
Evaluation of an Additive WCET Model for Software
Components

Marcelo Santos, Bj̈orn Lisper 1

1 School of Innovation, Design and Engineering, Mälardalen University, Sweden.

{marcelo.santos,bjorn.lisper}@mdh.se

Abstract. The use of component technology in embedded systems brings new
challenges to this domain. One important issue is how to derive properties of
the system when we know the properties of the system’s components. When
the system is real-time, it is useful to find out how componentcomposition will
affect the execution time of tasks made out of components. Inthis work, we use
a statistical design to examine and rank different hardware features with respect
to their impact on the execution time at component composition. Our results
indicate, for example, that main memory latency and the block size of the L2
cache have the greatest effect, while memory bandwidth has theleast effect.

1. Introduction

Timing Analysis giving program timing characteristics is of fundamental importance to
the successful design and execution of real-time systems. One key timing measure is
the worst-case execution time(WCET) of a program. A WCET analysis is based on
the assumption that the program is executed in isolation from beginning to end without
interruption, and has the goal of finding an upper bound to theworst possible execution
time of the program. Reliable WCET estimates are a key componentwhen designing
and verifying real-time systems, and are needed in hard real-time systems development to
perform, for example, scheduling and schedulability analysis [6].

The WCET is often estimated through measurements, and so is notreliable in
general [16], as it is hard to find the input parameters that cause the worst execution
time. An alternative isstatic WCET analysis, which determines a timing bound from
mathematical models of the software and hardware. If the models are correct, then the
analysis will derive a safe timing bound. For simple architectures, the analysis gives a
good result. Nowadays, the trend in embedded systems is to use more complex processor
architectures with more advanced features that enhance theoverall performance of the
processor, providing more functionalities to the user, andthis puts hard limits on static
analysis. The timing effects of pipelines are mostly local,and can be handled quite well,
as in Engblom [4]. Cache memories [5] and branch predictors [2] are harder to analyze,
since they yield a global, history-dependent timing model,and static analyses for them
attempts to estimate their states, as in Bodin and Puaut [2]. Instruction-level parallelism,
often through a superscalar architecture, can be even harder to analyse with respect to
timing properties due to their dynamic instruction scheduling, but attempts have been
made, as in Lim et al. [11].

Component Based Embedded Systemsis an application of component technology to
embedded systems development, which conceptionally worksby dividing the system into
smaller, manageable pieces. This has the potential to help build better and more reliable

software, but to achieve this goal with this methodology is avery difficult task due to
the ever increasing size, complexity and requirements of modern software systems. We
can mitigate this if we increase our ability to combine existing pieces of software to pro-
duce new applications (see for example Wiederhold et al. [15]), mainly if they can be
selected and assembled in different combinations to satisfy specific requirements or prop-
erties. Better yet if such properties can be inferred and composed like the components.
Besides these, there are several advantages of using component–based development in
the embedded systems domain. Reduction of complexity and fast development for large
systems are definitely big issues. If the analysis of the components is alsocompositional,
we can easily derive the analysis of the new system by simply composing the analysis of
its components. This is particularly useful if the source code is missing or if copyright
issues prevent the reverse-engineering of binary code for analysis. In some cases even an
approximate model for the composition can be quite useful as, for example, in the early
design phase, when the execution environment is not well defined. In component models
in general, the composition is not a well defined entity, as noted in the survey by Lau
and Wang [10], and hardly say anything about composing functional and non-functional
properties (these might be hard to quantify, like quality ofservice, and are an active area
of research). Some models even lack important properties for their domain of application,
like the Autosar, that lacks aspects of timing [13]. But a few exceptions exist, like the
Koala component model (see van Ommering et al. [14]), where it is possible to infer the
total memory consumption based on the consumption of the components.

In order to be able to successfully apply a compositional analysis to component-
based technology, we need to provide, between other things:

• some means of deriving the analysis for a component in isolation; by doing this,
the component can be delivered (or sold) with the analysis (that is, we canreuse
the analysis as well);

• and some way of composing the analysis in new composites (component assem-
blies). The composition can be a simple arithmetic expression or a complex para-
metric expression derived from some abstract analysis.

Reuse of Timing Analysisis one of the goals of applying component technology to
embedded systems development, besides reusing the components themselves. Several
types of analysis are of interest in this domain, and for real-time systems the WCET is
particularly important. In this setting, we have a new problem: to determine how the
composition of components will affect the execution time. This is of course dependent on
how we choose to do the composition. And this is exactly what we want to investigate in
this study, a simple additive (compositional) model: takeT (c) as an upperbound worst-
case execution time of a componentc, c1 andc2 two given components andc1 ⊗ c2 their
composition. Is it the case thatT (c1 ⊗ c2) = T (c1) + T (c2), when we consider the
composition as sequential execution without interruption? What’s the relation between
the two sides of this equation if the equality does not hold? How is the execution ofc2

dependent on having executedc1 first? Despite the usefulness of this model for some
specific domain, it is clear that it is not valid in general dueto dependencies that can be
caused by thehardware stateor theprogram structure. For example, a component can
have execution paths that are not taken in a particular composition, but have to be taken
into account in an analysis of the individual components, producing an overestimation

for the composite if we just add the timings. It’s worth noting that this might be good
enough for some soft real-time applications. In the analysis we do in this work, we take
⊗, thecomponent composition operator, as uninterrupted sequential execution (denoted
by semi-colon), and the timingT () based on (the results from) simulations. For example,
for componentsc1 andc2, we have the equationT (c1; c2) = T (c1) + T (c2). How do
hardware features and configuration affect the execution time of this composite? Some
configurations might have bigger effects than others, and tounderstand to what extent
are these effects, we have done simulations in the SimpleScalar tool chain to see how the
difference in number of cycles is affected. Even though we would expect an increase in the
execution time due to the extra code needed to call a service from another component, it is
of good help to know which features of the architecture that cause the largest increase. In
this way, we can dedicate greater effort in modelling and improving such specific features.
For this purpose, we rank a subset of configurations available in the SimpleScalar tool set
in section 3, where we also describe our analysis and the setup of the simulations. In
section 2, we give an overview of the methodology we followedto combine the several
configurations available in the tool.

2. Design of the Experiment

Statistical analysis can give more confidence in the resultsof experiments, and can mini-
mize unnecessary errors, mainly when the search space is toolarge, allowing for a better
estimation. So, rather than following anad hocchoice for the hardware configuration
in the simulator, we usefractional factorial design, as described in Yi et al. [17]. In
that work, thePlackett-Burman designis used to analyse how changes in the architecture
affect the execution time. Plackett and Burman [12] presented a methodology for the
construction of very economical designs to do statistical analysis where the number of
runs is a multiple of four, rather than the costly approach ofrunning all possible combi-
nations of the parameters. In their design, it is assumed that all interactions are negligible
when compared with the important main effects. But the effects of two-parameter inter-
actions can be quantified by using this same design withfoldover. It still cannot identify
interactions between three or more parameters.

ForN parameters, the number of runs in this design is the next integerK multiple
of four greater thanN (for the foldover, we use2 ∗ K runs). For each run, there are
specific combinations for high and low values of the parameters. For the first run, we use
the high value for all the parameters. The combinations for the second run, indicating if
the parameter should use its high or low value, is given by Plackett and Burman [12] for
some values ofK. For the next runs we do a circular shift of the combinations.In the
use of foldover, we just repeat the runs, but exchanging the low and high values. As an
example, ifN = 7, then the next multiple of 4 isK = 8, and we have the configuration
in Table 1 for each run. This kind of matrices are known as orthogonal arrays, and other
methods to derive such matrices are explained in Hedayat et al. [8]. For each parameter
Pi, + means the high value, and - means the low value. This same configuration is used for
N = 4, 5 or 6, as the next next multiple of 4 for these vales is still 8(in this case the last
columns of the table are used only to do the shift). With the runs, we can easily infer the
effect each parameter: the + and - in the table indicates if weshould add or subtract the
effect of that parameter in the run. For example, suppose that each run results inrj units;
then to find the effect of parameterPi, we just add or subtract each value ofrj according

P1 P2 P3 P4 P5 P6 P7

− − − − − − −
+ + + − + − −
+ + − + − − +
+ − + − − + +
− + − − + + +
+ − − + + + −
− − + + + − +
− + + + − + −

Table 1. Example of a configuration of runs for the Plackett an d Burman design.
When using foldover, we just repeat the lines and invert the si gns.

to the columnPi.

3. Simulation Environment and Results
Thetiming model we want to investigate in this work is compositional and the execution
time of a composite of components is given by

T (c1; c2) = T (c1) + T (c2)

Herec1 andc2 are components that can be executed (or simulated) in isolation (that
is the idea for components: that they should be tested and certified before used), andc1; c2

is uninterrupted sequential execution of code from the componentsc1 andc2. With this
model in mind, we want to investigate how does the several features of modern computer
architecture affect its precision. For this, we make simulations of the composition and of
the components in isolation, and then an analysis of the difference between the two sides
of this equation.

The use ofsynthetic codein the simulations makes it possible for a simple kind
of components and composition: code without branches and function call without ar-
guments, with communication through global variables. This type of code (long strips
without branches, usually numerical code) is simple, and iscommon in programs from
scientific computing, and can also be the result of optimizations like loop unrolling. The
components are automatically filled with random code actingupon the global integer
variables, making it quite easy to vary the size of the components. The code consists of
assignment statements of basic integer arithmetic expressions to variables, with the ex-
pressions being random and containing at most ten operands (integer numbers and vari-
ables) using the basic arithmetic operators (but no division, so that we don’t risk raising
exceptions by dividing by zero). The simulation of this codewill allow us to rank the ef-
fects of some common architecture features that are independent from the structure of the
program. However, some features are of course dependant, like programs with branches
and branch prediction. This kind of synthetic benchmark is of great help to give us a prior
environment with results from which further investigationcan be done, and of course give
also initial hints about the validity of the additive timingmodel.

We use the SimpleScalar tool set to count the number of cycles, with the ARM
architecture model (in this model, the difference in numberof cycles for some applications

is less then four percent when compared with the Netwinder SA-110 hardware1). This
tool chain is described in Burger and Austin [3] and Austin et al. [1] and has been widely
used by the research community in computer architecture. The tool set accept several
parameters that configure the architecture being simulated. To make use of the factorial
design, we need to define the low and high value for the parameters to be used in the
simulation, and here we use the same values defined by Yi et al.[17]. From the more
than fourty parameters available in the simulation tool, wehave chosen a total ofN = 37
parameters that can possibly affect our timing model (for example, we left out floating
point unit configuration, as we are using only integer programs). So we useK = 40, the
next multiple of four, resulting in eighty runs (with foldover). That is, we make eighty
combinations of the input parameters for the SimpleScalar,run each of them in the tool
set, and record the number of cycles required to execute the program. For components
c1; ...; cn, we want to know the difference betweenT (c1; ...; cn) and

∑n
i=1

T (ci). We do
this forn = 2, 3, 4 and 5. Rather than using the raw value (number of cycles returned by
the SimpleScalar) in the analysis, we use how big is the difference in percentage terms.
For example, ifT (c1; c2) = x, T (c1) = a andT (c2) = b, we user = 100d/e, where
d = |a + b − x| ande = max(a + b, x). The result of the analysis is a table ranking
each of the thirty-seven parameters, from the one that caused the biggest variation in the
number of cycles, to the one that caused the smallest variation.

The plots in Figure 1 show part of the result of eighty runs forcomponents with
nine thousand lines of code (due to lack of space we show only twenty runs, at no specific
order). Each of the runs have different combinations of the low and high values for the
thirty-seven parameters shown in Table 2. Plot A shows the raw difference and plot B
the difference in percentage terms. For this specific case, the differences are less then
1% from the total number of cycles. Using only the plots, it isnot possible to know
which parameter caused the big differences. Using the Plackett and Burman design, we
get the data in Table 2 (last column), ranking each parameteraccording to its influence in
causing differences in the execution time. The ranks are theaverage rank for components
of varying sizes (1K to 9K lines of code). For a discussion of the advantages of using
ranks and the choice for the low and high value for the severalparameters in the table, the
reader is referred to Yi et al. [17].

4. Conclusion and Future Work
In this work we investigated how some features of the microprocessor architecture affects
the execution time of a program composed of components with random synthetic code.
The execution time is the number of cycles returned by the SimpleScalar simulator and
we used a statistical analysis (fractional factorial design) to choose which combinations of
parameters to use in the simulator. With this design we ranked the parameters according
to their influence on the execution time, shown in Table 2. Forexample, we would expect
the L1 I-cache latency to have a smaller rank, i.e, have more influence on the execution
time of the composition, but according to our results, it doesn’t. The analysis also indicate
that main memory latency and L2 cache block size have the greatest effect, and memory
bandwidth has the least effect. This could have been caused by our choice for components
or due to interactions between three or more parameters, as the experimental design we
used cannot identify interactions of more than two parameters. We got similar results

1http://www.simplescalar.com/v4test.html

parameter low value high value average rank
Mem. latency (first,next) (200,4) (50,1) 4
L2 cache block size 64 256 9.2
L1 I-cache block size 16 64 10.5
Fetch queue entries 4 32 10.5
L2 cache size 262144 8388608 11.4
Execution order in order out order 14.4
ROB entries 8 64 14.6
I-TLB size 32 256 14.7
L1 D-cache repl policy l r 15.4
L2 cache latency 20 5 15.7
I-TLB assoc 2 0 16.7
D-TLB assoc 2 0 17.3
L1 D-cache assoc 1 8 17.7
LSQ entries 2 64 17.8
L2 cache assoc. 1 8 18.5
L1 I-cache assoc. 1 2 18.5
L1 I-cache size 4096 131072 19.1
D-TLB page size 4096 4194304 20.5
D-TLB size 32 256 20.5
BTB entries 16 512 21
BTB assoc. 2 0 21.3
Branch predictor 2lev perfect 21.4
L1 I-cache latency 4 1 21.4
int ALUs 1 4 21.5
I-TLB latency 80 t 30 21.6
L1 D-cache size 4096 131072 21.8
Spec. branch update non-spec decode stage 22
L1 I-cache repl policy l r 22.5
Int. mult-div units 1 4 22.8
Branch mispred. penalty 10 2 23
RAS entries 4 64 23.8
L1 D-cache latency 4 1 24.3
L2 cache repl policy l r 24.7
I-TLB page size 4096 4194304 25.2
L1 D-cache block size 16 64 25.2
Memory ports 1 4 25.5
Memory bandwidth 4 32 27.2

Table 2. Average ranks for the influence of hardware paramete rs in the execution
time (number of cycles) of several functions with different number of lines of
code. The description of each parameter can be found in [3].

Figure 1. Example of twenty runs for components with 9K lines of code: differ-
ence in number of cycles (Plot A) and normalized (Plot B), whe re Dif x is result of
the simulation for (x + 1) components.

when we did the analysis for different number of components and for components of
different sizes (even though the execution time was different for the cases, the rank of the
parameters were similar). The statistical analysis gives more confidence in the results,
and we can focus efforts in modelling the hardware features that gives the biggest effect,
and so getting a better estimation of WCET in component–based embedded systems.

The analysis also show that for the simulations with two components of size 9K
lines of code each, the relative difference is between zero and one percent, meaning that
for some configurations of the hardware, the additive timingmodel can give safe approxi-
mations for some applications. Our next step in this investigation is to adapt an embedded
systems benchmark (for example, Mibench [7]) and use it in the framework of a compo-
nent model (for example, Koala [14] or SaveCCM [9]).

5. Acknowledgements

This work was supported by SSF – the Swedish Foundation for Strategic Research –
through the PROGRESS Research Centre for Predictable EmbeddedSoftware Systems
Travel support was provided by the ARTIST2 European Networkof Excellence. Special
thanks to Jan Gustafsson and Andreas Ermedahl for their helpful comments.

References

[1] T. Austin, E. Larson, and D. Ernst. Simplescalar: An infrastructure for computer
system modeling.Computer, 35(2):59–67, 2002. ISSN 0018-9162.

[2] F. Bodin and I. Puaut. A WCET-oriented static branch prediction scheme for
real time systems. InProc. 17th Euromicro Conference of Real-Time Systems,
(ECRTS’05), pages 33–40, July 2005.

[3] D. Burger and T. M. Austin. The simplescalar tool set, version 2.0. SIGARCH
Comput. Archit. News, 25(3), 1997.

[4] J. Engblom. Processor Pipelines and Static Worst-Case Execution Time Analysis.
PhD thesis, Uppsala University, Dept. of Information Technology, Uppsala, Sweden,
Apr. 2002. ISBN 91-554-5228-0.

[5] C. Ferdinand and R. Wilhelm. Efficient and precise cache behavior prediction for
real-time systems.Real-Time Systems, 17:131–181, 1999.

[6] J. Ganssle. Really real-time systems. InProc. of the Embedded Systems Conference,
Silicon Valley 2006 (ESCSV 2006), Apr. 2006.

[7] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
Mibench: A free, commercially representative embedded benchmark suite. InWWC
’01: Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE In-
ternational Workshop, pages 3–14, Washington, DC, USA, 2001. IEEE Computer
Society. ISBN 0-7803-7315-4. doi: http://dx.doi.org/10.1109/WWC.2001.15.

[8] A. S. Hedayat, N. J. A. Sloane, and J. Stufken.Orthogonal Arrays: Theory and
Applications. Springer-Verlag, 1999.

[9] M. Åkerholm, J. Carlson, J. H̊akansson, H. Hansson, M. Nolin, T. Nolte, and P. Pet-
tersson. The saveccm language reference manual. TechnicalReport MDH-MRTC-
207, Mälardalen University, 2007.

[10] K.-K. Lau and S. Wang. A survey of software component models. Technical Report
CSPP-30, University of Manchester, 2006.

[11] S. Lim, J. Han, J. Kim, and S. L. Min. A worst case timing analysis technique
for multiple-issue machines. InProc. 19th IEEE Real-Time Systems Symposium
(RTSS’98), Dec. 1998.

[12] R. L. Plackett and J. P. Burman. The design of optimum multifactorial experiments.
In Biometrika, volume 34, pages 255–272, 1946.

[13] K. Richter. The autosar timing model – status and challenges. In2nd International
Symposium on Leveraging Applications of Formal Methods, Verification and Vali-
dation, 2006.

[14] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The koala component
model for consumer electronics software.Computer, 2000.

[15] G. Wiederhold, P. Wegner, and S. Ceri. Toward megaprogramming.Commun. ACM,
35:89–99, Nov 1992.

[16] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, F. Muller, I. Puaut, P. Puschner, J. Staschulat,
and P. Stenström. The worst-case execution time problem — overview of methods
and survey of tools. (ISSN 1404-3041 ISRN MDH-MRTC-209/2007-1-SE), March
2007.

[17] J. J. Yi, D. J. Lilja, and D. M. Hawkins. Improving computer architecture simulation
methodology by adding statistical rigor.IEEE Trans. Comput., 54(11):1360–1373,
2005. ISSN 0018-9340.

