A Metaheuristic Approach for Best Effort Timing Analysis targeting Complex
Legacy Real-Time Systems

Johan Kraft, Yue Lu and Christer Norstrom
School of Innovation, Design and Engineering
Mailardalen University, Visteras, Sweden
{johan. kraft, yue.lu, christer.norstrom} @mdh.se

Abstract

Many companies developing real-time systems today
have today no means for response time analysis, as their
systems violate the assumptions of traditional analytical
methods for response-time analysis and are too complex
for exhaustive analysis using model checking. This pa-
per presents a novel approach for best effort response time
analysis targeting such systems, where probabilistic sim-
ulation is guided by a search algorithm of metaheuristic
type, similar to genetic algorithms. The best effort approach
means that the result is not guaranteed to be the worst-case
response time, but also that the method scales to large in-
dustrial systems. The proposed method should be regarded
as a form of testing, focusing on timing properties. An eval-
uation is presented which indicates that the proposed ap-
proach is significantly more efficient than traditional prob-
abilistic simulation in finding extreme task response times.
The paper also presents a method for finding good parame-
ters for the search algorithm, in order to improve its effi-
ciency.

1 Introduction

Many industrial real-time systems are very complex.
One example is a control system for industrial robots, de-
veloped by ABB Inc. This system contains more than 3
million lines of code distributed on about 100 tasks, which
communicate using message queues and semaphores. For
many tasks in this system, the behavior and resource usage
is highly dependent on events received from other tasks and
on the values of certain state variables. Complexity is in-
creased by the typical legacy issues of such large systems,
which generally have life-cycles of decades during which
many changes are made. Design documentation is often in-
complete or inconsistent with the current implementation.
Moreover, many industrial systems are open systems; they

Anders Wall
ABB Corporate Research
Visteras, Sweden
anders.wall @se.abb.com

may receive stimuli from its environment in a variety of
ways, e.g. from sensors, user interfaces or other connected
computing systems. Systems in the telecom-domain often
have similar characteristics.

The existing analytical methods for response time analy-
sis, described in e.g. [5, 12, 16], use a too simplistic sys-
tem model to allow for analysis of such complex systems.
These analysis methods have several assumptions, which
many complex embedded systems violate. For instance,
tasks may trigger other tasks or change scheduling priority
in response to application-specific events.

Since the software in complex embedded systems repre-
sents a very large investment in developing time, often hun-
dreds or even thousands of person-years, changing systems
of this size to allow for analytical response-time analysis is
a huge effort, which can be hard to motivate economically.

Many companies developing complex embedded sys-
tems have therefore no means for response time analysis.
They are forced to rely on testing to find timing-related
problems, which is far from optimal as timing problems are
often hard to find through testing. Enabling response-time
analysis for complex embedded systems is therefore a prob-
lem of high industrial relevance.

Response time analysis for such systems require analy-
sis methods that use a more detailed system model, which
describes the tasks’ behavior with respect to inter-process
communication, usage of CPU time and usage of logical re-
sources. Due to the complexity of the systems concerned,
such models typically need to contain probabilistic abstrac-
tions, in order to avoid that the model becomes as complex
as the real system. Work on extraction of simulation models
from complex embedded legacy systems is in progress in a
parallel track of our research [4, 14, 15].

The state space of such models are probably too large
for exhaustive analysis, e.g., using model checkers like UP-
PAAL [8] or KRONOS [10]. A model checking expert may
be able to optimize such a model to allow for exhaustive
analysis, but the average engineer does not have that com-

petence. Best-effort analysis through probabilistic discrete
event simulation however scales to industrial-size systems,
as it does not explore the whole state space of the model,
only random “samples” (simulations) are evaluated. It is
therefore not possible to give any guarantees regarding the
properties of the modeled system, e.g. the worst-case re-
sponse time of a task.

Best-effort response time analysis is none-the-less highly
useful for developers of complex embedded systems if it
is regarded as a form of testing, focusing on timing prob-
lems, and used as a complement to traditional testing. A
simulation is executed in a fraction of the time required to
run the corresponding test cases on the real system, due to
the higher level of abstraction in a simulation model, which
means that more scenarios can be tested in the same time.
As an example, the simulation model used for the evaluation
in this paper takes about 2 ms to execute, but corresponds
to a 650 ms test case. Several frameworks exist for proba-
bilistic simulation of real-time system models, for instance
the commercial tool VirtualTime, from Rapita Systems Ltd.
[2] and the academic tool ARTISST [13].

Traditional probabilistic simulation is however not suit-
able for finding extreme values of a task’s response time.
Due to the vast state space of the models concerned, ran-
dom exploration is unlikely to encounter a task response-
time close to the worst case. We therefore propose a novel
approach for best-effort response time analysis targeting ex-
treme values in timing properties. An evaluation is pre-
sented where we compare this approach to traditional prob-
abilistic simulation, with respect to the discovered response
times. The results indicate that the proposed approach
is significantly more efficient in finding extreme response
times for a particular task than traditional probabilistic sim-
ulation.

The proposed approach uses metaheuristic search algo-
rithm, named MABERA, on top of traditional probabilistic
simulation, in order to focus the simulations on parts of the
state-space that are considered more interesting, according
to a heuristic selection method. Metaheuristics are general
high level strategies for iterative approximation of optimiza-
tion problems. The search technique used by MABERA
is related to two commonly used techniques, genetic al-
gorithms and evolution strategies. We do not claim that
MABERA is optimal, many improvements are possible, but
we demonstrate the potential of extending probabilistic sim-
ulation with a metaheuristic search technique for the pur-
pose of best-effort response-time analysis.

The outline of this paper is as follows. Section 2 presents
the proposed algorithm in detail. Section 3 explains the pa-
rameters of the algorithm and Section 4 presents a method
for how to select good values for these parameters. Section
5 presents our implementation of this approach and Section
6 presents the evaluation, including the characteristics of the

simulation model used. Section 7 presents related work and
Section 8 concludes the paper and presents ideas for future
work, including possible improvements of the proposed ap-
proach.

2 The Algorithm

The metaheuristic algorithm proposed, MABERA, is de-
fined as a function, according to Definition 1. This algo-
rithm is presented in detail, using pseudo-code, in Section
2.2.

Definition 1. » = MABERA(M, T, s,p,tt,l) , where r is
the highest observed response time of task T in the simula-
tion model M. Parameter s is the population size, p is the
number of parents, ¢t is the termination threshold and [is
the simulation length. O

The MABERA algorithm is an iterative process, where
each iteration consists of a set of simulations, with length
[, which produce a generation of simulation results. The
population size (p) is number of individual simulations in
a generation. The first generation is produced by running s
independent probabilistic simulations, starting in the initial
state of the simulation model.

Each generation is analyzed in order to identify p num-
ber of parent simulations, according to a specific selection
heuristic described in Section 2.4. Each parent simulation
is used to produce s/p child simulations, which are muta-
tions of the parent simulation. The child simulations will
explore a subset of the model’s state-space, the offspring
state-space, which is reachable from a selected state (time
instant) in the parent simulation: the restart time.

The restart time is randomly selected in a specific time
interval of the parent simulation, as described in Section
2.5. A child simulation follows the same path as the parent
simulation until the restart time, where it randomly selects a
different path in order to explore other parts of the offspring
state-space. The offspring state-space is likely to contain a
response time for 7" higher than the highest response time
for T of the parent simulation, unless the parent simulation
already have discovered the worst-case response time.

To explain the concept of offspring state-space, think of
the state-space of a probabilistic simulation model as a tree,
where each node corresponds to a state of the model. Nodes
with multiple out-going edges represent non-deterministic
selections in the model. An individual simulation is a spe-
cific path through the tree, which ends at the state decided
by the simulation length. The offspring state-space, which
the child simulations are focused on, is the subtree rooted
in the state corresponding to the restart time in of the parent
simulation.

The child simulations constitute a new generation, from
which a new set of parents are selected, and so on. The

algorithm iterates in this manner until a termination condi-
tion is reached, which depends on the termination thresh-
old, tt. The value of ¢t decides how many “unsuccessful”
generations that are allowed before termination, i.e., gen-
erations that failed to discover a response-time higher than
the highest response time of the previous generations. The
termination condition is presented in detail in Section 2.2.

State space o o
)
° ° °
¢ °
(o}
o“o
° O @0 d
® 0500 °
[]
o)
°
°
o Legend
® ° % ® - Generation 1
% .OOO Py O - Generation 2

Figure 1. MABERA - conceptual

The state-space exploration of MABERA is illustrated
by Figure 1, in this case using a 2-dimensional state-space.
In practice, the state-space will have a large number of di-
mensions and more than two iterations will be made. In
this example the population size (s) is 20 and the number of
selected parents (p) is 2.

The heuristic selection of parents, described in Section
2.4, is very important for the efficiency of MABERA. There
is always a risk of not finding the global maximum, i.e., the
worst case response time, as the algorithm might “get stuck”
at a local maximum, where no child simulation can be found
that is more extreme than the parent. To reduce this risk,
the MABERA algorithm selects several parents from each
generation, at least 2. Thereby, if one parent “gets stuck”
at a local maximum, there is still a chance that the other
parents find better results.

The MABERA algorithm is not aware of the detailed
state of a simulation. Instead, MABERA specifies the start-
ing state of a child simulation indirect, using the seed sched-
ule of the parent simulation and the restart time. The seed
schedule specifies the seed-values used for generation of
pseudo-random numbers and thereby the outcomes of all
non-deterministic selections during the simulation. Thus,
for a particular model, the state is completely specified by
a seed schedule and the restart time. The simulation can be
restarted from this state by running a new simulation using
the specified seed schedule from the initial state (time = 0)
to the restart time.

Since the connection between the seeds and the result-
ing simulation is (in practice) unknown in this approach,
it is not feasible to optimize the result by selecting “good”
seeds for the initial generation; we have no way of telling
the “quality” of a seed schedule without running a simula-
tion of it. The first generation of simulations is therefore
generated using “randomly” selected seeds, obtained from
CPU clock with micro second resolution.

2.1 Definitions

The pseudo-code of the MABERA algorithm, presented
in Section 2.2, relies on the following definitions:

Definition 2. A seed schedule is a list of pairs (t, s), where
t and s are integer values. The t value specifies the point in
simulation time when to apply seed s. O

Definition 3. A simulation result is a tuple
(rt,tpe, €t,ter, pC,tpe, S). The elements rt, et, and pc
are integer values corresponding to the highest response
time, execution time and preemption count, respectively, of
the task in focus. The elements t,, tet, and t,. are integer
values specifying the start times of the task instances
corresponding to rt, et and pc. S is the seed schedule used
to produce this simulation result. O

Definition 4. The function r = M AX_RT(R) returns the
highest response time in R, where R is a list of simulation
results. O

The MABERA pseudo-code also uses the functions
SIM, SEL and GEN. Their interface is defined below, but
their semantics require a more detailed presentation. The
details of simulator corresponding to the SIM function is
presented in Section 2.3. The functions SEL and GEN are
presented using pseudo-code in sections 2.4 and 2.5.

Definition 5. R = SIM(M,T,1,l), where R is a list
of simulation results from independent simulations of the
model M, with focus on task T'. The simulations to execute
is specified by parameter I, a list of seed schedules. The i:th
simulation result in R corresponds to the i:th seed schedule
in I. The simulation length is specified by parameterl. [

Definition 6. P = SEL(R,p), where P is a list of simula-
tion results corresponding to the selected parents, a subset
of the list of simulation results specified by R. The par-
ents to select is specified by the parameter p, an integer
value. O

Definition 7. I = GEN(P,s), where I is a list of seed
schedules corresponding to a new generation, based on the
simulation results (parents) given in P. The number of ele-
ments in I, i.e. the population size, is specified by s. O

2.2 Pseudo-code for MABERA

Parameters:

M: the simulation model

T: the task in focus

s: integer value — the population size

p: integer value — number of parent to select

tt: integer value — the termination threshold

1: integer value — the simulation length
Returns:

The highest discovered response time of task T

Algorithm 2.1: MABERA(M, T, s, p, tt,1)

tc <+ tt
r<0
1+ 0
I+ ()
while i < s

I; + (0,0)
do {i<—i+1

while tc > 0

R+ SIM(M,T,1,1)

if MAX_RT(R) > r

do ! then {r + MAX_RT(R)
tc < tt
elsetc < tc—1

I + GEN(SEL(R,p),s)

return ()

2.3 Function SIM

The function SIM represents a discrete event simula-
tor that runs a set of simulations of a particular simulation
model, as specified by a list of seed schedules. The result is
a list of simulation results, where the i:th simulation result
corresponds to the i:th seed schedule.

A global simulation clock, an integer variable, is shared
by all tasks. The model may contain probabilistic selection
of execution time, inter-arrival time or functional behavior.
Such selections are the only source for non-determinism in
the simulation of a model and are decided from pseudo-
random numbers, which in turn are decided by the seed
schedule. Since the simulation is deterministic given a spe-
cific seed schedule, it is possible to restart a simulation from
a specific state, expressed as a seed schedule and a restart
time.

To allow for probabilistic “random” simulation, the ran-
dom number generator is re-initialized using a seed that is
“randomly” selected, by calculating an integer value from
a high-resolution hardware clock with microsecond resolu-
tion. In our implementation, this is performed when 0 is
specified as seed, which is the case for the last seed change

event for each simulation. The selected seed replaces the O
in the seed schedule of the simulation result.

In the context of the MABERA algorithm, the output of
the SIM function is a simulation result, as defined in Section
2.1. However, to allow for detailed inspection of a simula-
tion, our simulator implementation also has the possibility
to produce a detailed trace, targeting the Tracealyzer tool
[1]. Since these traces are quite large, they are not gener-
ated during execution of the MABERA algorithm, but can
be generated by executing the simulator in the trace-mode,
using the specific seed schedule identified by MABERA.

2.4 Function SEL

The SEL function implements the heuristic selection of
parent simulations used to produce the next generation of
simulations. The selection ranks all simulation results in
the current generation with respect to the three properties
rt, et and pc, i.e., the highest response time, execution time
and preemption count, respectively, of the task in focus.

The execution time and preemption count properties are
included in the selection heuristics due to their potential for
impacting response time, e.g., a task instance with very high
execution time but relatively low response-time is also inter-
esting since a different preemption pattern may result in a
higher response time.

The three rank values of each simulation result are mul-
tiplied in order to obtain a composite fitness score for the
simulation result. The best fitness score is 1, which cor-
responds to a simulation result that holds the record for
all three properties. The returned set of simulation results
contains a specified number of simulation results with best
(lowest) fitness scores.

The method of combining the three rank values into a to-
tal fitness score is not claimed to be optimal. It gives equal
importance to the three indicators, response time, execution
time and preemption count. It might be possible to improve
the selection heuristics by adjusting the relative importance
of some of these three indicators. Moreover, the ranking
hides the absolute differences in property values between
candidates with adjacent ranking. Investigation of other se-
lection heuristics is part of future work.

2.4.1 Definitions for function SEL

The pseudo-code defining the SEL function relies on the
following definitions:

Definition 8. The ranking of an element in a list of simu-
lation results is the number of unique values for the specific
property that are equal or larger to the specified element.
The ranking of the simulation result with highest property
value is 1. Simulation results with equal property values
receive the same ranking. O

Definition9. v = RANK_RT(R, 1), where v is the rank-
ing of the i:th simulation result in R, with respect to the
response time property of R. O

Definition 10. v = RANK_FET(R,i) , where v is the
ranking of the i:th simulation result in R, with respect to
the execution time property of R. O

Definition 11. v = RANK_PC(R,i) , where v is the
ranking of the i:th simulation result in R, with respect to
the preemption count property of R. O

Definition 12. P = LOW_N(R, F,n), where P is a list
of n simulation results, a subset of R. The simulation results
included in P is the ones with lowest (i.e. best) correspond-
ing value in the list F'. The i:th element in F is the fitness
score of the i:th simulation result in R. O

2.4.2 Pseudo-code for function SEL

Parameters:

R: alist of simulation results

p: an integer value — the number of parents to select
Returns:

A list of simulation results — the selected parents

Algorithm 2.2: SEL(R, p)

F()
140
while i < |R|
F; + RANK_RT(R,i) * RANK_ET(R,)x*
do { RANK_PC(R, i)
t+i+1
return (LOW_N(R, F,p))

2.5 Function GEN

The GEN function generates a set of child simula-
tions (seed schedules) corresponding to a new generation,
through mutation of a set of parent simulations (simulation
results).

Each resulting seed schedule is based on a single parent
simulation, but have been extended with one additional seed
change event, at the restart time of the parent. When this
seed change event occurs, the simulation leaves the path of
the parent simulation and follows a randomly selected path.
This corresponds to the mutation. The time of this seed
change event, the restart time, is in the normal case ran-
domly selected in a time interval, where the lower bound
is the restart time of the parent and the upper bound is the
SETI time of the parent. The SETI time is the Start time of
the earliest Extreme Task Instance, where extreme refers to
the task instances that have the highest value of at least one

of the following properties: response time, execution time
and preemption count.

There is one special case: if the parent’s SETI time is ear-
lier than its restart time, this indicates that the parent sim-
ulation was less “promising” than the parent’s parent. In
this case, the restart time of the parent is reused in the child
simulation in order to give the parent simulation a second
chance.

2.5.1 Definitions for function GEN

The pseudo-code defining the GEN function relies on the
following definitions:

Definition 13. ¢t = RST(R), where t is the restart time of
R, a simulation result, i.e. the t value of the last (s,t) pair
in the seed schedule of R. O

Definition 14. ¢ = SETI(R), where t is the SETI of the
simulation result R, i.e. the minimum of the property values

tri, ter and tye Of R. O

Definition 15. S = SS(R), where S is the seed schedule
of the simulation result R. O

Definition 16. » = RAND(a,b) , where r is an integer
value in the range a < r < b, randomly selected according
to a uniform probability distribution. O

2.5.2 Pseudo-code for function GEN

Parameters:

P: a list of simulation results

s: an integer value — the population size
Returns:

A list of seed schedules — the next generation

Algorithm 2.3: GEN(P, s)

N+« ()

1+ 0

while i < |P|
7+0

while j < [s/|P]]
if SETI(P;) < RST(P;)
dot + RST(P))

40 4 4o { elset « RAND(RST(P,), SETI(P))
N; + APPEND(SS(P;), (0,t))
jej+1

141+1
return (V)

3 Parameters of MABERA

The proposed algorithm has a set of parameters, briefly
mentioned in Section 2. The parameters of MABERA are:

e [: The length of each individual simulation.

e p: The number of selected parents from each genera-
tion.

e {t: The termination threshold.

e s: The population size.

These parameters impact the thoroughness and runtime
of the MABERA algorithm. To maximize the efficiency of
MABERA, it is important to select good values for these
parameters. This requires that we understand how these pa-
rameters impact the behavior of MABERA, and how they
relate.

3.1 Parameter

The simulation length, [, is the value of the simulation
clock when the simulation should stop. The [parameter nat-
urally impacts the runtime a simulation and should therefore
not be longer than necessary, which depends on the scenario
under analysis, e.g. a specific system test case.

Even though longer simulations may find higher re-
sponse times, as they may contain multiple instances of the
relevant scenario, e.g., a system mode change, the resulting
increase in runtime can instead be used to increase the pop-
ulation size, s or the termination threshold, ¢¢, which also
impacts the runtime.

3.2 Parameter p

The p parameter, i.e., the number of parents to select,
decides how much to trust the selection heuristics. If we
could trust the heuristics to always point out the truly most
“promising” simulation result, i.e., that is closest to the true
worst case scenario, we would only need to select that sin-
gle case for further analysis. However, since the heuristics is
not a perfect oracle, several parents should be selected in or-
der to reduce risk of bad heuristic decisions. During experi-
ments with MABERA we have observed that the important
property is not the absolute number of parents, but rather the
relative amount of parents in relation to the population size,
i.e., the p/s quota. This decides the number child simula-
tions based on each parent. The parameter selection process
in Section 4 is therefore focused on this quota rather than the
absolute number of parents.

3.3 Parameter tt

The tt parameter, the termination threshold, impacts the
number of iterations and thus the runtime of the analy-
sis. The meaning of ¢¢ is, how many “unsuccessful” it-
erations that are allowed before the iterative process of
MABERA should terminate, where “unsuccessful” means
that no higher response times where found, compared to the
previous iterations. The algorithm includes a fermination
counter (tc in the pseudo code) which initially is set to the
value of tt. Unsuccessful iterations will reduce the value of
the termination counter, while a successful iteration resets
tc to the value of ¢t¢. When the termination counter reaches
zero, the iterative process is terminated.

Thus, with a higher ¢t value, the risk that a good parent
is rejected due to “bad luck” is reduced, but the runtime
is increased by the extra iterations. It is important to find a
balanced value for ¢, as the extra runtime required for larger
tt values can instead be used to increase the population size.

3.4 Parameter s

The population size, s, is the number of simulations to
perform in each iteration. The larger population size, the
more thorough analysis. Thus, s should preferably be as
large as possible, but since it impacts the runtime of the
analysis, which in practice is limited, it is necessary to find
an upper bound for s that gives a runtime below (but close
to) the desired runtime. When starting a large, over-night
analysis, one would like to know that the analysis is finished
by the morning, but preferably not much earlier than that in
order to best utilize the available analysis time.

4 Selecting parameter values

In this section, we propose a three-step process for find-
ing good parameters values for a specific simulation model.
The process contains a set of experiments, which are pre-
sented together with examples based on the simulation
model used for the evaluation of MABERA, presented in
Section 6. One should note that the parameter values pre-
sented in this section are not necessarily optimal for other
simulation models. Good values parameter values is be-
lieved to be dependent on the characteristics of the model
under analysis, specifically, the amount and type of proba-
bilistic selections in the model. We have however not yet
investigated this aspect of MABERA.

This process is typically performed one time only, after
the initial development of the simulation model. The re-
sulting parameter values should be documented for reuse
in future analyzes. Large changes of the simulation model
may however require repeating the process.

Good values for the four parameters of MABERA are
determined as presented in the following sections and in that
order.

4.1 Selecting a value for |

The value for the | parameter should be decided first,
as it does not depend on any of the other parameters. The
| parameter is determined from the model, through direct
studies or by studying detailed traces from simulations of
the model. For our model, a suitable [value was found to
be 650 ms. This length included the system’s processing of
the events relevant for the scenario under analysis, as well
as some idle time afterwards, as a margin.

4.2 Selecting p/s quota and ¢t value

There is a dependency between the p/s quota and the tt
value, as a higher ¢t value compensates (to some extent) for
the negative effect of a higher p/s quota, i.e., the decreased
number of child simulations based on each parent. Suitable
values for these parameters can therefore not be selected
individually, but need to be evaluated together, in combina-
tion. This section describes a four-step method for finding a
good combination of p/s quota and ¢¢ value experimentally.

4.2.1 Step 1 - Specify candidates

The first step is to specify the set of candidate values for
p/s and tt. Each combination of these parameter values
will be compared in last step of this method. We can not
give guidelines for the general case regarding good candi-
dates for these parameters, as we have not yet investigated
the impact of the model characteristics on these parame-
ters. We based our candidate selection on our experiences of
MABERA analysis of this particular simulation model. We
limited the ¢t candidates to 2, 3 or 4. A value of 1 implies
no tolerance, and values above 4 do not seem to improve the
performance of MABERA. We have observed best results
with p/s quotas below 0.05, so we selected 0.005, 0.01,
0.02 and 0.04 as candidates for the p/s quota.

4.2.2 Step 2 - Determine replication count

The second step is to decide the number of data points we
need of each MABERA configuration, to ensure the relia-
bility of the parameter evaluations. We do this experimen-
tally by testing different candidate number of replications
using a two-column table, specifying two different parame-
ter combinations. Each cell contains a statistical measure
of r independent runs of MABERA, where r is the candi-
date number of replications. Each row represents a compar-
ison of two different p/s quotas (the columns), with respect

to the results from MABERA. The reliability of the results
can be studied by creating several such rows where each
row is an independent replication of the p/s quota compar-
ison, using the same parameters. If the differences between
columns of the same row are significantly larger than the
differences between rows of the same column, this indicates
that the number of replications gives sufficient reliability.

The most obvious statistical measure to use for this com-
parison is the mean value. However, the mean value is in-
fluenced also by the very lowest values found, which tends
to have a relatively large random noise according to our ex-
periences. Since a typical use of the MABERA analysis
would imply many replications and focus on the highest re-
sult found, we can safely ignore the lowest results in this
comparison. We therefore suggest an alternative statisti-
cal measure, the mean value of the upper quartile of the
MABERA results. We refer to this statistical measure as
Meangs.

The population size can be quite small to speed up this
experiment and the ¢¢ value is not that important in this
case, as it should not impact the reliability significantly, the
important parameter here is the number of replications. It
should however be constant for all columns.

This is however not a sufficient measure of reliability;
we need to verify that the differences indicated by Meangy
correspond to statistically significant differences between
the underlying data sets. If the two data sets of a row are
not significantly different, we need to increase the replica-
tion count in order to avoid inconclusive results later in the
parameter selection process.

An appropriate test for this purpose is the two-sample,
two-tailed Kolmogorov-Smirnov test [17] (hereafter the KS
test). This test is non-parametric and distribution-free, i.e.,
it makes no assumptions on the underlying distribution of
the data, which is necessary in this case as the response-
time data is not normally distributed. The KS test should be
applied on the fourth quartile of the MABERA results, in
line with the motivation behind the M eang4 measure.

Table 1. Test of reliability (Meanga)

p/s=0.01 | p/s=0.04
Comparison 1 | 7886 7932
Comparison 2 | 7889 7940
Comparison 3 | 7901 7956

For our model, 200 replications gave very reliable re-
sults when we compared p/s quotas of 0.01 and 0.04, as
presented in Table 1. Each cell in this table is the Meang,
measure of the 200 MABERA results. The differences be-
tween the two columns (p/s quotas) are much larger than
the differences between rows (replications), and when com-
paring the data sets of each row using the KS test, we found

that the differences between the cells of each row are statis-
tically significant at a confidence level of 99.9 %.

4.2.3 Step 3 - Comparable parameters

The third step of this method is to calculate the cost index
for each combination of candidate values for p/s and tt,
which is a relative measure of the average runtime (cost) of
MABERA. The purpose of this cost index is to allow for a
fair comparison of different parameter combinations, which
may have considerably differences in their average runtime.
If two parameter combinations produces similar results, but
one is considerably faster, it is possible to increase the pop-
ulation size for the faster one and thereby obtain better re-
sults.

The first activity in this step is to run MABERA analysis
of each parameter combination, replicated the number of
times decided in step 2, and collect the average iteration
count for each of the parameter combinations. This can be
used as a measure of the cost (i.e., runtime), as these are
directly proportional. A constant population size should be
used in all cases. This should be in a realistic domain and
should be a multiple of the number of parents implied by
the candidate p/s quotas.

When this experiment was performed on our model, the
difference in average iteration count was significant. As
presented in Table 2, the most time-consuming combina-
tion of p/s and tt (p/s = 0.04, tt = 4) required 88 % more
iterations (CPU time) than the least time-consuming com-
bination (p/s = 0.005, tt = 2).

Table 2. Parameter impact on runtime
tt=2 | tt=3 | tt=4
p/s=0.005 | 6.3 8.4 9.89

p/s=0.010 | 6.64 | 9.16 10.18
p/s=0.020 | 7.41 | 9.43 10.83
p/s =0.040 | 7.27 10.06 | 11.87

The cost index of each candidate parameter combination
is calculated by dividing the average iteration count of the
specific case with the highest average iteration count of all
cases, in our case 11.87. From the cost indices it is possible
to calculate a comparable population size, s., for each can-
didate parameter combination. The comparable population
size is calculated for each candidate parameter combination
in order to give equal runtimes of MABERA, which allows
for a fair comparison of the candidate parameter combina-
tion. The comparable population size of a parameter combi-
nation is calculated by dividing a reference population size
with the cost index of the parameter combination. To main-
tain the relative number of parents it is necessary to cal-
culate a comparable number of parents, p., by multiplying

s. with the desired p/s quota. Since p. and s. should be
integer variables and thus needs to be rounded, the p./s.
quota will not be identical to the desired p/s quota. How-
ever, by selecting the reference population size carefully, it
is possible to reduce these errors. In our case, a reference
population size of 1000 was found to give quite small er-
rors, below 5 %. For other, smaller, reference population
sizes, we observed errors up to 17 %.

Table 3 presents our results from calculating cost index
and corresponding p. and s, for each candidate combina-
tion of ¢¢ and (desired) p/s quota, based on the runtime data
of Table 2. The reference population size was 1000.

Table 3. Comparable parameters

tt | p/s Cost index | s, Pe | Pe/Se

2 | 0.005 | 0.531 1883 | 9 | 0.00478
2 | 0.01 0.560 1787 | 18 | 0.0101
2 10.02 | 0.624 1602 | 32 | 0.0199
2 10.04 | 0.613 1632 | 65 | 0.0398
3 | 0.005 | 0.708 1413 | 7 | 0.00495
3 10.01 0.772 1295 | 13 | 0.0100
31002 |0.79% 1259 | 25 | 0.0199
3 10.04 | 0.847 1180 | 47 | 0.0398
4 1 0.005 | 0.834 1200 | 6 | 0.005

4 10.01 0.858 1166 | 12 | 0.0103
41002 | 0912 1096 | 22 | 0.0201
4 10.04 1 1000 | 40 | 0.04

4.2.4 Step 4 - Comparison

The last step in of this method is to execute MABERA for
each candidate parameter combination, using the compara-
ble population size (s.) and the comparable number of par-
ents (p.) and the number of replications decided in step 2, in
our case 200. The simulation length (1) should be decided as
described by Section 4.1. The best parameter combination
is decided with respect to Meangyg, i.e., the mean value of
the fourth quartile. If the difference between top candidates
is small in comparison to the variance indicated by the ear-
lier reliability test, the KS test should be used to verify the
statistical significance of the difference. If no significant
difference is found, one can either reduce the confidence
level of the KS test or perform a more focused comparison
of the top candidates, by repeating their evaluation using a
higher number of replications.

The results from our experiment is presented in Table 4,
which indicates that the best parameters for this model is
p/s = 0.01 and ¢t = 3. The difference between this para-
meter combination and second best (p/s = 0.005 and #t =
2) was statistically significant according to the KS test, at a
confidence level of 75 %.

Table 4. Parameter impact on Meang,
tt=2 | tt=3 | tt=4
p/s=0.005 | 8194 | 8155 | 8105
p/s=0.01 | 8184 | 8231 | 8179
p/s=0.02 | 8156 | 8172 | 8192
p/s=0.04 | 8193 | 8162 | 8101

4.3 Selecting a value for s

Once suitable values for the other parameters have been
established, the last parameter s, ultimately decides the run-
time of MABERA. If a runtime of several hours is desired, a
trial-and-error approach would be quite time consuming. A
better way of determining an appropriate s value that cor-
responds to a desired (quite long) runtime is through ex-
trapolation of a reference case with a relatively small pop-
ulation size. Given a desired runtime of ¢ and a popula-
tion size of the reference case, s,, with the measured run-
time ¢,., the desired population size s can be extrapolated
through s = (¢/t,) * s,.. Thus, to perform this extrapolation
is simply a matter of selecting the population size for the
reference case, measuring the corresponding runtime and
deciding a desired runtime. The population size for the ref-
erence case can be arbitrarily selected, but should not be
too small, as this might reduce the accuracy of the extrapo-
lation. The reference case should have the p/s quota, ¢t and
I values identified in previous steps. The p/s quota is es-
pecially important here. If changing s without adjusting p,
the changed p/s quota will cause the selected parents to be
more or less “promising”, according to the selection heuris-
tics. Moreover, each parent will be more or less extensively
analyzed. It is likely that these factors impact the number
of iterations. This is also supported by Table 2; the aver-
age iteration count has a positive correlation with the p/s
quota.

S Implementation

The MABERA implementation consists of two tools,
the SimOpti tool and a framework for probabilistic discrete
event simulation, hereafter referred to as the simulator. The
SimOpti tool implements all parts of the MABERA algo-
rithm apart from the SIM function of Section 2.3, SimOpti
uses the simulator for that purpose. The simulator can
also be used for traditional probabilistic simulation, either
through the SimOpti tool or as a stand-alone console appli-
cation.

SimOpti is a .NET application with a GUI that allows
for specifying the parameters for MABERA. SimOpti al-
lows for executing a set of MABERA analyses in one run,

where each run can have different MABERA parameters.
Moreover, it is possible to specify a number of replications
of each MABERA analysis, in order to get several observa-
tions of each case. This facilitates the experiments proposed
in Section 4.

The simulator is an API implemented in C, which cor-
responds to common operating system services, like task
scheduling, inter-process communication and synchroniza-
tion. The services included in the simulator API is based on
the VxWorks real-time operating system [3]. The simulator
does not supports analysis of distributed systems yet, only
single-CPU systems.

A task is implemented as a C function, which may
call other C functions, including standard library routines.
An important API function is execute which advances the
simulation clock. This models a task’s consumption of
CPU time. A task typically contains at least one execute-
statement, but it is possible to emulate environmental stim-
uli using tasks without execute-statements. Such tasks will
not impact the timing of the other tasks in the simulation.
An executable file corresponding to the specified model is
obtained by compiling and linking the model code together
with the simulator APL

The task scheduling, preemptive FPS, is realized using
fibers, i.e., lightweight threads scheduled by the application.
The combination of native code and fibers makes the sim-
ulator very fast. A single simulation of the model used for
our evaluation takes only about 2 milliseconds at a simula-
tion length of 650 ms. Thus, the simulator is more than 300
times faster than “real-time” for this model.

The simulator records scheduling and communication
events and can produce two types of output, either a para-
meter set according to Section 2.1 or a detailed trace of the
simulation which can be inspected in the Tracealyzer tool

[1].
6 Evaluation

In this section, we present an evaluation of MABERA,
using a model of a fictive system. We have not been able
to use a model of a real system due to the difficulties of re-
verse engineering such a model from an existing system. A
semi-automated tool for model extraction is in development
in a parallel research effort [4, 14, 15], but this tool is not
yet ready for evaluation. This simulation model is however
inspired by a real system we have studied, a control system
for industrial robotics developed by ABB Inc., which was
briefly described in the introduction.

6.1 The Simulation Model

The scheduling policy of the modeled fictive system is
the same as for ABB’s robot control system, preemptive

FPS. Just like the ABB system, the tasks of the model vio-
late several assumptions of the existing methods for analyti-
cal response time analysis of FPS-based systems. The tasks
in the model may:

e trigger the execution of other tasks through communi-
cation using message queues,

e be triggered both by timers and events, or a combina-
tion of both,

e have different temporal behaviors depending on the
contents of received messages and the value of shared
state variables,

e be blocked on semaphores, e.g. on sending and receiv-
ing of messages, and

e change the scheduling priority of tasks as a response to
certain events.

The modeled fictive system controls a set of electric mo-
tors based on periodic sensor readings and aperiodic events.
The calculations necessary for a real control system is not
included in this model, the model mainly describes execu-
tion time, communication and other behavior that impact
the temporal behavior. The model contains four periodic
tasks:

Task Priority | Period
PLAN 5 40
CTRL 4or?2 10 or 20
10 3 5
DRIVE 1 2

The priorities follow the model of the VxWorks real-
time operating system [3], used by the robot control system,
where lower priority value is more significant (better). The
CTRL task may change priority and periodicity in response
to two specific events in the model.

The PLAN task is responsible for high level planning of
how to move the physical object connected to the motors.
It periodically sends coordinates to the CTRL task, which
in turn calculates control references for the motors with re-
spect to input from the connected sensors. The resulting
motor control references from CTRL are sent to the DRIVE
task, which controls the motors. The IO task collects sensor
data and aperiodic events from the system’s environment
and periodically sends this information to CTRL. Depend-
ing on the physical state of the controlled system, different
numbers of messages are sent. This is modeled in a proba-
bilistic manner. The number of messages from IO impacts
the execution time, and thereby response time, of the CTRL
task.

r

“ Environment

Figure 2. The model used for evaluation

The model also describes sporadic events generated by
another connected system — a user interface, which is in-
cluded in the model of the environment. These events im-
pact the behavior of the model.

There are three types of events: START, STOP and GET-
STATUS. These events are received by the PLAN task,
which processes them accordingly. The START event will
cause the system to start the motor and control it accord-
ingly. The STOP event causes the system to stop the motor
and go to idle state. The GETSTATUS event causes all tasks
to send a status message to the user interface (modelled as
“environment”). These events impact the execution time of
the tasks. An overview of the model is given in Figure 2.

6.2 Results

The MABERA approach was applied to the described
model using the SimOpti tool. The algorithm parameters
were selected according to the process described in Section
44, ie., p/s=0.01,1=650 and ¢t = 3. The desired run-
time was set to 7 minutes per replication, which allowed for
200 replications of MABERA in 24 hours on a laptop com-
puter from 2003 (Intel Pentium 4 CPU at 2.4 GHz). This
runtime corresponded to a population size of 10000. This
setup resulted in 16.240.000 individual simulations. The
result of the 200 replications of MABERA is presented in
Figure 3, as a histogram of relative frequency of response
times, grouped in steps of 50 ms. The task in focus of the
analysis is CTRL, which is the one with most complex be-
havior.

The highest response time discovered by MABERA was
8349, the Meang4 measure (the mean of the fourth quar-
tile) was 8325 and the mean value was 8045. The highest
peak corresponds to values of 8324. Note that 47 % of the
replications gave this result, so this result would most likely
be detected in only 2 or 3 replications, which only takes
about 20 minutes on the relatively slow computer we used.

The same number of simulations was made using tradi-
tional probabilistic simulation, without the simulation op-
timization achieved through MABERA. The corresponding

result is presented in Figure 4. The results from probabilis-
tic simulation are significantly lower. The highest response
time discovered by probabilistic simulation was 7929, the
Meang4 measure was 7764 and the mean value was 7593.
Moreover, the results from probabilistic simulation follows
a bell-shaped curve, where most results are found close to
the mean value and only 0.5 % of the results are above 7800,
while 47 % of the MABERA results are close to the highest
discovered value, 8349.

05

045

mil_[l,ﬂL _

7000 7200 7800 8000 8200 8400
Response time

Relative frequency
=)
W
)

Figure 3. Results - MABERA

Relative frequency
=
e

0 mEE RN -
TOO0 T200 7400 TEO0 7EO0 BOOO G200 @400
Response time

Figure 4. Results - probabilistic simulation

The highest discovered response time from the
MABERA case is however not the worst case. Other runs
of MABERA have (very rarely) identified response times
around 8450. By changing the IO task to always send the
maximum number of messages to the CTRL task, we have
discovered response times for CTRL above 9000. Such re-
sponse times are possible also without this manipulation of
the model, but are extremely rare. However, for complex
models extracted from real systems, such model manipu-
lations may not be trivial and may threaten the validity of

the model. We can however conclude that MABERA is sig-
nificantly more efficient in finding extreme response times,
compared to traditional probabilistic simulation.

7 Related work

The proposed metaheuristic algorithm, MABERA, im-
plements a form of simulation optimization, i.e., a technique
for finding parameters for a simulation that optimizes the
result of a simulation [18]. In this case, the parameters we
wish to find is the seed schedule of the simulation, which
decides the sequence of pseudo-random numbers, which in
turn determines the non-deterministic selections during the
simulation. The simulation result that is in focus for op-
timization is the highest response time of a particular task
during the simulation.

Metaheuristics are basically high level strategies for it-
erative solutions to optimization problems. Several def-
initions of metaheuristics are quoted in [4]. One defin-
ition is “A metaheuristic is formally defined as an itera-
tive generation process which guides a subordinate heuristic
by combining intelligently different concepts for exploring
and exploiting the search space, learning strategies are used
to structure information in order to find efficiently near-
optimal solutions.” [19].

The MABERA algorithm is closely related to Evolution-
ary Computation (EC), a class of metaheuristics including
for instance Genetic Algorithms [11] and Evolution Strate-
gies [6]. Evolutionary computation is inspired by the prin-
ciple of survival of the fittest in natural evolution. EC algo-
rithms are iterative processes where each iteration produces
a generation of possible solutions, individuals. EC algo-
rithms typically use crossover (or recombination), which
combines properties of two individuals in order to produce
new individuals, and mutation operators, which cause a self-
adaptation of individuals. The driving force is the selec-
tion of individuals based on their fitness, determined by a
fitness-function specific for each problem. Individuals with
a higher fitness have a higher probability to be chosen as
members of the population of the next iteration or as par-
ents for the generation of new individuals [9].

The MABERA approach is similar to the EC approaches,
but does not use crossover. This is a possible improvement
of MABERA, which is discussed in Section 8. MABERA
should be regarded as an instance of an EC approach spe-
cialized for a specific problem, as it specifies the selection
heuristics and method for mutation, i.e., how to generate
child simulations from parent selections.

Evolutionary computation has been proposed for test
case generation, for instance in [7], which proposes the use
of genetic algorithms for test case generation in mutation-
based testing. The MABERA approach can be considered
a form of test case generation, where the “test case” is

parameters for the simulator. The optimized property of
MABERA is however not test coverage, as in [7] but rather
the maximum response time discovered by the simulator.

8 Conclusions and future work

This paper has presented a best-effort approach for re-
sponse time analysis, MABERA, where a metaheuristic al-
gorithm is used as a simulation optimization, on top of tra-
ditional probabilistic simulation. MABERA can not iden-
tify the worst case response time of a task, but can however
identify rare, very high response times of tasks, which are
hard to find using testing or traditional probabilistic simula-
tion. MABERA scales to industrial-size systems and should
be regarded as a complement to traditional testing. We have
demonstrated the potential of this approach through an eval-
uation based on a model of a fictive but realistic system.

The proposed algorithm is not optimal, but we have sev-
eral ideas for improvement in future work. One possible
improvement is to investigate other heuristic methods for
selecting parents. Another improvement is to use crossover,
i.e., to base child simulations on more than one parent sim-
ulation. This is however not trivial since the MABERA
algorithm work on seed schedules and is not aware of the
detailed simulation states. Crossover requires an approach
where the metaheuristic algorithm is aware of the detailed
state of the simulator, i.e., a white-box view of the simula-
tor instead of the black-box view used by MABERA. More-
over, crossover requires that the simulation state can be de-
scribed as a set of independent variables, chromosomes,
where any combination is valid. This is still an open issue.

By using a white-box approach it would also be possi-
ble to avoid repeating previously explored simulations. In
MABERA, two simulations with different parameters may
result in identical simulations, due to the unknown relation-
ship between seed schedules and the resulting scenarios.
The white-box approach would be closer to model check-
ing than traditional probabilistic discrete event simulation,
even though it is still a best-effort approach.

References

[1] Tracealyzer website, http://www.tracealyzer.se.

[2] Rapita systems website, http://www.rapitasystems.com.

[31 Wind River website, http://www.windriver.com.

[4] J. Andersson, J. Huselius, C. Norstrom, and A. Wall. Ex-
tracting simulation models from complex embedded real-
time systems. In Proceedings of the 2006 International
Conference on Software Engineering Advances, ICSEA’06,
Tahiti, French Polynesia, October 2006. IEEE.

[5S1 N. C. Audsley, A. Burns, R. 1. Davis, K. W. Tindell, ,
and A. J. Wellings. Fixed priority pre-emptive schedul-
ing: An historical perspective. Real-Time Systems Journal,
8(2/3):173-198, 1995.

[6]
(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

T. Back, F. Hoffmeister, and H. Schwefel. A survey of evo-
lution strategies, 1991.

B. Baudry, F. Fleurey, J.-M. Jézéquel, and Y. L. Traon.
Genes and bacteria for automatic test cases optimization in
the .net environment. In Proceedings of the 13th Interna-
tional Symposium on Software Reliability Engineering (IS-
SRE’02), page 195. IEEE Computer Society, 2002.

J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and
W. Yi. Uppaal - a tool suite for automatic verification of real-
time systems. In Proceedings of the 4th DIMACS Workshop
on Verification and Control of Hybrid Systems, 1995.

C. Blum and A. Roli. Metaheuristics in combinatorial op-
timization: Overview and conceptual comparison. ACM
Comput. Surv., 35(3):268-308, 2003.

M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and
S. Yovine. Kronos: A Model-Checking Tool for Real-Time
Systems. In A. J. Hu and M. Y. Vardi, editors, Proceedings
of the 10th International Conference on Computer Aided
Verification, Vancouver, Canada, volume 1427, pages 546—
550. Springer-Verlag, 1998.

H. Bremermann. The evolution of intelligence. the nervous
system as a model of its environment. Technical Report 1,
Dept. of Mathematics, University of Washington, Seattle,
WA, 1958.

G. C. Buttazzo. Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications. ISBN: 0-
7923-9994-3. Kluwer Academic Publisher, 1997.

D. Decotigny and I. Puaut. Artisst: An extensible and mod-
ular simulation tool for real-time systems. Technical Report
1423, IRISA, 2001.

J. Huselius and J. Andersson. Model synthesis for real-time
systems. In Proceedings of the 9:th European Conference on
Software Maintenance and Reengineering (CSMR), pages
52-60, Manchester, UK, March 2005.

J. Huselius, J. Andersson, H. Hansson, and S. Punnekkat.
Automatic generation and validation of models of legacy
software. In Proceedings of the 12:th IEEE International
Conference on Embedded and Real-Time Computing Sys-
tems and Applications (RTCSA), pages 342-349, Sydney,
Australia, August 2006.

M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G.
Harbour. A Practitioners Handbook for Real-Time Analysis.
ISBN: 0-7923-9361-9. Kluwer Academic Publishers, 1999.
A. M. Law and W. D. Kelton. Simulation, Modeling and
Analysis. ISBN: 0-07-116537-1. McGraw-Hill, 1993.

S. Olafsson and J. Kim. Simulation optimization: simulation
optimization. In WSC ’02: Proceedings of the 34th confer-
ence on Winter simulation, pages 79-84. Winter Simulation
Conference, 2002.

I. Osman and G. Laporte. Metaheuristics: A bibliograph.
Annals of Operations Research, 63(5):511-623, 1996.

