
Achieving Industrial Strength Timing Predictions
of Embedded System Behavior

Mikael Nolin, Jukka Mäki-Turja and Kaj Hänninen
Mälardalen Real-Time Research Centre (MRTC), Box 883, Västerås, Sweden

Abstract— This paper discusses why the extensive scientific
results on predicting embedded systems temporal behavior never,
or very seldom, reaches the industrial community. We also point
out the main issues that the scientific community should focus on
in order to facilitate industrial-strength timing predictions.

The core problem is that the scientific community uses too sim-
plistic or research oriented timing models. The models stemming
from academy do not fit well with the structure of real systems.
Thus, extracting a timing model that is amenable for analysis may
prove prohibitively difficult. And even if a model can be extracted,
it may not capture real system scenarios well. Thus, resultsfrom
analyzing these models do not reflect real system behavior, leading
to unnecessary pessimistic timing predictions.

In recent years, response-time analysis has matured to a degree
where models can express complex system behaviors and analysis
results are relatively tight with respect to real system behavior.
However, in order to fully reach its potential, and be accepted by
industry, several improvements of the technique are needed. First,
behaviors that are commonly used in industrial systems (such as
message passing and client/server-patterns) must be adequately
captured by the timing models. Second, unnecessary pessimism
in the analysis must be removed (i.e. the analysis results must
correlate well with actual system behavior by providing minimal
overestimation). Third, correlated behaviors of different parts
of the systems must be accounted for (i.e. not all tasks will
experience the worst case execution times at the same time).

Keywords schedulability, response time, fixed priority sys-
tems

1. Introduction
In this paper we discuss the flagrant discrepancy between

academic results and industrial needs within the area of
schedulability analysis of real-time systems. The importance
of schedulability analysis of real-time systems is quicklyin-
creasing. Today, almost all electrical products of some com-
plexity are controlled by an embedded computing system.
Often, these products need to interact with an environment
in a timely manner, i.e. the computer system is a real-time
system. Furthermore, a large class of embedded real-time
systems are also safety critical, meaning that a system fail-
ure can have potentially catastrophic consequences. These
safety-critical real-time systems are found, for instance,
in vehicles, robotics, medical appliances, and production
facilities.

For safety-critical computer systems, the society is in-
creasing the pressure on system providers to provide ev-
idence that the system if safe. This paper will not dwell
into the many important issues of demonstrating safety of
a computer controlled systems, e.g. as mandated by the

safety standard IEC 61508 [8]. However, one important
activity in order to establish the safety of a real-time system
is to provide evidence that actions will be provided in a
timely manner (e.g. each actions will be taken at a time
that is appropriate to the environment of the system). For
systems consisting of multiple concurrent/semi-concurrent
operating-system tasks the number of possible execution
scenarios for each actions is daunting [26], and effectively
prohibits testing as a means for verifying the correct timing
of actions.

To complement testing, and to provide stronger evidence
for correct timing, academia has developed techniques to
make a priori analysis to verify that each action in a
system will be performed before its deadline. These, so
called, schedulability analysis techniques have been con-
tinuously developed over almost four decades [23]. So,
from an academic point of view, schedulability analysis can
be considered as a mature technology. However, studying
the industrial penetration of schedulability gives a very
disappointing image. It is very difficult to find reports of
successful use of schedulability analysis in real industrial
systems. In fact, it is probably easier to find documents of
negative results of trying to use schedulability analysis in
industrial systems [15], [32].

In this paper we argue that there are two main reasons
for the industrial failure of schedulability analysis:

1) Lack of capabilities in the models used by schedula-
bility analysis techniques, and

2) lack of precision in analysis techniques.
One candidate technique that could resolve the above

obstacles is schedulability analysis based on timed-automata
models [1]. However, for systems of non-trivial size the
analysis time, and required memory resources, is over-
whelmingly large. Hence, with respect to current limitations
in analysis of timed-automat models, this technique does not
currently provide a viable path towards industrial-strength
schedulability analysis. Thus, we have to find techniques
that address the above deficiencies without incurring too
large costs in terms of computing resources.

Amongst the more traditional, analytical, schedulability
techniques, the response-time analysis of tasks with offsets
(RTA), introduced in section 2, stands out as the prime
candidate with respect to the two main obstacles above. That
is, already today, the models used by RTA have the ability
to model quite complex system behaviors, and the precision
offered by RTA is the best available amongst analytical
techniques. In the rest of this paper we will describe the

msn04
Text Box
In proceedings of Embedded Systems and Applications (ESA) at WORLDCOMP Jul 2008

state-of-the-art with respect to RTA and concretize the main
problems that remain to be resolved in order to resolve the
above two obstacles, and thus make RTA a viable solution
to industrial use of schedulability analysis.

2. RTA History, background and state of the
art

Response-Time Analysis(RTA) [3], [23] is a powerful
and well established schedulability analysis technique. RTA
is a method to calculate upper bounds on response-times
for tasks in real-time systems. In essence RTA is used to
perform a schedulability test, i.e., checking whether or not
tasks in the system will satisfy their deadlines. RTA is appli-
cable for, e.g., systems where tasks are scheduled in priority
order which is the predominant scheduling technique used
in real-time operating systems today. Furthermore, RTA is
not only used as a schedulability analysis tool, but it is
also used in a wider context. For example, schedulability
analysis is performed in the inner loop of optimization or
search techniques such as task attribute assignment and task
allocation. In conclusion, RTA provide the basis of many
different analysis and optimization techniques for real-time
systems.

Liu and Layland [16] provided the theoretical foundation
for analysis of fixed priority scheduled systems. Joseph and
Pandya presented the first RTA [12] for the simple Liu and
Layland task model which assumes independent periodic
tasks. Since then RTA has been applied and extended in a
numerous ways, e.g., [4], [5], [10], [13], [14], [21], [24],
[25], [27], [29], [30], [31]. These works include lifting
the independent task assumption, analyzing communication
networks, fault tolerant systems, distributed systems, model-
ing OS overhead etc. So from a scientific perspective RTA
has become a well established and mature technology. A
more detailed discussion of some of these improvements
can be found in "A Practitioners Handbook for Real-Time
Analysis" [11]. This book is focused on a practitioner’s point
of view and thus aims at applying RTA in an engineering
context. A historical perspective of real-time scheduling
research, where RTA is a big part, can be found in [23].

2.1. Task model with offsets

Incorporating many of the above research results and ex-
tended it further, the task model with offset, or transactional
task model [18], [19], [28], can be viewed as the state of
the art task model for RTA in the sense that it can handle
many different and complex system parameters with few
constraints as well as applied for different system models.
System parameters include arbitrary deadlines, release jitter,
temporal dependencies through offsets, access to shared
resources. The RTA has been extensively applied to two
different contexts, or system models, holistic analysis for
distributed systems [28], [19], hybrid static and dynamic
scheduling [17]. Furthermore the task model can also be
applied for modeling self suspending tasks or generally
any system where tasks may have temporal dependencies

(offsets) among them. The formal system model used is as
follows:

Γ :={Γ1, . . . , Γk}

Γi :=〈{τi1, . . . , τi|Γi|}, Ti〉

τij :=〈Cij , Oij , Dij , Jij , Bij , Pij〉

The system,Γ, consists of a set ofk transactionsΓ1, . . . , Γk.
Each transactionΓi is activated by a periodic sequence
of events with periodTi (or the minimum inter-arrival
time between two consecutive events). The activating events
are mutually independent, i.e., phasing between them is
arbitrary. A transaction,Γi, contains|Γi| tasks, and each
task may not be activated (released for execution) until a
time, offset, elapses after the arrival of the external event.

We useτij to denote a task. A task,τij , is defined by a
worst case execution time (Cij), an offset (Oij), a deadline
(Dij), maximum release jitter (Jij), maximum blocking
from lower priority tasks (Bij), and a priority (Pij). There
are no restrictions placed on offset, deadline or jitter, i.e.,
they can each be either smaller or greater than the period.

Event arrives

time

Earliest possible release Latest possible release

O ij Jij

Fig. 1. Relation between an event arrival, offset, jitter and task release

The relation between event arrival, offset, jitter and task
release is graphically visualized in Fig. 1. After the event
arrival, taskτij is not released for execution until its offset
(Oij) has elapsed. The task release may be further delayed
by release jitter (maximally untilOij +Jij) making its exact
release uncertain. Parameters for an example transaction (Γi)
with two tasks (τi1, τi2) are depicted in Fig. 2.

0

O i1=2

Oi2=5

C i2=1 Time

1 2 3 4 5 6 7 8 9 10

Ti=10
C i1=2

J i1=8

J i2=1

Fig. 2. An example transactionΓi

Distributed systems with precedences: The original, and
most widely adopted, application for task model with offset
is to model precedence relations among tasks in distributed
systems [28], [19]. A transaction represents a group of
tasks, allocated to several nodes, where every task has a
precedence relation to previous task in the transaction. RTA
is applied to each node and also the network to produce
a holistic schedulability analysis, i.e., end-to-end response
times are calculated over node and communication device
boundaries.

The precedence relation i modeled by so calleddynamic
offset where the offset for a task represent the earliest
possible release of a task based on how early the chain of
preceding tasks are able to finish. The jitter term represent

the latest possible release time, denoting the time instant
where the chain of preceding tasks are able to finish, i.e.,
the response time of the immediate predecessor of the task
at hand. An example transaction with 3 tasks can be seen
in Fig. 3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 190 20

Oi2=5

C i1=2 C i2=3

Oi3=11

Ji2=2

C i2=2

Ti =20

Ji3=5

Fig. 3. Precedence example transactionΓi

Offset and jitter for the first task,τi1, is obviously 0 since
it is the first task to be executed when the corresponding
event arrives. The second task,τi2, however, is activated
whenτi1 completes. Here we assume thatτi1 will finish no
sooner than 5 time units after the event arrival, hence an
offset of 5 forτi2. The latest timeτi1 will finish is 7 which
means thatτi2 will have a release jitter of 7-5=2. Analogous
reasoning applies toτi3. The three tasks in the picture are
placed as if all suffer their worst case jitter delays.

Palencia Gutiérrez and González Harbour increased the
precision of this analysis by taking impossible combinations
into account depending on the priority assignment patterns
in [20]. Ola Redell extended the analysis also to handle tree-
shaped transactions in [22], as opposed to linear transactions
described above.

Hybrid static and dynamic scheduling: In [17] we
applied the task model with offset in a system where tasks
are scheduled by both static (static schedule) and dynamic
(fixed priorities) scheduling policies. There the static sched-
ule is represented by a transaction where offsets represents
the time instant where tasks are released according to the
static schedule. The jitter term does not come into play
for statically scheduled tasks since precedence relationsare
taken into account by time separation, achieved by the
static scheduler. In this work we did a case study of a real
example and showed how this system could benefit from
hybrid scheduled system. Furthermore, this system model
is is commercially available and is supported by the system
development tools provided by Arcticus Systems [2].

In conclusion, we see that the task model with offsets
has been applied in realistic system contexts and thus has a
potential to be adopted by industry provided the remaining
deficiencies could be alleviated.

3. Timing models reflecting real systems

When studying the extensive literature on scheduling
analysis, it is striking that the only means of interaction
between tasks that can be explicitly modeled is synchro-
nization on shared objects using semaphores (or similar
simple blocking mechanism). Naturally, this restriction is a
large hurdle for any real-time engineer wishing to perform
schedulability analysis of systems using the rich set of

interaction mechanisms available in contemporary real-time
operating-systems.

Traditionally, the only exiting model for task-interaction
is blocking on shard resource. This model allows a task to
lock a resource for exclusive use for a finite amount of time.
The resource would typically be some data-structure shared
between a set of tasks. If the operating system manages
the locking in clever ways, the amount of time a resource is
locked and the effect on tasks trying to lock a busy resource
is finite and predictable. Protocols that have this desirable
predictable performance include Priority Ceiling Inheritance
Protocol, the Immediate Inheritance Protocol, and the Stack
Resource Policy [6]. Any serious real-time operating-system
should include at least one of these protocols. For these
protocols ablocking factor (Bij in section 2.1) can be
calculated, and subsequently schedulability analysis canbe
performed.

However, programmers would not, given the choice, re-
strict themselves to only use such simple task-interaction
mechanisms. In fact, programmers expect, and are offered
by real-time operating-systems, more advanced interaction
mechanisms. Commonly used mechanisms include mes-
sage passing, event sending, client-server operations, syn-
chronous and asynchronous remote-procedure calls, barrier
synchronization, etc. Today, programmers using these mech-
anisms are basically at lost should they try to perform
schedulability analysis of their system.

The task model with offsets (see section 2.1) provides
some rudimentary support to model some of the behaviors
that occur when using the above interaction mechanisms.
The model can be used to express delays and precedence
order between different activities (tasks or parts of tasks) in
the system. However, how to extract an offset-based model
from the code is far from obvious. Also, even if e.g. a
client-server call can be modeled by a ordered sequence of
executions of task fragments, it may yield quite pessimistic
results since we abstract away the particular semantics of
the client-server pattern.

So, even if many of the complex execution patterns that
exist in industrial real-time systems could be modeled in the
task model with offsets we see an immediate need to extend
existing schedulability theory with to support at least the
following two interaction mechanisms:

• Message passing – Message passing can be used to
realize simple precendence relations as expressed in the
task model with offsets. However, also more complex
interaction patterns may occur in message passing
systems. Specifically, a task may block its execution
when trying to access an empty message-box. Also,
a message-box may contain a queue of messages;
representing a backlog of execution to be performed
by the task.
Thus, in order to faithfully model the execution patterns
in message-passing systems we need to model the
messages queued in the message-boxes. Empty boxes
means that message readers will block their execution

and message boxes with more than one message queued
will represent a queued execution demand. Analysis
techniques to predict queuing patterns, and thus queue-
lengths of message boxes are needed.
Message-passing can be used to realize communication
of any arity (i.e. 1-to-1, 1-to-many, many-to-1, and
many-to-many). Thus, we need to develop models
to represent these communication patterns and corre-
sponding analysis techniques that allow these complex
relations between tasks.
Exiting techniques to express complex triggering-
patterns of tasks include event algebra [7] and timed
automata [1]. Combined with the efficient calculation
methods provided by RTA, such advanced modeling
technique could be used to allow scheduling analysis
of large and complex systems using message passing.

• Client-server - Client-server is one of the most common
interaction patterns in non real-time code. However, in
real-time systems this interaction pattern has limited
use. The major reason for this is the inherent unpre-
dictability of the timing behavior of client-server call.
Since the timing of client requests is difficult to predict,
the resulting load on the server is highly unpredictable;
and server response-time is highly dependent on the
current load.
However, in a real-time system, the client-tasks will
be real-time tasks with a predictable behavior. Hence,
it should be possible to predict the load on the server
and, then, also the server response-times. In order to
facilitate such analysis we need to device models that
allow server-calls to be characterized and their timing
to be expressed. We also need models for servers and
the services provided by them. These models need to
be able to express timing properties for different calls
and services. From those timing properties the load on,
and response-times from, servers could be predicted.
Even though the general notion of a server that can
perform any tasks on behalf of the caller and even
perform synchronization between multiple callers is
both useful and unpredictable, it is likely that simpler
server-models would also be useful. A simpler model
could for instance restrict the server to execute in
the thread of the caller - thus simplifying analysis
and increasing predictability. One important research
topic is to identify the properties a server should have
in order to have a predictable behavior. Servers with
these properties can then be used in timing-critical
real-time systems and analyzed by next generation of
schedulability analysis.

4. High precision RTA
Large complex systems that has evolved over several

technology shifts and functional upgrades does not lend
themselves to academic timing models and analysis of their
temporal behavior. One of the main reasons is that the
models makes too pessimistic and simplified assumptions

about the overall system, often by taking local information
and approximate the system behavior with local information.
Wall et al. recognize that traditional real-time analysis mod-
els, such as RTA, are not applicable for large and complex
real-time systems [32]. Thus, modeling real systems with
current task models and techniques will many times yield the
resulting system unschedulabe. However, often the system is
well tested and works in practice so there has to be sources
of analytical pessimism. We will in this paper identify and
discuss two such sources :

• Maximization of local WCET estimation. Often there
exist correlations between different tasks execution
times in such a way that it is impossible that all tasks in
the system experience their worst case execution time
simultaneously.

• The current modeling technique to handle precedence
relations will yield in pessimistic response time result
in very much the same way. By assigning each task
local information of release jitter the system wide
information about precedence chains is lost.

Furthermore, we believe there might be several other
sources of pessimism that exhibits the same pattern of
approximating system wide behavior with local information.
If such sources could be identified, expressed and analyzed
the resulting precision on response times could drastically be
reduced. However, we also recognize that there will always
be a trade off and a balance between complexity (timing
and spatial) on one hand and expressiveness and tightness of
RTA on the other hand. In order for RTA to be successfully
applied in industrial context one has to find a good and
acceptable balance between these two.

4.1. Correlated WCETs

An assumption that all schedulability analysis techniques
for hard real-time systems make is that the worst case
execution time (WCET) is identified for every task in the
system. We will not discuss the open research problem of
finding this information [9]. Furthermore, it is assumed that
the this execution time of every task is independent of other
tasks in the system. However, this assumption is not very
realistic since many tasks collaborate and also have data
dependencies among them. This will result in overestimated
response times.

For following discussion refer to Fig. 4. Any systems
interesting temporal end-to-end behavior can be reduced
to a transactions. A transaction consists of a set ordered
tasks where the first task is activated by an outside event
(or clock) and the last task in the set produces some
output to the environment (or some internal critical event).
With current models each task is modeled with an attribute

A

B

C

D

Task 1 Task 2
Input output

Fig. 4. Correlated WCETs

WCET. Consider the example above where we have two
tasks,τ2 and τ2, with distinct functionality A and B for
τ1 and C and D forτ2. The worst case response time
for the system (if there are no higher priority tasks in
the system) would bemax(WCET (A), WCET (B)) +
max(WCET (C), WCET (D)). Assume further that there
is a correlation between A and C and B and D, i.e., if A is
executed inτ1 then C is executed inτ2, and similarly with
B and D. If such information could be found and expressed
in the timing model the worst case response time would
becomemax(WCET (A + C), WCET (B + D)). That is,
we move the maximization from task level to the transaction
level, i.e., we are able to express the worst case execution
behavior among several tasks, not just locally for every task.
This is analogous to calculate with floating point numbers,
where task level maximization corresponds to doing round
up of each value before performing calculations, whereas
transaction level uses the more accurate floating point values
in the calculations and rounds them up at the end.

The scientific community should investigate and analyze
real industrial systems to find out what kind of depen-
dencies does exist. How can they be expressed, modeled
and analyzed? Traditionally the research community on
WCET and RTA has been quite independent and have
attacked different problems. However, the proposed research
direction the WCET community, concerned with local task
information, and the RTA community, concerned with global
end-to-end response times, should bring the two fields closer
together since the research lies in between the two areas.
Furthermore, the two different research disciplines should
be able to learn and benefit from each others achievements.

4.2. Pessimistic modeling of precedence relations

Another problem we have come across, considering de-
pendencies among tasks, is that modeling precedence rela-
tions can sometimes result in pessimistic analysis results.
The problem is that precedence relations are modeled with
jitter and in the RTA each task has its own local jitter without
preserving information about precedence chains. Consider
the following transaction with three tasks, each one having
a precedence relation to the previous one:

Γi := 〈{τi1, τi2, τi2}, Ti = 100〉

Ci1 = Ci2 = Ci3 = 20

Pi1 > Pi2 > Pi3

Furthermore, consider a low priority task withCk1 = 30, for
which we are interested to calculate the worst case response
time, assuming there are no more tasks in the system.

Assuming that best case execution time approaches zero
the jitter for a task is equal to the response time of its
predecessor:

Ri1 = 20 ⇒ Ji2 = 20 ⇒

Ri2 = 40 ⇒ Ji3 = 40

The release jitter term means that a task that is released
periodically may some times be delayed at most with

its jitter term. This has an impact when considering the
response time ofτk1 where the interference of each higher
priority task is considered separately. Therefore, the worst
case interferenceτi2 imposesτk1 is when it first suffers
its worst case jitter and subsequent releases occurs with no
jitter. The resulting scenario is depicted in Fig. 5. The worst

0 20 806040 160140120100

Task i1 Task k1Task i1Task i 2Task i 3Task i3Task i2

Task i3Task i3
100 time units

Fig. 5. Correlated WCETs

case interference occurs when a task is released, experiences
its worst case release jitter, coincides with the release ofthe
task under analysis, and finally released again after period
time units (100 in this example) has elapsed from previous
release. In the figure this fact is highlighted forτi3. Similar
reasoning applies toτi2. Hence the response time ofτk1

becomes150 time units. The reason for this is that it is
assumed that all tasks experience their worst case jitter
simultaneously and independently. However, in order for to
really experience its worst case release jitterτi1 and τi3

would have to execute for almost zero time units and hence
τk1 can not experience the worst case interference from
them. In essence,τk1 can not experience both the WCET of
all three tasks and at the same time as they all experience
their maximum release jitter delay. In realityτk1 can only
be interfered by each task at most once and hence the worst
case response time in reality can not exceed90 time units

In order for RTA to be industrially applicable, this pes-
simism must clearly be addressed since precedence relations
is common type of inter-task dependency and are widely
used in industrial systems.

5. Conclusion
The scientific community has produces an overwhelming

amount of research result on schedulability and temporal
analysis of embedded real-time systems. However very little
of these result have gained industrial acceptance, rather it is
easier to find documents of negative results of trying to use
such results in industrial systems .

This paper recognizes several shortcomings of these ex-
tensive results and proposes some research directions, in
the area of Response Time Analysis (RTA), in order to
gain industrial strength timing analysis models that would
be accepted by the industrial community. RTA has over
many years matured to a degree where models can express
complex system behaviors and analysis results are relatively
tight with respect to real system behavior. However there is
still work to be done.

The core problem is that the scientific community uses
too simplistic or research oriented timing models that does
not reflect real industrial systems to an acceptable degree.
We argue that there are two main reasons, and thus needs
further research efforts, RTA has not reached the industrial
community:

1) Lack of capabilities in the models used by schedula-
bility analysis techniques. Industrial real-time systems
use a variety of constructs to interact between tasks.
Existing schedulability analysis only allow interaction
patterns that use simple blocking on shared resources
and precedence constraints between tasks. We iden-
tified message-passing and client-server as two key
mechanisms that are commonly used in real systems.
Thus, RTA needs to be extended to allow modeling
and analysis of tasks using these interaction mecha-
nisms.

2) Lack of precision in analysis techniques. Although
timing models can handle many real scenarios and
complex inter-task dependencies, these models are
too simplistic in the sense that local information on
parts of the system is used to approximate global
behavior system behavior. This leads to pessimistic
and imprecise analysis results. In order to increase
the precision one must find ways to find, express,
and utilize inter task dependencies that gives more
accurate information on bigger parts of the system
and not just on task level.

To conclude, we believe that RTA has the potential to
be a useful engineering tool for developers of embedded
real-time systems by providing both formal guarantees on
temporal behavior leading to less testing and to ease lengthy
certification processes for safety-critical applicationsas well
as providing an understanding of the systems overall tem-
poral behavior.

6. Acknowledgments
This work was partially supported by the Swedish Foundation

for Strategic Research via the strategic research centre PROGRESS

and by the Knowledge Foundation within the project MultEx.

References
[1] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi.

Times: A Tool for Schedulability Analysis and Code Generation of
Real-Time Systems. InInternational Workshop on Formal Modeling
and Analysis of Timed Systems, 2003.

[2] Arcticus Systems Web-Page. http://www.arcticus-systems.com.
[3] N.C. Audsley, A. Burns, R.I. Davis, K. Tindell, and A.J. Wellings.

Fixed Priority Pre-Emptive Scheduling: An Historical Perspective.
Real-Time Systems, 8(2/3):173–198, 1995.

[4] N.C. Audsley, A. Burns, K. Tindell, M.F. Richardson, andA.J.
Wellings. Applying New Scheduling Theory to Static Priority Pre-
emptive Scheduling.Software Engineering Journal, 8(5):284–292,
1993.

[5] A. Burns, K. Tindell, and A Wellings. Effective Analysisfor
Engineering Real-Time Fixed Priority Schedulers.IEEE Transactions
on Software Engineering, 22(5):475–480, May 1995.

[6] G.C. Buttazzo. Hard Real-Time Computing Systems. Kluwer
Academic Publishers, 1997. ISBN 0-7923-9994-3.

[7] Jan Carlson and Björn Lisper. An Event Detection Algebrafor
Reactive Systems. InProceedings of the 4th ACM International
Conference on Embedded Software (EMSOFT), 2004.

[8] International Electrotechnical Commission. IEC 61508- Functional
safety of electrical/electronic/programmable electronic safety-related
systems.

[9] J. Engblom, A. Ermedahl, M. Nolin, J. Gustafsson, and H. Hans-
son. Worst-Case Execution-Time Analysis for Embedded Real-Time
Systems. International Journal on Software Tools for Technology
Transfer, 4(4):437–455, October 2003.

[10] A. Ermedahl, H. Hansson, and M. Sjödin. Response-Time Guarantees
in ATM Networks. InProc. 18th IEEE Real-Time Systems Symposium
(RTSS), pages 274–284. IEEE Computer Society Press, December
1997.

[11] M.H. Klein et al. A Practitioners Handbook for RMA.
[12] M. Joseph and P. Pandya. Finding Response Times in a Real-Time

System.The Computer Journal, 29(5):390–395, 1986.
[13] D.I. Katcher, H. Arakawa, and J.K. Strosnider. Engineering and

analysis of fixed priority schedulers.IEEE Transactions on Software
Engineering, 19(9):920–934, September 1993.

[14] J. Lehoczky. Fixed priority scheduling of periodic task sets with ar-
bitrary deadlines. InProc. 11th IEEE Real-Time Systems Symposium
(RTSS), pages 201–212, December 1990.

[15] R. Lencevicius and A. Ran. Can Fixed Priority Scheduling Work in
Practice? InProc. 24th IEEE Real-Time Systems Symposium (RTSS),
page 358, December 2003.

[16] C. Liu and J. Layland. Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment.Journal of the ACM, 20(1):46–61,
1973.

[17] J. Mäki-Turja, K. Hänninen, and M. Nolin. Efficient Development
of Real-Time Systems Using Hybrid Scheduling. InInternational
conference on Embedded Systems and Applications (ESA), June 2005.

[18] J. Mäki-Turja and M. Nolin. Efficient implementation oftight
response-times for tasks with offsets.Journal of Real-Time Systems,
February 2008.

[19] J.C. Palencia Gutiérrez and M. Gonzáles Harbour. Schedulability
Analysis for Tasks with Static and Dynamic Offsets. InProc. 19th

IEEE Real-Time Systems Symposium (RTSS), December 1998.
[20] J.C. Palencia Gutiérrez and M. Gonzáles Harbour. Exploiting Prece-

dence Relations in the Schedulability Analysis of Distributed Real-
Time Systems. InProc. 20th IEEE Real-Time Systems Symposium
(RTSS), pages 328–339, December 1999.

[21] S. Punnekkat.Schedulability Analysis for Fault Tolerant Real-time
Systems. PhD thesis, University of York, June 1997.

[22] O. Redell. Analysis of tree-shaped transactions in distributed real time
systems. InProc. of the 16th Euromicro Conference on Real-Time
Systems, June 2004.

[23] L. Sha, T. Abdelzaher, K-E. Årzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real Time
Scheduling Theory: A Historical Perspective.Real-Time Systems,
28(2/3):101–155, 2004.

[24] L. Sha, R. Rajkumar, and J.P. Lehoczky. Task schedulingin dis-
tributed real-time systems. InIEEE Industrial Electronics Conference,
1987.

[25] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority Inheritance Proto-
cols: an Approach to Real Time Synchronization .IEEE Transactions
on Computers, 39(9):1175–1185, September 1990.

[26] H. Thane and H. Hansson. Towards systematic testing of distributed
real-time systems. InProc. 20th IEEE Real-Time Systems Symposium
(RTSS), pages 360–369, December 1999.

[27] K. Tindell. An extendible approach for analyzing fixed priority
hard real-time tasks. Technical Report YCS189, Dept. of Computer
Science, University of York, England, 1992.

[28] K. Tindell. Using Offset Information to Analyse StaticPriority Pre-
emptively Scheduled Task Sets. Technical Report YCS-182, Dept. of
Computer Science, University of York, England, 1992.

[29] K. Tindell and A. Burns. Fixed Priority Scheduling of Hard Real-
Time Multimedia Disk Traffic. The Computer Journal, 37(8):691–
697, 1994.

[30] K. Tindell and J. Clark. Holistic Schedulability Analysis For Dis-
tributed Hard Real-Time Systems. Technical Report YCS197,Real-
Time Systems Research Group, Department of Computer Science,
University of York, November 1994. URL ftp://ftp.cs.york.ac.uk/-
pub/realtime/papers/YCS197.ps.Z.

[31] K. Tindell, H. Hansson, and A. Wellings. Analysing Real-Time
Communications: Controller Area Network (CAN). InProc. 15th

IEEE Real-Time Systems Symposium (RTSS), pages 259–263. IEEE,
IEEE Computer Society Press, December 1994.

[32] A. Wall, J. Andersson, and C. Norström. Probabilistic Simulation-
based Analysis of Complex Real-Times Systems. In6th IEEE
International Symposium on Object-oriented Real-time distributed
Computing, Hakodate, Hokkaido, Japan, May 2003.

