platforms, in
particular tactical UAV and small civil airplanes. The latter
requirement results in a compact (50x50x30 cm) and light
weight (50 kg) design which consumes limited power (max.
500 W).

The MiniSAR radar operates by emitting pulses to the
ground and receiving the resulting reflections. These
reflections are amplified, down converted and filtered by
analogue components, and then fed to the DDP where they
are digitized and signal processing is performed.
The next section describes the architecture of the DDP with
its different signal processing blocks. The implementation
of these blocks inside an Altera Stratix FPGA is described
in the following section and finally conclusions are
summarized.

2. DDP ARCHITECTURE

An architectural overview of the Digital Data Processor is
shown in Figure 2. The DDP data path can be decomposed
into a pulse acquisition block, a digital down converter,
programmable range filters, programmable presummer and
finally a DMA engine block. Components shown in gray
are implemented inside the FPGA.

ADC
Pulse

Acquisition

Digital
Down

Converter

Range
Filter

Range
Filter

I

Q

I

Q

DMA
engine

PresummerPresummerPresummerPresummer

PresummerPresummerPresummerPresummer

input

PCI
chip

PCI

Figure 2 DDP architecture

2.1. Pulse Acquistion

The input of the DDP is an analogue signal with a
bandwidth of almost 500 MHz centred round an IF
frequency of 250 MHz. This signal is sampled with 8-bit
resolution at 1 GHz.

Figure 1 MiniSAR

Although this results in a peak data flow of 1GByte/s, the
actual required data processing rate is lower due to the
pulsed behaviour of the radar system. The maximum
acquisition duty cycle is 35%, resulting in an average data
flow of 350Mbyte/s.

2.2. Digital Down Converter

After data acquisition the signal needs to be down
converted to in-phase (I) and quadrature-phase (Q)
baseband signals. In fact the signal which is centred around
250 MHz is shifted to DC. This function is performed by
the digital down converter block which performs mixing
with a 250 MHz carrier component.

2.3. Programmable Range Filters

The I- and Q-channels from the down converter need
additional filtering. These filters improve the selectivity by
removing receiver noise outside the transmitted bandwidth.
They also remove aliasing products introduced by the
Digital Down Converter. For low bandwidth modes the
filters can perform decimation, resulting in a lower data
rate. Programmable decimating FIR filters are used for this
purpose.

2.4. Programmable presummers

Complete radar lines coming out of the range filters are in
fact samples of what is called an azimuth spectrum. For a
typical radar mode, the sample frequency (i.e. the pulse
repetition frequency) might be 5 kHz whereas the band-
width of interest is 85 Hz. The presummers are decimating
FIR filters which reduce the data rate and improve signal
to noise ratio.
The filter architecture differs from a common decimating
FIR because these presummer filters process complete
radar lines instead of separate radar pulse samples. The
filter output vector O is the sum of input vectors I
multiplied by coefficients C:

 ∑=
N

nn CIO *
rr

When an input vector In arrives, we immediately multiply
it by the proper coefficient Cn and add the result to the
previous sum, which is initialized to zero at the start:

 nnnn CIOO *1

rrr
+=+

Therefore, only a single line of storage is required and the
end result is immediately available after the last line has
been processed. The formula above can in fact be

implemented on a per input sample basis , which nicely
matches the preceding stage.
A large reduction in data is performed at this stage because
only the result of multiple accumulated radar lines is
forwarded to the DMA engine, which we don’t describe
here.

2.5. Control

Many settings throughout the MiniSAR radar can change
on a per pulse basis, i.e. at a rate of 20 kHz. Because the
total message rate can exceed 120 k/s and deterministic
timing is required, a dedicated communication bus was
developed.
This radar bus is based on point to point links using Altera
high speed LVDS serializers running at 500 Mbit/s. The
bus has a ring topology, where every node either repeats its
incoming data, or inserts its response in the data stream. We
use a master/slave protocol with a single master issuing
messages. The maximum message rate is in excess of 500
k/s, which leaves ample room for growth.

3. IMPLEMENTATION

The DDP has been implemented on a commercially
available high speed digitizer card. This 3U CompactPCI
card contains a high speed AD converter, FPGA, Double
Data rate SDRAM memory, cPCI interface chip and the
necessary power supplies.
All signal processing functionality is written in VHDL for
implementation on an Altera Stratix EP1S25 FPGA. This
FPGA contains 25,660 Logic Elements, 80 dedicated 9x9
DSP multipliers, 224 M512 RAM blocks (32 × 18 bits),
138 M4K RAM blocks (128 × 36 bits) and 2 M-RAM
blocks (4K × 144 bits).

3.1. Pulse Acquisition

Digitization of the received radar pulse is performed with a
1 Gsps MAX108 AD converter. This ADC has an internal
8:16 demultiplexer which allows for interfacing to the
FPGA by means of a 16 bit wide differential LVPECL bus
running at 500 MHz.
In order to better match the lower clock speed of the signal
processing blocks inside the FPGA, the 16 bit/500 MHz
input bus is further demultiplexed inside the FPGA to 64
bit/125 MHz by means of dedicated high speed
deserializers.
The 64 bit wide words enter the line storage buffer which
is implemented as a FIFO. This FIFO is capable of storing
2048 x 66 bits words. Two additional memory bits are
needed to indicate the start and stop of a radar pulse.
The secondary side of the line storage FIFO runs at a 175
MHz clock rate. This is the clock speed where the actual

signal processing is performed. We use a fully
synchronous data driven approach of the data path where
the FIFO is automatically read if it is not empty and all
subsequent units are required to process data sent to them.
The large amount of memory needed for this line storage
FIFO is implemented with Trimatrix M4K memory blocks.

3.2. Digital Down Converter

Every fourth clock cycle a 66 bit word representing 8 ADC
samples is pulled out of the FIFO. These are regrouped to
2 ADC samples for every single clock cycle. These
samples are multiplied by the appropriate sine or cosine
terms to obtain the I-path and Q-path.
Due to the fact that the carrier frequency equals a quarter
of the sample rate Fs, efficient Fs/4 mixing can be
performed. With this well known technique the sine and
cosine components are reduced to {0,1,0,-1} and
{1,0,-1,0} sequences. Multiplication by -1 (and 1) is of
course very simple. Additionally, in real hardware the
multiplications with the zeros are omitted and a factor two
reduction in processing rate is achieved. In our case, the
processing rate at the I- and Q-path output is reduced to
175MByte/s per channel.

3.3. Programmable Range Filters

The following stage consists of two decimating FIR filters,
one for the I-path and one for the Q-path. Matlab
simulations indicate that the required frequency response
for these filters can be achieved using 32 taps for each
filter.
However, due to the Fs/4 mixing scheme in the digital
down converter which discards the ‘zero’ samples, each of
the filters actually uses only half of its taps whilst the other
half would always receive zeros as input. The original 32
tap impulse response is thus reduced to the 16 odd taps
only for the I-path and the 16 even taps for the Q-path.
Therefore, the Fs/4 mixing scheme also saves 50% in
required filter resources.
For lower bandwidths longer impulse responses are needed
which can easily be supported when a polyphase imple -
mentation of the FIR filters is chosen. With a polyphase
filter implementation it is possible to exchange hardware
resource count against speed and vice versa. The
architecture in Figure 3 shows a minimum resource version
of a polyphase decimating filter with an impulse response
length of twelve taps. The original impulse response h(0) ..
h(11) is separated into three phases containing four taps
each. The three different tapsets on the multipliers are
changed sequentially at the high input rate. The
intermediate multiplication results of the input data with
the different coefficients are accumulated and after each
new filter output cycle the accumulated results are shifted
right into the adder chain.

Note that the transposed FIR filter requires an adder chain
instead of an adder tree. The Stratix DSP block contains a
fast adder, however this DSP block is optimized for adder
trees. For this reason the fast adder block in the Stratix
DSP cannot be used and therefore the adder chain needs to
be implemented with LEs.

Z-1 Z -1 Z -1

h(9)

h(10)

h(11)

h(6)

h(7)

h(8)

h(3)

h(4)

h(5)

h(0)

h(1)

h(2)

x[n]

y[3n]

Figure 3 Minimum resource polyphase decimating filter

The two FIR filters need to operate at 175 MHz in order to
achieve the required throughput of 350 MByte/sec in the
data path. The effective processing rate of the FIR filters is
11.2 GOPS/s.
The combination of high speed and programmable
decimation functionality forces the usage of embedded
DSP block multipliers and fast M512 Trimatrix memory
blocks for a final implementation of these FIR filters.
A total of 32 embedded 18x18 multipliers are needed for
implementing both FIR filters. This is equivalent to 64 of
the available 80 embedded 9x9 multipliers on a Stratix
EP1S25.
Each of the 2 x 16 taps requires a dedicated memory block
for coefficient storage. A total of 32 separate M512
memory blocks are used. Each M512 memory block has
storage capability for 32 different coefficients which
allows a maximum decimation factor of 32 for the
polyphase FIR filters.
Finally a programmable scaler is added at the outputs of
both filters. This scaler performs output scaling to 18 bit
words for both output channels. The coefficient memories,
decimation factor and output scale factor are programmed
through the high speed radar bus.

3.4. Presummers

The presummer is a FIR filter where each sample is a
complete radar line. Every radar line is weighted with a
different coefficient and added to the intermediate summed
radar line. The basic elements for the presummer consist of
a large memo ry block and a fast multiplier.

Figure 4 shows the architecture of a single presummer. The
presummer has a data input, data input valid control line,
data output, coefficient input, and three control lines
named first_line , last_line and start_line.

The presummer operates on multiple lines and therefore
some control mechanism is needed to indicate that a) the
first radar line enters the presummer memory or b) that the
presumming of multiple lines has ended and the
accumulated output result can be forwarded to the final
formatter block. This is achieved with the first_line and
last_line control signals.
The start_line signal is high during one clock cycle and
indicates the start of a new radar line. This signal resets a
pixel counter which is normally counting up at the same
rate where input data arrives. The counter points to the
read location of the presummer memory which is
equivalent to the next pixel location within a radar line.
The pixel counter pointer is also delayed to achieve the
write address on the memory. This delay is equal to the
pipeline delay which is introduced by the multiplier and
adder. The states of the switches drawn in Figure 4 belong
to the situation where their control signals are ‘0’.

enable DATA VALID

START LINE

PIXEL
COUNTER

reset

Z-4

rd_addr

wr_addr

M-RAM
8192 x 18 bits

data out

Z-4

wr_en

data in

DATA IN

COEFFICIENT IN

DATA OUT

LAST LINE DV_4

DV_4

Z-1

‘0’

FIRST LINE

18

16

18

18

18

18

13 13

18

18

Figure 4 Single Presummer Architecture

During the first radar line which enters the presummer, the
first_line signal is held active high. Therefore previous
stored data from the memory is not fed to the adder.
Instead, the output of the adder represents the multi-
plication of the input data of the presummer and the
coefficient value for that specific radar line. This result is
then written into the presummer memory.
During the next line, a new coefficient is applied to the
multiplier and new data enters the presummer. The
first_line signal is held inactive now which means that the

adder also accumulates the corresponding radar pixel from
the previous weighted line which was stored into memory.
This process can continue for several adjacent radar lines.
When last_line is active the switch is connected to the
output of the adder and the accumulated results of several
radar lines are send to the output.
A special situation occurs when both the first_line and
last_line signals are held active; in that case the presummer
is effectively bypassed. For the final architecture which
contains four presummers this provides a manner to
control which of the presummers are active during a radar
line.

Both the I-path and the Q-path need 4 presummers which
are independently controlled through the radar bus on a
pulse to pulse timing scheme. With 8 presummers running
at 175 MHz, the total processing rate is 1.4 GMAC/s
whilst memory is accessed at a rate of 6.3 GB/s.
A total of 8 memories and 8 dedicated multipliers are
needed. Each memory must have enough capability to
store a complete radar line which means a maximum size
of 8K x 18 bit samples each. The large memory resource
for the presummers is implemented in the only two
available large M-RAM blocks on the EP1S25, one block
for the presummers in the in -phase path and one block for
the presummers in the quadrature path. Both M-RAM
blocks lie adjacent to each other on the physical die close
to the DSP multiplier blocks which gives a logical
partitioning between the I-path and the Q-path. The M-
RAM blocks are configured as two 8K x 72 bit memories
to support 4 presummer memories for each channel.

4. CONCLUSION

Using a moderately sized FPGA we are able to perform
high speed signal processing using limited room and
power. With the complete data path running at 175 MHz,
we achieve a processing power of 12.6 GOPS/s and a
memory access rate of 6.3 GB/s.
The signal processing functions implemented in hardware
allow us to reduce a 350 MB/s input data stream about
tenfold, which makes further processing in software
manageable.

5. REFERENCES

[1] Fredric J. Harris, “Multirate signal processing,” Prentice
Hall, ISBN 0-13-146511-2, pp. 108–116, Nov. 2004.

[2] Stratix Device Handbook, Volume 1, S5V1-3.2, January
2005.

1

AT91 CAP products Configurable Advanced Processors, Ulf
Samuelsson, Atmel

5th FPGAworld CONFERENCE
2008

Next year´s FPGAworld will be better if you help.

Next year, FPGAworld will probably be in Stockholm (academic and industrial) and Lund

(Industrial).

Are you interested in being one of the Presenters? Please mail lennart.lindh@fpgaworld.com

Are you interested in being one famous Exhibitor? Please mail david@fpgaworld.com

Can you be one of the important Sponsors? Please mail david@fpgaworld.com

Are you interesting to work in the academic program group? Please mail lennart.lindh@fpgaworld.com

Are you interesting to work in the industrial program group? Please mail lennart.lindh@fpgaworld.com

We need publicity chairmen for both industrial and academic!

We need to expand the industrial program group from other countries.
Next year we probably will have two days in Stockholm, so we need one evening sponsor.

………

FPGAworld Thank You!

	Forsta delen.pdf
	Andra_delen_Alla_Akademiska_paper.pdf
	rp301oe6g_cr.pdf
	ADynamicallyReprogrammableCSAGenericPlatformArchitecture_paper.pdf
	Application-of-ASM++-methodology-on-the-design-of-a-DSP-processor_paper.pdf
	The Effect of Dependence GraphsÆ Size and Complexity, in the Implementation of Processor Arrays on FPGA Devices_paper.pdf
	busy_generation.pdf
	thinking_outside_the_flow_creating_customized_backend_tools_for_xilinx_based_designs_paper.pdf

	tredje_delen.pdf
	Fjärde_delen_Industrial_Papers.pdf
	fpgaworld_proceedings-Vikas.pdf
	ATT1847000 _2_.pdf

	Sista_delen.pdf

