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Abstract

Component-Based Development (CBD) of software, with
its successes in enterprise computing, has the promise of be-
ing a good development model due to its cost effectiveness
and potential for achieving high quality of components by
virtue of reuse. However, for systems with dependability
concerns, such as real-time systems, the major challenge in
using CBD will be predicting dependability attributes, or
providing dependability assertions, based on the individual
component properties and architectural aspects. In this pa-
per, we propose a framework which aims to address this
challenge. Specifically, we describe a revised error classi-
fication, error propagation aspects and briefly sketch how
to compose error models within the context of Component-
Based Systems (CBS). The ultimate goal is to perform the
analysis on a given CBS, in order to find bottlenecks in
achieving dependability requirements and to provide guide-
lines on the usage of appropriate error detection and fault
tolerance mechanisms.

1. Introduction

The main advantages of CBD approach are the ability
to manage complexity and the possibility to select the most
suitable component among the ones that provide same func-
tionality. However, the latter can be best achieved only if
the design step incorporates rigorous analysis for this spe-
cific need. This issue becomes all the more relevant in cases
where CBD is used for developing dependable systems,
since one has to analyze multiple extra-functional proper-
ties as well.

Our main goal is development of a framework based
on well-founded theories, while keeping industrial realities
in focus, which will provide meaningful reasoning about
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different dependability attributes in CBS, such as reliabil-
ity, availability, and timeliness based on the characteristics
of the component model, specific properties of individual
components and component connection scheme in a given
design. Since errors are one of the main impediments for
achieving dependability, this paper particularly focuses on
modeling the error behavior of components and error prop-
agation aspects in order to reason about the dependability
attributes of the composed system and its failure modes.

In a recent work, Elmqvist and Nadjm-Tehrani [6] ad-
dressed formal modeling of safety interfaces and provided
compositional reasoning about safety properties of com-
posed systems. Our focus is more on reliability and timing
aspects and on analytical approaches. Grunske and Neu-
mann [8] have proposed an approach to model error behav-
ior of composed systems by using the Failure Propagation
and Transformation Notation (FPTN) for each architectural
element and to construct the composed systems’ Compo-
nent Fault Trees (CFT) from the FPTN models to perform
safety analysis. Rugina [14] proposed a framework where
the Architecture Analysis and Design Language (AADL)
with the features of Error Model Annex is used to create
models of composed systems’ error behavior. Then, these
models are converted to Generalised Stochastic Petri Nets
(GSPNs) or Markov Chains to be analyzed by existing tools.
More recently, Joshi et.al. [10] have proposed an approach
to convert error models, generated using AADL with Error
Model Annex, to Fault Trees to perform further analysis.

A substantial amount of research has been conducted on
reliability modeling of composed systems based on individ-
ual component reliabilities, with a recent focus on architec-
ture based models. Most of these works assume the exis-
tence of known probabilities for error state transitions, and
only a few address the error propagation aspects. On the
other hand, research on dependable systems has been fo-
cussing more on fundamental system level models of errors
and mechanisms for tolerating those error modes, with ar-
guably less interest on how these models are linked to the
reliability prediction models. In our view, the links between
these two research directions are loosely coupled and less



explored. Specifically in CBD, architectural decisions and
specific aspects of the component model will influence the
dependability evaluations. Our aim is to enable end-to-end
linking from system level dependability requirements (nor-
mally specified in terms of diverse qualitative/quantitaive
terms), to models for dependability evaluation and predic-
tions of composed systems. We envision our research to
provide substantial clarity and simplifications needed for
CBD of applications with dependability concerns.

The rest of the paper is organized as follows: in Sec-
tion 2 we state the challenges in system level modeling of
error behavior, and present the principal parts of our pro-
posed framework. Section 3 presents our revised error clas-
sification from a CBS perspective. Section 5 discusses error
propagation and composition aspects and Section 6 presents
conclusions and ongoing research.

2. Outline of the proposed framework

The major challenges in realization of a generalized
framework for dependability evaluation of CBS are:

• diversity of dependability requirements specification

• different dependability attributes require different
analysis techniques and approaches

• limited information on component properties

• lack of techniques for performing analysis with partial
or evolving information

• relating usage profiles of components to target system
contexts

• non-scalability of most of the formal analysis tech-
niques to industrial-size systems

In order to enable modeling and analysis of system-
level dependability behavior, the framework must include
dependability requirements specification, component-level
error modeling, and system-level dependability analysis,
which are briefly mentioned in following subsections.

2.1 Dependability requirements specifica-
tion

At this step, the system designer has to specify the de-
pendability requirements for the target system. Due to the
diversity of the dependability attributes as well as the var-
ied industrial priorities and practices, this step is critical as
it has a considerable impact on the subsequent analysis (in-
cluding the choice of techniques). For instance, the reli-
ability requirements of systems are usually defined in di-
verse terms ranging from qualitative to quantitative ones.

A typical requirement specification can be ’System reliabil-
ity should exceed 0.99999’ or ’System should not have any
timing failures even under a hardware node failure’. The
framework must have means to accurately capture and for-
mally specify a wide variety of such requirements, and the
subsequent analysis techniques need to address these diver-
sity.

While designing a dependable system, the goal is typi-
cally to achieve fail-controllability [2], i.e., to introduce a
certain degree of restrictions on how the system can fail.
The level and type of such restrictions are usually depen-
dent on the application domain, criticality of the system,
and the dependability attributes that are considered. Typical
failure modes include fail-operational, fail-safe, fail-soft,
fail-silent, fail-stop, crash and Byzantine (arbitrary) failures
[2, 11]. Failure mode requirements can effectively be used
for generating subsystem-level requirements in a hierarchi-
cal way and can help in performing localized analysis.

2.2 Component-level error modeling

Typically, this step involves modeling error behavior of
individual software components as well as that of other
system elements, such as component connectors, hardware
nodes, middleware, and communication media. Our plan
is to use probabilistic automata with timing where nodes of
the automata represent error states and edges denote transi-
tion probabilities. An approach based on AADL [14] can
be suitable for this step with proper extensions on the error
modeling aspects. Our integrated development environment
for CBS is being designed to specify and include informa-
tion about component error behaviors with varying levels
of details based on the available specifications. The level
of details in component-level error models, as well as the
dependability requirement specifications of the system, will
decide the choice of analysis technique to be performed.

2.3 System-level dependability analysis

The analysis to be performed at this step depends on the
dependability specifications and the component-level error
models. Our aim is to get the basic structure in place so
that multiple analysis techniques can be easily integrated
to our framework. A challenging issue is how to compose
error models to obtain a system-level error behavior. Er-
ror propagation can occur between two components, be-
tween a component and another system element or between
two system elements. The architecture of the system will
serve as an input to this step, where both impact and crit-
icality analysis will be performed. Ideally, by looking at
the error model of the composed system, one should be
able to observe whether the system can possibly fail in a
mode that is not allowed. If this is the case, the framework



should further enable the identification of the critical paths
in the architecture, and provide guidelines for efficient de-
tection/recovery/correction strategies along with appropri-
ate location for incorporating them, so that the resulting sys-
tem meets the original dependability requirement as speci-
fied by the system designer.

Figure 1 illustrates the skeleton of a methodology for
composing error information to perform a system-level er-
ror analysis. The methodology consists of critical path iden-
tification followed by propagation analysis performed on
each identified path where the type of analysis depends on
the specific failure mode requirement. Though components
are usually considered as black boxes, we assume traceabil-
ity of a critical parameter evaluation through the component
chain. Otherwise, we have to consider all possible scenar-
ios.

3. Error classification - revised

Characteristics of errors presented in this section are
based on a synthesized view of several works [2, 13, 3, 9, 5].
It follows the basic classification of Avizienis et. al. [2]
while extending it into details with the other works most
of which address narrower areas but with finer details. It
also presents various aspects of errors in two categories
based on their influence on the error handling mechanisms.
These categories essentially determine ’which mechanisms’
and ’how much’ are needed for adequate error handling.
The various aspects considered are domain, consistency, de-
tectability, impact, criticality and persistence of errors. The
domain and consistency determine what kind of error han-
dling mechanisms are appropriate while the rest determine
the amount of error handling needed. The former is more
relevant for design of the system and for providing qualita-
tive guarantees, whereas the latter is important for quantita-
tive predictions.

3.1 Domain

In component based systems, outputs generated by com-
ponents can be specified by two domain parameters, viz.,
value and time as in [2, 3, 13]. Our hypothesis is that tolerat-
ing value and timing errors at component-level, requires dif-
ferent approaches and the associated costs are significantly
different. Therefore, separation of value and time domains
will enable using dedicated fault tolerance mechanisms for
each type as well as help in achieving better error coverage
with minimum cost. In this paper, we define the specified
output generated by a component as a tuple based on these
domain parameters:

Specified Output (SO) = < v∗, V, T, ∆1,∆2 >
where the v∗ is the exact desired value, V is the set of

acceptable values, T is the exact desired point in time when

the output should be delivered and [T −∆1, T + ∆2] is the
acceptable time range for the output delivery to be termed
as correct.

The output generated by a component is denoted as:
Generated Output (GO) = < v, t >
where v is the value and the t is the time point when the

output is actually delivered.
The GO is considered to be correct if:
v ∈ V and T −∆1 ≤ t ≤ T + ∆2.

Value errors: The output generated by a component is
erroneous in value domain (ev) if v /∈ V , where V is the
set of acceptable values. We first classify errors in value
domain as subtle (es

v), and coarse (ec
v) based on our knowl-

edge about the set of reasonable values for the output and
the syntax that should be followed as in [3, 13].

The correctness of the value of a component output de-
pends on the expectations of the user for that output. For
instance, when a component produces a CAN message, the
user expects the message identifier to be exactly correct. In
an other case, the value of an output can be an optimal value
as well as some other acceptable distinct values, such as an
output of a meta-heuristic algorithm trying to find a near
optimal allocation of tasks to hardware nodes under sev-
eral constraints. Furthermore, for instance, if the produced
output is a control value, such as a temperature reading,
the value of the output is considered correct as long as it
is within a specified range. As the cost for error handling
mechanisms may differ for each of these cases, we further
classify value errors as follows:

• Inexact value errors (ee
v)

v /∈ V , where V = {v∗}

• Unacceptable distinct value errors (ed
v)

v /∈ V , where V = {v∗, v1, v2, ..., vn}, v∗ is the ideal
value and v1, v2, ..., vn are the other acceptable values

• Inaccurate value errors (ea
v)

v /∈ V , where V = {v∗ − ∆v
1, ..., v

∗ − 1, v∗, v∗ +
1, ..., v∗ +∆v

2} and [v∗−∆v
1, v

∗ +∆v
2] is the range of

acceptable values

A value error is a combination of the above classifications,
i.e., exy

v , where x ∈ {c, s} and y ∈ {a, d, e}.

Timing errors: In [3, 13, 5] and in our classification, er-
rors in time domain are classified into early, late and in-
finitely late(omission) timing errors. There are additional
classes defined in [13] related to timing, namely bounded
omission and permanent omission (crash or permanent halt)
errors, which are covered later in this section.
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Figure 1. System-level error analysis

• early timing errors (ee
t ): t < T −∆1

• late timing errors (el
t): t > T + ∆2

• omission timing errors (eo
t ): t = ∞

Errors both in time and value domain: Component
outputs under this category are erroneous in both value
and time domain simultaneously, i.e., ea,b

v,t , where a ∈
{ce, cd, ca, se, sd, sa} and b ∈ {e, l, o} if:

v /∈ V and (t < T −∆1 or t > T + ∆2)

3.2 Consistency

If a component provides replicas of an output to several
consequent components, consistency issues may arise. In
such a situation, the errors are considered consistent if all
the receivers get identical errors. In [13], multi-user ser-
vice errors are classified into consistent value errors, con-
sistent timing errors, consistent value and timing errors and
semi-consistent value errors. In semi-consistent value er-
rors, some output replicas have unreasonable or out-of-
syntax values, while the rest have identically incorrect val-
ues. In [3], non-homogeneous output replicas are defined
to be erroneous. A non-homogeneous error with respect to
value occurs if the values of received outputs are not close
enough to each other. A non-homogeneous error with re-
spect to time occurs if the timing of received outputs are
not close enough to each other. Closeness is specified by
using threshold values. In our classification, we use both
consistency and homogeneity concepts.

• Consistent errors: Replicas of the output from a com-
ponent are consistently erroneous if they belong to the
same error category, e.g., both have coarse value errors
or late timing errors.

We further classify these errors as being precise or im-
precise:

– Precise errors: The values or generation times
of replicas are consistently erroneous as well as
both are within a precision range or identical.

– Imprecise errors: The values or generation times
of replicas are consistently erroneous, however
either values or generation times (depending on
the error type) are outside the specified precision
range.

• Semi-consistent errors: Replicas of an output are de-
fined as semi-consistently erroneous if all users receive
erroneous outputs while at least one of them belongs to
a different error category than the others.

• Inconsistent errors: Replicas of an output are defined
as inconsistent if there are both correct and incorrect
replicas.

The characteristics presented so far define our error clas-
sification and will be used in both propagation analysis and
composition of component error models. Furthermore the
classification will be used to determine which error han-
dling mechanisms are adequate to control the error behavior
during composition.

The error characteristics presented in the remaining of
this section are related to the error coverage and controlla-
bility, i.e., these are the properties of errors which give hints



about the coverage of existing error handling mechanisms
and how much are needed to achieve the required degree of
dependability.

3.3 Other error characteristics

Detectability: We characterize errors that can occur
within a component in value, time or both value and time
domains as detectable or undetectable, based on the avail-
able error detection mechanisms implemented within that
component, or at the interfaces to other components such as
reasonableness checks and watchdog timers. The complex-
ity and the cost of implementing such mechanisms depend
on the difficulty of detecting them.

Impact: Impact is a measure of an error that can occur
within a component which represents the probability (or in
case of having no probability figures, possibility) that the
error propagates into a system failure visible at system out-
puts, as defined by Hiller et. al. in [9]. If more than one out-
puts exist, the impact of an error is the probability/possiblity
of causing a failure in any of these outputs.

Criticality: Criticality is a measure which indicates the
ability of an error to cause a system failure with catastrophic
consequences, visible at system outputs. Criticality of an
error is directly proportional to the criticality of the system
outputs which they can have impact on:

Criticality of ea,b
v,t on O = CO.Impact of ea,b

v,t on O

where O is the system output and CO is the criticality of
that output. If the system has more than one outputs:

Criticality of ea,b
v,t = 1−

∏
j

(1− Criticality of ea,b
v,t on Oj))

where Oj is the j-th system output and j = 1, 2, . . ..
Note that criticality of errors is different from criticality of
system outputs, where the latter is a measure of the severity
of failure consequences at system output-level.

Persistence: Errors can be classified as transient, inter-
mittent or permanent, based on their persistence. Transient
errors are assumed to occur only once, while permanent
ones never leave the system. Intermittent errors are assumed
to occur during a bounded period or below a bounded fre-
quency. Bounded omission failure is an example of such
errors [13].

4. Error propagation in CBS

Errors in a component based system can occur in soft-
ware components, middleware or hardware platform, and

can propagate up to a system interface causing a system
failure with a probability. This probability is dependent on
the probability of occurrences of errors, the isolation be-
tween different system elements, existing error detection
and handling mechanisms as well as the type of the er-
rors. The research effort is currently increasing for finding
ways to get these probabilities, and to use them appropri-
ately [9, 7, 12, 1, 4].

We define the set of errors E, which includes instantia-
tions of error types discussed in the previous section. We
also define the following subsets of E as follows:

• Ein
i is the set of errors that are propagated into com-

ponent Ci

• Egen
i is the set of errors that are internally generated by

component Ci and propagated out without any changes

• Epass
i is the set of errors propagated into Ci that are

propagated out without any changes

• Emod
i is the is the subset of Ein

i that are transformed
to another error type, masked or corrected

• Etrans
i is the set of errors that were originally belong-

ing to Emod
i or internally generated errors and trans-

formed into the members forming this set

• Eout
i is the set of errors that are propagated from com-

ponent Ci

Ein
i = Emod

i ∪ Epass
i

Eout
i = Egen

i ∪ Epass
i ∪ Etrans

i

Errors can be transformed into Etrans
i by either Ci’s nor-

mal execution or error handling mechanisms. These mech-
anisms can be implemented within components at compo-
nent design stage or at the component interfaces at the archi-
tectural design or integration stages of CBD. Various mech-
anisms for different types of errors and their effects on error
propagation are discussed in the following paragraphs.

Transformation of value errors: The possible ways of
error transformations in value domain are shown in Table 1.

One way to detect coarse value errors is using reason-
ableness checks. Implementing reasonableness checks ne-
cessitates having knowledge about the behavior of the pro-
ducer, for example, a range checking mechanism marks the
temperature reading of a room as erroneous if the value read
is −200◦C based on our knowledge about the reasonable
boundaries for that output. Coding checks are used to de-
tect non-code value errors which is a specific type of coarse
value errors (parity-check is an example for this type of
check). Obviously, if more advanced error detection mecha-
nisms are used which can identify more complex erroneous



Cause Initial error Final error
Error detection ev ev (transformation

in time domain)
Error masking ev no error

Error correction ev no error
Component operation ev no error

es
v ec

v

ec
v es

v

Table 1. Transformations of value errors

behaviors, the coverage of detectable errors are increased.
Detecting subtle value errors is performed by more expen-
sive error detection mechanisms, such as replica checking at
a voter element. Propagation of value errors can be blocked
after detection, by simply not allowing the erroneous output
to be delivered to the next component. In this case a value
error is transformed into an omission timing error.

Certain means allow masking of value errors, such as
N-modular redundancy techniques, while some others can
correct value errors by using, e.g., error correction codes.
Both masking and correction techniques enable continua-
tion of correct functioning upon errors.

Transformations of timing errors: Errors in time do-
main can be transformed according to the following order:

ee
t → no error → el

t → eo
t

Timing checks and watchdog timers can be used to de-
tect timing errors produced by components. Early timing
errors can be corrected by introducing delays. Propaga-
tion of early or late timing errors can be blocked by not
transmitting them, if there are no means to correct them.
In such cases, these errors are transformed into omission
errors. When a value error is detected and omitted as de-
scribed previously, the output is actually transformed from
having no timing error to an omission error.

For errors regarding consistency, similar checks can be
used and inconsistent errors can be transformed into consis-
tent errors in both value and timing domains.

5. Summary and Ongoing Work

In this paper, we have proposed a framework to enable
compositional reasoning of error models. We have surveyed
various error classifications and failure modes in the litera-
ture with the aim of identifying their relations/contrasts as
well as in arriving at an ’all-encompassing compilation of
classifications’. We have investigated the error propagation
in CBS and discussed the effects of error handling mech-
anisms on error propagation. Our ongoing research aims

to a) add formalizations of component error models, error
propagation models and error handling mechanisms, (in-
cluding probabilistic variants of them) b) provide links to
architectural reliability prediction models as well as c) new
theories on dependability reasoning of multi-level composi-
tions.
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