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Abstract. The use of component technology in embedded systems beangs n
challenges to this domain. One important issue is how toveegproperties of
the system when we know the properties of the system’s contponaimen
the system is real-time, it is useful to find out how compooemposition will
affect the execution time of tasks made out of componentisisiwork, we use

a statistical design to examine and rank different hardwaegtires with respect
to their impact on the execution time at component compositOur results
indicate, for example, that main memory latency and thekokize of the L2
cache have the greatest effect, while memory bandwidth hdsakteeffect.

1. Introduction

Timing Analysis giving program timing characteristics is of fundamentaportance to
the successful design and execution of real-time systenre K8y timing measure is
the worst-case execution tim@VCET) of a program. A WCET analysis is based on
the assumption that the program is executed in isolatiom fbeginning to end without
interruption, and has the goal of finding an upper bound tombist possible execution
time of the program. Reliable WCET estimates are a key compomkeen designing
and verifying real-time systems, and are needed in haretiralsystems development to
perform, for example, scheduling and schedulability asial{6].

The WCET is often estimated through measurements, and so i€lmtle in
general [16], as it is hard to find the input parameters thasedhe worst execution
time. An alternative isstatic WCET analysjswhich determines a timing bound from
mathematical models of the software and hardware. If theeflsaalre correct, then the
analysis will derive a safe timing bound. For simple ardttitees, the analysis gives a
good result. Nowadays, the trend in embedded systems igtmase complex processor
architectures with more advanced features that enhancevtrall performance of the
processor, providing more functionalities to the user, #msl puts hard limits on static
analysis. The timing effects of pipelines are mostly loeakl can be handled quite well,
as in Engblom [4]. Cache memories [5] and branch predictdrar harder to analyze,
since they yield a global, history-dependent timing model static analyses for them
attempts to estimate their states, as in Bodin and Puautri&{rulction-level parallelism,
often through a superscalar architecture, can be even herdamalyse with respect to
timing properties due to their dynamic instruction schedyl but attempts have been
made, as in Lim et al. [11].

Component Based Embedded Systermis an application of component technology to
embedded systems development, which conceptionally wayrkisviding the system into
smaller, manageable pieces. This has the potential to ludhp lietter and more reliable



software, but to achieve this goal with this methodology iesy difficult task due to
the ever increasing size, complexity and requirements afemosoftware systems. We
can mitigate this if we increase our ability to combine arigipieces of software to pro-
duce new applications (see for example Wiederhold et al),[D®ainly if they can be
selected and assembled in different combinations to gajcific requirements or prop-
erties. Better yet if such properties can be inferred and osexb like the components.
Besides these, there are several advantages of using contpoased development in
the embedded systems domain. Reduction of complexity ahdéaslopment for large
systems are definitely big issues. If the analysis of the @orapts is alseompositional
we can easily derive the analysis of the new system by singotyposing the analysis of
its components. This is particularly useful if the sourcde@s missing or if copyright
issues prevent the reverse-engineering of binary codenflysis. In some cases even an
approximate model for the composition can be quite usefulceexample, in the early
design phase, when the execution environment is not wehefiln component models
in general, the composition is not a well defined entity, aedan the survey by Lau
and Wang [10], and hardly say anything about composing fomat and non-functional
properties (these might be hard to quantify, like qualitgeifvice, and are an active area
of research). Some models even lack important propertidbdéar domain of application,
like the Autosar, that lacks aspects of timing [13]. But a feweptions exist, like the
Koala component model (see van Ommering et al. [14]), whasepossible to infer the
total memory consumption based on the consumption of thgpoosnts.

In order to be able to successfully apply a compositionalysigato component-
based technology, we need to provide, between other things:

e some means of deriving the analysis for a component in isolaby doing this,
the component can be delivered (or sold) with the analyket {5, we cameuse
the analysis as well);

e and some way of composing the analysis in new compositespgaoemnt assem-
blies). The composition can be a simple arithmetic expo&ssi a complex para-
metric expression derived from some abstract analysis.

Reuse of Timing Analysisis one of the goals of applying component technology to
embedded systems development, besides reusing the compdhemselves. Several
types of analysis are of interest in this domain, and for-tiea¢ systems the WCET is
particularly important. In this setting, we have a new peohi to determine how the
composition of components will affect the execution timaislis of course dependent on
how we choose to do the composition. And this is exactly whatwant to investigate in
this study, a simple additive (compositional) model: tdke) as an upperbound worst-
case execution time of a component; andc, two given components and ® ¢, their
composition. Is it the case th&8t(c; ® ¢z) = 7 (c1) + 7 (c2), when we consider the
composition as sequential execution without interru@ioWhat’s the relation between
the two sides of this equation if the equality does not hold®vhs the execution of,
dependent on having executedfirst? Despite the usefulness of this model for some
specific domain, it is clear that it is not valid in general doelependencies that can be
caused by théardware stateor the program structure For example, a component can
have execution paths that are not taken in a particular ceitipo, but have to be taken
into account in an analysis of the individual componentsdpcing an overestimation



for the composite if we just add the timings. It's worth ngtithat this might be good
enough for some soft real-time applications. In the analy& do in this work, we take
®, thecomponent composition operai@s uninterrupted sequential execution (denoted
by semi-colon), and the timing () based on (the results from) simulations. For example,
for components; andc,, we have the equatiof (c;;cs) = 7 (¢1) + 7 (¢z). How do
hardware features and configuration affect the executme of this composite? Some
configurations might have bigger effects than others, anghtterstand to what extent
are these effects, we have done simulations in the SimpSoal chain to see how the
difference in number of cycles is affected. Even though weldiexpect an increase in the
execution time due to the extra code needed to call a semanednother component, itis
of good help to know which features of the architecture tlatse the largest increase. In
this way, we can dedicate greater effort in modelling andowimg such specific features.
For this purpose, we rank a subset of configurations availalthe SimpleScalar tool set
in section 3, where we also describe our analysis and the sétthe simulations. In
section 2, we give an overview of the methodology we follok@dombine the several
configurations available in the tool.

2. Design of the Experiment

Statistical analysis can give more confidence in the resfikxperiments, and can mini-
mize unnecessary errors, mainly when the search space et allowing for a better
estimation. So, rather than following aa hocchoice for the hardware configuration
in the simulator, we uséactional factorial designas described in Yi et al. [17]. In
that work, thePlackett-Burman desigis used to analyse how changes in the architecture
affect the execution time. Plackett and Burman [12] preskeatenethodology for the
construction of very economical designs to do statisticallysis where the number of
runs is a multiple of four, rather than the costly approachuohing all possible combi-
nations of the parameters. In their design, it is assumedthateractions are negligible
when compared with the important main effects. But the edfettwo-parameter inter-
actions can be quantified by using this same design felttover It still cannot identify
interactions between three or more parameters.

For N parameters, the number of runs in this design is the nexgenfe multiple
of four greater thanV (for the foldover, we us@ x K runs). For each run, there are
specific combinations for high and low values of the parameteor the first run, we use
the high value for all the parameters. The combinationsHersiecond run, indicating if
the parameter should use its high or low value, is given bgkel and Burman [12] for
some values of{. For the next runs we do a circular shift of the combinatioimsthe
use of foldover, we just repeat the runs, but exchangingdweaind high values. As an
example, ifN = 7, then the next multiple of 4 i& = 8, and we have the configuration
in Table 1 for each run. This kind of matrices are known asagtimal arrays, and other
methods to derive such matrices are explained in Hedayat[&].aFor each parameter
P;, + means the high value, and - means the low value. This sanfigiaration is used for
N =4, 5 or 6, as the next next multiple of 4 for these vales is st{lh&his case the last
columns of the table are used only to do the shift). With thesyuve can easily infer the
effect each parameter: the + and - in the table indicates iheaild add or subtract the
effect of that parameter in the run. For example, supposestien run results in; units;
then to find the effect of parameté&y, we just add or subtract each valuergfaccording
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T+ =] =]-
F =+ -]+
T =+ ==+ ]+
==+ [+ [+
T ==+ [+ ]+ -
— = F =+
— T+ [+ [+ -[+]-

Table 1. Example of a configuration of runs for the Plackett an d Burman design.
When using foldover, we just repeat the lines and invert the si gns.

to the columnpP,.

3. Simulation Environment and Results

Thetiming model we want to investigate in this work is compositional and tkecaition
time of a composite of components is given by

T(er5e0) =T (1) + T (e2)

Herec, andc, are components that can be executed (or simulated) iniso@hat
Is the idea for components: that they should be tested atilesbefore used), and; c;
Is uninterrupted sequential execution of code from the aomeptsc; andc,. With this
model in mind, we want to investigate how does the severalifea of modern computer
architecture affect its precision. For this, we make sirioifss of the composition and of
the components in isolation, and then an analysis of thereifice between the two sides
of this equation.

The use ofynthetic codein the simulations makes it possible for a simple kind
of components and composition: code without branches anctin call without ar-
guments, with communication through global variables. sTtgpe of code (long strips
without branches, usually numerical code) is simple, antbiemon in programs from
scientific computing, and can also be the result of optinornatlike loop unrolling. The
components are automatically filled with random code actipgn the global integer
variables, making it quite easy to vary the size of the corepts The code consists of
assignment statements of basic integer arithmetic expresso variables, with the ex-
pressions being random and containing at most ten operandgdr numbers and vari-
ables) using the basic arithmetic operators (but no dimisso that we don't risk raising
exceptions by dividing by zero). The simulation of this cedi allow us to rank the ef-
fects of some common architecture features that are indigmefrom the structure of the
program. However, some features are of course dependanfribpgrams with branches
and branch prediction. This kind of synthetic benchmark great help to give us a prior
environment with results from which further investigatiman be done, and of course give
also initial hints about the validity of the additive timimgodel.

We use the SimpleScalar tool set to count the number of cyalitls the ARM
architecture model (in this model, the difference in nunddeycles for some applications



is less then four percent when compared with the Netwinded $2\hardwar8. This
tool chain is described in Burger and Austin [3] and Austinlefld and has been widely
used by the research community in computer architectures tdbl set accept several
parameters that configure the architecture being simuldieanake use of the factorial
design, we need to define the low and high value for the pass& be used in the
simulation, and here we use the same values defined by Yi Et74l. From the more
than fourty parameters available in the simulation tool haree chosen a total af = 37
parameters that can possibly affect our timing model (fameple, we left out floating
point unit configuration, as we are using only integer protgga So we usé& = 40, the
next multiple of four, resulting in eighty runs (with folder). That is, we make eighty
combinations of the input parameters for the SimpleScalareach of them in the tool
set, and record the number of cycles required to executertigggm. For components
15 ... ¢, We want to know the difference betwe@ricy; ...;c,) and>"" ; 7 (¢;). We do
this forn = 2, 3, 4 and 5. Rather than using the raw value (number of cyctased by
the SimpleScalar) in the analysis, we use how big is theréiffee in percentage terms.
For example, ifl’(c1;¢2) = x, T(c1) = a and7 (c2) = b, we user = 100d/e, where
d = la+b—z|ande = maz(a + b,x). The result of the analysis is a table ranking
each of the thirty-seven parameters, from the one that daheebiggest variation in the
number of cycles, to the one that caused the smallest \aniati

The plots in Figure 1 show part of the result of eighty runsdomponents with
nine thousand lines of code (due to lack of space we show oyt runs, at no specific
order). Each of the runs have different combinations of gdve and high values for the
thirty-seven parameters shown in Table 2. Plot A shows thediéference and plot B
the difference in percentage terms. For this specific chsedifferences are less then
1% from the total number of cycles. Using only the plots, ih@ possible to know
which parameter caused the big differences. Using the Bthakd Burman design, we
get the data in Table 2 (last column), ranking each paramaetarding to its influence in
causing differences in the execution time. The ranks aratbeage rank for components
of varying sizes (1K to 9K lines of code). For a discussionha advantages of using
ranks and the choice for the low and high value for the seyanameters in the table, the
reader is referred to Yi et al. [17].

4. Conclusion and Future Work

In this work we investigated how some features of the miaogssor architecture affects
the execution time of a program composed of components a&itdam synthetic code.

The execution time is the number of cycles returned by thep&iBtalar simulator and

we used a statistical analysis (fractional factorial desig choose which combinations of
parameters to use in the simulator. With this design we miike parameters according
to their influence on the execution time, shown in Table 2.éxample, we would expect
the L1 I-cache latency to have a smaller rank, i.e, have mdhaeeince on the execution
time of the composition, but according to our results, itsite The analysis also indicate
that main memory latency and L2 cache block size have theegteaffect, and memory
bandwidth has the least effect. This could have been caysedrlzhoice for components
or due to interactions between three or more parameterbgasxperimental design we
used cannot identify interactions of more than two pararset®/e got similar results

http://www.simplescalar.com/v4test.html



parameter low value | high value | average rank
Mem. latency (first,next) (200,4) (50,1) 4
L2 cache block size 64 256 9.2
L1 I-cache block size 16 64 10.5
Fetch queue entries 4 32 10.5
L2 cache size 262144 8388608 11.4
Execution order in order out order 14.4
ROB entries 8 64 14.6
I-TLB size 32 256 14.7
L1 D-cache repl policy I r 15.4
L2 cache latency 20 5 15.7
I-TLB assoc 2 0 16.7
D-TLB assoc 2 0 17.3
L1 D-cache assoc 1 8 17.7
LSQ entries 2 64 17.8
L2 cache assoc. 1 8 185
L1 I-cache assoc. 1 2 185
L1 I-cache size 4096 131072 19.1
D-TLB page size 4096 4194304 20.5
D-TLB size 32 256 20.5
BTB entries 16 512 21
BTB assoc. 2 0 21.3
Branch predictor 2lev perfect 21.4
L1 I-cache latency 4 1 21.4
int ALUs 1 4 215
I-TLB latency 80 t 30 21.6
L1 D-cache size 4096 131072 21.8
Spec. branch update non-spec| decode stage 22
L1 I-cache repl policy I r 22.5
Int. mult-div units 1 4 22.8
Branch mispred. penalty 10 2 23
RAS entries 4 64 23.8
L1 D-cache latency 4 1 24.3
L2 cache repl policy I r 24.7
I-TLB page size 4096 4194304 25.2
L1 D-cache block size 16 64 25.2
Memory ports 1 4 255
Memory bandwidth 4 32 27.2

rs in the execution
number of lines of

Table 2. Average ranks for the influence of hardware paramete
time (number of cycles) of several functions with different
code. The description of each parameter can be found in [3].
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Figure 1. Example of twenty runs for components with 9K lines of code: differ-
ence in number of cycles (Plot A) and normalized (Plot B), whe re Dif z is result of
the simulation for (x + 1) components.

when we did the analysis for different number of components f@r components of
different sizes (even though the execution time was diffefer the cases, the rank of the
parameters were similar). The statistical analysis givesenconfidence in the results,
and we can focus efforts in modelling the hardware featurasgives the biggest effect,
and so getting a better estimation of WCET in component-baséédded systems.

The analysis also show that for the simulations with two congmts of size 9K
lines of code each, the relative difference is between zedooae percent, meaning that
for some configurations of the hardware, the additive tirmraglel can give safe approxi-
mations for some applications. Our next step in this ingesiton is to adapt an embedded
systems benchmark (for example, Mibench [7]) and use itenftimework of a compo-
nent model (for example, Koala [14] or SaveCCM [9]).
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