
Introducing a Plug-In Framework for Real-Time Analysis in Rubus-ICE

Kaj Hänninen1,2, Jukka Mäki-Turja1, Staffan Sandberg2, John Lundbäck2,
Mats Lindberg2, Mikael Nolin1,3, Kurt-Lennart Lundbäck2

1Mälardalen Real-Time Research Centre (MRTC), Västerås, Sweden
2Arcticus Systems, Järfälla, Sweden

3CC Systems, Uppsala, Sweden
kaj.hanninen@mdh.se

Abstract

In this paper, we present the development of a plug-in
framework for integration of real-time analysis methods
in the Rubus Integrated Component Environment (Rubus-
ICE). We also present the implementation, and evalu-
ate the integration, of two state of the art analysis tech-
niques (i) response-time analysis for tasks with offsets and
(ii) shared stack analysis, as plug-ins, in the Rubus-ICE
framework.

The paper shows that the proposed framework is well
suited for integration of complex analysis methods. How-
ever, experience also show that analysis methods are not
easily transferred from an academic environment to indus-
try. The main reason for this, we believe, originates from
differences in requirements and assumptions between in-
dustry and academia.

1. Introduction

Throughout the years, research on analysis and
scheduling has been a significant area within the real-time
community. A large number of analysis techniques have
been proposed for verification of real-time properties in
real-time systems (see for example [2, 4, 6, 11, 12, 14, 18–
25]). However, many of these techniques are state of the
art and non-trivial to understand and even more complex
to integrate in an industrial development context. In indus-
trial development, a number of tools are used for design,
implementation, analysis and verification. These tools are
often manufactured by different vendors. The challenge
then becomes to integrate state of the art analysis tech-
niques in an existing tool-suite with tools from different
vendors. These difficulties are often hard to overcome;
hence many useful analysis techniques never find their
way to practical use.

In recent years, plug-in based tools, e.g., Eclipse [5]
and JDeveloper [10] etc. have gained popularity. The
plug-in concept has several properties that eases the inte-
gration of research results in a development environment,
for example, (i) allowing the extension of the functionality

of a host application by add-on applications (ii) allowing
development of add-on plug-ins in isolation, meaning that
developers do not need to compile the source code of the
plug in with the source code of its host application.

In this paper, we describe the development of a plug-in
framework for integration of real-time analysis methods
in the Rubus Integrated Component Environment (Rubus-
ICE) [1]. We present the Rubus-ICE environment, an IDE
targeted for component based development of real-time
systems. We then describe the implementation of two
novel analysis methods as plug-ins and highlight issues
in integration of the plug-ins in a case study.

The contributions of this paper include a proof of con-
cept implementation where state-of-the-art academic re-
sults can be deployed in an existing commercial industrial
environment. We also report on experiences from trans-
ferring academic result to industrial environments and the
issues that needs to be dealt with in order to successfully
achieve such transfer.

Paper outline. The reminder of this paper is organised
as follows. In Section 2 we present the Rubus develop-
ment environment. Section 3 presents the development
of the plug-in framework for Rubus-ICE. In Section 4 we
presents the development of two novel analysis methods
as plug-ins, for integration in Rubus-ICE. Section Sec-
tion 5 presents a brief case study on the integration of
the analysis plug-ins in the proposed framework. Section
Section 6 summarises our experiences in developing the
framework and introducing novel research results for in-
dustrial use. In Section 7 we conclude the work and out-
line some future work.

2. Rubus

Rubus is a collection of tools for development of em-
bedded real-time systems. Rubus was introduced for in-
dustrial use in 1996. Throughout the years, Rubus has
been used by a number of companies, .e.g., [3,7,13,15,26]
for development of safety critical as well as less critical
vehicular software. Although successfully used by real-
time developers, the tools in the Rubus framework have
by tradition been tightly coupled with each other, making



it difficult to integrate additional analysis methods in the
framework. Over the years, the tools-suite has evolved to
support novel requirements in development. The current
version of the tool-suite, Rubus-ICE, is aimed to be plug-
in based to facilitate integration of third party applications,
such as real-time analysis methods, in the framework.

2.1. Rubus-ICE
Rubus-ICE is an IDE consisting of set of tools for

systems engineering, design and analysis of component-
based real-time systems. The four core elements of
Rubus-ICE are as follows:

• Designer: A graphical design tool for component
based modelling of systems.

• Compiler: A tool that verifies syntax of the model
data created with the designer.

• Builder: A tool that passes design-data in sequence
to any number of user specified plug-in modules.

• Coder: A tool that generates the RTOS specific re-
quirements defined by the user.

To exemplify the steps involved in using Rubus-ICE,
assume that a developer initially creates a component-
based design using Designer. The Designer saves the de-
sign in XML format. The compiler then parses the design
representation and verifies the syntax of the design. The
compiler creates an intermediate representation (ICCM
file) of the design. The ICCM file is then used by the
builder. Figure 1 shows the sequence in which the core
elements of Rubus-ICE are executed.

Plug-ins

Designer

Compiler

Builder

Coder

XML

ICCM

Code

XML

Plug-ins

Designer

Compiler

Builder

Coder

XMLXML

ICCMICCM

CodeCode

XMLXML

Figure 1. Rubus-ICE with a plug-in frame-
work

3. Plug-in framework for Rubus-ICE

In this section we describe the development of a plug-in
framework for Rubus-ICE. The aim of the framework is to
enable integration of novel real-time analysis methods, as
plug-ins, in the IDE. Facilitating integration of third-party
developed analysis methods is of specific interest. Hence,

the framework should allow a plug-in developer to imple-
ment plug-ins in isolation, i.e., without having the Rubus
tool suite at hand, and deliver the plug-ins as binaries or
source code. In the following, we describe the overall re-
quirements on the plug-in framework. We then outline the
requirements that need to be fulfilled for plug-ins to be
included in the framework. We also present the develop-
ment of an application programming interface (API) for
development of Rubus-ICE plug-ins.

3.1. Requirements on the plug-in framework
We start by stating the high level requirements on the

plug-in framework. From a developer and a user perspec-
tive the following requirements should be fulfilled by the
framework:

• A plug-in should be developed as stand alone appli-
cations performing a specific task.

• A user should be able to choose, by configuring a
build, to execute any available plug-in during the
build. Hence, the plug-ins should interface the
Builder tool in Rubus-ICE.

• Plug-ins should execute in sequence, meaning that a
plug-in should execute to completion and terminate
before the next plug-in is executed.

• A user should be able view the progress of a plug-in
and to abort the execution of a plug-in if needed.

Figure 1 shows the sequence in which the core ele-
ments of Rubus-ICE, including plug-ins, are to be exe-
cuted. The requirements on the framework are motivated
by the following. For example, a user might be interested
in analysing only temporal aspects of a design, during
certain phases in development. Later on, the user might
be interested in analysing both temporal and spatial as-
pects. Hence it should be possible to enable and disable
the execution of plug-ins between the builds. The require-
ment that each plug-in should perform one specific task
is required to prevent several plug-ins to perform simi-
lar, possibly time consuming, analysis during build. For
example, if several analysis algorithms require response
times to be calculated as input to the algorithms, then the
response-time analysis should be developed as a separate
plug-in that is executed only once. The fact that plug-ins
are required to execute in sequence facilitate the possi-
bility of several plug-ins to collaborate and solve a larger
task. Moreover, in the research community, several analy-
sis methods are proposed as extensions of previously pub-
lished methods. Requiring the plug-ins to execute in a se-
quence eases the integration of the extensions in the IDE.
User interaction and the possibility to abort the execu-
tion of a plug-in is motivated by the fact that the timing
complexity of an analysis method may increase dramat-
ically if a system is changed between two builds. For
example, analysis methods with exponential complexity



may actually perform well, i.e., deliver results in reason-
ably amount of time, for a certain system. However, for
such algorithms, even small changes in system parame-
ters may dramatically increase the time to obtain results.
In these type of situations, the analysis may be unusable
and aborted by the user. In addition, providing feedback to
users when a plug-in fails or when the results of a plug-in
differs from what is expected, is important.

3.2. Requirements on Rubus-ICE plug-ins
Many analysis methods developed in a research con-

text assume that certain assumptions are fulfilled for the
analysis to be valid. For example, in the research com-
munity, an analysis algorithm is generally developed for
a specific system model, i.e., the results of the analysis is
only valid if the correct system model is used. Thus, for
each plug-in, the supported system model, i.e., properties
and attributes of the supported system, must be specified.

To simplify verification of plug-ins, we require plug-
ins to adhere to the following execution sequence: (i)
reading required system attributes, (ii) executing the func-
tionality of the plug in and (iii) writing results to the ICCM
file. Hence, each plug-in should have a required interface,
an internal behaviour and a provided interface. Accessing
system attributes should be done by service request pro-
vided by an Application Programming Interface.

Each plug-in must have its error handling routines
specified. This includes specifying (i) the type of error
that the plug-in handles, and (ii) how these error are han-
dled. In addition, in an industrial context, interaction with
the user is imperative. Hence, each plug-in needs to de-
fine an interface against the user. This interface should
provide, e.g., information of the progress of the plug-ins.

The fact that a user should be able to choose, by con-
figuring a build, to load and execute any available plug-in
during the build implies that plug-in can be delivered as
Dynamic Link Libraries (DLLs) or as source code (C or
C++ code).

In essence, for each Rubus-ICE plug-in, the following
should specified: (i) the system model supported by the
plug-in, (ii) the type of data required by the plug-in, (iii)
the type of data produced by the plug-in, (iv) the type of
errors handled by the plug-in and (v) user interface.

3.3. Defining an API for plug-ins
To support implementation of plug-ins, we defined an

API (Application Programming Interface). The API spec-
ifies and provides a uniform way to access services that
may be needed by plug-ins. Currently, the API supports
common services for the system model defined by the
Rubus Component Model (RubusCM) [9]. In defining
the API, we considered common assumptions made by
researcher developing analysis algorithms. We also con-
sidered common attributes and properties that need to be
available for analysis algorithms. For instance, the API
provide possibilities to extract transactions, tasks, task at-
tributes, task dependencies, execution policies, execution

schedules, memory-models and so on, from the design. In
addition, the API provide services to append the results,
produced by a plug-in, in the ICCM file. These results
may then be used by subsequent plug-ins.

4. Developing analysis plug-ins

In this section, we describe the development and inte-
gration of two analysis plug-ins for Rubus-ICE. The plug-
ins are intended to be stand alone applications computing:
(i) the worst case response-time (RTA) [16] of tasks and
(ii) the maximum shared stack usage (SSA) [8] of the sys-
tem. Both the RTA and SSA algorithms have originally
been implemented for research purposes, e.g., for evalu-
ating the efficiency of the RTA and SSA algorithms. In a
research context, the algorithms have been part of a larger
application consisting of a task generator, a package for
statistics an a graph generator (see Fig. 2).

Task generator

Analysis algorithm

Statistics package

Graph generator

Task generator

Analysis algorithm

Statistics package

Graph generator

Figure 2. Analysis method in a research
context

As preparation, the functionality belonging to the algo-
rithms were extracted from the application. These func-
tions constitute the core of the RTA and the core of the
SSA plug-ins. According to the requirements specified
in Section 3.2, the system information is accessed by the
provided API. Fig. 3 shows a conceptual structure of the
RTA and SSA plug-ins.

API calls

Analysis algorithm

API calls

API calls

Analysis algorithm

API calls

Figure 3. Analysis method in a plug-in con-
text

The RTA plug-in is based on work by Mäki-Turja and
Nolin [16]. The plug-in will compute the worst case
response-time of tasks. The SSA plug-in is based on work
by Hänninen et al. [8] and will compute an upper bound
on shared system stack. We start by specifying the sys-
tem model for the RTA and SSA plug-ins. We then define
the required and provided interfaces as well as the error
handling and user interface of each plug-in.

The system model in both [16] and [8] is an offset
based model with transactions (a transactions is defined
by a set of tasks with timing dependencies). Each trans-
action consist of one or more tasks. Tasks, in turn, have



common real-time attributes such as worst case execution
times, deadlines, priorities etc. For the RTA and SSA
plug-ins, this implies that we need to extract transactions
and task attributes from the design, execute the analysis
and store the analysis results. Furthermore, from [16] we
know that the RTA interface should support the following:

• The RTA plug-in require, (i) Transactions with spec-
ified Period time (or MINT), (ii) the WCET, Offset
and the Priority of the tasks in each transaction.

• The RTA provides the worst case response time
(WCRT), relative to the activation of the transaction,
of each task.

From [8] we know that the SSA interface should sup-
port the following:

• The SSA plug-in require, (i) Transactions participat-
ing in stack sharing, (ii) the WCRT, Offset, Stack us-
age and the Priority of the tasks in each transaction.

• The SSA provides an upper bound on shared stack
usage of the transactions.

Recall that since plug-ins are executed in succession in
Rubus-ICE, each plug in must specify the data it needs
and the data it produces. This is required for correct ex-
ecution sequence of the plug-ins. For example, the above
shows that the SSA plug in require worst case response-
times for stack analysis, i.e., the RTA plug-in must be
executed before the SSA plug-in, showing that analysis
methods may have intricate dependencies that need to be
considered when establishing the execution sequence of
plug-ins.

When designing the error handling of the plug-ins, we
observed that if something fails during analysis, the plug-
in must be able to handle and isolate the fault. The plug-in
must also inform the host application of the fault. This is
needed to isolate, i.e., to prevent the fault or erroneous
values to propagate. For example, if the system is over-
loaded, i.e., the processor utilisation exceeds 100%, the
response time analysis, being an iterative method, may
never terminate. An even worse scenarios could occur if
a variable overflows, then the RTA might actually termi-
nate producing erroneous results. In a controlled research
setting, this might not be a problem, since task generators
are often configured to produce schedulable task sets as
input to an analysis method. In an industrial setting, this
assumption no longer hold. It is obvious that conditions
such as overloads, variable overflows etc. need to be han-
dled and dealt with properly. We also defined the actions
that should be taken if, during analysis, the response-time
of a task is larger than its deadline, i.e., the task is missing
its deadline. The question then is, should we continue or
abort the analysis. Although, this kind of situation might
not be considered as an error, however, it might affect the
execution of subsequent plug-ins. For instance, the algo-
rithm in the RTA plug-in put no restrictions on response-
times, i.e., response-time may be larger than the deadlines

without affecting the correctness of the analysis. The SSA
algorithm, on the other hand, require that a response-time
is smaller (or equal) than the deadline.

The following list the error handling that need to be
supported by the RTA and SSA plug-ins:

• The values of the read task attributes need to be
checked.

• Overload conditions need to be checked during anal-
ysis.

• Variable overflow need to be checked during analy-
sis.

For both the RTA and SSA plug-in, we define a simple
interface against the user. The interface provides informa-
tion of the progress of the plug-in and a summary of the
analysis results. Fig. 4 shows the complete structure of the
RTA and SSA plug-ins.

Analysis algorithm
User interaction

Error handling

API calls

API calls

Analysis algorithm
User interaction

Error handling

API calls

API calls

Analysis algorithm
User interaction

Error handling

API calls

API calls

Figure 4. Analysis plug-in in an industrial
context

5. Adding plug-ins to Rubus-ICE - A case
study

The plug-in framework, described in Section 3, allows
users of Rubus-ICE to include third part developed plug-
ins to the Rubus-ICE framework. To point out issues that
may occur when adding plug-ins to the framework, we
integrated the RTA and SSA plug-ins in Rubus-ICE. We
believe that the RTA and SSA plug-ins represents typical
analysis proposed by researchers and that the integration
of RTA and SSA plug-ins relieve issues that may be en-
countered when integrating other type of real-time analy-
sis methods in Rubus-ICE.

The prerequisites for the integration was as follows:

• The plug-ins were implemented, adhering to the re-
quirements in Section 3.2, and delivered as source
code to the integrator.

• Both the RTA and SSA plug-ins should be integrated
in Rubus-ICE.

The plug-ins were integrated in Rubus-ICE by a devel-
oper at Arcticus Systems. The developer had no previ-
ous experience of integrating real-time analysis methods,



but was familiar with the overall objective of the plug-
in framework and had been involved in specifying the re-
quirements on the framework (Section 3.1). During in-
tegration, the developer was asked to note all issues that
occurred during the integration. Integrating the plug-ins
include (i) enabling configuration of a build sequence, (ii)
establishing a correct execution sequence of plug-ins, (iii)
verifying the functionality of the plug-ins and (iv) verify-
ing the error handling of each plug-in. Even though the
functionality, including error handling, of the RTA and
SSA plug-ins have been verified in isolation, the integra-
tion in-itself may introduce unexpected errors, hence the
plug-ins need to be verified once integrated. The follow-
ing summarises the experiences of the integration as en-
countered by the integrator:

• Integration of the RTA and SSA plug-ins in Builder,
i.e., enabling configuration of the build sequence to
include the RTA ans SSA plug-ins, proceeded with-
out notable difficulties.

• Establishing the execution sequence of the plug-ins
was eased by the interface specifications included
with the plug-ins.

• Verification of the functionality of each plug-in was
experienced as troublesome. The integrator needed
to consult the creators of the plug-ins to perform the
verification. To verify the functionality of, for ex-
ample, the RTA plug-in, example systems with only
a few tasks were created. The results of the plug-
in then needed to be verified by hand. It is obvious
that larger systems are intractable to analyse by hand.
Hence only small systems, with varying architecture,
were possible to analyse.

• Certain type of error handling was difficult to verify.
For example, verifying that variable overflows was
handled properly was difficult, simply because it was
difficult to create systems, or modify the attributes of
the system, in such way that it resulted in variable
overflows at the same time as the results of the plug-
in seemed valid (see error handling in Section 4).

• When verifying the functionality of the RTA plug-in,
the integrator discovered that the RTA plug-in some-
times produced pessimistic, albeit safe, response-
times. When investigating the reason to this, we dis-
covered that the API service extracting transactions
from the design needed to be modified. The extrac-
tion, although being correct in a sense, failed to ex-
ploit the benefits of the analysis. Specifically, since
the analysis is developed for an offset based system
(offsets represents timing dependencies), these de-
pendencies must be extracted from the design, and
the better the extraction can represent the timing de-
pendencies, the tighter the results from the analysis.

Altogether, the integration of the RTA and SSA plug-in
in Rubus-ICE was experienced as fairly easy. We believe

that the fact that both plug-ins were developed according
to the requirements outlined in Section 3.2, facilitated the
integration. Verification of the functionality was experi-
enced as the most difficult task and the most time consum-
ing activity. A continuous communication between the in-
tegrator and the plug-in developer was needed during the
integration. This clearly demonstrates that the work of a
plug-in developer do not end with the delivery of a plug-
in. Even though the plug-in concept allows integration
of third-party developed software, such as novel analysis
methods, in a larger context, we believe that when trans-
ferring research results for industrial use, especially for
use in development of safety critical systems, collabora-
tion between the integrator and the plug-in developer is
needed throughout the whole process for a successful end
result.

6. Experiences summarised

We initiated this work with the aim of developing a
plug-in framework to enable integration of third-party de-
veloped software. We showed, by integrating two plug-
ins in the framework, that it is possible to add complex
real-time analysis methods to Rubus-ICE. However, we
discovered that a considerable amount of work is needed
to prepare and integrate research results for industrial use.
The main reason for this, we believe, is that the require-
ments and assumptions on analysis methods, in an indus-
trial context, differs from the requirements/assumptions
in a research context. For example, in an industrial con-
text many analysis methods are used in developing safety
critical software, implying that stringent error handling
as well as thorough verification of the functionality is
needed before analysis methods are accepted for indus-
trial use. We also noticed that verification of the plug-
ins, after being integrated in Rubus-ICE, required the help
of the plug-in developer, since analysis methods are often
very hard to understand and too difficult to verify by non-
experts. When defining the user interface of the plug-ins,
we discovered that it was non-trivial to provide construc-
tive feedback to the users (compare to finding 9 in [17]).
For example, since the RTA plug-in can be used to verify
the schedulability of a system, the plug-in may occasion-
ally discover that a system is unschedulable. The ques-
tion then is, should we suggest modifications (e.g. chang-
ing priorities) of the attributes in the system, i.e., guiding
the developer to possibly end up with a schedulable sys-
tem. In many cases there are a large number of possible
reasons why a system is unschedulable, hence suggesting
constructive modifications is non-trivial.

Although we managed to integrate two novel analysis
methods (the RTA and SSA plug-ins) in the framework,
several issues still remain to addressed, for example:

• How can we guarantee that a plug-in only does what
it is meant to do. For example, in the current frame-
work it is possible for a plug-in to overwrite any val-
ues in the ICCM. These value may later be used by



subsequent plug-ins and result in erroneous results.

• How should the output results from a plug-in be
named in the ICCM. For example, if two plug-ins
collaborate to solve a larger task, i.e., a plug-in reads
the results of the other plug-in, then the plug-in read-
ing the values produced by another plug-in need to
have knowledge of the naming, simply to be able to
fetch the values from the ICCM. Currently, there is
no standard notation within the real-time community
on how to name the results produced by an analysis.

• How should we aggregate several plug-ins into a sin-
gle assembly. Consider, for instance, priority assign-
ment (assigning the dispatching priority to tasks). In
real-time engineering, the arduous work of priority
assignment is sometimes performed by hand. With
the assigned priorities at hand, response time anal-
ysis can then be performed to verify schedulability
of a system. In case the system turns out to be un-
schedulable, the priorities are modified and response-
time analysis is performed again. The process is basi-
cally an iteration of priority assignment and schedu-
lability check by response-time analysis. The itera-
tion is often performed until a schedulable system is
found. This could be an automated procedure using
two plug ins in the proposed framework, one that as-
sign priorities and one that performs response-time
analysis (e.g., the RTA plug-in). However, iterating
the execution of these plug-ins, require them to be
grouped in a single plug-in. Currently, there is no
other way of iterating the execution of two or more
plug-ins in the framework.

7. Conclusions and future work

In recent years, plug-in based development tools has
increased in popularity. The plug-in concept enable third-
party developed software to extend the functionality of a
host application by add-ons, giving tool manufacturers a
considerable simple way of adding new features and en-
hancing the value of their products. Developers can also
benefit from the plug-in concept in the sense that plug-
ins can be developed in isolation and do not require deep
knowledge of the host application utilising the plug-in.
These facts make the plug-in concept especially interest-
ing when transferring complex research result for indus-
trial use. Most of the published results from the research
community are far too difficult to understand and even
harder to implement for laymen, implying that many use-
ful results never find their way to practical use.

In this paper we presented the development of a plug-
in framework for Rubus Integrated Component Environ-
ment, an IDE for development of embedded real-time sys-
tems. The plug-in framework aims at facilitating integra-
tion of novel analysis methods in the framework. We pre-
sented the framework and implemented two novel analysis
methods as plug-ins. The plug-ins were integrated in the

framework by a developer without previous expertise in
analysis methods for real-time systems. We showed that
the framework is well suited for integration of complex
analysis methods, however, we also showed that a consid-
erable amount of modifications of analysis methods are
needed to adapt them for industrial use. In addition, a con-
tinuous communication between the researchers develop-
ing the plug-ins and the industrial representative integrat-
ing the plug-ins, was needed throughout the process.

As future work, we plan to extend the application pro-
gramming interface to support other type of system mod-
els. Currently the Rubus system model is the only one
supported. We also intend to define a way to aggregate
several plug-ins into a larger one (an assembly consisting
of several separate plug-ins). We believe that many en-
gineering activities, such as priority assignment, schedule
creation and task allocation etc. could be automated by
aggregated plug-ins.

References

[1] Arcticus systems. Web page,
http://www.arcticus-systems.se.

[2] N. Audsley, A. Burns, K. Tindell, M. Richardson, and
A. Wellings. Applying New Scheduling Theory to Static
Priority Pre-emptive Scheduling. Software Engineering
Journal, 8(5):284–292, 1993.

[3] BAE Systems Hägglunds. Web page, http://www.-
baesystems.com/hagglunds.

[4] A. Burns, K. Tindell, and A. Wellings. Effective Analy-
sis for Engineering Real-Time Fixed Priority Schedulers.
IEEE Transactions on Software Engineering, 22(5):475–
480, May 1995.

[5] Eclipse - an open development platform. Web page,
http://www.eclipse.org.

[6] A. Ermedahl, H. Hansson, and M. Sjödin. Response-
Time Guarantees in ATM Networks. pages 274–284. IEEE
Computer Society Press, December 1997. URL: http://-
www.docs.uu.se/~mic/papers.html.

[7] Haldex traction systems. Web page, http://www.haldex-
traction.com/.

[8] K. Hänninen, J. Mäki-Turja, M. Bohlin, J. Carlsson, and
M. Nolin. Determining maximum stack usage in preemp-
tive shared stack systems. In Proceedings of the 27th IEEE
Real-Time Systems Symposium, Dec 2006.

[9] K. Hänninen, J. Mäki-Turja, M. Nolin, M. Lindberg,
J. Lundbäck, and K.-L. Lundbäck. Supporting engineer-
ing requirements in the rubus component model. Technical
report.

[10] Oracle JDeveloper Overview, An Oracle White Paper.
Web page, http://www.oracle.com/technology/products/-
jdev/collateral/papers/1013/jdev1013_overview.pdf.

[11] M. Joseph and P. Pandya. Finding Response Times in a
Real-Time System. The Computer Journal, 29(5):390–
395, 1986.

[12] D. Katcher, H. Arakawa, and J. Strosnider. Engineering
and analysis of fixed priority schedulers. IEEE Transac-
tions on Software Engineering, 19(9):920–934, September
1993.

[13] Knorr-bremse. Web page,
http://www.knorr-bremse.com.



[14] J. Lehoczky. Fixed priority scheduling of periodic task sets
with arbitrary deadlines. pages 201–212, December 1990.

[15] Mecel. Web page, http://www.mecel.se/.
[16] J. Mäki-Turja and M. Nolin. Tighter response-times for

tasks with offsets. In Real-time and Embedded Computing
Systems and Applications Conference, Göteborg, Sweden,
August 2004. Springer-Verlag.

[17] C. Norström, M. Gustafsson, K. Sandström, J. Mäki-Turja,
and N. E. Bånkestad. Experiences from Introducing State-
of-the-art Real-Time Techniques in the Automotive Indus-
try. In Eigth IEEE International Conference and Workshop
on the Engineering of Computer-Based Systems. IEEE
Computer Society, April 2001.

[18] S. Punnekkat. Schedulability Analysis for Fault Tolerant
Real-time Systems. PhD thesis, University of York, June
1997.

[19] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker,
A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, and
A. K. Mok. Real Time Scheduling Theory: A Historical
Perspective. Real-Time Systems, 28(2/3):101–155, 2004.

[20] L. Sha, R. Rajkumar, and J. Lehoczky. Task scheduling
in distributed real-time systems. In IEEE Industrial Elec-
tronics Conference, 1987.

[21] L. Sha, R. Rajkumar, and J. Lehoczky. Priority Inheri-
tance Protocols: an Approach to Real Time Synchroniza-
tion . IEEE Transactions on Computers, 39(9):1175–1185,
September 1990.

[22] K. Tindell. An extendible approach for analyzing fixed
priority hard real-time tasks. Technical Report YCS189,
Dept. of Computer Science, University of York, England,
1992.

[23] K. Tindell and A. Burns. Fixed Priority Scheduling of
Hard Real-Time Multimedia Disk Traffic. The Computer
Journal, 37(8):691–697, 1994.

[24] K. Tindell and J. Clark. Holistic Schedulability Anal-
ysis For Distributed Hard Real-Time Systems. Tech-
nical Report YCS197, Real-Time Systems Research
Group, Department of Computer Science, University of
York, November 1994. URL ftp://ftp.cs.york.ac.uk/pub/-
realtime/papers/YCS197.ps.Z.

[25] K. Tindell, H. Hansson, and A. Wellings. Analysing Real-
Time Communications: Controller Area Network (CAN).
pages 259–263. IEEE, IEEE Computer Society Press, De-
cember 1994.

[26] Volvo Construction Equipment. Web page,
http://www.volvoce.com.


