

To Jenny, Lucas, and Amanda
O.A.V.

Acknowledgements

I have a lot of people to thank for making this big day of my life possible! First
of all, I thank my supervisors Ivica Crnkovic and Kristian Sandström for all
their time, valuable guidance, friendship, and for giving me the opportunity to
perform this studies.

I have had the opportunity to share my time between Ph.D. studies and
work in industry. Thank you Jörgen Hansson, Ken Lindfors, and Stefan Rön-
ning, for believing in me, giving me this opportunity, and letting me implement
and test my results at CC Systems.

I also want to thank all my co-authors for your guidance, collaboration,
and nice trips around the globe. This thesis had not been possible without
you. Thanks to my very engaged and pleasant colleagues, Jan Carlson, Igor
Cavrak, Radu Dobrin, Johan Fredriksson, Joakim Fröberg, Hans Hansson,
Andreas Hjertström, John Håkansson, Rikard Land, Lennart Lindh, Anders
Möller, Mikael Nolin, Thomas Nolte, Christer Norström, Peter Nygren, Dag
Nyström, Irena Pavlova, Paul Pettersson, Massimo Tivoli, Martin Törngren,
Tobias Samuelsson, Johan Stärner, and Mario Zagar.

For fruitful discussions of many new research ideas which obviously not
always resulted in publications, help with various tasks, and laughs shared
around the coffee table I want to thank all colleagues at the university, es-
pecially: Jakob Axelsson, Tomas Bures, Marcus Bohlin, Per Branger, Baran
Çürüklü, Harriet Ekwall, Sigrid Eldh, Andreas Ermedahl, Daniel Flemström,
Ewa Hanssen, Joel Huselius, Kaj Hänninen, Damir Isovic, Johan Kraft, Mag-
nus Larsson, Stig Larsson, Tomas Lenvall, Markus Lindgren, Åsa Lundkvist.
Frank Lüders, Goran Mustapic, Jukka Mäki-Turja, Jonas Neader, Anders Pet-
terson, Larisa Rizvanovic, Severine Sentilles, Daniel Sundmark, Henrik Thane,
Peter Wallin, Monica Wasell, Gunnar Widforss, and Aneta Vulgarakis.

Many thanks goes to my workmates at CC Systems’ Västerås office for
taking good care of me when I was new and inexperienced, for being so good

iii

iv

colleagues, for sharing a lot of cookies during the years, and for your feedback
on my research when needed: Johnnie Blom, Jonas Ehlin, Carl Falk. Per Gör-
ling, Mats Kjellberg, Mattias Lång, Jörgen Martinsson, Andreas Olevik, Malin
Olsson, Johan Persson, Göran Sohlman, Ulf Sporrong, Jochen Wendebaum,
David Wretling, and Anders Öberg.

I want to thank my mother Margareta and my father Jan-Erik, for your true
love, for always believing in me, and for encouraging me to continue studying
several times in life. Thanks also to all my relatives and friends that have
supported me during this journey, and showed interest in my work that has
been really motivating. Finally, I will always be thankful to my family for
letting me finish this thesis. It can not always be easy to have a husband or
father, who is an industrial Ph.D. student. You have inspired me, and to be
honest, the completion of this thesis had not been possible without your advice
Jenny! I dedicate this thesis to my loved wife Jenny, and my wonderful kids
Lucas and Amanda.

This work was partially supported by the Swedish Foundation for Strate-
gic Research (SSF), via the projects SAVE and PROGRESS, the Knowledge
Foundation (KKS) via the graduate school SAVE-IT, and by CC Systems.

Mikael Åkerholm
Västerås, April, 2008

List of Publications

Included publications

Paper A SaveCCM - a component model for safety-critical real-time systems,
Hans Hansson, Mikael Åkerholm, Ivica Crnkovic, Martin Törngren,
30th Euromicro Conference on Software Engineering and Advanced Ap-
plications (SEAA), Special Session Component Models for Dependable
Systems, IEEE, Rennes, France, September, 2004

Paper B Towards a Dependable Component Technology for Embedded Sys-
tem Applications, Mikael Åkerholm, Anders Möller, Hans Hansson,
Mikael Nolin, 10th International Workshop on Object-Oriented Real-
Time Dependable Systems (WORDS 2005), IEEE, Sedona, Arizona, Jan-
uary, 2005

Paper C The SAVE approach to component-based development of vehicular
systems, Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hans-
son, John Håkansson, Anders Möller, Paul Pettersson, Massimo Tivoli,
Journal of Systems and Software, vol 80, nr 5, Elsevier, May, 2007

Paper D A Model for Reuse and Optimization of Embedded Software Com-
ponents, Mikael Åkerholm, Joakim Fröberg, Kristian Sandström, Ivica
Crnkovic, 29th International Conference on Information technology In-
terfaces (ITI 2007), IEEE, Cavtat, Croatia, June, 2007

Paper E Introducing Component Based Software Engineering at an Embed-
ded Systems Sub-Contractor, Mikael Åkerholm, Kristian Sandström and
Ivica Crnkovic, submitted for publication

v

vi

Related publications

These publications are selected among the other not included publications,
since they are more related to the thesis. They are frequently refered in the
first part, and contributes to the thesis result.

• Industrial Grading of Quality Requirements for Automotive Software
Component Technologies, Anders Möller, Mikael Åkerholm, Joakim
Fröberg, Mikael Nolin, Embedded Real-Time Systems Implementation
Workshop in conjunction with the 26th International Real-Time Systems
Symposium, 2005 Miami, Florida, December, 2005

• Quality Attribute Support in a Component Technology for Vehicular Soft-
ware, Mikael Åkerholm, Johan Fredriksson, Kristian Sandström, Ivica
Crnkovic, Fourth Conference on Software Engineering Research and
Practice in Sweden, Linköping, Sweden, October, 2004

• Evaluation of Component Technologies with Respect to Industrial Re-
quirements, Anders Möller, Mikael Åkerholm, Johan Fredriksson,
Mikael Nolin, 30th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), Component-Based Software Engineer-
ing Track, IEEE, Rennes, France, August, 2004

• Introducing a Component Technology for Safety Critical Embedded
Real-Time Systems, Kristian Sandström, Johan Fredriksson, Mikael Åk-
erholm, International Symposium on Component-based Software Engi-
neering (CBSE7), Springer, Edinburgh, Scotland, May, 2004

Other publications

• Key Factors for Achieving Project Success in Integration of Automotive
Mechatronics, Joakim Fröberg, Mikael Åkerholm, Kristian Sandström,
Christer Norström, Journal of Innovations in Systems and Software En-
gineering, vol 11334, Springer, March, 2007.

• INCENSE: Information-Centric Run-Time Support for Component-
Based Embedded Real-Time Systems, Andreas Hjertström, Dag Nys-
tröm, Mikael Åkerholm, Mikael Nolin, Proceedings of the Work-In-
Progress session, 14th Real-Time and Embedded Technology and Ap-
plications Symposium, Seattle, Washington, April, 2007

vii

• Handling Subsystems using the SaveComp Component Technology,
Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson,
Mikael Nolin, Thomas Nolte, John Håkansson, Paul Pettersson, Work-
shop on Models and Analysis for Automotive Systems in conjunction with
the 27th IEEE Real-Time Systems Symposium (RTSS06), Rio de Janeiro,
Brazil, December, 2006

• Integration of Electronic Components in Heavy Vehicles: A Study of Inte-
gration in Three Cases, Joakim Fröberg, Mikael Åkerholm, Proceedings
from Systems Engineering/Test and Evaluation Conference, Melbourne,
Australia, September, 2006

• Application of Built-In-Testing in Component-Based Embedded Systems,
Irena Pavlova, Mikael Åkerholm, Johan Fredriksson, The Role of Soft-
ware Architecture for Testing and Analysis (ROSATEA’06), ACM, Port-
land, Maine, July, 2006

• Building Distributed Embedded Systems from Large Software Compo-
nents, Mikael Åkerholm, Thomas Nolte, Anders Möller, Proceedings
of the 2nd Embedded Real-Time Systems Implementation Workshop in
conjunction with the 26th International Real-Time Systems Symposium
(RTSS’05), Miami, Florida, December, 2005

• A Software Component Technology for Vehicle Control Systems, Mikael
Åkerholm, 5th Conference on Software Engineering Research and Prac-
tice in Sweden, Västerås, Sweden, October, 2005

• Optimizing Resource Usage in Component-Based Real-Time Systems,
Johan Fredriksson, Kristian Sandström, Mikael Åkerholm, the 8th
International Symposium on Component-based Software Engineering
(CBSE8), Springer, St. Louis, Missouri, May, 2005

• An event algebra extension of the triggering mechanism in a component
model for embedded systems, Jan Carlson, Mikael Åkerholm, Formal
Foundations of Embedded Software and Component-Based Software Ar-
chitectures (FESCA), ENTCS, Edinburgh, Scotland, April, 2005

• Calculating Resource Trade-offs when Mapping Component Services to
Real-Time Tasks, Johan Fredriksson, Mikael Åkerholm, Kristian Sand-
ström, Fourth Conference on Software Engineering Research and Prac-
tice in Sweden (SERPS), Linköping, Sweden, October, 2004

viii

• Software Component Technologies for Real-Time Systems - An Indus-
trial Perspective, Anders Möller, Mikael Åkerholm, Johan Fredriksson,
Mikael Nolin, Work-in-progress session of Real-Time Systems Sympo-
sium (RTSS), Cancun, Mexico, December, 2003

• Attaining Flexible Real-Time Systems by Bringing Together Component
Technologies and Real-Time Systems Theory, Johan Fredriksson, Mikael
Åkerholm, Kristian Sandström, Radu Dobrin, Proceedings of the 29th
Euromicro Conference on Software Engineering and Advanced Appli-
cations (SEAA), Component Based Software Engineering Track, IEEE,
Belek, Turkey, September, 2003

• A Comparison of Multiprocessor Real-Time Operating Systems Imple-
mented in Hardware and Software, Tobias Samuelsson, Mikael Åker-
holm, Peter Nygren, Johan Stärner, Lennart Lindh, International Work-
shop on Advanced Real-Time Operating System Services (ARTOSS),
Porto, Portugal, July, 2003

• On the Teaching of Distributed Software Development, Ivica Crnkovic,
Igor Cavrak, Johan Fredriksson, Rikard Land, Mario Zagar, Mikael Åk-
erholm, 25th International Conference Information Technology Inter-
faces (ITI), IEEE, Cavtat, Croatia, June, 2003

Contents

I Thesis 1

1 Introduction 3
1.1 Component Based Software Engineering 4

1.1.1 Component-Based Processes 5

1.1.2 Component Technologies 6

1.1.3 Challenges with Reusing Components 9

1.2 Vehicular Systems . 12

1.2.1 A Small Example System 14

1.3 Outline of Thesis . 16

2 Research Summary 17
2.1 Problem Definition . 19

2.2 Research Setting . 19

2.3 Results . 21

2.4 Questions Revisited . 28

2.5 Validation . 31

3 Related Work 35

4 Future Work 39

5 Conclusions 41

Bibliography 43

ix

x Contents

II Included Papers 53

6 Paper A:
SaveCCM a Component Model for Safety-Critical Real-Time Sys-
tems 55
6.1 Introduction . 57
6.2 Related Work . 58
6.3 The SAVE Project . 59
6.4 Application Characteristics 60
6.5 The SAVEComp Component Model 62

6.5.1 Architectural Elements 62
6.5.2 Specification and Composition Language 65
6.5.3 Graphical Language 67
6.5.4 Simple Examples . 68

6.6 The Cruise Control Example 70
6.7 Conclusions and Further Work 74
Bibliography . 74

7 Paper B:
Towards a Dependable Component Technology for Embedded Sys-
tem Applications 77
7.1 Introduction . 79
7.2 CBSE for Embedded Systems 80
7.3 Our Component Technology 81

7.3.1 Design-Time - The Component Model 83
7.3.2 Compile-Time Activities 86
7.3.3 The Run-Time System 88

7.4 Application Example . 89
7.4.1 Introduction to ACC Functionality 89
7.4.2 Implementation using SaveCCM 90
7.4.3 Application Test-Bed Environment 92

7.5 Evaluation and Discussion 92
7.5.1 Structural Properties 93
7.5.2 Behavioural Properties 94
7.5.3 Process Related . 95

7.6 Conclusions and Future Work 95
Bibliography . 96

Contents xi

8 Paper C:
The SAVE approach to component-based development of vehicular
systems 101
8.1 Introduction . 103

8.1.1 Vehicular Systems 104
8.1.2 Related Work . 106

8.2 The SaveComp Component Technology 107
8.2.1 Manual Design . 107
8.2.2 Automated Activites 109
8.2.3 Execution . 109

8.3 The SaveComp Component Model 110
8.3.1 Components . 111
8.3.2 Switches . 112
8.3.3 Assemblies . 113
8.3.4 Ports and Connections 113

8.4 Analysis . 114
8.4.1 LTSA . 115
8.4.2 The TIMES tool . 116

8.5 Case Study: An Adaptive Cruise Controller 117
8.5.1 System Design . 117
8.5.2 LTSA Analysis . 120
8.5.3 Analysis using the TIMES tool 121
8.5.4 Synthesis . 123
8.5.5 Evaluation . 123

8.6 Conclusions . 124
Bibliography . 125

9 Paper D:
A Model for Reuse and Optimization of Embedded Software Com-
ponents 131
9.1 Introduction . 133
9.2 Model Overview . 134
9.3 Components, Variants, and Versions 135
9.4 Metadata Definition . 137
9.5 Central Algorithms on the Metadata 139

9.5.1 Preparation . 139
9.5.2 Verification . 140

9.6 Usage Example . 141
9.6.1 Initial Component 141

xii Contents

9.6.2 New Component . 143
9.7 Conclusions . 144
Bibliography . 144

10 Paper E:
Introducing Component Based Software Engineering at an Em-
bedded Systems Sub-Contractor 149
10.1 Introduction . 151
10.2 Goals and Motivation . 152
10.3 CBSE Activities . 153

10.3.1 Case 1, SaveCCT . 153
10.3.2 Case 2, CrossTalk . 155
10.3.3 Case 3, CCComponents 156
10.3.4 Case 4, Component Metadata for Traceability 158

10.4 Experiences . 160
10.4.1 Case 1 . 160
10.4.2 Case 2 . 162
10.4.3 Case 3 . 162
10.4.4 Case 4 . 163

10.5 Discussion . 163
10.6 Conclusions and Future Work 165
10.7 Acknowledgements . 165
Bibliography . 165

I

Thesis

1

Chapter 1

Introduction

The vast majority of new innovative functions in modern vehicles are realized
with software! Software controlled functions continue to increase their impor-
tance in modern vehicles through improving and replacing electro-mechanical
functions and enabling new innovative functions that previously were not imag-
inable. However, software engineering in the vehicular domain is not without
problems. The systems are complex, some high-end cars have about 1400 more
or less interconnected software controlled functions distributed on 80 embed-
ded computers interconnected with 5 different networks [13, 49]. In combina-
tion with high demands on quality attributes such as safety, reliability, resource
efficiency, and timing, the engineering challenges for the software developers
are hard to beat. Thus, to handle future and present challenges the vehicular
industry needs improved software engineering approaches that will enable in-
creased development efficiency, give support for handling the complexity, and
facilitates safety, reliability, and timing assessment.

Component-Based Software Engineering (CBSE) [43, 84, 24] is a promis-
ing approach, in which software is composed through (re)using well-defined
components. The main benefits are managing complexity through a well-
defined architecture divided in components where each component provides
certain service for the system, increased development efficiency through
reusing already existing components, and quality improvements when com-
ponents are mature and well-proven. However, new software engineering ap-
proaches evolved within the general software engineering community can often
not be used without modification for vehicular systems. The general software
engineering domain focus on software for PCs, entertainment, the Internet,

3

4 Chapter 1. Introduction

and office applications, where other quality attributes as security, flexibility,
and look and feel might be the most important. Technologies and methodology
evolved with these quality attributes in mind must be approached with care
by the vehicular industry which today relies on static, simple, robust, light-
weighted and well-proven technologies to be able to assess the important do-
main quality attributes.

In this thesis we investigate and demonstrate how CBSE can be enabled for
vehicular control systems. We propose methods that together form a prototype
component technology that facilitates important quality attributes of vehicular
systems. The technology is demonstrated and evaluated by means of experi-
ments and case-studies in close cooperation with CC Systems [15], a company
acting as a sub-supplier in the domain of embedded vehicular systems.

The work has been carried out within the SAVE [77], and SAVE-IT [76],
and PROGRESS [70] projects. The main goal with SAVE is to begin establish-
ing an engineering discipline for systematic development of component-based
software for safety-critical embedded systems, focusing on a single application
area (vehicular systems).

The two subsequent sections provide introductions to basic concepts of
CBSE, and vehicular systems, as a foundation for reading the rest of the the-
sis. The introduction focus on presenting terminology used in the reminder of
the thesis, and thus other important parts of CBSE and vehicular systems are
intentionally left out.

1.1 Component Based Software Engineering

Research in the Component-Based Software Engineering (CBSE) community
is concerned with developing theories, processes, technologies, and tools sup-
porting and enhancing a component-based design strategy for software.

In an idealized view of traditional software development, the software is de-
veloped in a sequential process from requirement definition to delivery. CBSE,
on the other hand, includes two separate development processes. A component-
based approach distinguishes component development from system develop-
ment. Component development is the process of creating components that can
be used and reused in many applications. System development with compo-
nents is concerned with assembling components into applications that meet the
system requirements.

1.1 Component Based Software Engineering 5

1.1.1 Component-Based Processes

A very important characteristic that distinguish component based development
from other types of development is separated development processes for sys-
tem development and component development, which is illustrated in Fig-
ure 1.1. In system development, specialized products are built through reuse.
While in component development, general components are built for reuse.

System Requirements

Specific
Component Requirements

Select and Adapt

Component Verification

System Verification

Component Repository

Generalized
Component Requirements

Implementation

Component Verification

S
ys

te
m

 D
ev

el
o

p
m

en
t

C
o

m
p

o
n

en
t

D
ev

el
o

p
m

en
t

Figure 1.1: A system development process based on the V-model, and its inter-
face to a component development process

The focus to develop reusable components is stressed through the sepa-
rated component-development process, which ends with delivery to a common
component repository where reusable components are stored. Mili et al. [60]
provide an elegant definition of reusability of a software components as the
aggregation of the quality attributes usability, and usefulness.

• Usability refers to the ease of reusing the component. Usability is in-
creased by low coupling and well defined carefully documented inter-
faces, as well as comprehensive testing for different use-cases prior to
reuse.

6 Chapter 1. Introduction

• Usefulness is in this case a measure of how often the software component
is expected to be reused. This is clearly depending on the generality of
the component.

These attributes must be first class goals for the component-development
in order to maximize reusability of the components. The equation to get return
of investment in reusable components is depending on the number of times the
components are successfully reused. The investment of developing reusable
components in comparison to software dedicated to a certain task is hard to
estimate in the general case. Studies indicate all from 1.5 to 5 times the effort
[64, 60, 22, 84].

In a component-based system development process, the development team
focuses on efficient development of a system dedicated for a certain purpose.
The goal of the system development process can thus be compared to the goal
of a traditional software systems development process, but the major difference
is the method to realize the system. As shown in figure 1.1, in a component-
based process the lowest step in the V-model is select and adapt, while in a
traditional processes the lowest step would be implementation.

If we focus on the difference the select and adapt step usually starts with
some steps related to finding components that might provide the required func-
tionality for some part in the project. However, it also requires that the applica-
tion intended to be built have been divided in suitable component abstractions.
This division should preferably be done with reuse of specific components in
mind. The process should also be supported by possibilities to query or browse
available components.

If candidate components for reuse are found, the selection of which com-
ponents to reuse is done according to some established criteria. Assessment of
candidate components to reuse may be necessary to select between alternatives.

Adaptation might be necessary to fit reuse in the specific context. Many
techniques are proposed to support this process, e.g., configuration parameters
[17], wrappers [12], adaptors [90], and connectors [51].

1.1.2 Component Technologies

A component technology provides support for assembling component-based
software. The overall principles of CBSE are realised through component tech-
nologies. A component technology provides support for assembling component-
based software. It includes models for how components can be assembled, as
well as the necessary run-time support that includes component deployment

1.1 Component Based Software Engineering 7

and interoperation between components. Some of the most widely known
component technologies are COM [11] and .NET [16] from Microsoft, and
Enterprise JavaBeans [63] from Sun Microsystems.

A component technology often contains various development tools for sim-
plifying the engineering process, it provides the necessary run-time support
for the components, and imposes certain patterns for assembling components.
Figure 1.2 illustrates the basic concepts of a component technology. It is a
photograph of a table top in a playground, on which is placed a tray on which
different building blocks can be arranged in different combinations. Besides
the tray there is a box where the building blocks are stored, and besides the
table there is a chair on which a user of the playground can sit comfortably.
This playground will be used as a metaphor for a component technology in the
following description of technical concepts.

Component
Component Framework

P
latform

P
latform

C
om

ponents

C
om

ponents

RepositoryRepository

SupportingSupporting ToolTool

Figure 1.2: A Component Technology for Building Arbitrary Shapes

One of the most important parts of a component technology is the compo-
nent framework, which provides the necessary run-time support for the compo-
nents not provided by the underlying execution platform (i.e., operating system
or similar). In the playground table metaphor, the blocks represent the compo-
nents, the tray on which they stand represents the framework which provides

8 Chapter 1. Introduction

the components with support, and the table on which the tray stands represents
the execution platform. In the metaphor the component framework mainly
provides strength to the construction that is not offered by the underlying ex-
ecution platform. While for software components, the component framework
typically handles component interactions, and the invocation of services pro-
vided by the components, in addition to providing services frequently used
within the application domain targeted by the technology. For example, Enter-
prise JavaBeans targets distributed enterprise applications and the framework
then provides support for database-transactions, and persistence [63]. Com-
ponent frameworks are often implemented as a layer between the operating
system and the component-based application.

A component technology is a concrete realisation of a component model.
A component model defines the standards and conventions imposed on users
of a component technology. It defines different component types that are sup-
ported by the technology, possible interaction schemes between components,
and clarifies how different resources are bound to components. Compliance
with a component model distinguishes a component from other forms of pack-
aged software [5, 24]. In our playground example, the component model is the
abstract standards and conventions that the children must follow when assem-
bling blocks because the blocks can only be assembled in a certain pattern. The
supplier of the blocks must also follow the component model when manufac-
turing the blocks, to ensure that the blocks are compatible with each other and
the tray on which they are supported.

To be able to efficiently develop component-based applications a compo-
nent repository that is easy to access and browse is necessary. In our play-
ground the repository is ideally placed very close to the tray where the as-
sembly takes place. In contrast to this consider the extra overhead caused by
having the building blocks spread out over the floor or having the repository
in another room. A repository as closely integrated in the development envi-
ronment as possible is crucial for development efficiency, and of course, the
contents in the repository are very important.

Moreover, supporting tools simplifying the work is necessary. Having a
chair at the table can be seen as a supporting tool in the playground. The pres-
ence of graphical composition languages instead of textual, code-generators,
test tools, and analysis tools are examples of supporting tools in the software
case.

Finally, software components themselves are of basic importance. In the
playground example, it is obvious that the blocks represent the components but
even in this simple playground metaphor there are philosophical issues which

1.1 Component Based Software Engineering 9

can be subjects of discussion. For example, do several components assembled
together to build an element (such as a wall), make a new component or should
they be treated as a set of assembled components? This and similar questions
continue as subjects of discussion within the CBSE community. Even the def-
inition of a software component remains unclear to date. In Szyperki’s book,
his attempt to develop a general definition of a software component is com-
pared with no less than fourteen other attempts [84]. One can always question
the need for one common component definition, since the component model
defines components for a particular technology. Technologies might in turn
be intended for different purposes, and as a consequence, different types of
components might be suitable. Heineman and Councill propose the following
definition, extracted from other definitions, which try to be consistent with the
majority of the other ones [43]:

A software component is a software element that conforms to a
component model and can be independently deployed and com-
posed without modification according to a composition standard.

Heineman and Councill

From a practical point of view, components should have well-specified in-
terfaces and be easy to understand, adapt and transfer between organisations.
The interfaces must handle all properties that lead to inter-component depen-
dencies, since the rest of the component is often hidden from the developer.
Components should also be easy to understand, since once created, they are
intended to be reused by other developers. The possibilities of reuse of a com-
ponent are enhanced if it is easy to adapt the component for use in different en-
vironments and in combination with different software architectures and other
components.

1.1.3 Challenges with Reusing Components

In order to successfully implement component-based reuse in an organization,
a component-based process suitable for the business case should be established.
A component-technology fulfilling the needs of the domain should be selected
or developed. Furthermore, awareness of the known challenges will be valu-
able in order to maximize the benefits of CBSE in the organization. The overall
challenges with reusing software components have been subject for many in-
vestigations, e.g., [74, 31, 85, 18, 35, 60, 23, 87, 54, 29, 80, 78, 24, 21]. Below

10 Chapter 1. Introduction

follows a summary of the challenges, mixing different types of challenges as
technical and business challenges:

• Component abstraction - Defining components so that they can be suc-
cessfully reused with high benefits in many applications is non-trivial.
A big software component would imply a higher benefit associated with
reuse, however, a big software component is also typically very infor-
mation rich which makes it hard to reuse in different contexts. A small
software component will be easier to reuse, but the gain with reusing it
will be smaller.

• Component interoperability and composability - The basic requirement
for smooth composition of components is that interacting components
have compatible interfaces, e.g., that data types are compatible when
data exchanges occurs. However, even if the signatures from syntac-
tical point of view between components are compatible, architectural
mismatches may happen due to incompatible semantics, or requirements
that are beyond the interface specification. In particular for the domain of
embedded systems, safety, reliability, timeliness, and resource efficiency
are often very important properties that are hard to determine and often
unknown or unspecified on the component level in practice. Models for
analysis of system properties based on component properties and proper-
ties of the execution environment exists within academia and continuous
progress of composability are made.

• Initial investment need - There is an investment need associated with de-
veloping reusable components in comparison to software in any form for
a specific system. When reusable components are developed in the con-
text of a project delivering a software system, these investments are irra-
tional for the project team with the focus on budget and delivery time for
the development of a specific product. For a durable focus on reuse the
corporate management, even on the very top-levels, must be convinced
that developing reusable components will give return on investment, and
appropriate taxation schemes to fund groups investing development in
reusable components must also be established

• Additional administration need - Successfully maintaining a repository
with reusable components requires additional administration efforts. Con-
figuration management must be used to keep track of different versions
and perhaps variants of components. The components must also be re-

1.1 Component Based Software Engineering 11

trievable across multiple business units within large organizations. Prob-
lems to locate reusable components outside immediate workgroups, of-
ten results in re-implementations of the same functionality since devel-
opers simply are unaware of other components.

• Quality and trust assessment - Trust becomes important in the decision
to reuse a component developed by third-parties. The reason is inability
to have a full control of third-party components (due to partial specifica-
tion, or only partial test coverage). Trustworthiness is not only related to
the technical characteristics of a component but also to the component
producers, ability to maintain, to provide service, to improve the com-
ponent in the future. Thus, the challenge is to accurately determine if a
component or component supplier is trustworthy and dependable. One
possibility might be to rely on certification, another to assess operational
records.

• Responsibility and maintenance - The responsibility for failures in soft-
ware systems built from components might be target for discussions,
since the origin of the problem is often not in a specific component but a
combination of components and usage profile. Maintenance needs also
become more complicated when third-party or commercially available
components are used.

• Organizational challenges - Negotiations regarding technical details be-
tween component and system developers might result in reflection of
specific system development needs in components, it is a challenge in
practice to provide the necessary conditions for component developers
to focus fully on reusability. Organizations introducing reuse of com-
ponents might also need to adapt to put more emphasize on architecture
and testing than before and less on implementation.

• Social challenges - Experience shows that some programmers seems to
have a resistance to reuse other developers solutions. Team rivalry and
competitions among business units also complicate reuse of components.
A resistance to reuse or accept components developed by other units may
be present, which tend to aggravate administration and synchronization
problems creating information islands resulting in re-implementations.

As presented above there are several challenges, technical, business-related,
and organizational, that are important to be aware of in the efforts to maximize

12 Chapter 1. Introduction

benefits of reusing components. These challenges are also typical targets for
research within the CBSE community.

1.2 Vehicular Systems

The application domain in this thesis is embedded control systems in modern
vehicles, e.g., forest machines, construction equipment, trucks, and other vehi-
cles. Figure 1.3 gives an overview of the different types of software systems in
modern vehicles.

Figure 1.3: Overview the different parts of modern vehicular electronics

• Control Systems - These include systems that are embedded and highly

1.2 Vehicular Systems 13

critical for the vehicles core functionality controlling, e.g., engine, brakes,
steering, and body functions as buckets or cargo platform. These are
characterised by high demands on safety, reliability, and hard real-time
constraints. There are also some less critical control systems, e.g., elec-
trically powered windows, and air-conditioning. Vehicular control sys-
tems can also be further divided into power-train systems, chassis sys-
tems, and cabin systems [75].

• On-Board Computers - Powerful computers with graphical displays are
used as the vehicles main interface for the driver, providing interaction
with, and monitoring of, the control systems. They also provide possi-
bilities for information processing as data collection for system diagnos-
tics and prognostics, and communication with others outside the vehicle.
These systems are not closely integrated with the core functionality of
the vehicle and are easier to replace supplement and remove than control
systems.

• Audio/Video Systems - Includes systems as reversing and surveillance
cameras, and audio for communicating messages to passengers when
present and entertainment. Such systems can be after-market mounted
but are often integrated with the rest of the electronic systems, e.g.,
through open standard communication protocols against on-board com-
puters.

• Diagnostics - A substantial part of the functionality in the control sys-
tems is related to diagnostics, data related to, e.g., service needs and
usage are constantly monitored and stored in the vehicle. Thypically it
exists an interface for connecting computers that are able to download
and process this data, to show operational profiles, and overall service
needs.

• Positioning - Positioning services are becoming more and more com-
mon, for navigation and for storing and communicating positions of,
e.g., cargo that shall be picked up, or where it have been left. Position-
ing also includes real-time traffic information enabling vehicles to avoid
traffic jams, and thus also reduce accidents. It is also a core part of fleet-
management systems used to synchronize and monitor the operation of
vehicle fleets.

• Back Office Systems - Back-office systems are systems that are used to
administrate vehicles in some form. It may be production data for work-

14 Chapter 1. Introduction

ing machines, position monitoring for trucks, etc. These systems are
mainly located in offices, but parts of the systems that communicate with
the back office applications must reside in the vehicles.

We limit the scope of this thesis to control systems. These systems are
the most critical for the functionality of the vehicle, with maximum demands
on qualities beyond functionality, such as timeliness, safety, and reliability. It
is these quality attributes that are not addressed by existing mature compo-
nent technologies (e.g., .NET [16], and Enterprise JavaBeans [63]), and conse-
quently vehicular systems cannot be developed with these existing commercial
component technologies. We observe however that the existing technologies
might be well-suited in the development of other types of applications in and
outside the vehicles, which are more similar to, or might even be, office- and
web-applications. The computer nodes in the control systems are designated
Electronic Control Units (ECUs), and are often developed by different vendors
and use different hardware. The ECUs are interconnected by one or several
networks, and often different network technologies are used within the same
vehicle. As examples, Volvo Truck Corporation uses two different network
technologies and has six to eight external suppliers of ECUs, depending on the
type of vehicle, and Volvo Car Corporation uses four different network tech-
nologies, depending on model, and has more than ten suppliers of ECUs [33].

1.2.1 A Small Example System

We present typical functionality in a brake system of a modern vehicle as an
example of a sub-system to the overall control system. It is a so called brake-
by-wire system, which provides several innovative functions in comparison to
older brake systems:

• Anti-lock Braking System - (ABS) prevents the wheels from locking and
simplifying the vehicle steering during heavy braking.

• Brake blending - when possible some of the brake force are actuated
through engine braking to spare the mechanical brakes. This is espe-
cially efficient for vehicles with electric motors, when reversing electri-
cal engines electricity may be generated.

• Cornering control - distributes the brake request evenly in corners so that
the vehicle behaves neutral even during braking in corners and follows
the direction of the steering wheel.

1.2 Vehicular Systems 15

• Diagnostics - the performance of the entire brake function is continu-
ously monitored, so that the driver can be aware of malfunctioning and
worn parts.

• Feedback control - generally improved brake performance, e.g., even
braking at all wheels independent of individual differences or worn me-
chanical parts.

• Force distribution - brake force is distributed according to axle pressure,
implying an optimized brake request with respect to speed and road con-
ditions with the goal to give the lowest possible stopping distance.

• Hill hold - when the driver holds the vehicle with the throttle in a hill, the
system automatically switches from using the engine and transmission to
using the brakes.

• Pre-fill - when the driver suddenly releases the throttle fully. The brake
linings are moved closer towards the brake discs to decrease the response
time of an expected panic-brake situation.

• Stability control - uses the brakes to prevent wheel spin and helps the
driver maintain control under heavy acceleration and skids.

The very basic need for a brake system with the functionality presented
above would be sensors at the brake pedal to determine brake request from the
driver, sensors at the brakes to sense the actual brake pressure, sensors at the
wheels to determine individual wheel speed, and actuators for actuating the
brake commands. The brake system would also typically need to interact with
the transmission control system to know when engine braking is possible, with
the suspension to know the axle pressure, with the steering system to know the
steering commands, and with the throttle to determine sudden releases of it.
Note also that the brake system itself might be distributed over several ECUs.

However, the quality attributes safety, reliability, and timeliness are the
most important quality attributes in the system. Achieving these is more im-
portant than realizing the value adding functions, and this is enforced through
laws and standards, valid for different types of vehicles and markets. Safety
must be met through providing evidence that the brake system reduces all po-
tential hazardous events that might lead to accidents to a tolerable level. The
reliability of the system to provide the brake function must be must be proven
to be above a certain level. Likewise timing requirements must be met for cer-
tain functions, e.g., the response-time from pressed brake pedal until actuated
brake command is regulated through laws for different markets.

16 Chapter 1. Introduction

It is value adding functions as presented above that improves brake systems
of modern vehicles. Some of them are practically impossible to realize without
the use a software based brake system, and interaction with other intelligent
software based control systems. But the most important requirements are to
provide safe, reliable, and timely operation.

1.3 Outline of Thesis

Chapter 2 gives a summary of the research, and presents the method and results.
Related work is presented in Chapter 3. Possible continuations in future work
are discussed in Chapter 4. Finally the first part of the thesis is concluded in
Chapter 5. Chapters 6-10 contains the included papers.

Chapter 2

Research Summary

This chapter contains a description of the research questions that we attempt
to answer in this thesis. In addition we describe the research methods we have
used to address them and the results we have achieved. An overview of the
research process we have used is shown in figure 2.1. As indicated in the
figure, we have followed an iterative approach, since research is generally not
a straight forward process. Different phases in the process (i.e., I-V) can be
distinguished, and the dotted arrows represents that we have been switching to
earlier phases and revised that work based on knowledge and insights gained in
later stages. The process is adopted from the methodology described by Shaw
in [81], where a method suitable for performing research targeting real-world
problems is presented. The method is for the most parts deductive, accordingly
the validation becomes a matter of collecting evidence through testing deduced
methods in practice. The main activities are:

I Identification of research problems from real-world software engineer-
ing. Such problems are often complex, and not suitable subjects for
direct research. The research problem is discussed in section 2.1. This is
the problem that the contributions of this thesis help to solve.

II Transfer the problem to a research setting, which is a limitation and ide-
alization of the real-world problem, often focusing on certain aspects
of the problem. There are several different classes of research settings,
each associated with different types of problems, e.g., determining the
feasibility of an approach, finding methods to accomplish some goal, or
selection between alternative approaches. We have built a research set-

17

18 Chapter 2. Research Summary

Real World Software
Engineering Problem

Research Setting

Research

Validation against
research setting

ValidationI.

II.

III.

IV.

V.

Figure 2.1: Different stages in the applied research process

ting by defining a set of research questions. The details are discussed in
section 2.2.

III Performing the research addressing the research setting. In this phase,
the work is aimed at targeting a well-defined problem suitable for re-
search, and, depending on the nature of the problem, different methods
can be selected. There is a wide range of different methods, from de-
scriptive models of observations to the development of new techniques.
Section 2.3 describes the methods and the answers obtained in this the-
sis.

IV The first step to validate the research results is by demonstrating that the
results satisfactorily answer the research questions. This can be done
in different ways, e.g., by formal proofs, by implementation of a proto-
type, by demonstrating the suitability of a method or solution, through
controlled experiments, or by persuasion through argumentation. This is
described in 2.4.

V The ultimate goal for our validation is to demonstrate that the results can
be applied on the real world problem. The only way to achieve this is
to solve the real world problem by implementing the results in practice,
study and observe the usage, and evaluate the outcome. How, and to
which extent, this has been performed is described in section 2.5.

2.1 Problem Definition 19

2.1 Problem Definition

The problem we address is to enable efficient usage of CBSE for the domain
of vehicular systems, which we see as a matter of devising a suitable compo-
nent technology. We have introduced the basic concepts of vehicular systems
and CBSE in Chapter 1. The introduction shows that CBSE have been devel-
oped within the software-engineering community targeting general software
as desktop, internet, and entertainment applications. This class of software
has fundamentally different important requirements, which makes technolo-
gies developed for these systems hard to apply in development of vehicular
system with, e.g., safety, timeliness, and low resource consumption as first
class requirements.

Efficiently solving this problem is not trivial, as its success depends on
the important selection or development of a component technology that can
be efficiently used in the development and maintenance process, and at the
same time satisfy the run-time and dependability requirements of the vehicular
domain. Such a technology would provide the basic needs for the domain to
efficiently practice CBSE. However, using CBSE efficiently will also depend
of the implementation of processes, business cases, and many other important
factors in each specific case.

Many component technologies that might be suitable exists within academia
and some are to a limited extent used within industry, e.g., Koala [86] used in-
ternally at Philips, Rubus [57] used by some Swedish vehicle manufacturers,
and different implementations of the IEC61131-3 standard [46]. However, as
pointed out in [19], there is currently no de-facto standard component technol-
ogy within the domain of vehicular systems; although CBSE seams to get a lot
of attention from the industry, e.g., East [26] and Autosar [4]. Thus, it is def-
initely plausible that the lack of an adopted component-technology is a major
reason for the limited success of CBSE in the domain. We have been working
under the assumption that one of the reasons for the lack of an adopted compo-
nent technology is the inability of existing commercial technologies to support
the requirements of embedded vehicular applications.

2.2 Research Setting

The research contributes towards a solution to the problem described in the
preceding section. We have limited the complexity of the real-world problem,
through a research setting defined by research questions.

20 Chapter 2. Research Summary

The first limitation of the scope is to focus on the control related part of the
systems. This focus is chosen because CBSE have had a limited success for de-
velopment of such systems. These systems are the most critical for the overall
vehicle functionality, with maximum demands on qualities such as timeliness,
safety, and reliability. It is also known that these qualities are not addressed
by most existing commercial component technologies, and consequently these
systems cannot be developed with such component technologies.

The second limitation is to focus on one node in the distributed control sys-
tem. This limitation is present to limit the complexity in the research setting;
it would probably be desirable to also consider networked control for appli-
cability on the real-world problem. However, this limitation is in-line with
state-of-practice. Today the different nodes of a networked control system are
often built separately, with asynchronous interaction between the nodes.

As described in the preceding section, the assumption we have been work-
ing under is that one of reasons for the lack of an adopted component technol-
ogy, which should also be one of the reasons for the limited success of CBSE, is
the inability of existing commercial technologies to support the requirements
of embedded vehicular applications. This leads to our main questions (Q),
which have been formulated as follows:

Which should be the key characteristics of a component technology successfully
tailored for vehicular applications?

(Q)

This is a broad question, which we intend to answer by separately address-
ing a number of sub-questions concerning the different parts constituting a
component technology, i.e., component models, frameworks, and component
storage.

A component model defines abstract rules for how components interact and
what they are. In the context of vehicular systems we investigate the answer to
the following question:

What should characterize a component model suitable for vehicular systems?

(Q1)

This question calls for the key characteristics of a model defining compo-
nents and possibilities for component interaction, with respect to ease of imple-
menting vehicular control systems, and support for important quality attributes
in the domain.

2.3 Results 21

A component framework provides necessary run-time support for the com-
ponents, threatened by the following question:

Which should be the key characteristics of a component framework suitable for
vehicular systems?

(Q2)

A component framework implements the key mechanisms responsible for
many of the run-time properties of applications built on top of the framework.
Thus, the component framework has a substantial impact on the overall quality
attributes of the application.

Component management covers the management around components that
is not part of the component model that has to be set up for organization to be
able to work with a component-based strategy, e.g., configuration management
and component retrieval. To support these processes the component repository
is central, thus, we seek an answer to:

Which should be the characterizing requirements on a component repository
suitable for organizations developing vehicular systems?

(Q3)

The component repository and tools related to the repository can be seen
as part of the technology. The question is if the important quality attributes of
vehicular systems places special requirements on these tools.

2.3 Results

The main results of the thesis are different parts of a component technology
suitable for embedded vehicular systems. Paper A presents the suggested com-
ponent model SaveCCM. Paper B presents the part of the SaveCCT component
technology connecting the design-time models and the run-time models. Paper
C outlines a wider view of the SaveCCT component technology, where analysis
tools are integrated. Paper D describes a strategy for component management
based on component variants in the component repository. Finally Paper E
presents experiences from observing some of the results in practice.

The papers have been published and presented in international scientific
journals, conferences, and workshops; except paper E, which is not yet pub-
lished but have been submitted for publication.

22 Chapter 2. Research Summary

Requirement Collections
Related Papers

Litterature Studies
Related Papers

Component Model
Paper A

Demonstrator Application
Papers B, C, E

Component Technology
Papers B, C

Component Management
Paper D

Real Applications
Paper E

Problem formulation and basic surveys

Proposed methods

Validation

Figure 2.2: The relations between the included papers

An overview of the compound result of thesis is provided in Figure 2.2. As
shown in the figure, the result is based on literature surveys and requirement
investigations reported in related papers. These are not included in the the-
sis. The requirements are collected through investigations at companies acting
in the vehicular domain. Qualitative interviews with experts at two companies
based on open-ended interviews [61], and quantitative form-based surveys with
five companies [2]. Important for all researchers is literature studies surveying
related work in the research community, e.g., [1, 66], however, monitoring
progress within the research community is also a continuous activity not prac-
tical to always report in separate surveys.

Paper A
SaveCCM a component model for safety-critical real-time systems, Hans Hansson,
Mikael Åkerholm, Ivica Crnkovic, Martin Törngren, 30th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), Special Session Component
Models for Dependable Systems, IEEE, Rennes, France, September, 2004

Paper A presents a component model called SaveCCM, intended for em-
bedded control applications in vehicular systems. SaveCCM was specified as
an attempt to define an ideal component model for the vehicular domain.

SaveCCM is a simple model in which flexibility is limited to facilitate
the analysis of real-time and dependability. The architectural elements are
components, switches, and assemblies. Components are the basic units in a

2.3 Results 23

design, and shall give the desired functionality. Switches are special compo-
nents used to statically (during design-time), or dynamically (during run-time),
(re)configure component interconnections. Assemblies represent sub-systems
and are aggregated behaviour from a set of components, switches, and possibly
other assemblies.

The interface of all architectural elements is defined as a set of ports, which
are points of interaction between the elements. The interaction is based on the
pipes-and-filters pattern, and we distinguish between input- and output-ports,
and the complementary aspects data transfer (data-flow) and execution trigger-
ing (control-flow). These decisions are an effort to allow easy construction of
the key functionality in vehicular control systems, in combination with support
for analysis of real-time and dependability properties. Some specific examples
of key functionality are: feedback control, system mode changes, and static
configuration for product-line architectures.

Method

The research method is development of a component model demonstrat-
ing the feasibility of meeting the most important requirements of vehicular
applications in a component model. The most important requirements were
identified in related papers [2, 62]. The design of the component-model was
formed through surveying state-of-the-art, discussions within the Save project,
and discussions with other researchers. The concept is demonstrated by the
means of a qualitative experiment of modelling a fictive, but realistic, applica-
tion with the component model; on which the application of real-time analysis
is illustrated.

My Contribution

My contribution is active and influencing participation in the forming of
the component model and in the writing process. But the model is based on
consensus within the Save project headed by the first author Prof. Hans Hans-
son.

Paper B
Towards a Dependable Component Technology for Embedded System Applications,
Mikael Åkerholm, Anders Möller, Hans Hansson, Mikael Nolin, 10th International
Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2005), IEEE,
Sedona, Arizona, January, 2005

24 Chapter 2. Research Summary

In this paper we demonstrate a method allowing both expressive component-
based design-time models and resource-effective run-time models by statically
resolving resource usage and timing during compile-time. The compile-time
step generates the necessary glue code to connect components instead of run-
time binding. In order to improve resource efficiency components are mapped
to a minimized number of run-time entities, through allocating interacting com-
ponents to the same run-time entity when possible. The explicit triggering
mechanism and the switch elements are key elements to allow this resource
efficient mapping. Static triggering patterns can easily be recognized by means
of the static triggering chains, and should then be mapped to the same execu-
tion entity minimizing the number of context switches and need for commu-
nication across task boundaries. Switches clearly show where the application
requires dynamicity, and thus the need of division in different executable enti-
ties. Attribute assignment is the final step in the compile-time mapping where
attributes to the run-time entities is assigned so that high level constraints ex-
pressed in the component model are met.

In the prototype implementation we use a commercial resource efficient
and predictable real-time operating system as component framework. To fur-
ther improve resource-efficiency, the compile-time mapping can be further op-
timised, and more efficient platforms (operating systems) will result in more
efficient applications. A drawback with the method as with all compilation
is that traceability between the application behaviour during run-time and the
design description is decreased, since the compile-time method transforms the
component-based design to the execution model of the underlying operating-
system. However, this problem is solvable with the techniques used today by
debuggers to link execution behaviour to source code.

Method

The research method is development of a prototype demonstrating the fea-
sibility of the proposed model transformation techniques. The purpose is to
avoid unpredictable and costly run-time mechanisms in the component frame-
work. The key concept is the clear distinctions between design-time, compile-
time, and run-time. The prototype is validated through a qualitative experiment
in industry.

My Contribution

My contribution is realization and forming of the model transformations in
the compile-time step and the definition of the SaveCCM graphical and textual
representation. The implementation of the application, the evaluation work,

2.3 Results 25

and the writing is equally shared with the second author Ph. Lic. Anders
Möller.

Paper C
The SAVE approach to component-based development of vehicular systems, Mikael
Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John Håkansson, Anders
Möller, Paul Pettersson, Massimo Tivoli, Journal of Systems and Software, vol 80, nr 5,
Elsevier, May, 2007

Paper C, presents an overview of a component technology called SaveCCT.
Where SaveCCM from Paper A is used, together with the compile-time tech-
niques from Paper B, integrated with existing analysis tools. To efficiently in-
corporate these tools, as much as possible of the translation from the SaveCCM
model to the model required by the desired analysis tool are automated through
compile-time techniques in-line with compile-time techniques as introduced in
Paper B.

The major improvement over Paper B is in the development-phase, where
developers can use a number of available analysis tools with automated con-
nectivity to the design tool where SaveCCM based applications is assembled.
In this study we prove the concept of integrating state-of-the-art analysis tools
from the research community by the means of automated integration of the
Labelled Transition System Analyser (LTSA) [58] and Times [3].

We also stress that designs should be analysed and realizations must be
tested. Analysis tools should be used on models during design-time to early
get feedback on how different design decisions affects the system. This must
also be complemented by testing on the real-system, which we enable at early
stages in the project through replacing hardware, run-time platforms, and miss-
ing parts of the system with hardware emulation supporting simulation. To
simulate a system, the developer performs the same automated synthesis steps
as when generating code for the real target system, only the last compilation
steps differ.

Method
This research is a further development of the results in Paper A and Paper

B, and it also serves as proof of the concepts proposed in these papers. The
SaveCCT technology combines component-based development with related
work in the domain of model-based development [48]. We work on models
during design, starting from a component-based model in SaveCCM, where
transitions to other models is automated, i.e., timed-automata, finite state pro-

26 Chapter 2. Research Summary

cesses, simulation model, and run-time model. The importance of model tran-
sitions in the domain of model-based development is stressed in, e.g., [79].
The feasibility is proven through a qualitative study of a fictive application in
cooperation with industry.

My Contribution
My contribution is suggestion of the conceptual integration, through the

model generation to integrate the analysis tools in the SaveCCT technology. I
also took initiative to write the article. The writing process was administrated
by me and Ph.D. Jan Carlson. The detailed parts and application of the analysis
tools are shared between the authors.

Paper D
A Model for Reuse and Optimization of Embedded Software Components, Mikael Åk-
erholm, Joakim Fröberg, Kristian Sandström, Ivica Crnkovic, 29th International Con-
ference on Information technology Interfaces (ITI 2007), IEEE, Cavtat, Croatia, June,
2007

Paper D outlines a model that supports component adaptation for scenarios
where components must be highly specialized for specific applications. The
paper shows how component variants can be used for these application sce-
narios. The key concept is to store traceability information of the internal
realization of components in metadata associated with each component. Us-
ing metadata associated with components is an emerging approach within the
CBSE community, and a good survey on the topic is presented by Lau and
Ukis [52]. In our work we use metadata for maintaining traceability informa-
tion, which are used for performing impact analysis of desired adaptations. The
impact analysis gives guidance to the adaptation work. It gives information of
which parts of the component that should be modified. It also specifies which
test case that should be used for regression testing after the change, i.e., points
out which test cases that must produce the same results.

This method is suggested to be used in combination with a start and a com-
pletion step in a component-design process. The completion-phase provides
automatic detection of accidentally introduced side effects in redesign. The
starting phase supports the selection of the best matching candidate from a
repository of components given a set of requirements, and provides guidance
for the necessary adaptation work.

Method

2.3 Results 27

The research method is development and proposition of an approach sup-
porting component adaptations taking the requirements of the vehicular do-
main in consideration. Through surveying existing methods for component
adaptation, we found no existing method that was suitable for the problem.
The feasibility of the proposal is demonstrated through application on a lim-
ited example.

My Contribution
My contribution is the suggested method, with feedback and discussions

within the group of authors. The writing process was administrated by me,
with review and feedback from the other authors.

Paper E
Introducing Component Based Software Engineering at an Embedded Systems Sub-
Contractor, Mikael Åkerholm, Kristian Sandström and Ivica Crnkovic, submitted for
publication

We present experiences from four cases in this paper. One case, SaveCCT,
is a study where a group of researchers demonstrate a prototype component
technology in a real industrial environment. The second case, CrossTalk, utilises
CBSE principles for realizing a software platform supporting "any" system
consisting of the company’s hardware. The third case, CC Components, make
use of a component repository when possibilities to create or reuse components
arise in the development projects. Finally, the fourth study is an evaluation of
a method supporting the sometimes necessary work with adaptation of compo-
nents to fit usage in different development projects.

Our findings indicate that CBSE principles are suitable for vehicular sys-
tems, but also that it might be harder to practice CBSE as sub-contractor than
as product owner. The most technical needs of expressiveness in the compo-
nent models, resource efficiency of component based applications, and analysis
possibilities can be considered possible to fulfil with a combination of the con-
tents in the different cases. According to our studies the most important need
is related to resource efficiency. Resource efficient component frameworks
with mature tools together with support for adaptation of software components
themselves are needed.

Method
The method is a multiple case study of four cases, where the observer has

been participating in the work. The cases, however, differs too much to be able

28 Chapter 2. Research Summary

to generalize all observations across all cases, but when applicable the multiple
study setup is utilized and observations are validated across cases.

My Contribution

My contribution is study and evaluation of the different cases through par-
ticipation. The findings are based on feedback from CC Systems and the group
of authors. The writing process was administrated by me, with review and
feedback from the other authors.

2.4 Questions Revisited

In this section we show how the results provide answers to the research ques-
tions, we also discuss certain limitations, which are suitable for further re-
search. There are more detailed presentations of the contributions in the in-
cluded papers referred to in the presentation.

Q1
What should characterize a component model suitable for vehicular systems?

Based on the SaveCCM component model suggested in Paper A, we have
implemented and evaluated a prototype component technology, which have
been used to implement a fictive but realistic application. The prototype evalu-
ations are reported in Paper B, C, and E. The following key characteristics are
our answer to this question.

The component model should be limited and restrictive to support impor-
tant quality attributes, e.g., safety, real-time, and reliability properties. Through
surveying the industry we have showed that the most important technical re-
quirements in development of vehicular systems are related to dependabil-
ity characteristics, such as safety, reliability, and testability, e.g., [2, 61, 62].
Today, these quality requirements can only be met by systematically favour-
ing simplicity and predictability in all design decisions. This is obvious by
studying, e.g., the main safety standard for electronic programmable systems
IEC61508 [45], where all dynamic constructs as pointers, dynamic run-time
binding, and artificial intelligence is considered unsuitable for building safe
and reliable systems. We have demonstrated that with SaveCCM it is possi-
ble to create usable component models that are predictable enough to allow
derivation of specialised formal models, which enables automated integration

2.4 Questions Revisited 29

of analysis tools, e.g., Times [3] and LTSA [58]. The suitability of our com-
ponent model as base for applying state-of-the-art analysis techniques is also
proven through the work by Grunske [37], where safety properties are evalu-
ated using SaveCCM.

The pipes-and-filters interaction style is a suitable basis for a component
model targeting the vehicular domain. The pipes-and-filters interaction style
was chosen to give good support for expressing the key functionality of control
systems. This interaction style is similar to the commonly used block-diagrams
in control system models, e.g., in the function blocks of the IEC61131-3 stan-
dard [46]. This interaction mechanism is also successfully used in the vehicular
industry in the Rubus component model [57], which have been a major source
of influence. Designing the fictive application with SaveCCM was relatively
straight-forward, and SaveCCM proved sufficiently expressive for this type of
system. The key functionality demonstrated in the application was feedback
control, system mode changes (dynamic configuration), and static configura-
tion.

Q2
Which should be the key characteristics of a component framework suitable for vehicu-
lar systems?

Paper B and Paper C present the component framework of SaveCCT that
we have used as basis for the answers to this question.

In contrast to the flexibility offered by component frameworks for desktop
and entertainment applications, a component framework for the vehicular do-
main should be based on simple, predictable, static run-time mechanisms. It is
known that quality attributes are interdependent, and that some contradictory
attributes such as flexibility and predictability are difficult to support simulta-
neously [6, 40]. The component framework has a substantial impact on the
overall quality attributes of the application. The most important technical re-
quirements in the domain are related to dependability characteristics [2, 61],
which must be supported by the component framework. These qualities are
cross-cutting concerns that must be considered in all parts of an application.
Dynamic constructs as pointers, dynamic run-time binding is unsuitable for
building safe and reliable systems [45]. For reliable support of analysis of the
run-time behaviour, it is important to base the framework on predicable and
deterministic mechanisms. In the SaveCCT prototype, this is achieved using a
predictable real-time operating system (RTOS) as underlying platform.

The component framework should use resources efficiently. By resources

30 Chapter 2. Research Summary

we mean shared limited run-time resources, e.g., processor and memory ca-
pacity. Resource-efficiency, (the consumption of a minimum of resources in
achieving an objective) is a quality attribute that is important to stress when
mentioning component frameworks and vehicular systems, it is recognized as
a current need in the commercially available technologies [20]. Most mature
commercial frameworks in component technologies are developed for use with
personal computers and network servers, where resource consumption is a mi-
nor concern, e.g., Enterprise JavaBeans in the J2EE 1.3.1 release requires 128
MB RAM [59], while typical hardware used in vehicular systems can have 128
kB [67]. Paper B and Paper C demonstrates our approach in meeting resource
efficiency through code-generation during compile-time. The high-level model
of the application is transformed into entities of the run-time model, e.g., tasks,
system calls, task attributes, and real-time constrains.

Q3
Which should be the characterizing requirements on a component repository suitable
for organizations developing vehicular systems?

Paper D and Paper E present our findings related to component storage and
repositories.

In comparison to storage of software components for desktop and enter-
tainment applications, vehicular systems should have support for creating and
storing specialized variants of components. The foundation of CBSE is that
general components are reused in many applications. However, requirements
of vehicular systems make it harder to reuse the same component in different
projects. Software must often be optimized and tailored for each application
[20], due to high volumes implying that smaller memory capsules and cheaper
processors has high impact on the total production cost. But also due to safety-
requirements expressing that no "dead code" should be present in source files or
on target for certification according to the higher SIL levels of, e.g., IEC61508
[45]. In practice components suitable for reuse without modification repeat-
edly in project after project is rare under these circumstances, a component
must each time it is used solve the intended task as efficient as possible, and
not contain any unused functionality. In paper D, a method supporting the need
to create specialized variants of components are suggested. The method causes
no overhead in the internal realisation of a software component, allowing the
components to be highly specialized for every scenario

2.5 Validation 31

2.5 Validation

Validation has been performed through four case studies, reported in Paper E.
Two of them are real industrial cases and the other two are demonstrations and
evaluations by researchers in industrial environments. The studies have been
performed at CC Systems’ engineering sites in Finland and Sweden. CC Sys-
tems is acting in the vehicular domain, and develops electronics targeting ve-
hicles and machines in rough environments. From software and hardware con-
trolling safety critical by-wire functions, to software and hardware for powerful
on-board display based information systems with back-office connections. We
have according to the scope of the thesis, focused on control related parts of
the systems, and have not considered networked control.

• Case 1, is a continuous study of the usage of SaveCCT in an adaptive
cruise controller application, which has been continuously adjusted and
evaluated. From demonstrator application in Paper A, through imple-
mentation and realisation in an environment representative for projects
at CC Systems in Paper B and Paper C.

• Case 2, is a real case driven by CC Systems where a component-based
strategy is used to realize product-line architecture for control system
platforms.

• Case 3, is also a real case at CC Systems where a company-wide com-
ponent repository for reusable software components is used.

• Case 4, is an evaluation of a prototype supporting the work related to
adaptation of software components, which have been integrated in the
repository of Case 3.

Paper E presents the experiences from participating and observing these
cases. These studies strengthen some of the answers to the questions Q1-Q3,
which leads to the following answer to the main question Q.

Q
Which should be the key characteristics of a component technology successfully tailored
for vehicular applications?

Under the limitations in this thesis, and based on the findings reported in
the thesis. We conclude that a component technology for the vehicular domain
should have the following key characteristics:

32 Chapter 2. Research Summary

• The component model should be limited and restrictive to support im-
portant quality attributes, e.g., safety, real-time, and reliability proper-
ties. These qualities are most important and can only be met by system-
atically favouring simplicity and predictability in all design decisions.
In both Case 1, and Case 2, component models that are limited and re-
strictive are used. We have demonstrated that it is possible to create a
usable component model that is predictable enough, even for automated
application of state-of-the-art analysis tools from the research commu-
nity. The analysis capabilities is so far not proven in real projects with
real applications.

• A good choice is to base the component model on the pipes-and-filters
interaction style. The style has been chosen to give good support for
expressing the key functionality of control systems, in SaveCCM. De-
signing the fictive application in Case 1 according to component-based
principles was relatively straight-forward. Studying Case 2 fortify our
conclusion that this is a suitable component interface. Numerous control
systems have successfully been built for vehicles and machines based on
the CrossTalk concept. However, note that we cannot show, and do not
claim, that any other interaction style is unsuitable.

• The component frameworks must use resources efficiently, mature com-
mercial component technologies with resource efficient component frame-
works is identified as a need for the domain today [20]. In Case 1 we
have demonstrated a possible approach for far more efficient compo-
nent frameworks than available in most commercial technologies. This
is achieved through code-generation during compile-time, where the ex-
plicit triggering of the design-time component model allows efficient
transition to the run-time model, e.g., in our case a real-time operat-
ing system with tasks, system calls, and task attributes. Studying Case
2, where a mature commercial technology is used, for some projects it
can be concluded that it should be possible for more resource efficient
implementations with lower level programming of the hardware.

• The component frameworks must rely on simple, predictable, static run-
time mechanisms. Achieving safety, timelines, and reliability are cross-
cutting concerns that must supported in the component framework. Dy-
namic constructs as pointers, dynamic run-time binding are unsuitable
for building safe and reliable systems. Analysis applied in Case 1, rely
heavily on the run-time mechanisms in the framework.

2.5 Validation 33

• To improve reusability of software components for vehicular control sys-
tems, support for creating specialized variants of components is needed.
Instead of being based on general components, applications must be ded-
icated and specialized to its task for high volume products. Safety criti-
cal applications are even worse since no "dead code" is allowed in source
files or on target to achieve higher safety integrity levels. It was demon-
strated in Case 4, how the adaptation needs of Case 3 can be satisfied. We
note that the adaptation needs might be higher for the business case of
a sub-contractor company, in comparison to product owners which have
the advantage of being able to plan new products based on reuse. How-
ever, it can be concluded that the adaptation needs is higher for safety
critical embedded systems than office or entertainment systems without
resource constraints and safety requirements.

The validation activities are so far limited to observations at a single com-
pany. However, they have been performed at a sub-contractor company work-
ing in close cooperation with many different customers in different countries.
This implies that projects are influenced by the specific requirements of the dif-
ferent customers, major customers requirements also affects internal processes.
Thus we claim that the validation activities have also been target for some form
of variations within the domain.

We have not used the prototype realizations of the results in real projects;
the prototypes have been proven and demonstrated together with tools, pro-
cesses, software, and hardware from the company’s repertoire. We are also
aware of limitations of functional capabilities of our demonstrator application;
a real adaptive cruse controller should most certainly need to be more capable
in, e.g., diagnostics, fault management, and calibration. Thus, the modelling
capabilities, the model transitions, and application of the different analysis
techniques have so far been proven on limited examples. To initiate validation
of our proposed technology in the real world, we have exploited similarities
with parallel cases used in real projects.

In general the results are independent of the vehicular domain, control ap-
plications, and business situation. The focus is on facilitating quality attributes
that are important in the vehicular domain, e.g., safety, reliability, timeliness,
and resource efficiency. Thus the technology as such should be attractive to
any component-based initiative where these quality attributes are important.
Probably the technology suits several applications in the wider domain of em-
bedded control systems. The focus on the vehicular domain is according to the
strategy of the Save project, to start by focusing on a limited domain.

Chapter 3

Related Work

Component technologies are developed for a wide range of applications, a
broad survey of different technologies is compiled by Lau and Wang [53],
which is concluded by a classification of the different types of component
models based on run-time or design-time composition and whether the compo-
nents in the model have an explicit relation to a repository. Here we relate our
proposed technology to component technologies targeting embedded systems,
together with other research that relates to the results in this thesis.

The Rubus Component Technology [57], which originates from the re-
search around Basement [39], is commercially available and successfully used
in the vehicle industry. The applications are statically scheduled, and compo-
nents can be associated with timing properties such as release time and worst-
case execution time. In relation to our proposed component technology Rubus
main limitations are that the static scheduling approach only supports periodic
activation and that timing aspects are the only extra-functional properties con-
sidered. However, current research, contemporary to our work, have recently
resulted in version 3 of the Rubus component model with major enhancements
[41] where these shortcomings have been targets for improvements.

From Koala [86], we have adopted the idea of switches as the main method
to achieve run-time flexibility, run-time mode changes, and design-time config-
uration. Koala is a component technology for consumer electronics developed
by Philips, and used as input for further development in the projects Robocop
[73] and Space4U [83] with Philips and Eindhoven Technical University as
main actors. The focus of these projects is on, e.g., analysis, fault prevention,
power management, and terminal management. But compared to the technol-

35

36 Chapter 3. Related Work

ogy in this thesis they are geared towards less safety-critical applications, such
as consumer electronics.

An ongoing project with similar goals, but in comparison to the work in
this thesis has taken a different approach, is Predictable Assembly from Cer-
tifiable Components (PACC) [69] at the Software Engineering Institute. The
project focuses on adaptation of component technologies to achieve predictable
assemblies. Their concept of Prediction Enabled Component Technologies
(PECT) [88] describes a concept for integration of component technologies
and analysis techniques. Rather than being a concrete technology, PECT de-
scribes possibilities to restrict the usage of a given component technology in
such a way that it is possible to reason about desired user-specified run-time
properties, with respect to available analysis techniques. Within this project
the PIN component technology [44] has also been developed, targeting safety-
critical embedded real-time systems. A key difference in comparison to our
technology is in the design choices that forms the run-time attributes of the
technology, PIN components are Dynamic Link Libraries (DLLs) on Windows
NT, Windows CE or Unix. Thus the possible application domain is on larger
systems, but not for hard real-time systems.

PECOS [65] is one of the component technologies targeting the automation
industry. It emerged from a joint ABB and academia project focusing on devel-
oping a component technology especially for field-devices, i.e., small reactive
embedded systems. PECOS is similar to our technology in the sense that it
considers extra-functional properties in order to enable analysis. PECOS pro-
vides means for specifying component properties, but does not provide support
for analysis of these properties on component or system level.

The IEC61131-3 standard [46], defines a graphical language that can be
used for composition of components. The language uses the same pipes-and-
filters interaction model between components as we propose, but support for
analysis of extra-functional properties does not exist in the standard, e.g., the
semantics of the different elements is not formally defined. An addition to the
standard released 2005 is IEC61499 [47], which extends the function blocks
to allow encapsulation of functions created with IEC61131 and languages as C
and Java. It also introduces separation of control flow and data flow, similar to
the component model proposed in this thesis.

Another approach to create a component technology for vehicular systems
would be to take an existing mature technology from the PC domain, and mod-
ify it to meet the requirements of the vehicular domain, e.g., Lüders et. al.
shows that COM can be customized to maintain important quality attributes of
industrial control systems on a satisfactory level [55, 56]. Another example is

37

Think [28], a C implementation of Fractal [14] with focus on component-based
assembly of operating system kernels for embedded systems.

Important in our proposed concept is analysis of system level properties,
based on properties of components and the execution environment. This type
of analysis has many related works within the CBSE community; it is part of
the important compositionality goal of CBSE research. Larsson et al. [50, 25]
divides a large number of quality attributes based on how they can be predicted
on the system level; here it is motivated that some attributes can be directly
composable from component attributes while others requires usage profiles or
system properties of the execution environment. The specification of quality
attributes associated with components becomes an elementary need. Shaw pro-
pose to specify quality attributes as tuple with type, value, and credibility [82],
which is the approach we have adopted. Grunske presents a framework for
applying quantitative analysis of several quality attributes of component-based
architectures [38]; the framework exploits commonalities between the different
analysis methods and utilises that quality attributes are interdependent through
exchanging information between different analysis methods. A key attribute to
apply real-time analysis is Worst Case Execution Time (WCET). This attribute
is clearly depending on the execution environment and can be refined when
taking into consideration a usage profile. Fredriksson et al. show how WCET
can be packaged and reused for different usage-profiles, and used to achieve
less pessimistic and tighter analysis [34]. Safety is one of the most important
quality attributes in vehicular systems. In this thesis there is however no re-
sults related to assessment of safety. Grunske has demonstrated a method to
the assessment of safety properties in combination with the component model
proposed in this thesis [37]; the method is based on assigning failure propa-
gation model for each element of the SaveCCM specification. Elmqvist and
Nadjm-Tehrani [27] propose the use of safety interfaces to achieve composi-
tionality of safety attributes without need to assess the internal realization of
components during composition. Reussner et al. [72] show how reliability can
be calculated using Markov chains using a compositional approach, so that the
system reliability can be analyzed by using and reusing the reliability informa-
tion of the components. Furthermore, among other contributions in the field
of quality attributes of component-based applications, real-time attributes are
considered in [9, 92], and memory consumption attributes in [32, 41].

We also found that components might need to be adapted to suit different
applications within the vehicular domain, where applications often require a
high degree of specialization. This problem has also been recognized in re-
lated research, and a classification of different techniques is presented in [42].

38 Chapter 3. Related Work

Common for many of these techniques is the support for configuration of com-
ponents, e.g., [10, 17, 71, 91]. However, the flip-side is that future scenarios
must be predicted, and that the configuration code increase complexity and
thereby resource usage. The other main principle for existing techniques is to
apply external adaptation through wrappers [12], or adaptors [90]. The main
limitation here is that optimization of the component’s internal realization is
not possible, e.g., it is not possible to remove functionality. Another drawback
is that the adaptor, or wrapper, code must also be incorporated in the system
level analysis [8]. Thus, these techniques are not suitable for resource con-
strained embedded systems.

Our proposed method to achieve support for adaptation of components is
based on storing traceability information of the internal realization of compo-
nents in metadata. Using metadata associated with components is common in
many component technologies [52], e.g., the MS .Net component model [16]
uses metadata for certain run-time properties. Our proposal is inspired by the
work by Orso et.al. [68] suggesting to (re)use component metadata support-
ing software engineering tasks. They demonstrate how metadata can be used
to improve the test phase. In our method we also reuse test specifications in
metadata, this is similar to the ideas around Built-In-Test (BIT) [36, 30, 89, 7],
however, we rely on specifications in metadata instead of executable test cases
embedded in the components mainly due to needs for high resource efficiency.

Chapter 4

Future Work

For future work it would be interesting to explore more about the impact from
the business situation on CBSE. In the domain of control systems for vehicles
and machines we can identify three major business situations sub-suppliers on
contract basis, COTS suppliers, and product owners. Note that it might be
possible to study all these within a single company, such as e.g., CC Systems,
hopefully with increased possibilities to limit influences from other differences.
This could be done by extending the model presented by Mili et al. [60], shown
to the left in Figure 4.1 to also cover embedded systems and possibly also sub-
contractors as showed to the right in the figure.

According to Mili et al a typical software system consists of 20 % reusable
generic components, which are reusable across several domains. These are typ-
ically de-facto standard libraries that can be treated almost as extensions to the
programming language. Then 65 % is typically domain specific components
that are reusable within the domain, e.g., if the domain is data storage then
database components and query languages are typically very reusable within
the domain. The 15 % at the top is application specific software that is hard
to reuse. How would this apply for the domain of embedded systems? Due to
the high degree of application orientation and specialization for certain tasks, it
can be expected that there is an embedded factor that can be added to the top-
most 15 %. Likewise in the business situation of sub-contractors in general,
the reusability of components might in practice be dependent on new orders
from specific customers, this might also be modelled as a factor adding to the
top most 15 %.

It is also necessary to deploy more of the results in this thesis in practice,

39

40 Chapter 4. Future Work

15%

20%

65%

15%

Generic
Components

Resuable
Domain Specific
Components

Application Specific

20% Generic
Components

Resuable
Domain Specific
Components

Application Specific
Components

Embedded Factor

Sub-contractor Factor

?

?

?

PC Software Vehicular Software

Figure 4.1: Speculation on reusability of software components in the PC do-
main compared to the sub-contractors of embedded systems

to continue the validation activities. As well as continue to studying ongoing
CBSE implementation projects at several actors in the vehicular industry, to
understand more of the needs of the domain.

The application of CBSE to distributed control was out of the scope for the
thesis. This would, however, be an important area for future research. It would
be valuable for the software engineering activities with transparent support for
distributed control, preserving reliability, safety, and timeliness. This support
would open possibilities for more freedom in deployment of components to
ECUs, e.g., deployment to efficiently utilise available processor capacity all
over the vehicle network. However, it might also enable new innovative func-
tions, e.g., possibilities to enhance reliability through transferring functions of
a certain important ECU to another ECU upon malfunctioning hardware etc.

The thesis focus on control systems, however, the diversity of software sys-
tems in modern vehicles will most likely also require that different technolo-
gies are used for different types of systems. Interoperability and some form
of compositionality-"light" between components in different component mod-
els could perhaps be valuable for vehicular applications. An example could
be compositional reasoning of interacting software components, where one ad-
heres to the component model used in a control system ECU and the other
adheres to the component model used on the on-board computer.

Chapter 5

Conclusions

The goal of this thesis has been to identify the most important characteristics
of a component technology for vehicular control systems, to develop such a
technology for validation in practice, and to define methods for its successful
application to achieve efficient reuse of components. This knowledge is re-
quired to maximize the benefits of using component-based principles for this
type of applications.

We have proposed a component model, a concept for integration of analysis
tools, and other mechanisms, supporting the process of maintaining important
quality attributes in the life-cycle of software components. Furthermore, proto-
types have been implemented and evaluated, and real cases have been studied,
all in cooperation with industry. The main findings are:

• A component model should be limited and restrictive to support im-
portant quality attributes, e.g., safety, real-time, and reliability proper-
ties. These qualities are most important and can today only be met by
systematically favouring simplicity and predictability in all design deci-
sions. We have demonstrated that it is possible to create a usable com-
ponent model that is predictable enough, even for automated application
of state-of-the-art analysis tools from the research community.

• A good choice is to base the component model on the pipes-and-filters
interaction style. The style has been proven to give good support for
expressing the key functionality of control systems.

• The component frameworks must ensure efficient use of resources. We
have proposed an approach where the component-based application built

41

42 Chapter 5. Conclusions

during design-time is efficiently transformed into the execution model of
an underlying standard real-time operating system during compile-time.
Explicit notion of control-flow (triggering) in the component model al-
lows this transition to efficiently handle static triggering chains (transac-
tions).

• The component frameworks must rely on simple, predictable, static run-
time mechanisms. Achieving safety, timelines, and reliability are cross-
cutting concerns that must be supported in the component framework.
Dynamic constructs such as pointers and dynamic run-time binding are
unsuitable for building safe and reliable systems. The possibility to apply
accurate analysis of run-time properties during design-time rely heavily
on the run-time mechanisms in the framework.

• The repository and associated tools should have support for creating and
storing specialized variants of components. In contrast to be based on
general components, applications must for high volume products often
use components specialized to its specific task. It is also highly rec-
ommended to avoid unused code in source files or on target to achieve
higher safety integrity levels in certification. The thesis also proposes a
method based on storing metadata with traceability information to per-
form impact analysis of necessary adaptations as support for the adapta-
tion process.

Overall our findings indicate that CBSE principles are suitable for vehic-
ular control systems, which in their fundamental characteristics are similar to
control systems in other domains. It is possible to develop component tech-
nologies and methods that admit efficient reuse of components, supports im-
plementation of key functionality in the domain, and compositional reasoning
of system level quality attributes based on attributes of the components and
the execution environment. There is a trade-off between functional capabilities
and analysis capabilities, but we have demonstrated how this can be efficiently
solved in the context of vehicular control systems.

Bibliography

[1] M. Åkerholm and J. Fredriksson. A sample of component technologies
for embedded systems. Technical Report, Mälardalen University, Novem-
ber 2004.

[2] M. Åkerholm, J. Fredriksson, K. Sandström, and I. Crnkovic. Quality
attribute support in a component technology for vehicular software. In
Fourth Conference on Software Engineering Research and Practice in
Sweden, Linköping, Sweden, October 2004.

[3] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Times: a
tool for schedulability analysis and code generation of real-time systems.
In In Proceedings of 1st International Workshop on Formal Modeling and
Analysis of Timed Systems. LNCS Springer, 2003.

[4] Autosar project. http://www.autosar.org/ (Last Accessed: 2008-04-25).

[5] F. Bachmann, L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert,
R. Seacord, and K. Wallnau. Technical concepts of component-based
software engineering, volume ii. Technical report, Software Engineering
Institute, Carnegie-Mellon University, May 2000. CMU/SEI-2000-TR-
008.

[6] M. Barbacci, M. H. Klein, T. A. Longstaff, and C. B. Weinstock. Qual-
ity attributes. Technical report, Software Engineering Institute, Carnegie
Mellon University, 1995.

[7] F. Barbier, N. Belloir, and J. Bruel. Incorporation of Test Functional-
ity into Software Components. Proceedings of the Second International
Conference on COTS-Based Software Systems, 2003.

43

44 Bibliography

[8] S. Becker and R. H. Reussner. The impact of software component adap-
tors on quality of service properties. In Proceedings of the First Inter-
national Workshop on Coordination and Adaptation Techniques for Soft-
ware Entities (WCATŠ04), Oslo, Norway, June 2004.

[9] E. Bondarev, J. Muskens, P. de With, M. Chaudron, and J. Lukkien.
Predicting real-time properties of component assemblies: a scenario-
simulation approach. In Proceedings of the 30th Euromicro Conference,
Sep. 2004.

[10] J. Bosch. Superimposition: A component adaptation technique. Informa-
tion and Software Technology, 5(41), 1999.

[11] D. Box. Essential COM. Addison-Wesley, 1998. ISBN: 0-201-63446-5.

[12] J. Brant, B. Foote, R. e. Johnson, and D. Roberts. Wrappers to the res-
cue. In Proceedings of 12th European Confernece on Object-Oriented
Programming (ECOOP98), July 1998.

[13] M. Broy. Challenges in automotive software engineering. International
Conference on Software Engineering, pages 33–42, 2006.

[14] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J. Stefani. An
Open Component Model and its Support in Java. Proceedings of the
International Symposium on Component-based Software Engineering
(CBSE2004), Edinburgh, Scotland, 2004.

[15] CC Systems. http://www.CC-Systems.com (Last Accessed: 2008-04-25).

[16] J. Conard, P. Dengler, B. Francis, J. Glynn, B. Harvey, B. Hollis, R. Ra-
machandran, J. Schenken, S. Short, and C. Ullman. Introducing .NET.
Wrox Press Ltd, 2000. ISBN: 1-861004-89-3.

[17] K. Cooper, J. Zhou, H. Ma, I. L. Yen, and F. Bastani. Code parame-
terization for satisfaction of qos requirements in embedded software. In
Proceedings of the International Conference on Engineering of Reconfig-
urable Systems and Algorithms, 2003.

[18] B. Cox. Planning the software industrial revolution. Software, IEEE,
7(6):25–33, 1990.

[19] I. Crnkovic. Component-based approach for embedded systems. In
9th International Workshop on Component-Oriented Programming, Oslo,
June 2004.

Bibliography 45

[20] I. Crnkovic. Componet-Based Approach for Embedded Systems. In
Proceedings of 9th International Workshop on Component-Oriented Pro-
gramming, June 2004.

[21] I. Crnkovic, M. Chaudron, and S. Larsson. Component-based develop-
ment process and component lifecycle, pages. Journal of Computing and
Information Technology, 13(4):321–327, November 2005.

[22] I. Crnkovic and M. Larsson. A case study: Demands on component-based
development. In Proceedings, 22th International Conference of Software
Engineering, Limerick, Ireland, May 2000. ACM, IEEE.

[23] I. Crnkovic and M. Larsson. Challenges of component-based develop-
ment. Journal of Software Systems, December 2001.

[24] I. Crnkovic and M. Larsson. Building Reliable Component-Based Soft-
ware Systems. Artech House publisher, 2002. ISBN 1-58053-327-2.

[25] I. Crnkovic, M. Larsson, and O. Preiss. Concerning predictability in de-
pendable component-based systems: Classification of quality attributes.
Springer, LNCS 3549, 2005.

[26] EAST, Embedded Electronic Architecture Project. http://www.east-
eea.net/ (Last Accessed: 2008-04-25).

[27] J. Elmqvist and S. Nadjm-Tehrani. Safety-Oriented Design of Compo-
nent Assemblies using Safety Interfaces. Electronic Notes in Theoretical
Computer Science, 182:57–72, 2007.

[28] J. Fassino, J. Stefani, J. Lawall, and G. Muller. Think: A Software Frame-
work for Component-based Operating System Kernels. Proceedings of
the General Track: 2002 USENIX Annual Technical Conference table of
contents, 2002.

[29] J. Favaro. What Price Reusability?: A Case Study. In Proceedings 1st
ACM First Symposium on Environments and tools for Ada, 1990.

[30] K. Fernandes, V. Raja, and M. Morley. A System Level Testing Model-
ing Mechanism in a Reengineering Environment. Journal of Conceptual
Modeling, 2001.

[31] R. Fichman and C. Kemerer. Object technology and reuse: lessons from
early adopters. IEEE Computer, 30(10):47–59, 1997.

46 Bibliography

[32] A. Fioukov, E. Eskenazi, D. Hammer, and M. Chaudron. Evaluation of
Static Properties for Component-Based Architetures. In Proceedings of
28th Euromicro Conference, September 2002.

[33] J. Fröberg. Engineering of Vehicle Electronic Systems: Requirements
Reflected in Architecture. Technical report, Technology Licentiate Thesis
No.26, ISSN 1651-9256, ISBN 91-88834-41-7, Mälardalen Real-Time
Reseach Centre, Mälardalen University, March 2004.

[34] J. Fredriksson, T. Nolte, M. Nolin, and H. Schmidt. Contract-based
reusable worst-case execution time estimate. In Proceedings of the 13th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA’07), Daegu, Korea, August 2007.

[35] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: why
reuse is so hard. Software, IEEE, 12(6):17–26, 1995.

[36] H. Groß, M. Melideo, and F. Barbier. Component+ Methodology. Tech-
nical report.

[37] L. Grunske. Towards an Integration of Standard Component-Based
Safety Evaluation Techniques with SaveCCM. Lecture Notes In Com-
puter Science, 4214:199, 2006.

[38] L. Grunske. Early quality prediction of component-based systems–A
generic framework. The Journal of Systems & Software, 80(5):678–686,
2007.

[39] H. Hansson, H. Lawson, O. Bridal, C. Norström, S. Larsson, H. Lönn,
M. Strömberg. Basement: An architecture and methodology for dis-
tributed automotive real-time systems. IEEE Transactions on Computers,
46(9):1016–1027, Sep 1997.

[40] D. Haggander, L. Lundberg, and J. Matton. Quality attribute conflicts -
experiences from a large telecommunication application. In Proceedings
of the 7th IEEE International Conference on Engineering of Complex
Computer Systems, 2001.

[41] K. Hänninen, J. Mäki-Turja, M. Nolin, M. Lindberg, J. Lundbäck, and
K.-L. Lundbäck. The rubus component model for resource constrained
real-time systems. In 3rd IEEE International Symposium on Industrial
Embedded Systems, Montpellier, France, June 2008.

Bibliography 47

[42] G. T. Heineman. An evaluation of component adaptation techniques. In
2nd ICSE Workshop on Component-Based Software Engineering, 1999.

[43] G. T. Heineman and W. T. Councill. Component-based Software Engi-
neering, Putting the Pieces Together. Prentice-Hall, 2001. ISBN: 0-201-
70485-4.

[44] S. Hissam, J. Ivers, D. Plakosh, and K. Wallnau. Pin Component Tech-
nology (V1. 0) and Its C Interface. 2005.

[45] International Electrotechnical Commission IEC. Standard: IEC61508,
Functional Safety of Electrical/Electronic Programmable Safety Related
Systems. Technical report.

[46] International Electrotechnical Commission IEC. International Standard
IEC 61131, Programmable controllers, 1992.

[47] International Electrotechnical Commission IEC. International Standard
IEC 61499, Function blocks, Part 1: Architecture, 2005.

[48] A. Kleppe, W. Bast, and J. Warmer. MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison-Wesley Professional, 2003.

[49] I. Kruger, D. Gupta, R. Mathew, P. Moorthy, W. Phillips, S. Rittmann,
and J. Ahluwalia. Towards a process and tool-chain for service-oriented
automotive software engineering. IEE Seminar Digests, 33(2004), 2004.

[50] M. Larsson. Predicting Quality Attributes in Component-based Software
Systems. PhD thesis, Mälardalen University, March 2004.

[51] K.-K. Lau, L. Ling, and Z. Wang. Composing components in design
phase using exogenous connectors. In Proceedings of the 32nd Euromicro
Conference on Software Engineering and Advanced Applications. IEEE,
2006.

[52] K.-K. Lau and V. Ukis. Component metadata in component-based soft-
ware development: A survey. Preprint CSPP-34, School of Computer
Science, The University of Manchester, October 2005.

[53] K.-K. Lau and Z. Wang. Software component models. IEEE Trans. on
Software Engineering, 33(10):709–724, October 2007.

[54] W. C. Lim. Effects of reuse on quality, productivity, and economics. The
Journal of Software Engineering, 11(5):23–30, September 1994.

48 Bibliography

[55] F. Lüders. Use of component-based software architectures in industrial
control systems. Technical report, Licentiate Thesis, Mälardalen Univer-
sity Press, December 2003.

[56] F. Lüders, I. Crnkovic, and P. Runeson. Adopting a component-based
software architecture for an industrial control system - a case study. pages
232–248. Springer, LNCS 3778, 2005.

[57] K.-L. Lundbäck, J. Lundbäck, and M. Lindberg. Development of depend-
able real-time applications. Arcticus Systems, Dec. 2004.

[58] J. Magee and J. Kramer. Concurrency: State Models & Java Programs.
John Wiley & Sons, Inc., New York, NY, USA, 1999.

[59] S. Microsystems. Java 2 platform, enterprise edition (j2ee). URL:
http://java.sun.com/j2ee/index.jsp (Last Accessed: 2005-01-17).

[60] H. Mili, A. Mili, S. Yacoub, and E. Addy. Reuse-based software engi-
neering: techniques, organization, and controls. Wiley-Interscience New
York, NY, USA, 2001.

[61] A. Möller, M. Åkerholm, J. Fredriksson, and M. Nolin. Evaluation
of component technologies with respect to industrial requirements. In
Euromicro Conference, Component-Based Software Engineering Track,
Rennes, France, August 2004.

[62] A. Möller, M. Åkerholm, J. Fröberg, and M. Nolin. Industrial grading of
quality requirements for automotive software component technologies. In
Embedded Real-Time Systems Implementation Workshop in conjunction
with the 26th IEEE International Real-Time Systems Symposium, Decem-
ber 2005.

[63] R. Monson-Haefel. Enterprise JavaBeans, Third Edition. O’Reilly &
Assiciates, Inc., 2001. ISBN: 0-596-00226-2.

[64] M. Mrva. Reuse factors in embedded systems design. IEEE Computer,
30(8):93–95, 1997.

[65] O. Nierstrass, G. Arevalo, S. Ducasse, , R. Wuyts, A. Black, P. Müller,
C. Zeidler, T. Genssler, and R. van den Born. A Component Model for
Field Devices. In Proceedings of the First International IFIP/ACM Work-
ing Conference on Component Deployment, June 2002.

Bibliography 49

[66] M. Nolin, J. Fredriksson, J. Hammarberg, J. Huselius, J. Håkansson,
A. Karlsson, O. Larses, , G. Mustapic, A. Möller, T. Nolte, J. Norberg,
D. Nyström, A. Tesanovic, and M. Åkerholm. Component based software
engineering for embedded systems - a literature survey. Technical Report
ISSN 1404-3041 ISRN MDH-MRTC-102/2003-1-SE, Mälardalen Uni-
versity, June 2003.

[67] D. Nyström, A. Tesanovic, C. Norström, J. Hansson, and N.-E.
Bånkestad. Data management issues in vehicle control systems: a case
study. In Euromicro Real-Time Conference 2002, June 2002.

[68] A. Orso, M. J. Harrold, D. Rosenblum, G. Rothermel, M. L. Soffa, and
H. Do. Using component metacontents to support the regression testing
of component-based software. In Proceedings of the International Con-
ference on Software Maintenance, November 2001.

[69] PACC Project, Predictable Assembly from Certified Components.
http://www.sei.cmu.edu/pacc (Last Accessed: 2005-04-15).

[70] PROGRESS Project. http://www.mrtc.mdh.se/progress/ (Last Accessed:
2008-04-25).

[71] R. Reussner. Automatic component protocol adaptation with the Co-
Conut/J tool suite. Future Generation Computer Systems, 19(5):627–639,
2003.

[72] R. Reussner, H. Schmidt, and I. Poernomo. Reliability prediction for
component-based software architectures. Journal of Systems and Soft-
ware, 66(3):241–252, 2003.

[73] Robocop project. www.extra.research.philips.com/euprojects/robocop/
(Last Accessed: 2008-04-25).

[74] S. Rosenbaum and B. du Castel. Managing software reuse - an experi-
ence report. Proceedings of the 17th international conference on Software
engineering, pages 105–111, 1995.

[75] A. Sangiovanni-Vincentelli. Automotive electronics: Trends and chal-
lenges. In Convergence 2000. SAE, October 2000.

[76] Save-IT Project. http://www.mrtc.mdh.se/projects/save-it/ (Last Ac-
cessed: 2008-04-25).

50 Bibliography

[77] Save Project. http://www.mrtc.mdh.se/SAVE/ (Last Accessed: 2008-04-
25).

[78] D. Schmidt. Why software reuse has failed and how to make it work for
you. C++ Report, 11(1), 1999.

[79] S. Sendall and W. Kozaczynski. Model transformation: the heart and
soul of model-driven software development. Software, IEEE, 20(5):42–
45, 2003.

[80] M. Shaw. Thruth vs knowledge: The difference between what a compo-
nent does and what we know it does. In Proceedings 8th International
workshop on software specification and design, 1996.

[81] M. Shaw. The coming age of software architecture resreach. In Pro-
ceedings of the 23rd International Conference on Software Engineering
(ICSE), 2001.

[82] M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Dicipline. ISBN 0-13-182957-2. Prentice-Hall, 1996.

[83] Space4u project. www.extra.research.philips.com/euprojects/space4u/
(Last Accessed: 2008-04-25).

[84] C. Szyperski. Component Software - Beyond Object-Oriented Program-
ming, Second Edition. Pearson Education Limited, 2002. ISBN: 0-201-
74572-0.

[85] W. Tracz. The three cons of software reuse. Proceedings of the Third
Annual Workshop: Methods and Tools for Reuse, 1990.

[86] R. van Ommering, F. van der Linden, K. Kramer, and J. Magee. The
Koala component model for consumer electronics software. IEEE Com-
puter, 33(3):78–85, march 2000.

[87] J. Voas. The Challenges of Using COTS Software in Component-Based
Development. Contact, 31:44–45, 1998.

[88] K. C. Wallnau. Volume III: A Component Technology for Predictable
Assembly from Certifiable Components. Technical report, Software En-
gineering Institute, Carnegie Mellon University, April 2003.

[89] Y. Wang, G. King, D. Patel, S. Patel, and A. Dorling. On coping with real-
time software dynamic inconsistency by built-in tests. Annals of Software
Engineering, 7(1):283–296, 1999.

[90] D. M. Yellin and R. E. Strom. Protocol specification and component adap-
tors. ACM Trans. on Programming Languages and Systems, 2(19):292–
333, March 1997.

[91] J. Zhou, K. Cooper, H. Ma, and l Ling Yen. On the customization of
components: A rule-based approach. IEEE Transactions on Knowledge
and Data Engineering, 19(9), Sept. 2007.

[92] S. Zschaler. Formal specification of non-functional properties of
component-based software. In Workshop on Models for Non-functional
Aspects of Component-Based Software (NfC’04) at UML conference
2004, Sept. 2004.

II

Included Papers

53

Chapter 6

Paper A:
SaveCCM a Component
Model for Safety-Critical
Real-Time Systems

Hans Hansson, Mikael Åkerholm, Ivica Crnkovic, and Martin Törngren
In Euromicro Conference, Special Session Component Models for Dependable
Systems, Rennes, France, September 2004

55

Abstract

Component-based development has proven effective in many engineering do-
mains, and several general component technologies are available. Most of
these are focused on providing an efficient software-engineering process. How-
ever, for the majority of embedded systems, run-time efficiency and prediction
of system behaviour are as important as process efficiency. This calls for spe-
cialized technologies. There is even a need for further specialized technologies
adapted to different types of embedded systems, due to the heterogeneity of the
domain and the close relation between the software and the often very applica-
tion specific system.

This paper presents the SaveCCM component model, intended for embed-
ded control applications in vehicular systems. SaveCCM is a simple model in
which flexibility is limited to facilitate analysis of real-time and dependability.
We present and motivate the model, and provide examples of its use.

6.1 Introduction 57

6.1 Introduction

Component-based development (CBD) is of great interest to the software engi-
neering community and has achieved considerable success in many engineer-
ing domains. Some of the main advantages of CBD are reusability, higher ab-
straction level and separation of the system development process from the com-
ponent development process. CBD has been extensively used for several years
in desktop environments, office applications, e-business and in Internet- and
web-based distributed applications. The component technologies used in these
domains originates from object-oriented (OO) techniques. The basic princi-
ples of the OO approach, such as encapsulation and class specification, have
been further extended; the importance of component interfaces has increased:
a component interface is treated as a component specification and the compo-
nent implementation is treated as a black box. A component interface is also
the means of integrating the components in an assembly. Component tech-
nologies include the support of component deployment into a system through
the component interface. On the other hand, the management of components’
quality attributes has not been supported by these technologies. In the domains
in which these technologies are widely used, the quality attributes have not
been of primary interest and have not been explicitly addressed; they have in-
stead been treated separately from the applied component-based technologies.
In many other domains, for example embedded systems, CBD is utilized to
a lesser degree for a number of different reasons, although the approach is as
attractive here as in other domains. One reason for the limited use of CBD in
the embedded systems domain is the difficulty to transfer existing technologies
to this domain, due to the difference in system constraints. Another important
reason is the inability of component-based technologies to deal with quality
attributes as required in these domains. For embedded systems, a number of
quality attributes are at least as important as the provided functionality, and
the development efforts related to them are most often greater than the efforts
related to the implementation of particular functions. For development of ve-
hicular systems, CBD is an attractive approach, but due to specific require-
ments of system properties such as real-time, reliability and safety, restricted
resource consumption (e.g., memory and CPU), general-purpose component
models cannot be used. Instead new component models that keep the main
principles of the CBD approach, but fulfil specific requirements of the domain,
must be developed.

This paper discusses the component model SaveCCM, a part of SAVE-
Comp, a component-based development framework being developed in the

58 Paper A

project SAVE (Component Based Design of Safety Critical Vehicular Sys-
tems). The basic idea of SAVEComp is to by focusing on simplicity and
analysability of real-time and dependability quality attributes provide efficient
support for designing and implementing embedded control applications for ve-
hicular systems

The paper is organised as follows. Section 2 gives a short overview of dif-
ferent component models used in embedded systems. Section 3 briefly presents
the SAVE project, and Section 4 outlines the characteristics of the considered
application domain. In Section 5, our component model SaveCCM is pre-
sented, including textual and graphical syntax, as well as a few illustrative
examples. A larger and more complete example from the vehicular domain is
provided in Section 6, and in Section 7 we summarize and give an outline of
future work.

6.2 Related Work

In addition to widely used component technologies, new component models
appear in different application domains, both in industry and academia. We
will refer to some of them: Koala and Rubus used in industry and the research
models PECT, PECOS and ROBOCOP.

The Koala component technology [1] is designed and used by Philips for
development of software in consumer electronics. Koala has passive compo-
nents that interact through a pipes-and-filters model, which is allocated to ac-
tive threads. However, Koala does not support analysis of run-time properties.

The Robocop component model [2] is a variant of the Koala component
model. A Robocop component is a set of models, each of which provides a
particular type of information about the component. An example of such a
model is the non-functional model that includes modeling timeliness, reliabil-
ity, memory use, etc. Robocop aims to cover all aspects of a component-based
development process for embedded systems.

The Rubus Component Model [3] is developed by Arcticus systems aimed
for small embedded systems. It is used by Volvo Construction Equipment. The
component technology incorporates tools, e.g. a scheduler and a graphical tool
for application design, and it is tailored for resource constrained systems with
real-time requirements. In many aspects Rubus Component Model is similar to
SaveCCM; actually some of the basic approaches from Rubus are included in
SAVEComp. One difference is that SAVEComp is focused on multiple quality
attributes and independences of underlying operating system.

6.3 The SAVE Project 59

PECT (Prediction-enabled Component Technology) from Software Engi-
neering Institute at CMU [4, 5] focuses on quality attributes specification and
methods for prediction of quality attributes on system level from attributes of
components. The component model enables description of some real-time at-
tributes. Compared with SAVECom, PECT is a more general-purpose compo-
nent technology and more complex.

PECOS (PErvasive COmponent Systems) [6], developed by ABB Corpo-
rate Research Centre and academia, is designed for field devices, i.e. reactive
embedded systems that gathers and analyze data via sensors and react by con-
trolling actuators, valves, motors etc. The focus is on non-functional properties
such as memory consumption and timeliness, which makes PECOS goals sim-
ilar to SaveCCM.

These examples show that there are many similar component technologies
for development of embedded systems. One could ask if it would not be more
efficient to use a single model. Experiences have shown that for many embed-
ded system domains efficiency in run-time resources consumption and predic-
tion of system behaviour are far more important than efficiency in the software
development. This calls for specialization, not generalization. Another argu-
ment for specialization is the typically very close relation between software
and the system in which the software is embedded. Different platforms and
different system architectures require different solutions on the infrastructure
and inter-operability level, which leads to different requirements for compo-
nent models. Also the nature of embedded software limits the possibilities of
interoperability between different systems. Despite the importance of perva-
siveness, dynamic configurations of interoperation between systems, etc. this
is still not the main focus of vast majorities of embedded systems.

These are the reasons why different application domains call for different
component models, which may follow the same basic principles of component-
based software engineering, but may be different in implementations. With that
in mind we can strongly motivate a need for a component technology adjusted
for vehicular systems.

6.3 The SAVE Project

The long term aim of the SAVE [7] project is to establish an engineering disci-
pline for systematic development of component-based software for safety criti-
cal embedded systems. SAVE is addressing the above challenge by developing
a general technology for component-based development of safety-critical ve-

60 Paper A

hicular systems, including:

• Methodology and process for development of systems with components

• Component specification and composition, providing a component model
which includes the basic characteristics of safety-critical components
and infrastructure supporting component collaboration.

• Techniques for analysis and verification of functional correctness, real-
time behaviour, safety, and reliability.

• Run-time and configuration support, including support for assembling
components into systems, run-time monitoring, and evaluation of alter-
native configurations.

The main objective of SAVE is to develop SAVEComp - a component-
based development (CBD) technology for safety-critical embedded real-time
systems (RTS). The primary focus is on designing systems with components,
based on component and system models. The ambition is to develop a method
and infrastructure for CBD for safety-critical embedded RTS, corresponding to
existing general component technologies, such as COM and JavaBeans.

6.4 Application Characteristics

As mentioned above, the considered application domain is vehicular systems.
Within that domain we are mainly considering the safety-critical sub-systems
responsible for controlling the vehicle dynamics, including power-train, steer-
ing, braking, etc.

The vehicular industry has a long tradition of building systems from com-
ponents provided by different suppliers. In the past these components have
been purely mechanical, but today many of the components include computers
and software. The trend today is, on one hand, towards intelligent mechatron-
ics light weight nodes, such as actuators including a microprocessor. On the
other hand, there are trends towards more integrated and flexible architectures,
where software components can be freely allocated to heavy weight computer
units (Electronic Control Units; ECUs). One reason for this is that the number
of ECUs is growing beyond control in a modern car (in the range of 100 in
top of the line models). Letting SW from several suppliers, related to different
sub-systems, execute on the same ECU has several benefits, including reduced
number of ECUs, reduced cabling, reduced number of connection points (es-
sential for system reliability), reduced weight, and reduced per-unit production

6.4 Application Characteristics 61

cost. The downside is an increased risk of interference between the different
sub-systems. Minimizing this risk and increasing efficiency and flexibility in
the design process is the main motivation for SAVEComp and other efforts
currently in progress (e.g. the EAST/EEA initiative [8]).

The safety-critical sub-systems we consider will in the foreseeable future
have the following characteristics:

• Statically configured, i.e., the components used and their interconnec-
tions will essentially be decided at design or configuration time. Hence,
the binding will be static, as opposed to the dynamic binding used in
current component technologies.

• It will be essential to satisfy and provide proof of satisfaction of not only
the functional behaviour, but also of timing and dependability quality
attributes.

• The timing and dependability quality attributes will be strict, in the sense
that they will be specified in terms of absolute bounds that must be sat-
isfied.

• There will be additional, less critical, less static components executing
on the same ECUs as the critical ones. The focus of SAVE is however
not on these.

• The systems will be resource constrained, in the sense that the per-unit
cost is a main optimization criterion, i.e., the use of computer and com-
puting resources should be kept at a minimum.

• Due to the product-line nature of the industry, reuse of architectures,
components and quality assessments should be supported.

• The contractual aspect of system and component models will in many
cases be important as a tool for communication and ensuring quality in
the integrator/supplier relation.

Looking more in detail at the timing quality attributes, SaveCCM should pro-
vide sufficient machinery to express and reason about the following types of
timing attributes/requirements:

• End-to-end timing, i.e., it should be possible to determine (or guaran-
tee) that the time from some event (e.g., sampling of a sensor value) to
the time of some other event (e.g., providing a new control signal to an
actuator) stays within specified bounds.

62 Paper A

• Freshness of data, i.e., it should be possible to determine (or guarantee)
that a datum has been generated no earlier than a specified bound before
it is used by a specific component (e.g., that a sensor value has been
sampled no earlier than 35ms before it is used by a specific component).

• Simultaneity, i.e., it should be possible to determine (or guarantee) that
a set of data occur sufficiently close together in time (e.g., that the sam-
pling of two sensors occur within 2ms).

• Jitter tolerances, i.e., it should be possible to determine (or guarantee)
that the variation in latency between two events stay within specified
bounds (e.g., that the variation in the time between subsequent (periodic)
samplings of a sensor value stays within 2ms).

6.5 The SAVEComp Component Model

SaveCCM has its roots in previous models and design methods for embedded
real-time systems, in particular Basement [9] and its extensions into the Rubus-
methodology [10, 3]. SaveCCM, and its predecessors are designed specifically
for the vehicular domain, which (in contrast with many of the current compo-
nent technologies) implies that predictability and analysability are more im-
portant than flexibility. Hence, the model should be as restrictive as possible,
while still allowing the intended applications to be conveniently designed. It is
with this in mind we have designed SaveCCM.

6.5.1 Architectural Elements

SaveCCM consists of the following main elements:

Components which are basic units of encapsulated behaviour, that executes
according to the execution model presented below.

Switches which provide facilities to dynamically change the component inter-
connection structure (at configuration or run-time).

Assemblies which provide means to form aggregate components from sets of
interconnected components and switches.

Run-time framework which provides a set of services, such as communica-
tion between components. Component execution and control of sensors
and actuators.

6.5 The SAVEComp Component Model 63

Both switches and assemblies can be considered to be special types of com-
ponents. Due to the difference in semantics we will, however, treat them as sep-
arate elements. Below, we will elaborate on these elements, their properties,
and their attributes.

Functional interface
The functional interface of all architectural elements is defined in terms of a

set of associated ports, which are points of interaction between the element and
its external environment. We distinguish between input- and output ports, and
there are two complementary aspects of ports: the data that can be transferred
via the port and the triggering of component executions. SaveCCM distinguish
between these two aspects, and allow three types of ports: (1) data-only ports,
(2) triggering-only ports, and (3) data and triggering ports.

An architectural element emits trigger signals and data at its output ports,
and receives trigger signals and data at its input ports. Systems are built from
components by connecting input ports to output ports. Ports can only be con-
nected if their types match, i.e. identical data types are transferred and the
triggering coincides.

Data-only ports are one element buffers that can be read and written. Each
write will overwrite the previous value stored. Output and input ports are dis-
tinct, in the sense that writing a datum to an output port does not mean that the
datum is immediately available at the input port connected to the output port.
This is to allow transfer of data between ports over a network or any other
mechanism that does not guarantee atomicity of the transfer.

Triggering-only ports are used for controlling the activation of components.
A component may have several triggering ports. The component is triggered
when all input triggering ports are activated. Several output triggering ports
may be connected to a single input triggering port, providing an OR-semantics,
in the sense that the input port is triggered if at least one of its connected output
ports is activated. Note that the input triggering port is active from the time of
activation (triggering) to the start of execution of the component. Activations
cannot be cancelled, and activating an active port has no effect.

Data and triggering ports combine data-only and triggering-only ports in
the obvious way.

Execution Model
Since predictability and analyzability are of primary concern for the consid-

ered application domain, the SaveCCM execution model is rather restrictive.

64 Paper A

The basis is a control-flow (pipes and filter) paradigm in which executions
are triggered by clocks or external events, and where components have finite,
possibly variable, execution time.

On a high level, a component is either waiting to be activated (triggered) or
executing. A component change state from waiting to executing when all input
triggering ports are active.

In a first phase of its execution a component reads all its inputs. In its
second execution phase the component performs all its computations based
only on the inputs read and its internal state. In its third execution phase, the
component generates outputs, after which it returns to its idle state waiting for
a new triggering.

External I/O
Sensors and actuators (I/O) are accessed via enclosing components, in which

the sensor/actuator values are part of the component’s internal state.

Timing
Time is a first class citizen in SAVEComp. A global time base is assumed

(a perfect clock). This perfect clock is accessed via special components, called
triggers, which can trigger the activation of other components. To cater for
the imperfection of real clocks, a triggering initiated at time t will arrive at the
receiving component sometime in the interval t + / − O.

Switches
As mentioned above, a switch provides means for conditional transfer of

data and/or triggering between components. Switches allow configuration of
assemblies. A switch contains a connection specification, which specifies a set
of connection patterns, each defining a specific way of connecting the input and
output ports of the switch. Logical expressions (guards; one for each pattern)
based on the data available at some of the input ports of the switch are used to
determine which connection pattern that is in effect.

It should be noted that a pattern does not have to provide connections for
all ports, it is sufficient to only connect some input and some output ports.

Switches can be used for pre-run-time static configuration by statically
binding fixed values to the data in some of the input ports, and then use partial
evaluation to reduce the alternatives defined by the switch.

Switches can also be used for specifying modes and mode-switches, each
mode corresponding to a specific static configuration. By changing the port

6.5 The SAVEComp Component Model 65

values at run-time, a new configuration can be activated, thereby effectuating a
mode-shift.

Assemblies
As mentioned above, component assemblies allow composite behaviours to

be defined, and make it possible to form aggregate components from compo-
nents and switches. In SaveCCM, assemblies are encapsulations of compo-
nents and switches having an external functional interface, just as SaveCCM-
components. Some of the ports of components and switches are associated/
delegated to the external ports of the assembly.

Due to the strict (and restricted) execution semantics of SaveCCM compo-
nents, an assembly does not satisfy the requirements of a component. Hence,
assemblies should be viewed as a mechanism for naming a collection of com-
ponents and hiding internal structure, rather than a mechanism for component
composition.

Quality attributes
Handling of quality attributes, in particular those related to real-time and

safety, is one of the main aspects of SaveCCM. A list of quality attributes
and (possibly) their values is included in the specification of components and
assemblies. In this paper we will only consider timing attributes. We will show
how such attributes can be specified and used in analysis.

6.5.2 Specification and Composition Language

We will now outline the textual syntax used to define SaveCCM components
and assemblies.

A SaveCCM system is an aggregate of component instances. A component
instance is a named instance of a component type. A component type is either
a basic component type or a component assembly type. A basic component
type is defined as follows:

Components are specified by their interfaces, behaviour and (quality) at-
tributes. Interfaces are port-based and they specify input and output ports.
Behaviour identifies variables that express internal states, and actions that de-
scribe the component execution. Variables can be initiated by values from the
input ports. Attributes describe different properties of the components. An
attribute has a type, value and credibility (a measure of confidence of the ex-
pressed value). Credibility value, expressed in percentage is discussed in [11].
Ports include data or triggers or both. A simplified BNF specification of a

66 Paper A

component type is shown below. Actions are abstract specifications of the ex-
ternally visible behaviour of the component.

<component> ::= Component <typeName> {<componentSpec>}
<componentSpec> :: =<Interface> [<Behaviour>] [<Attributes>]
<Interface> ::= Inports: <port>[,<port>]+ ;

Outports: <port>[,<port>]+ ;
<port> ::= <portName> : <portTypeName>;
<Behaviour> ::= Variables: <variables>+ Actions: <actions>+
<Variables> ::= <type> <name> [= <value> | = <port_name>] ;
<actions> ::= { <action-program> }
<Attributes> ::= Attributes <attributeSpec>+ ;
<attributeSpec> ::= <type> <name> = <value> [:<credibility>]
<portType> ::= Port <Name> {<portSpec>};
<portSpec> ::= Data: <dataType|empty>;

Trigger: <bolean> ;

Switches are specified as special types of components, however without
actions and attributes. Depending on the switch state (condition) particular
input and output ports are connected or disconnected.

<switch> ::= Switch <type> <name>{<swSpec>}
<swSpec> ::= <Interface> <behaviour>
<Interface> ::= Inports: <port>[,<port>]+ ;

Outports: <port>[,<port>]+ ;
<port> ::= <portType> <portName> ;
<behaviour> ::= Switching: <cond>:<in-out-connect> [,<in-out-connect>];
<in-out-connect> ::= <portName> -> <portName> [,<portName> -> < portName>];

An assembly includes a set of components and switches that are wired to-
gether. Similar to components assemblies can be instantiated, which enables
reusability on a higher level than the component level. However, the speci-
fication does not include a behaviour (variables and activities) part. Quality
attributes are part of assemblies. The reason is that there are assembly proper-
ties which cannot be derived from the component properties but are applicable
and can be measured on the assembly level.

<assembly> ::= Assembly <assemblyType> {<assemblySpec>}
<assemblySpec> ::= <Interface> <Behaviour>

[<Attributes>]
<Interface> ::= Inports: <port>[,<port>]+ ;

Outports: <port>[,<port>]+ ;
<port> ::= <portType> <portName> ;
<Behaviour> ::= Components: <componentName> [,<compomemtName >+]
<connections> ::= Connections <singleConnection> [,<singleConnection>]+
<singleConnection> ::= <portName> -> <componentName.portName>

| <componentName.portName> -> <portName>
|<componentName.portName> -> <componentName.portName>

<Attributes> ::= Attributes <attributeSpec>+ ;
<attributeSpec> ::= <type> <name> = <value> [:<credibility>];

6.5 The SAVEComp Component Model 67

In modelling and building systems we must create instances of these types
and associate instances to tasks that execute on target systems. We will, how-
ever, in this paper not discuss these issues further, though our examples will
contain some instantiations that we hope will be intuitive enough to be under-
stood without further explanations.

 Symbol Interpretation

Input ports - The upper is an input port
with a trigger, and no data. The middle
symbol is an input port with data and no
triggering, and the lower symbol is an
input port with data and triggering.

Output port - Similar to the input ports,
the upper is symbol is an output port with
triggering functionality but with no data.
The middle symbol is an output port with
data but with no triggering, and the lower
symbols indicates an output port with both
data and triggering.

Component - A component with the
stereotype changed to SaveComp
corresponds to a SaveCCM component.

Switch - components with the stereotype
switch, corresponds to switches in
SaveCCM.

Assembly - components with the
stereotype Assembly, corresponds to
assemblies in SaveCCM.
Delegation - A delegation is a direct
connection from an input to -input or
output to -output port, used within
assemblies.

<<Assembly>>
<name>

<<Switch>>
<name>

<<SaveComp>>

<name>

Figure 6.1: Graphical Syntax of SaveCCM

6.5.3 Graphical Language

A subset of the UML2 component diagrams is adopted as graphical represen-
tation language. The interpretation of the symbols for provided and required
interfaces, and ports are somewhat modified to fit the needs of SaveComp. The
symbols in Figure 6.1 are used.

68 Paper A

<<Switch>>

S1

<<SaveComp>>

PC

<<SaveComp>>

IC

<<SaveComp>>
DC

<<Switch>>

S2

<<SaveComp>>

Compose

Set Actual

P I D

Control

<<Assembly>>

PID

Figure 6.2: Generic PID Controller

6.5.4 Simple Examples

We will give a few examples to illustrate SaveCCM. In the examples we will
use our graphical language, and for selected architectural elements also the
textual format.

Static Configuration By static configuration we assume instantiation of as-
semblies and the included components. For example we specify a general con-
troller, which can be configured to be a P, I, D, PI, PD, ID, or PID controller.
Switches are used to express this. Graphically we can illustrate PID as in Fig-
ure 6.2.

The following is the same example as in Figure 6.2 expressed in the speci-
fication and composition language:

Assembly PID {
Inports: P:Pport, I:Iport, D:Dport,
Set:Setport, Actual:Actualport;
Outports: Control:Controlport;
Components: PC:PCtype, IC:ICtype,
DC:DCtype, Compose :Ctype, S1:S, S2:Z;
PortConnect:

P->{S1.P,S2.P}, I->{S1.I,S2.}, D->
{S1.D,S2.D},Set->S1.setin, Actual->
S1.actualin,S1.actualoutp->P.actual,
S1.actualouti-> I.actual, S1.actualoutd->
D.actual,S1.setoutp-> P.set, S1.setouti->

6.5 The SAVEComp Component Model 69

I.set, S1.setoutd->D.set, P.control->S2.p,
I.control->S2i, D.control-> S2.d, S2.pp->
Compose.p, S2.ii->Compose.i, S2.dd->
Compose.d, Compose.control->control

}
Switch S {

Inports: P:Pport, I:Iport, D:Dport,
setin:Setport, actualin:Actualport;
Outports: actualp:Actualport,
actuali:Actualport, actuald:Actualport,
setoutp:Setport, setouti:Setport,
setoutd:Setport
Switching:

P: setin->setoutp, actualin->actualp;
I: setin->setouti, actualin->actuali;
D: setin->setoutd, actualin->actuald;

}
Switch Z {

Inports: P:Pport, I:Iport, D:Dport,
p:Setport, i:Setport, d:Setport;
Outports: pp:Setport, ii:Setort,
dd:Setport;
Switching:

P: p->pp; I: i->ii; D: d->d;
}

<<SaveComp>>

PC
<<SaveComp>>

Compose

<<Assembly>>

P

Set Actual
Control

Figure 6.3: Generic PID, statically configured as a P controller

Like components, assemblies can be reused. When creating a component
instance or an assembly we can statically bind port values to constants. For
instance if the component type PID is instantiated with P set to true, and I and
D set to false, we will (by partial evaluation) obtain the following component.
This configuration is supposed to be done automatically by a configuration
tools.

Assembly P:PID (P.val=true, I.val=false, D.val=false) {

70 Paper A

Inports: Set:Setport, Actual:Actualport;
Outports: Control:Controlport:
Components: PC:PCtype, Compose:Ctype;
PortConnect:

Set->P.set, Actual->P.actual,
P.control->Compose.p,
Compose.control->control;

}

The graphical interpretation is shown in Figure 6.3.

<<Switch>>

S1

<<SaveComp>>

A

<<SaveComp>>

B

<<Switch>>

S2

100Hz 10Hz mode

<<Assembly>>

ModeC

Set Actual
Control

Figure 6.4: Switch effectuating mode-switches, with different execution rates

Mode shift We specify a component (ModeC) with two externally deter-
mined modes: idle and busy. In mode idle control algorithm A should run at
10Hz and in mode busy control algorithm B should run at 100Hz. Graphically
we illustrate ModeC as in Figure 6.4.

6.6 The Cruise Control Example

To further illustrate the use of SaveCCM we demonstrate a simple design of an
Adaptive Cruise Control system (ACC), as an example of an advanced function
in a vehicle. An ACC system helps the driver to keep the distance to a vehicle
in-front, i.e., it autonomously adapt the velocity of the vehicle to the velocity

6.6 The Cruise Control Example 71

<<SaveComp>>

HMI inputs

<<SaveComp>>

Internal
Sensors

<<SaveComp>>

Radar

<<Assembly>>

CC / ACC System

<<SaveComp>>

Object
recognition

<<SaveComp>>

ACC
Mode Logic

<<Assembly>>

ACC
Controllers

<<SaveComp>>

Actuators

<<SaveComp>>

HMI Outputs

10 Hz 100 Hz

Figure 6.5: ACC system

and distance of the vehicle in front. Figure 6.5 visualises a suggested ACC
system using SaveCMM.

The ACC system can be divided into three major parts: input, control,
and actuate. Our focus will be on the control part that is encapsulated in the
CC/ACC System assembly. The CC/ACC system consists of three components
and a switch:

Object recognition is a component that has responsibility to determine if there
is a vehicle in front and in that case estimate the distance and relative ve-
locity. It is triggered by the CC/ACC 10 Hz triggering port, and has a
Worst Case Execution Time (WCET) of 30 ms.

ACC controllers is an assembly implementing two cascaded controllers. The
inner controller is for speed control and can be used for normal Cruise
Control (CC), while the outer handles distance control. The assembly
has two triggering ports, one for the inner loop, and one for the outer.

72 Paper A

<<Assembly>>
ACC Controllers

<<SaveComp>>
Distance

Controller

<<Switch>>
Mode <<SaveComp>>

Speed
Controller

Object
Recognition

HMI
Inputs

Internal
Sensors

Mode
Logic

Distance
Controller
Triggering

Control

Speed
Controller
Triggering

Figure 6.6: ACC controllers assembly

HMI outputs is a component that gives information to the driver through the
vehicle computer display, e.g., information about the vehicle state and
latest request. The component is triggered by the CC/ACC systems trig-
gering port bound to 10 Hz. The WCET is 2 ms.

ACC mode logic is a component implementing the logic for shifting modes
depending on the state of the vehicle, inputs by the driver and from the
environment (vehicles in front). The different modes are CC, ACC, and
standby. It is triggered by the 10 Hz port. The WCET is less than 1 ms.

A diagram showing the internal design of the assembly ACC Controllers is
provided in Figure 6.6.

In Figure 6.6 the name of the component attached to in-ports is written
above each port. A brief presentation of the different components in the as-
sembly is given below.

Distance Controller is a pure controller component implementing a control
algorithm; it handles distance control and is the component in the outer
loop. The WCET is 20 ms, and it is triggered at 10 Hz.

Mode is a switch, which depending on the actual mode of the controller acti-
vates and deactivates the both controller components. The switch also

6.6 The Cruise Control Example 73

switches the input of the speed controller, between HMI Inputs (CC
functionality) and from the control signal of the outer loop controller
(ACC functionality).

The speed controller executes with a rate five times faster than the rate of the
distance controller due to faster dynamics, it control the speed of the
vehicle. The WCET is 5 ms.

As illustrated by the example, SaveCCM is designed to seamless and eas-
ily support typical requirements that arise when designing advanced vehicu-
lar functionality, e.g., connections with data, triggering and both, assemblies,
feedback, and mode changes.

As an illustration how the above SaveCCM specification can be used in
analysis of timing properties, let us (somewhat simplified) assume that the
CC/ACC System will be exclusively allocated to an ECU and that each compo-
nent is allocated to a single task. We further assume that the tasks are executing
under a fixed priority (FPS) real-time kernel, with a zero execution time over-
head, and that the deadline attributes of the components are defined to be equal
to the periods. Given this, and using deadline monotonic priority assignment,
together with the execution time attributes of the components, we can derive
the task set in Table 6.1 for the ACC mode.

Task Period (ms) WCET (ms) Prio
Object Recognition 100 30 5

Mode Logic 100 1 4
HMI Outputs 100 2 3

Distance Controller 100 20 2
Speed Controller 20 5 1

Table 6.1: The resulting task set

The task set can be used as input to standard fixed-priority schedulability
analysis tools (e.g. [12]). We can use such a tool to verify if the deadline
attributes are satisfied. By applying this analysis we find that the all dead-
line attributes are satisfied, hence we can from now on treat these attributes as
properties of the current configuration of the CC/ACC System.

74 Paper A

6.7 Conclusions and Further Work

We have presented SaveCCM, a component mode intended for embedded con-
trol applications in vehicular systems. In contrast with most current compo-
nent technologies, SaveCCM is sacrificing flexibility to facilitate analysis; in
particular analysis of dependability and real-time. We illustrate SaveCCM by
a simple example, where we also, as an example of timing analysis, show that
SaveCCM models are amenable to schedulabilty analysis.

This paper covers only parts of the component specifications. In our future
work we will provide a complete and formal definition of SaveCCM, as well
as linking it to further methods and tools for both dependability and timing
analysis. Parts of the specifications not discussed here include actions and
attributes describing dynamic behaviour of the components and attribute values
that are used for reasoning about system properties.

Bibliography

[1] R. van Ommering, F. van der Linden, and J. Kramer. The koala compo-
nent model for consumer electronics software. In IEEE Computer, pages
78–85, March 2000.

[2] M. de Jonge, J. Muskens, and M. Chaudron. Scenario-based prediction
of run-time resource consumption in component-based software systems.
In Proceedings of the 6th ICSE Workshop on Component-Based Software
Engineering (CBSE6), May 2003.

[3] C. Norström, M. Gustafsson, K. Sandström, J. Mäki-Turja, and
N. Bånkestad. Experiences from introducing state-of-the-art real-time
techniques in the automotive industry. In In Eigth IEEE International
Conference and Workshop on the Engineering of Compute-Based Systems
Washington, US. IEEE, April 2001.

[4] K. C. Wallnau and J. Ivers. Snapshot of ccl: A language for predictable
assembly. Technical report, Software Engineering Institute, Carnegie
Mellon University, 2003. CMU/SEI-2003-TN-025.

[5] K. C. Wallnau. Volume III: A Component Technology for Predictable
Assembly from Certifiable Components. Technical report, Software En-
gineering Institute, Carnegie Mellon University, April 2003.

[6] P. Müller, C. Stich, and C. Zeidler. Components @ work: Component
technology for embedded systems. In Proceedings of the 27th Interna-
tional Euromicro Conference, 2001.

[7] Save Project. http://www.mrtc.mdh.se/SAVE/ (Last Accessed: 2008-04-
25).

75

[8] EAST, Embedded Electronic Architecture Project. http://www.east-
eea.net/ (Last Accessed: 2008-04-25).

[9] H. Hansson, H. Lawson, O. Bridal, C. Norström, S. Larsson, H. Lönn,
M. Strömberg. Basement: An architecture and methodology for dis-
tributed automotive real-time systems. IEEE Transactions on Computers,
46(9):1016–1027, Sep 1997.

[10] C. Norström D. Isovic. Building Reliable Component-Based Software
Systems, chapter Components in Real-time systems. Artech House Pub-
lishers, July 2002. ISBN 1-58053-327-2.

[11] M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Dicipline. ISBN 0-13-182957-2. Prentice-Hall, 1996.

[12] Mast - modeling and analysis suite for real-time applications.
http://mast.unican.es/.

Chapter 7

Paper B:
Towards a Dependable
Component Technology for
Embedded System
Applications

Mikael Åkerholm, Anders Möller, Hans Hansson, and Mikael Nolin
In Tenth IEEE International Workshop on Object-oriented Real-time Depend-
able Systems (WORDS2005), Sedona, Arizona, february, 2005

77

Abstract

Component-Based Software Engineering is a technique that has proven effec-
tive to increase reusability and efficiency in development of office and web
applications. Though being promising also for development of embedded and
dependable systems, the true potential in this domain has not yet been realized.

In this paper we present a prototype component technology, developed with
safety-critical automotive applications in mind. The technology is illustrated
by a case-study, which is also used as the basis for an evaluation and a discus-
sion of the appropriateness and applicability in the considered domain. Our
study provides initial positive evidence of the suitability of our technology, but
does also show that it needs to be extended to be fully applicable in an indus-
trial context.

7.1 Introduction 79

7.1 Introduction

Software is central to enable functionality in modern electronic products, but
it is also the source of a number of quality problems and constitutes a major
part of the development cost. This is further accentuated by the increasing
complexity and integration of products. Improving quality and predictabil-
ity of Embedded Computer Systems (ECS) are prerequisites to increase, or
even maintain, profitability. Similarly, there is a call for predictability in the
ECS engineering processes; keeping quality under control, while at the same
time meeting stringent cost and time-to-market constraints. This calls for new
systematic engineering approaches to design, develop, and maintain ECS soft-
ware. Component-Based Software Engineering (CBSE) is such a technique,
currently used in office applications, but with a still unproven potential for em-
bedded dependable software systems. In CBSE, software is structured into
components and systems are constructed by composing and connecting these
components. CBSE can be seen as an extension of the object-oriented ap-
proach, where components may have additional interfaces compared to tradi-
tional method invocation of objects. Similarly to objects, simpler components
can be aggregated to produce more complex components.

In this paper, we present the ongoing work of devising a component tech-
nology for distributed, embedded, safety critical, dependable, resource con-
strained real-time systems. Systems with these characteristics are common in
most modern vehicles and in the robotics and automation industries. Hence, we
cooperate with leading product companies (e.g. ABB, Bombardier and Volvo)
and some of their suppliers (e.g. CC Systems) in order to establish this novel
component technology.

Support for dependability can be added at many different abstraction levels
(e.g. the source code and the operating system levels). At each level, differ-
ent methods and techniques can be used to increase the dependability of the
system. Our hypothesis is that dependability, together with other key charac-
teristics, such as resource efficiency and predictability, should be introduced
early in the software process and supported through all stages of the process.
Our view is that dependability, and similar cross-cutting characteristics, cannot
be achieved by addressing only one abstraction level or one phase in the soft-
ware life-cycle. Further, we argue that dependability of systems is enhanced by
systematic application of code synthesis. For code synthesis, models of com-
ponent behaviour and their resource requirements together with application re-
quirements and models of the underlying hardware and operating system are
used. The models and requirements are used by resource and timing analysis

80 Paper B

algorithms to ensure that a feasible system is generated.
In this paper, we present the current implementation of our component

technology (Section 7.3), together with an example application that illustrates
its use (Section 7.4). Based on experiences with the example application, we
provide an evaluation of the technology (Section 7.5).

7.2 CBSE for Embedded Systems

Research in the CBSE community is targeting theories, processes, technolo-
gies, and tools, supporting and enhancing a component-based design strategy
for software. A component-based approach for software development distin-
guishes component development from system development. Component devel-
opment is the process of creating components that can be used and reused in
many applications. System development with components is concerned with
assembling components into applications that meet the system requirements.
The central technical concepts of CBSE in an embedded setting are:

Software components that have well specified interfaces, and are easy to un-
derstand, adapt and deliver. Especially for embedded systems, the com-
ponents must have well specified resource requirements, as well as spec-
ification of other, for the application relevant properties, e.g., timing,
memory consumptions, reliability, safety, and dependability.

Component models that define different component types, their possible in-
teraction schemes, and clarify how different resources are bound to com-
ponents. For embedded systems the component models should impose
design restrictions so that systems built from components are predictable
with respect to important properties in the intended domain.

Component frameworks i.e., run-time systems that supports the components
execution by handling component interactions and invocation of the dif-
ferent services provided by the components. For embedded systems, the
component framework typically must be light weighted, and use pre-
dictable mechanisms. To enhance predictability, it is desirable to move
as much as possible of the traditional framework functionality from the
run-time system to the pre-run-time compile stages.

Component technologies i.e., concrete implementations of component mod-
els and frameworks that can be used for building component-based appli-
cations. Two of the most well known component technologies are Mi-

7.3 Our Component Technology 81

crosoft’s Components Object Model (COM)1 for desktop applications,
and Sun’s Enterprise Java Beans (EJB)2 for distributed enterprise appli-
cations.

Efficient development of applications is supported by the component-based
strategy, which addresses the whole software life-cycle. CBSE can shorten the
development-time by supporting component reuse, and by simplifying parallel
development of components. Maintenance is also supported since the compo-
nent assembly is a model of the application, which is by definition consistent
with the actual system. During maintenance, adding new, and upgrading ex-
isting components are the most common activities. When using a component-
based approach, this is supported by extendable interfaces of the components.
Also testing and debugging is enhanced by CBSE, since components are easily
subjected to unit testing and their interfaces can be monitored to ensure correct
behaviour.

CBSE has been successfully applied in development of desktop and enter-
prise business applications, but for the domain of embedded systems CBSE has
not been widely adopted. One reason is the inability of the existing commer-
cial technologies to support the requirements of the embedded applications.
Component technologies supporting different types of embedded systems have
recently been developed, e.g., from industry [1, 2], and from academia [3], [4].
However, as Crnkovic points out in [5], there are much more issues to solve
before a CBSE discipline for embedded systems can be established, e.g., ba-
sic issues such as light-weighted component frameworks and identification of
which system properties that can be predicted by component properties.

Based on risks and requirements for applying CBSE for our class of appli-
cations, we have collected a check-list with evaluation points that we have used
to evaluate our component technology in an industrial environment. In Section
5 we provide a summary of the evaluation, for more details we refer to [6].

7.3 Our Component Technology

Our component technology implements the SaveComp Component Model [7]
and provides compile-time mappings to a set of operating systems, follow-
ing the technique described in [8]. The component technology is intended to
provide three main benefits for developers of embedded systems: efficient de-
velopment, predictable behaviour, and run-time efficiency.

1Microsoft Corporation, The Component Object Model, http://www.microsoft.com
2Sun Microsystems, Enterprise JavaBeans Specification, http://www.sun.com

82 Paper B

Task
Allocation

Win 32

APPLICATION

SaveCCM

XML - representation

Design-
Time

Compile-
Time

Run-
Time

<<SaveComp>>

PC

<<SaveComp>>

Compose

<<Assembly>>

P

Set Actual
Control

Attribute
Assignment

Code Generation
& Analysis

C-compiler

RTXC

APPLICATION

Simulation Target

Figure 7.1: An overview of our current component technology

Efficient development is provided by the SaveComp Component ModelŠs
efficient mechanisms for developing embedded control systems. This compo-
nent model is restricted in expressiveness (to support predictability and depend-
ability) but the expressive power has been focused to the needs of embedded
control designers.

Predictable behaviour is essential for dependable systems. In our tech-
nology, predictability is achieved by systematic use of simple, predictable,
and analysable run-time mechanisms; combined with a restrictive component
model with limited flexibility.

Run-time efficiency is important in embedded systems, since these systems
usually are produced in high volumes using inexpensive hardware. We employ
compile-time mappings of the component-based application to the used oper-
ating systems, which eliminates the need for a run-time component framework.
As shown in Figure 7.1, three different phases can be identified, where different

7.3 Our Component Technology 83

pieces of the component technology are used:

Design-time SaveCCM is used during design-time for describing the applica-
tion.

Compile-time during compile-time the high-level model of the application is
transformed into entities of the run-time model, e.g., tasks, system calls,
task attributes, and real-time constrains.

Run-time during run-time the application uses the execution model from an
underlying operating system. Currently our component technology sup-
ports the RTXC operating system3 and the Microsoft Win32 environ-
ment4. The Win32 environment is intended for functional test and debug
activities (using CCSimTech [15]), but it does not support real-time tests.

7.3.1 Design-Time - The Component Model

SaveCCM is a component model intended for development of software for ve-
hicular systems. The model is restrictive compared to commercial component
models, e.g., COM and EJB. SaveCCM provides three main mechanisms for
designing applications:

Components which are encapsulated units of behaviour.

Component interconnections which may contain data, triggering for invoca-
tion of components, or a combination of both data and triggering.

Switches which allow static and dynamic reconfiguration of component inter-
connections.

These mechanisms have been designed to allow common functionality in em-
bedded control systems to be implemented. Specific examples of key function-
ality supported are:

• Support for implementation of feedback control, with a possibility to
separate calculation of a control signal, from the update of the controller
state. Something which is common in control applications to minimise
latency between sampling and control.

3Quadros Systems Inc, RTXC Kernel User’s Guide, http://www.quadros.com
4MSDN, Win32 Application Programmer’s Interface, http://msdn.microsoft.com/

84 Paper B

• Support for system mode changes, something which is common in, e.g.,
vehicular systems.

• Support for static configuration of components to suit a specific product
in a product line.

Architectural Elements

The main architectural elements in SaveCCM are components, switches, and
assemblies. The interface of an architectural element is defined by a set of
associated ports, which are points of interaction between the element and its
external environment. We distinguish between input- and output ports, and
there are two complementary aspects of ports: the data that can be transferred
via the port, and the triggering of component executions. SaveCCM distinguish
between these two aspects, and allow three types of ports:

• Data ports are one element buffers that can be read and written. Each
write operation to the port will overwrite the previous value stored.

• Triggering ports are used for controlling the activation of elements. An
element may have several triggering ports. The component is triggered
when all input triggering ports are activated. Several output triggering
ports may be connected to a single input triggering port, providing OR-
semantics.

• Combined ports (data and triggering), combine data and triggering ports,
semantically the data is written before the trigger is activated.

An architectural element emits trigger signals and data at its output ports,
and receives trigger signals and data at its input ports. Systems are built from
the architectural elements by connecting input ports to output ports. Ports can
only be connected if their types match, i.e. identical data types are transferred
and the triggering coincides.

The basis of the execution model is a control-flow (pipes-and-filters) para-
digm [9]. On a high level, an element is either waiting to be activated (trig-
gered) or executing. In the first phase of its execution an element read all its
inputs, secondly it performs all computations, and finally it generates outputs.

Components

Components are the basic units of encapsulated behaviour. Components are
defined by an entry function, input and output ports, and, optionally, quality

7.3 Our Component Technology 85

attributes. The entry function defines the behaviour of the component during
execution. Quality attributes are used to describe particular characteristics of
components (e.g. worst-case execution-time and reliability). A component is
not allowed to have any dependencies to other components, or other external
software (e.g. the operating system), except the visible dependencies through
its input- and output-ports.

Switches

A switch provides means for conditional transfer of data and/or triggering be-
tween components. A switch specifies a set of connection patterns, each defin-
ing a specific way of connecting the input and output ports of the switch. Log-
ical expressions (guards; one for each pattern), based on the data available at
some of the input ports, are used to determine which connection pattern that is
to be used.

Switches can be used for specifying system modes, each mode correspond-
ing to a specific static configuration. By changing the port values at run-time,
a new mode can be activated. By setting a port value to a fixed value at design
time, the compiler can remove unused functionality.

Assemblies

Component assemblies allow composite behaviours to be defined, and make it
possible to form aggregate components from groups of components, switches,
and assemblies. In SaveCCM, assemblies are encapsulation of components and
switches, having an external functional interface (just as SaveCCM-components).

SaveCCM Syntax

The graphical syntax of SaveCCM is shown in 7.2, the syntax is derived from
symbols in UML 2.05, with additions to distinguish between the different types
of ports. The textual syntax is XML6 based, and the syntax definition is avail-
able in [6].

5Object Management Group, UML 2.0 Superstructure Specification, http://www.omg.com/-
uml/

6World Wide Web Consortium (W3C), XML, http://www.w3.org/XML/

86 Paper B

 Symbol Interpretation
Input port - with triggering only

Input port - with data only

Input port – combined with data and triggering

Output port - with triggering

Output port - with data

Output port - combined with data and triggering

Component - A component with the stereotype
changed to SaveComp corresponds to a SaveCCM
component

Switch - components with the stereotype switch,
corresponds to switches in SaveCCM

Assembly - components with the stereotype
Assembly, corresponds to assemblies in SaveCCM

Delegation - A delegation is a direct connection from
an input to –input or output to –output port, used
within assemblies

<<Assembly>>

<name>

<<Switch>>

<name>

<<SaveComp>>

<name>

Symbol Interpretation
Input port - with triggering only

Input port - with data only

Input port – combined with data and triggering

Output port - with triggering

Output port - with data

Output port - combined with data and triggering

Component - A component with the stereotype
changed to SaveComp corresponds to a SaveCCM
component

Switch - components with the stereotype switch,
corresponds to switches in SaveCCM

Assembly - components with the stereotype
Assembly, corresponds to assemblies in SaveCCM

Delegation - A delegation is a direct connection from
an input to –input or output to –output port, used
within assemblies

Symbol Interpretation
Input port - with triggering only

Input port - with data only

Input port – combined with data and triggering

Output port - with triggering

Output port - with data

Output port - combined with data and triggering

Component - A component with the stereotype
changed to SaveComp corresponds to a SaveCCM
component

Switch - components with the stereotype switch,
corresponds to switches in SaveCCM

Assembly - components with the stereotype
Assembly, corresponds to assemblies in SaveCCM

Delegation - A delegation is a direct connection from
an input to –input or output to –output port, used
within assemblies

<<Assembly>>

<name>

<<Switch>>

<name>

<<SaveComp>>

<name>

Figure 7.2: Graphical syntax of SaveCCM

7.3.2 Compile-Time Activities

During compile-time, the XML-description of the application is used as in-
put. The XML description contains no dependencies to the underlying system
software or hardware, all code that is dependent on the execution platform is
automatically generated during the compile-step. In the compiler, the modules
(see Figure 7.1) that are independent of the underlying execution platform are
separated from modules that are platform dependent. When changing platform,
it is possible to replace only the platform dependent modules of the compiler.

The four modules of the compiler (task allocation, attribute assignment,
analysis, and code generation) represent different activities during compile-
time, as explained below.

7.3 Our Component Technology 87

Task Allocation

During the task-allocation step, components are assigned to operating-system
tasks. This part of the compile-time activities is independent of the execution
platform, and the algorithm used for allocation of components to tasks strives to
reduce the number of tasks. This is done by allocating components to the same
task whenever possible, i.e. (i) when the components execute with the same
period-time, or are triggered by the same event, and, (ii) when all precedence
relations between interacting components are preserved. A description of the
algorithm is available in [6].

Attribute Assignment

Attribute assignment is dependent on the task-attributes of the underlying plat-
form, and possibly additional attributes depending on the analysis goals. In the
current implementation for the RTXC RTOS and Win32, the task attributes are:

Period time (T) during code generation for specifying the period time for
tasks.

Priority (P) used by the underlying operating system for selecting the task to
execute among pending tasks.

Worst-case execution-time (WCET) used during analysis.

Deadline (D) used during analysis.

The period time, deadline, and WCET are directly derived from the compo-
nents included in each task. Priority is assigned in deadline monotonic order,
i.e., shorter deadline gives higher priority.

Analysis

The analysis step is optional, and is in many cases dependent on the underlying
platform, e.g., for schedulability analysis it is fundamental to have knowledge
of the scheduling algorithm of the used OS. But analysis is also dependent on
the assigned attributes (e.g., for schedulability analysis, WCET of the different
tasks are needed).

Examples of analysis include schedulability analysis [10], memory con-
sumption analysis [11], and reliability analysis [12].

Attributes that are usage and environment dependent cannot be analysed
in this automated step, since it only relies on information from the component

88 Paper B

model. There are no usage profiles or physical environment descriptions in-
cluded in the component model. Additional information is needed to allow
such analysis, e.g., safety analysis [13]. Safety is an important attribute of
vehicular systems, and we plan to integrate safety aspects in future extensions.

In the current prototype implementation, schedulability analysis according
to FPS theory is performed [14].

Code Generation

The code generation module of the compile-time activities generates all source
code that is dependent on the underlying operating system. The code genera-
tion module is dependent on the Application Programming Interface (API) of
the component run-time framework. In the prototype implementation for the
RTXC operating system (see Figure 7.3 right) and the Win32 operating system
(see Figure 7.3 left), the code generation does not target any of the APIs di-
rectly. Instead, the automatic code generation generates source code for target
independent APIs: the SaveOS and SaveIO APIs. The APIs are later translated
using C-style defines to the desired target operating system.

7.3.3 The Run-Time System

The run-time system consists of the application software and a component run-
time framework. The application software is automatically generated from the
XML-description using the SaveCCM Compiler. On the top-level, the run-time
framework has a transparent API, which always has the same interface towards
the application, but does only contain the run-time components needed (e.g.
the SaveCCM API does not include a CAN interface, a CAN protocol stack or
a device driver, if the application does not use CAN).

Pre-compilation settings are used to change the SaveCCM API behaviour
depending on the target environment. If the application is to be simulated in
a PC environment using CCSimTech [15], the SaveCCM API directs all calls
to the SaveOS to the RTOS simulator in the Windows environment. If the
system is to be executed on the target hardware using a RTOS (e.g. RTXC) the
SaveCCM API directs all system calls to the RTOS.

The framework also contains a variable set of run-time framework com-
ponents (e.g. CAN, IO, and Memory) used to support the application during
execution. These components are hardware platform independent, but might,
to some degree, be RTOS dependent. To obtain hardware independency, a

7.4 Application Example 89

hardware abstraction layer (HAL) is used. All communication between the
component run-time framework and the hardware passes through the HAL.

SaveCCM Application Programmer’s Interface

SaveCCM Application

MS Windows

SaveIO

PC

SaveMemory SaveCAN

CCSimTech

SaveCCM simulated run-time
component framework

SaveCCM Application Programmer’s Interface

SaveCCM Application

SaveCAN

SaveCCM Hardware Abstraction Layer

SaveIO

SaveRTOS

HW Platform

SaveMemory

Device Drivers

SaveC
comp

S
im

ulation F
ram

ew
ork

T
arget F

ram
ew

ork

SaveCCM Application Programmer’s Interface

SaveCCM Application

MS Windows

SaveIO

PC

SaveMemory SaveCAN

CCSimTech

SaveCCM simulated run-time
component framework

SaveCCM Application Programmer’s Interface

SaveCCM Application

SaveCAN

SaveCCM Hardware Abstraction Layer

SaveIO

SaveRTOS

HW Platform

SaveMemory

Device Drivers

SaveC
comp

S
im

ulation F
ram

ew
ork

T
arget F

ram
ew

ork

Figure 7.3: System architecture for simulation and target

The layered component run-time framework is designed to enhance porta-
bility, which is a strong industrial requirement [16].This approach also en-
hances the ability to upgrade or update the hardware and change or upgrade
the operating system. The requirements on product service and the short life-
cycles of todayŠs CPUs also make portability very important.

7.4 Application Example

To evaluate SaveCCM and the compile-time and run-time parts of the compo-
nent technology, a typical vehicular application was implemented. The appli-
cation used for evaluation is an Adaptive Cruise Controller (ACC) for a vehi-
cle. When designing the application, much focus was put on using all different
possibilities in the component model (components, switches, assemblies, etc.)
with the purpose to verify the usefulness of these constructs, the compile-time
activities, and the automatically generated source code. In the remaining part
of this section, the basics of an ACC system is introduced, and the resulting
design using SaveCCM is presented.

7.4.1 Introduction to ACC Functionality

An ACC is an extension to a regular Cruise Controller (CC). The purpose of
an ACC system is to help the driver keep a desired speed (traditional CC),
and to help the driver to keep a safe distance to a preceding vehicle (ACC
extension). The ACC autonomously adapt the distance depending on the speed

90 Paper B

of the vehicle in front. The gap between two vehicles has to be large enough to
avoid rear-end collisions.

To increase the complexity of a basic ACC system, and thereby exercise
the component model more, our ACC system has two non-standard functional
extensions. One extension is the possibility for autonomous changes of the
maximum speed of the vehicle depending on the speed-limit regulations. This
feature would require actual speed-limit regulations to be known to the ACC
system by, e.g., by using transmitters on the road signs or road map infor-
mation in cooperation with a Global Positioning System (GPS). The second
extension is a brake-assist function, helping the driver with the braking proce-
dure in extreme situations, e.g., when the vehicle in front suddenly brakes or if
an obstacle suddenly appears on the road.

7.4.2 Implementation using SaveCCM

On the top-level, we distinguish between three different sources of input to
the ACC application: (i) the Human Machine Interface (HMI) (e.g. desired
speed and on/off status of the ACC system), (ii) the vehicular internal sensors
(e.g. actual speed and throttle level), and, (iii) the vehicular external sensors
(e.g. distance to the vehicle in front). The different outputs can be divided in
two categories, the HMI outputs (returning driver information about the system
state), and the vehicular actuators for controlling the speed of the vehicle.

The application has two different trigger frequencies, 10 Hz and 50 Hz.
Logging and HMI outputs activities execute with the lower rate, and control
related functionality at the higher rate.

Furthermore, there is a number of operational system modes identified, in
which different components are active. The different modes are: Off, ACC En-
abled and Brake Assist. Off is the initial system mode. In the Off mode, none
of the control related functionality is activated, but system-logging, function-
ality related to determining distance to vehicles in front, and speed measuring
are active. During the ACC enabled mode the control related functionality is
active. The controllers control the speed of the vehicle based on the parame-
ters: desired speed, distance to vehicles in front, and speed-regulations. In the
Brake Assist mode braking support for extreme situations is enabled.

The ACC system is implemented as an assembly (ACC Application in left
part of Figure 7.4) built-up from four basic components, one switch, and one
sub-assembly. The sub-assembly (ACC Controller) is in turn implemented as
shown in Figure 7.4, right.

7.4 Application Example 91

<<Assembly>>
ACC Controllers

<<Assembly>>
Distance

Controller

<<Assembly>>
Speed

Controller

Distance

Control

Relative
Speed

Max
Speed

<<Assembly>>
Distance

Controller

<<SaveComp>>

Calc Output

<<SaveComp>>

Update State

<<Assembly>>
Speed

Controller

<<SaveComp>>

Calc Output

<<SaveComp>>

Update State

Distance
Relative
Speed

Max
Speed

Current
Speed

Current
Speed

Control

Road Signs Enabled

Current Speed

Road Sign Speed
ACC Max Speed

Distance

ACC Enabled

Brake Pedal Used

<<Assembly>>
50 Hz

10 Hz

Brake Signal

Throttle

Brake Assist

<<SaveComp>>

Logger
HMI Outputs

<<SaveComp>>

Object
Recognition

<<SaveComp>>

Mode Switch

<<Switch>>

ACC
Controller

<<Assembly>>

Brake Assist

ACC

Max Speed

ACC Application
Speed Limit

<<SaveComp>>

Figure 7.4: ACC Application implementation

The ACC Application Assembly

The Speed Limit component calculates the maximum speed, based on input
from the vehicle sensors (i.e. current vehicle speed) and the maximum speed
of the vehicle depending on the speed-limit regulations. The component runs
with 50 Hz and is used to trig the Object Recognition component.

The Object Recognition component is used to decide whether or not there
is a car or another obstacle in front of the vehicle, and, in case there is, it
calculates the relative speed to this car or obstacle. The component is also used
to trigger Mode Switch and to provide Mode Switch with information indicating
if there is a need to use the brake assist functionality or not.

Mode Switch is used to trigger the execution of the ACC Controller assem-
bly and the Brake Assist component, based on the current system mode (ACC
Enabled, Brake Pedal Used) and information from Object Recognition.

The Brake Assist component is used to assist the driver, by slamming on
the brakes, if there is an obstacle in front of the vehicle that might cause a
collision.

The Logger HMI Outputs component is used to communicate the ACC
status to the driver via the HMI, and to log the internal settings of the ACC. The
log-memory can be used for aftermarket purposes (black-box functionality),
e.g., checking the vehicle-speed before a collision.

The ACC Controller assembly is built up of two cascaded controllers (see

92 Paper B

Figure 7.4, right), managing the throttle lever of the vehicle. This assembly
has two sub-level assemblies, the Distance Controller assembly and the Speed
Controller assembly.

The reason for using a control feedback solution between the two con-
trollers is that since the calculation is very time critical, it is important to de-
liver the response (throttle lever level) as fast as possible. Hence, the controllers
firstly calculate their output values and after these values have been sent to the
actuators, the internal state is updated (detailed presentation can be found in
[6].

7.4.3 Application Test-Bed Environment

For the evaluation the RTXC operating system was used together with a Cross
FIRE ECU7. RTXC is a pre-emptive multitasking operating system which per-
mits a system to make efficient use of both time and system resources. RTXC
is packaged as a set of C language source code files that needs to be compiled
and linked with the object files of the application program.

The Cross FIRE is a C167-based8 IO-distributing ECU (Electronic Control
Unit) designed for CAN-based real-time systems. The ECU is developed and
produced by CC Systems, and intended for use on mobile applications in rough
environments.

During functional testing and debugging, CC Systems use a simulation en-
vironment called CCSimTech [15], which also was incorporated in this work.
Developing and testing of distributed embedded systems is very challenging
in their target environments, due to poor observability of application state and
internal behaviour. With CCSimTech, a complete system with several nodes
and different types of interconnection media, can be developed and tested on
a single PC without access to target hardware. This makes it possible to use
standard PC tools, e.g., for debugging, automated testing, fault injection, etc.

7.5 Evaluation and Discussion

CBSE addresses the whole life-cycle of software products. Thus, to fully eval-
uate the suitability of a component technology requires experiences from using
the technology in real projects (or at least in a pilot/evaluation project), by rep-

7CC Systems, Cross FIRE Electronic Control Unit, http://www.cc-systems.com
8Infineon, C-167 processor, http://www.infineon.com

7.5 Evaluation and Discussion 93

resentatives from the intended organisation, using existing tools, processes and
techniques.

Our experiment was conducted using CC Systems’ tools and techniques,
however we have not used the company’s development processes. Hence, we
can only give partial answers (indications) concerning the suitability our com-
ponent technology.

We divide our evaluation in the following three categories:

Structural properties concerning the suitability of the imposed application
structure and architecture, and the ease to define and create the desired
behaviour using the supported design patterns.

Behavioural properties concerning the application performance, in terms of
functional and non-functional behaviour.

Process properties concerning the ease and possibility to integrate the tech-
nology with existing processes in the organisation.

The adaptive cruise controller application represents an advanced domain
specific function, which could have been ordered as a pilot study at the com-
pany. The hardware, operating system, compilers, and the simulation tech-
nique, have been selected among the companies repertoire, and are thus highly
realistic.

The implementation of the application has not been done according to the
process at the company, rather as an experiment by the authors. Thus, it is
mainly the structural-, and behavioural related evaluation that can be addressed
by our experience. However, to evaluate the process related issues, senior pro-
cess managers at the company have helped to relate the component technology
to the processes.

The evaluation is conducted using a check-list assembled from require-
ments for automotive component technologies by Möller et al. [16], risks with
using CBSE for embedded systems by Larn and Vickers [17], and from identi-
fied needs, by Crnkovic [5].

7.5.1 Structural Properties

Based on the experiment performed we conclude that the component model is
sufficiently expressive for the studied application, and that it allows the soft-
ware developer to focus on the core functionality when designing applications.
The similarities with UML 2.0 provided important benefits by allowing us to
use a slightly modified UML 2.0 editor for modelling applications. Also, issues

94 Paper B

related to task mapping, scheduling, and memory allocation are taken care of
by the compilations provided by the component technology. Further allowing
the developer to concentrate on application functionality.

Since the components have visible source code, and since all bindings be-
tween components are automatically generated, making modifications of com-
ponents is facilitated, though there is not yet any specific support to handle
maintenance implemented in the component technology.

It is straight forward to compile the ACC system for both Win32 on a reg-
ular PC and RTXC on a Cross FIRE ECU. This is an indication of the portabil-
ity of our technology across hardware platforms and operating systems. As a
consequence, components can be reused in different applications regardless of
which RTOS or hardware is used.

Configurability is essential for component reuse, e.g., within a Product Line
Architecture (PLA) [18]. In SaveCCM, components can be configured by static
binding of values to ports. However, there is currently no explicit architec-
tural element to specify this. In our experiment, we could however achieve the
same effect by directly editing the textual representation. For instance, a switch
condition can be set statically during design-time, and partially evaluated dur-
ing compile-time, to represent a configuration in a PLA. A future extension
of SaveCCM is to add a new architectural element that makes it possible to
visualise and directly express static configurations of input ports. This will
additionally facilitate version and variant management.

7.5.2 Behavioural Properties

With respect to behavioural properties, our component technology is quite ef-
ficient. The run-time framework provides a mapping to the used OS without
adding functionality, and the compile-time mechanisms strive to achieve an ef-
ficient application, by allocating several components to the same task. Some
data about our case-study:

• The compilation resulted in four tasks: one task including components
speed-limit, object recognition, and mode-switch; one task including log-
ger HMI outputs; one task including brake assist; and one task including
the four components in the ACC controller.

• The CPU utilisation in the different application modes are 7, 12, 15,
perecents respectively for the off, brake assist, and ACC modes respec-
tively.

7.6 Conclusions and Future Work 95

• The total application size is 114 kb, of which 104 kb belongs to the oper-
ating system, and 10 kb to the application. The application part consists
of 2 kb of components code, together with 8 kb run-time framework and
compiler generated operating system dependent data and code.

To allow analysis it is essential to derive task level quality attributes from
the corresponding component level attributes. In our case-study this was straight-
forward, since the only quality attribute considered is worst-case execution
time, which can be straightforwardly composed by addition of the values asso-
ciated to the components included in the task.

Furthermore, the CCSimTech simulation technique provided very useful
for verification and debugging of the application functionality.

7.5.3 Process Related

The process related evaluation concerns the suitability to use the existing pro-
cesses and organisation, when developing component-based applications. So
process related issues are not directly addressable by our experiment, based on
a set of interviews company engineers have expressed the following:

• The RTOS and platform independence is a major advantage of the ap-
proach.

• The integration with the simulation technique, CCSimTech, used in prac-
tically all development projects at CC Systems, will substantially facili-
tate the integration of SaveCCM in the development process.

• The tools included in the component technology, as well as the user-
documentation, have not reached an acceptable level of quality for use
in real industry projects.

• The maintainability aspects of CBD are attractive, since changes are sim-
plified by the tight relation between the applications description and the
source code.

7.6 Conclusions and Future Work

We have described the initial implementation of our component technology for
vehicular systems, and evaluated it in an industrial environment, using require-
ments and needs identified in related research.

96 Paper B

The evaluation shows that the existing parts of the component technology
meet the requirements and needs related to them. However, to meet overall
requirements and needs, extensions to the technology are needed.

Plans for future work include extending the component technology with
support for multiple nodes, integration of legacy-code with the components
[19], run-time monitoring support [20], and a real-time database for structured
handling of shared data [21]. Implementation of more types of automated anal-
ysis to prove the concept of determining system attributes from component
attributes is also a target for future work. However, there is also a need for
methods to determine component attributes. Furthermore, to make the pro-
totype useful in practice, there are needs for integrating our technology with
supporting tools, e.g., automatic generation of XML descriptions from UML
2.0 drawings, and connectivity with configuration management tools.

An indication of the potential of our component technology, and CBSE for
embedded systems development in general, is that the company involved in
the case-study finds our technology promising and has expressed interest to
continue the cooperation.

Acknowledgements
We would like to thank CC Systems for inviting and helping us to realise this

pilot project. Special thanks to Jörgen Hansson and Ken Lindfors for invitation
and to Johan Strandberg and Fredrik Löwenhielm for their support with all
kinds of technical issues. We would also like to thank Sasikumar Punnekkat
for valuable feedback on early versions of this article.

Bibliography

[1] K.L. Lundbäck and J. Lundbäck and M. Lindberg. Component-Based
Development of Dependable Real-Time Applications. Arcticus Systems:
http://www.arcticus.se (Last Accessed: 2005-01-18).

[2] R. van Ommering et al. The Koala Component Model for Consumer
Electronics Software. IEEE Computer, 33(3):78–85, March 2000.

[3] M. de Jonge, J. Muskens, and M. Chaudron. Scenario-Based Prediction of
Run-Time Resource Consupmption in Component-Based Software Sys-
tems. In Proceedings of the 6th International Workshop on Component-
Based Software Engineering, May 2003.

[4] K. C. Wallnau. Volume III: A Component Technology for Predictable
Assembly from Certifiable Components. Technical report, Software En-
gineering Institute, Carnegie Mellon University, April 2003.

[5] I. Crnkovic. Componet-Based Approach for Embedded Systems. In
Proceedings of 9th International Workshop on Component-Oriented Pro-
gramming, June 2004.

[6] M. Åkerholm, A. Möller, H. Hansson, and M. Nolin. SaveComp - a
Dependable Component Technology for Embedded Systems Software.
Technical report, MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-
165/2004-1-SE, MRTC, Mälardalen University, December 2004.

[7] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren. SaveCCM -
a Component Model for Safety-Critical Real-Time Systems. In Proc. of
30th Euromicro Conference, September 2004.

[8] K. Sandström, J. Fredriksson, and M. Åkerholm. Introducing a Com-
ponent Technology for Safety Critical Embedded Real-Time Systems.

97

98 Bibliography

In Proceedings of th 7th International Symposium on Component-Based
Software Engineering (CBSE7), May 2004.

[9] M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall; 1 edition, 1996. ISBN 0-131-82957-
2.

[10] G.C. Butazzo. Hard Real-Time. Kluwer Academic Publishers, 1997.
ISBN: 0-7923-9994-3.

[11] A.V. Fioukov, E.M. Eskenazi, D.K. Hammer, and M. Chaudron. Evalua-
tion of Static Properties for Component-Based Architetures. In Proceed-
ings of 28th Euromicro Conference, September 2002.

[12] H.W. Schmidt and R.H. Reussner. Parameterized Contracts and Adapter
Synthesis. In Proceedings of the 5th ICSE Workshop on Component-
Based Software Engineering, May 2001.

[13] D.H. Stamatis. Failure Mode and Effect Analysis: FMEA from Theory to
Execution. ASQ Quality Press, 2nd Edition, 2003. ISBN 0-87389598-3.

[14] M.G. Harbour, M.H. Klein, and J.P. Lehoczky. Timing analysis for Fixed-
Priority Scheduling of Hard Real-Time Systsems. IEEE Transactions,
20(1), January 1994.

[15] A. Möller and P. Åberg. A Simulation Technology for CAN-based Sys-
tems. CAN Newsletter, 4, December 2004.

[16] A. Möller, J. Fröberg, and M. Nolin. Industrial Requirements on Com-
ponent Technologies for Embedded Systems. In Proceedings of the 7th
International Symposium on Component-Based Software Engineering.
2004 Proceedings Series: Lecture Notes in Computer Science, Vol. 3054,
May 2004.

[17] W. Lam and A.J. Vickers. Managing the Risks of Component-Based Soft-
ware Engineering. In Proceedings of the 5th International Symposium on
Assessment of Software Tools, June 1997.

[18] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001. ISBN 0-201-70332-7.

[19] M. Åkerholm, K. Sandström, and J. Fredriksson. Interference Con-
trol for Integration of Vehicular Software Components. Technical re-
port, MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-162/2004-1-
SE, MRTC, Mälardalen University, May 2004.

[20] D. Sundmark, A. Möller, and M. Nolin. Monitored Software Compo-
nents – A Novel Software Engineering Approach –. In Proceedings of the
11th Asia-Pasific Software Engineering Conference, Workshop on Soft-
ware Architectures and Component Technologies, November 2004.

[21] D. Nyström. COMET: A Component-Based Real-Time Database for Ve-
hicle Control Systems. Technical report, Technology Licentiate Thesis
No.26, ISSN 1651-9256, ISBN 91-88834-41-7, Mälardalen Real-Time
Reseach Centre, Mälardalen University, May 2003.

Chapter 8

Paper C:
The SAVE approach to
component-based
development of vehicular
systems

Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John Håkans-
son, Anders Möller, Paul Pettersson, and Massimo Tivoli
In Journal of Systems and Software, vol 80, nr 5, Elsevier, May, 2007

101

Abstract

The component-based strategy aims to manage complexity, reduce time-to-
market, and decrease maintenance efforts by building systems from existing
components. For embedded software, the full potential of this strategy has not
yet been demonstrated, mainly due to specific requirements in the domain, e.g.,
related to timing, dependability, and resource consumption.

We present SaveCCT – a component technology intended for vehicular
systems, show the applicability of SaveCCT in the engineering process, and
demonstrate its suitability for vehicular systems in an industrial case-study.
Our experiments indicate that SaveCCT provides appropriate expressiveness,
resource efficiency, analysis and verification support for component-based de-
velopment of vehicular software.

8.1 Introduction 103

8.1 Introduction

Component-Based Software Engineering (CBSE) is a young software engi-
neering approach which has already shown successful in many software devel-
opment projects. However, it has mainly been used in the domains of desktop
and e-business applications, less frequently for embedded applications.

In this article we address the problem of defining a component technology
suitable for development of embedded vehicular control-system software. The
underlying assumption is that one reason for the limited success of CBSE in the
embedded systems domain is the inability of commercially available compo-
nent technologies to provide solutions that meet typical embedded application
requirements, such as resource-efficiency, predictability, and safety. We believe
that these requirements should be considered early in the software process and
treated through all stages in the process, since they are cross-cutting concerns
that can not be achieved by addressing only one phase in the software life-
cycle. To support domain requirements, the proposed component technology
enables easy usage of analysis and verification methods during the whole soft-
ware development process, through automated connectivity to test and analysis
tools. Constructing formal models manually for analysis tools can be a time-
consuming and demanding task, which often cannot be afforded as a repeated
activity. Our work has been guided by continuous evaluation of its suitability
in an running industrial case-study.

The research presented in this article has been carried out within the SAVE
project1, which has as long-term goal to establish an engineering discipline for
systematic development of component-based software for safety-critical em-
bedded systems. The focus of SAVE is on a single application area (vehicular
systems), with the aim that results should be applicable to a wider area. The
component technology presented here is one of the core parts of the project.

In the software engineering field, reuse has not been as successful as in
other fields, e.g., mechanical engineers have reused well defined components,
such as nuts and bolts, for many decades. Historically, attempts to reuse
software have resulted in problems due to architectural mismatches between
components [1]. CBSE tries to overcome these and other obstacles hindering
reuse, through processes, technologies, and tools supporting and enhancing a
component-based design strategy for software [2]. One of the most central con-
cepts in CBSE theory is component technologies. A component technology
provides support for the composition of component-based software. It often
contains various development tools for simplifying the engineering process,

1www.mrtc.mdh.se/save/

104 Paper C

and provides necessary run-time support for the components. A component
technology can be seen as a realisation of a component model. The component
model specifies the common rules that all developers must follow, e.g., basic
requirements for elements to be classified as components, and certain patterns
for assembling components. Component technologies for embedded systems
should support general embedded domain characteristics, e.g., as described
by [3]: applications should use resources efficiently; it should be possible to
model different aspects of the applications; the technology should support anal-
ysis early in the design process; and provide possibilities to verify functional
and extra-functional specifications.

This article is organised as follows. The remainder of this section gives
an introduction to vehicular systems, and surveys related work. Section 2 de-
scribes the different parts of our component technology SaveCCT. In Section 3
we describe the underlying component model SaveCCM. Section 4 describes
the analysis techniques currently integrated with SaveCCT. Section 5 presents
a case-study where SaveCCT has been used. Finally, Section 6 concludes the
article.

8.1.1 Vehicular Systems

Our work is focused on embedded control software for vehicle systems, e.g.,
passenger cars, trucks, and heavy vehicles. We focus on power train and chassis
systems, which we refer to as vehicular systems. These systems are highly crit-
ical for the vehicles functionality, controlling, e.g., engine, brakes, and steer-
ing. Other classes of electronic systems in modern vehicles include cabin sys-
tems, and infotainment systems [4].

The physical architecture of the electronic system in vehicles is a complex
distributed computer system. The computer nodes are called Electronic Con-
trol Units (ECUs), and are often developed by different vendors and use differ-
ent hardware. As an example, Figure 8.1 [?, from]]FrobergLicThesis:Froberg2004
shows the approximate location of the 40 ECUs in a Volvo XC90. The loca-
tion is primarily determined by the location of the controlled object in order to
minimize the length of wiring to sensors and actuators.

Vehicular system manufacturers are interested in the CBSE approach for
its ability to simplify reuse. Besides obvious advantages with reuse, CBSE is
seen as a method that increases maintainability of software. Component based
software is by definition modularised and changes can be isolated to a limited
set of components. Thus, maintenance efforts can be decreased compared to
when using monolithic software. Another important benefit compared to other

8.1 Introduction 105

Figure 8.1: Overview of the electronic system architecture in Volvo XC90.

approaches is the support for product-line architectures, which is common for
essentially all high volume products (e.g., vehicles). Product-line architectures
are used to rapidly and costs effectively provide new products from a prod-
uct family. The software is organised in a base-line variant, and new prod-
ucts are obtained by additions and/or replacements of components to the base-
line. However, vehicular software has certain demands that must be considered
when choosing development techniques and technologies, including:

• Analysis – Developers of vehicular software must at early stages in de-
velopment perform analysis of extra-functional properties, e.g., memory
consumption and processor utilisation. Furthermore, the software is crit-
ical for the vehicle behaviour, which means that predictability is very im-
portant, to allow analysis of, e.g., safety invariants, real-time attributes,
and reliability attributes.

• Verification – Developers must verify that applications meet their func-
tional and extra-functional specification. To date, the main method is ex-
tensive testing, complemented by formal methods. A component tech-
nology can improve testability by e.g., using well-defined and under-
standable run-time mechanisms, support for simulation to increase ob-
servability, and possibilities for mixed hardware-software tests.

• Resource efficiency – The software must use resources efficiently, since
vehicles are produced in large volumes. This means that the software

106 Paper C

platform, development technologies, and system architecture must be
chosen to serve the particular needs of embedded vehicular systems us-
ing resources efficiently.

8.1.2 Related Work

In this section we relate our work to recent CBSE research from academia and
industry.

Our strongest influence is the Rubus Component Technology [5], which
originates from our previous work with Basement [6]. The Rubus Component
Technology is commercially available and is successfully used in the vehicle
industry. The applications are statically scheduled, and components can be as-
sociated with timing properties such as release time and worst-case execution
time. Rubus main limitations are that the static scheduling approach only sup-
ports periodic activation and that timing aspects are the only extra-functional
properties considered.

From Koala [7], SaveCCT has adopted the idea of switches as the main
method to achieve run-time flexibility, run-time mode changes, and design-
time configuration. Koala is a component technology for consumer electronics
originally designed by Philips, and then further developed in the projects Robo-
cop2 and Space4U3 with Philips and Eindhoven Technical University as main
actors. These projects focus on areas like analysis, fault prevention, power
management, and terminal management; but compared to SaveCCT they are
geared towards less safety-critical applications, such as consumer electronics.

An ongoing project with similarities in goals, but which compared to SaveCCT
has taken a different approach, is Predictable Assembly from Certifiable Com-
ponents (PACC)4 at the Software Engineering Institute. The project focuses on
how a component technology can be used and adopted to achieve predictable
assemblies. Their concept of Prediction Enabled Component Technologies
(PECT) [8] describes a concept for integration of component technologies and
analysis techniques. Rather than being a concrete technology (as SaveCCT),
PECT describes how to restrict the usage of a given component technology in
such a way that it is possible to reason about desired user-specified run-time
properties, with respect to available analysis techniques.

PECOS [9] is one of the component technologies targeting the automation
industry. It emerged from a joint ABB and academia project focusing on devel-

2www.extra.research.philips.com/euprojects/robocop/
3www.extra.research.philips.com/euprojects/space4u/
4www.sei.cmu.edu/pacc/

8.2 The SaveComp Component Technology 107

oping a component technology especially for field-devices, i.e., small reactive
embedded systems. PECOS is similar to SaveCCT in the sense that it con-
siders extra-functional properties very thoroughly in order to enable analysis,
although focusing on other properties and using different techniques.

The IEC61131-3 standard [10] defines a graphical language that can be
used for composition of components. The language uses the same pipes-
and-filters interaction model between components as SaveCCT, but analysis
of extra-functional properties is not prioritised in the standard, e.g., the se-
mantics of the different elements is not formally defined. However, the Extra-
functional Consistency and Prediction for Component-Based Control Systems
project [11], develops and implements a model for prediction and consistency
checking of extra-functional properties relevant for distributed real-time control-
systems. The main focus of the project is enabling prediction in conjunction
with the IEC61131-3 standard, which seems to be a promising CBSE approach
for embedded systems since the standard is mature and well known. The
project is running contemporary to our project, but public results in real context
are still missing.

8.2 The SaveComp Component Technology

The SaveComp Component Technology (SaveCCT) is here described by dis-
tinguishing manual design, automated activities, and execution, which are dis-
cussed in the following sub-sections. Referring to Figure 10.1 which provides
an overview of SaveCCT, the entry point for a developer is the design tool,
where the application is created. During development a developer can utilise
a number of available analysis tools with automated connectivity to the design
tool. Analysis should be complemented by testing, which is possible already
at early stages in the project through replacing hardware, run-time platforms,
and missing parts of the system with simulated equivalencies. To simulate a
system, the developer performs the same automated synthesis steps as when
generating code for the real target system, only the last compilation steps dif-
fer.

8.2.1 Manual Design

During manual design, developers use a component-based strategy, supported
by a set of tools for design and analysis. Practising CBSE means that develop-
ers distinguish component development from system development. Component

108 Paper C

Figure 8.2: Overview of the SaveComp Component Technology.

development is the process of creating components that can be used and reused
in many applications. System development with components is concerned with
assembling components into applications. Component development and sys-
tem development are independent activities that can, e.g., be parallel or per-
formed by different companies.

The development starts with identification of component requirements. This
shall be done with respect to already available components; the remaining com-
ponents have to be developed in parallel or bought from third parties. Then,
the SaveCCT design tool provides support for graphical assembly of applica-
tions from existing components (i.e., system development). The tool allows
designers to specify the component interconnection logics, and express high
level constraints on the resulting application. Assembling components is done
with respect to the rules of the SaveComp Component Model (SaveCCM) (see
Section 3), which is enforced by the design tool. The component model de-
fines different component types that are supported by SaveCCT, possible in-
teraction schemes between components, and clarifies how different resources
are bound to components. The component model has been designed so that

8.2 The SaveComp Component Technology 109

common functionality in vehicular systems can be expressed. Some specific
examples of key functionality are feedback control, system mode changes, and
static configuration for variability within product-line architectures.

As shown in Figure 10.1, SaveCCT incorporates a number of analysis tools,
which can be used for verifying specific attributes of the application, e.g., re-
lated to timeliness and safety. To efficiently incorporate an analysis tool, as
much as possible of the translation from the model created with the design tool
to the model required by the desired analysis tool should be automated. To
date we have incorporated LTSA [12], and TIMES [13], described further in
Section 8.4.

8.2.2 Automated Activites

Automated activities produce necessary code for the run-time system (i.e.,
glue-code), and different specialized models of the application for analysis
tools, e.g., finite state processes, and timed-automata models.

The synthesis activity generates all low level code (i.e., hardware and oper-
ating system interaction), meaning that components are free from dependencies
to the underlying platform. Furthermore, the code generation step statically re-
solves resource usage and timing, with the strategy to resolve as much as pos-
sible during compile-time instead of depending on costly run-time algorithms.
Synthesis consists of four steps (task allocation, attribute assignment, analysis,
and code generation), described in more detail by [14].

The model generation activity is an automated activity which can be run
separately from synthesis. Model generation is a translation from the model
created by the design tool to the models (or other form of input) required by
the desired analysis tools. The model created by the design tool can be ad-
justed to include attributes that are required to accomplish the transition, i.e.,
the component model is extensible in the sense that optional quality attributes
of design elements can be specified. However, it might be the case that the in-
put required by a desired analysis tool cannot be created only from information
in the model created by the design tool, e.g., safety analysis often requires a
model of the environment which is not addressed by the design tool.

8.2.3 Execution

To achieve efficient and predictable run-time behaviour, and reliable support
for pre-runtime analysis, SaveCCT assumes a real-time operating system (RTOS)

110 Paper C

as underlying platform. The current implementation use RTXC from Quadros 5,
which is a standard fixed-priority pre-emptive multitasking RTOS. The sup-
ported target hardware in the current version is CrossFire MX from CC Sys-
tems6, which is an electronic control unit intended for control systems running
in rough environments. Tasking7 is integrated as the target compiler for the
CrossFire MX.

To facilitate testing and debugging we incorporate CCSimTech [15], which
is a simulation framework that offers simulated software equivalences as re-
placements for much common hardware in embedded systems, e.g., IO (digital
and analogue), network technologies, and memories. This enables test and
debug of distributed embedded control systems in a PC environment without
access to target hardware. It enables easy unit-testing for the developers in
their standard PC as well as test automation possibilities, and the tests can
start even before the intended target hardware is available. Furthermore, CC-
SimTech provides support for mixed hardware-software tests, where some of
the nodes in the distributed system is simulated and others are real target nodes.
Most parts of an embedded application can be more efficiently tested in a PC
environment, since the observability is higher than in the target system and ef-
ficient development tools for PC platforms can be utilsed. However, certain
verification must be performed on the target hardware, e.g., timing related and
acceptance tests in the intended environment.

8.3 The SaveComp Component Model

The SaveComp Component Model (SaveCCM) formalises the SaveCCT com-
ponent concept, and defines how components can be combined to create sys-
tems [16]. To suit the domain of vehicular systems, the component model
should support the development of resource-efficient systems, and thus the run-
time framework governing e.g., component communication, must be lightweight.
Another requirement is that system behaviour should be predictable, both func-
tionally and with respect to timeliness and resource usage.

SaveCCM is based on a textual XML syntax, and a somewhat modified
subset of UML2 component diagrams is used as a graphical notation. The
semantics is formally defined by a two-step transformation, first from the full
language to a similar but simpler language called SaveCCM Core, and then into

5www.quadros.com
6www.cc-systems.com
7www.tasking.com

8.3 The SaveComp Component Model 111

timed automata with tasks. In this article, we use the graphical notation only,
and present the semantics informally. The reader is referred to [17] for details
on the formal semantics. The graphical notation is presented in Figure 8.3.

Data input port

Trigger input port

Data- and trigger input port

Data output port

Trigger output port

Data- and trigger output port

<<SaveComp>>

Name

<<Switch>>

Name

<<Assembly>>

Name
Delegate

Component

Switch

Assembly

Figure 8.3: The graphical notation of SaveCCM.

In SaveCCM, systems are built from interconnected elements with well
defined interfaces consisting of input- and output ports. The three element
categories; components, switches and assemblies, are described in more detail
below. The model is based on the control flow (pipes-and-filters) paradigm,
and an important feature is the distinction between data transfer and control
flow. The former is captured by connections between data ports where data of
a given type can be written and read, and the latter by trigger ports that control
the activation of components. A port can also have both triggering and data
functionality.

This separation of data and control flow results in a flexible model that
supports both periodic and event driven activities, since on a system level, exe-
cution can be initiated by either clocks or external events. It also allows compo-
nents to exchange data without handing over the control, which simplifies the
construction of, e.g., feedback loops and communication between sub-systems
running at different frequencies.

Another aspect of explicit control flow is that the resulting design is suf-
ficiently analysable with respect to temporal behaviour to allow analysis of
schedulability, response time, etc., which is crucial to ensure correctness of
real-time systems.

8.3.1 Components

Components are the main architectural element in SaveCCM. In addition to
input and output ports, the interface of a component contains a list of qual-

112 Paper C

ity attributes, each associated with a value and possibly a confidence measure.
These attributes could include, for example, (worst case) execution time infor-
mation for a number of target hardware configurations, reliability estimates,
safety models, etc. The quality attributes are used for analysis, model extrac-
tion and for synthesis.

The concrete functionality of a component is typically provided by a single
entry function implemented in C, but the model also allows more complex
components that consist of a number of possibly communicating tasks. In both
cases, no intercomponent dependencies are allowed, except those explicitly
captured by the ports.

A component is initially inactive. It remains in this state until all input
triggering ports have been activated, at which point it switches to the executing
state. In a first phase of its execution, a component reads all its input data
ports. Then, it performs the associated computations based only on this input
and possibly an internal state. When the computation phase is over, i.e., when
the function has been executed or, in the case of a more complex component,
when all tasks have finished, the output is written to the output data ports.
Finally, the input triggering ports are reset and all outgoing trigger ports are
activated, after which the component returns to the idle state.

This strict “read-execute-write” semantics ensures that once a component
is triggered, the execution is functionally independent of any concurrent ac-
tivity. In particular, a component produces the same output with preemptive
and non-preemptive scheduling, i.e., whether or not a task may be interrupted
by another task during its execution. The “read-execute-write” semantics also
facilitates analysis, since component execution can be abstracted by a single
transfer function from input values and internal state to output values.

8.3.2 Switches

The switch construct in SaveCCM is similar to that in Koala [7]. Switches
provide means to change the component interconnection structure, either stat-
ically for pre-runtime static configuration, or dynamically, e.g., to implement
modes and mode switches. The switch specifies a number of connection pat-
terns, i.e., partial mappings from input to output ports. Each connection pattern
is guarded by a logical expression over the data available at the input ports of
the switch, defining the condition under which that pattern is active.

If fixed values are supplied to ports used in connection pattern guards, par-
tial evaluation can determine that parts of a switch will remain unchanged dur-
ing runtime. Such static parts are optimised into ordinary connections, and

8.3 The SaveComp Component Model 113

components that are rendered unreachable as a consequence, are omitted in the
final system.

It should be noted that switches are not triggered, as is the case of compo-
nents. Instead, they respond directly to the arrival of data or a trigger signal
to an input port and immediately relay it according to the currently active con-
nection patterns. Switches perform no computation other than the evaluation
of connection pattern guards.

8.3.3 Assemblies

Assemblies are encapsulated sub-systems. The internal components and inter-
connections are hidden from the rest of the system, and can be accessed only
indirectly through the ports of the assembly. Like switches, assemblies are not
triggered. Data and trigger signals arriving at a port are immediately relayed to
the outgoing connections.

Due to the restricted execution semantics of SaveCCM, an assembly gen-
erally does not satisfy the requirements of a component. Hence, assemblies
should be viewed as a mechanism for naming a collection of components and
hiding internal structure, rather than a component composition mechanism.
The SaveCCM semantics [17] also defines an encapsulation construct that do
exhibit component behaviour, enforced by additional data buffers and a mech-
anism to monitor the internal components to determine when to make output
available at the output ports and forward the triggering. This construct does
not occur in the examples in this article.

8.3.4 Ports and Connections

As mentioned above, we distinguish between input and output ports, and be-
tween trigger ports and typed data ports. Component input ports, the output
ports of the whole system, and switch input ports that occur in some connection
pattern guard, are one-place buffers with overwrite semantics. The remaining
ports, i.e. component output ports, assembly ports and switch ports that do
not occur in any guard, are just conceptual interaction points where data never
remains.

Connections come in two flavours: immediate and complex. Immediate
connections represent loss-less, atomic migration of data or trigger signals
from one port to another, as would typically be the case between components
residing on the same physical node. For distributed systems, and in particular
during early design stages before the deployment of components to nodes has

114 Paper C

been determined, a more flexible connection concept is convenient. This is
provided by complex connections that represent data and control transfer over
channels with possible delay or information loss. The detailed characteristics
of a particular complex connection are explicitly modelled by a timed automa-
ton to capture, e.g., delay constraints, buffer sizes, or the possibility of faults.

As an example, the automaton in Figure 8.4 defines the behaviour of a
complex connection with a delay of at least min_delay and at most max_delay
time units. When data or a trigger signal enters the connection, the automaton
starts in the initial (leftmost) state. The urgent marker u! ensures that the first
transition is made immediately, to reset the clock x. The invariant on the second
state and the guard on the outgoing transition ensure that the desired delay is
achieved before the data or trigger signal is forwarded to the destination by the
assignment statement.

exit
x > min_delay
p' := p'12

x < max_delay

x := 0
u!

Figure 8.4: The behaviour of a complex connection with a non-deterministic
delay in the interval [min_delay, max_delay].

Following UML2, a connection from an assembly input port to an input
port of an internal element, or from an internal output port to an assembly
output port, is denoted by a delegation arrow, but semantically they are the
same as ordinary connections from output to input ports.

8.4 Analysis

Much of the functionality in vehicular systems is safety-critical, since erro-
neous or untimely results could potentially result in death or serious injury.
This stresses the need for good techniques to verify critical runtime proper-
ties of a designed system against functional and extra-functional specifications.
Examples of important properties include the absence of deadlock situations,
temporal requirements imposed by the system environment (e.g., response time
and jitter constraints), and dependability attributes regarding reliability, avail-
ability, and safety (e.g., vulnerability to transient network failures). Ideally,
analysis should be highly automated and integrated with the design tool, since

8.4 Analysis 115

manual translation of a design into formats suiting external analysis tools is
error-prone, time-consuming, and must typically be revised every time the de-
sign changes.

During component development, analysis can be used to derive component
quality attributes such as execution time, resource usage, reliability measures,
fault tolerance, etc. When components are combined into applications, some of
these component attributes are needed as input to the analysis on system level.
For example, schedulability and response time analysis require knowledge of
component execution times and resource usage as well as information about
how the components interact in a particular system.

The current SaveCCT environment incorporates two analysis techniques,
each presented in more detail below. Since the formal semantics of SaveCCM
is defined in terms of timed automata, general tools for model-checking timed
automata (in our case, UPPAAL and TIMES) are relatively straightforward to in-
tegrate. The other incorporated analysis technique (LTSA) is more specialised,
focusing on control-loop properties.

In addition to these, a number of analyses techniques have been inves-
tigated within the SAVE project. [18] suggest the use of context-dependent
property prediction to establish worst case execution time (WCET) estimates
for individual components. This technique can give several execution time
bounds for a component, each associated with a certain usage context, which
would permit tighter analysis in some cases, e.g., for components that behave
differently in different operational modes. [19] define a safety analysis frame-
work where components are associated with safety interfaces, which formally
describes how faulty input (such as omission of data) can propagate to the out-
put. Reliability, i.e., the probability of successfully performing a function for a
specified period of time, has been investigated in the SaveCCT context by [20].

8.4.1 LTSA

LTSA (Labelled Transition System Analyser) is a verification tool for con-
current systems [12]. The tool is based on a process algebra notation (FSP)
in which the system model is specified together with specifications of its in-
tended behaviour. The analyses supported by LTSA are reachability analysis,
which performs an exhaustive search of the state space to verify invariants that
a system must satisfy at all times, and progress analysis to ensure that a spec-
ified action will always be performed at some point in the future, regardless
of system state. In addition, LTSA supports simulation to facilitate interactive
exploration of the system behaviour.

116 Paper C

In connection with SaveCCT, LTSA has been used to verify certain aspects
regarding the component interaction within a system. The tool was originally
incorporated in SaveCCT for analysis of control loops [21], but it can also
be used to analyse general systems. The analysis is based on a FSP model
of the system, which defines the possible orders in which actions can be per-
formed on the different ports. Because of the architectural constraints imposed
by SaveCCM, the FSP model can easily be derived automatically. For the
same reason, it is possible to analyse properties incrementally, thereby avoid-
ing state-space explosions that could otherwise occur in large compositions.

8.4.2 The TIMES tool

The modelling language timed automata [22] is useful for modelling and anal-
ysis of real-time systems. A timed automaton is essentially a finite state au-
tomaton extended with real-valued clocks that can be tested and reset. The
formalism has shown to be suitable for a wide range of real-time systems,
model-checking tools such as UPPAAL [23] and Kronos [24] have been used to
analyse many industrial size systems [25, 26, 27, 28].

More recently, the timed automata model has been extended with an ex-
plicit notion of tasks with parameters such as priorities, computation times,
deadlines, etc. The model, called timed automata with tasks [29], associates
asynchronous tasks with the locations of a timed automaton, and assumes that
the tasks are executed using static or dynamic priorities by a preemptive or non-
preemptive scheduling policy. The model is supported by the TIMES tool [13]
that is a tool supporting real-time analysis. In particular, the tool can check if a
model is schedulable in the sense that all tasks triggered by the timed automa-
ton are guaranteed to meet their deadlines using a given scheduling policy.

In earlier work [17], we have described the semantics of SaveCCM for-
mally using timed automata with tasks. A set of core components is identified
and their formal semantics is given. It is shown how components, switches,
assemblies, ports, and connections of SaveCCM can be modelled using core
components.

The SAVE2TIMES tool implements the formal semantics of SaveCCM as
a transformation to the model of timed automata with tasks. The tool takes
as input a SaveCCM model described by an XML-file and outputs a system
of timed automata with tasks that can be analysed by the TIMES tool. A set
of properties that should normally be satisfied by any SaveCCM model is also
generated in the input format of TIMES. We will discuss this further in Sec-
tion 8.5.3 where we show how the transformation tool is applied to a concrete

8.5 Case Study: An Adaptive Cruise Controller 117

example system.

8.5 Case Study: An Adaptive Cruise Controller

The Adaptive Cruise Controller has been a recurring example throughout the
development of SaveCCT. The purpose of this running case study has been to
continuously evaluate and improve the component model. Earlier experiments
in collaboration with industry [14] identified analysis and tool support as pri-
mary targets for improvements, which in turn resulted in a formulation of the
SaveCCM semantics by means of timed automata, to simplify the integration
of efficient tools for analyses.

An Adaptive Cruise Controller (ACC) is an extension of a regular Cruise
Controller. In addition to the conventional task of maintaining a constant veloc-
ity, an ACC also provides functionality to help the driver keeping the distance
to a preceding vehicle, by autonomously adapting the velocity of the vehicle to
the velocity and distance of the vehicle in front.

To increase the complexity of a basic ACC system, and thereby exercise the
component model further, our ACC system has two non-standard functional
extensions. One extension is the possibility for autonomous changes of the
maximum speed of the vehicle depending on the speed-limit regulations. This
feature would require that the ACC system have access to the actual speed-limit
regulations, e.g., provided by transmitters on the road signs or road map infor-
mation in cooperation with a Global Positioning System (GPS). The second
extension is emergency brake assistance, helping the driver to brake in extreme
situations, e.g., when the vehicle in front suddenly brakes or if an obstacle
appears on the road.

In the reminder of this section, we describe the development of an ACC ap-
plication using SaveCCT. The design is presented, followed by two examples
of how the integrated analysis techniques can be used to evaluate the appropri-
ateness of the design. We also describe the synthesis of an executable system
from the design.

8.5.1 System Design

The sources of input to the ACC application can be divided in three categories:
the Human Machine Interface (HMI) (e.g. desired speed and on/off status of
the ACC system), the internal vehicular sensors (e.g., current speed), and the
external vehicular sensors (e.g., distance to the vehicle in front). For the out-

118 Paper C

put, we distinguish between two categories: the HMI outputs (providing the
driver with information about the system state), and the vehicular actuators for
controlling the speed of the vehicle.

<<SaveComp>>

Speed Limit
Road Signs Enabled

50 Hz

ACC Max Speed

Road Sign Speed

<<Assembly>>

ACC

Controller

<<Assembly>>

ACC Application

ACC Enabled

Brake Pedal Used

<<SaveComp>>

Logger

HMI Output

10 Hz

Brake Signal

Max Speed

ACC

Brake Assist

Throttle

<<Switch>>

Mode

Switch

<<SaveComp>>

Controller

Brake

<<SaveComp>>

Object

Distance

Current speed Recognition

Figure 8.5: ACC application design.

The ACC system is designed as a SaveCCM assembly (ACC Application
in Figure 8.5) built from four basic components, one switch, and one sub-
assembly. The design of the sub-assembly (ACC Controller) is in turn shown
in Figure 8.6. The roles of the individual elements in the design are:

• The Speed Limit component calculates the desired vehicle speed based
on input from the driver and the speed-limit regulations.

• The role of Object Recognition is to decide if there is a car or another
obstacle in front of the vehicle, and, in case there is, to calculate its speed
relative to the vehicle. Based on these values, the component is also
responsible for deciding if the emergency brake assistance functionality
is needed or not.

• Mode Switch forwards the trigger signal to either the ACC Controller as-
sembly, the Brake Controller component, or neither of them, depending
on the current system mode determined by ACC Enabled, Brake Pedal
Used and information from Object Recognition.

• The Brake Controller component controls the brake output signal.

8.5 Case Study: An Adaptive Cruise Controller 119

• The Logger HMI Outputs component is used to communicate the ACC
status to the driver via the HMI, and to log the internal settings of the
ACC.

• The ACC Controller assembly manages the throttle lever of the vehicle,
based on the current speed, the desired speed, and the distance to the
vehicle in front.

It is worth pointing out that the non-standard functionality of the ACC ap-
plication (speed-limit awareness and emergency brake assistance) is primarily
located in two separate components. Thus, the other components can be reused
throughout the product-line, also in product variants with only standard ACC
functionality.

The application has two different trigger frequencies: 10 Hz and 50 Hz.
Logging and HMI output activities execute at the lower rate, and control related
functionality at the higher rate.

<<Assembly>>

Controller
Distance

<<Assembly>>

Controller
ACC

<<Assembly>>

Controller
Speed

Relative
Speed Distance

Max
Speed

Current
Speed

Control

Relative
Speed

<<Assembly>>

Controller
Distance

Distance
Max

Speed

<<Assembly>>

Controller
Speed

Current

Speed

<<SaveComp>>

Output
Calc Distance

<<SaveComp>>

Distance State
Update

<<SaveComp>>

Output
Calc Speed

<<SaveComp>>

Speed State
Update

Control

Figure 8.6: Internal design of ACC Controller.

The throttle control functionality of the ACC, located within the ACC Con-
troller assembly, is particularly important to the overall system quality. Since

120 Paper C

these calculations are very time critical, delivering the response (throttle lever
level) as fast as possible is crucial. The assembly is built from two cascaded
controllers (see Figure 8.6), represented by the sub-level assemblies Distance
Controller and Speed Controller.

This design corresponds to the control module concept introduced by [30].
A control module consists of two sub-structures responsible for forward and
backward activities, respectively. The former is responsible for calculating
the output value, and the backward structure updates the state of the module
depending on the feedback signals. The result is a high-level, flexible building
block for control loops. When control modules are combined, for example in
a cascade control loop like in ACC Controller, the result is a chain of forward
activities that produces the output, and a second chain of state updates that is
not performed until the output have been sent to the actuators.

8.5.2 LTSA Analysis

The LTSA tool described in Section 8.4.1 can be used to check a number of
implicit properties, such as deadlock- and livelock-freeness. These are general
properties that can be checked automatically without being explicitly specified
by the user. For the ACC design, LTSA can automatically check that deadlocks
do not occur and that every action can be performed eventually.

In addition to such implicit properties, we exemplify two explicit properties
that can be verified with LTSA. The first property states that the ACC appli-
cation is safe when disabled, and the second property expresses that the state
update activity does not occur before the proper inputs are available, which is
required for a correct control loop behaviour.

Safe when Disabled: If the system input ACC Enabled is false, or if the
brake pedal is used, then ACC Controller and Brake Assist must be disabled.

Control Loop Update: The triggering of an Update State component is
always preceded by a full execution of the corresponding Calculate Output
component.

The Safe when Disabled property is specified in terms of the actions that
can be performed on the ports ACC Enabled, Break Pedal Used and the input
trigger ports of ACC Controller and Brake Assist. It is checked from the de-
rived FSP model of the system by extracting the subsystem formed by Mode
Switch, ACC Controller, Brake Assist and the connections between them. The
developer can automatically derive an environment for the considered subsys-
tem. In this case, the environment simply provides the data expected on the
input ports of Mode Switch the remaining three input ports of ACC Controller.

8.5 Case Study: An Adaptive Cruise Controller 121

It also consumes throttle and brake output data.
To verify Control Loop Update it suffices to extract the FSP specification

of ACC Controller, since this is a local property, independent from the interac-
tion with the other components. We specify as valid behaviours of the system
all those in which the Update State component will always read data from an
input port only after that Calculate Output has written to its output port.

8.5.3 Analysis using the TIMES tool

As described in Section 8.4.2, we use the SAVE2TIMES tool to convert the
ACC design into a model of timed automata with tasks. The automata model
is simulated and verified in the TIMES tool. In addition to the generated model
of the ACC, we have produced an abstract model of the environment that
non-deterministically stimulates the ACC model with input. The environment
model is composed in parallel with the ACC model. In the resulting model, the
Object Recognition component will be able to switch mode at any time.

The SAVE2TIMES tool produces two versions of the ACC model — a ver-
sion for simulation, and another for model-checking. The simulation model
incorporates the program code of the components written in C. This results in
a very detailed model that is particularly useful for simulation, since the val-
ues of all variables can be computed during simulations. We use an in-house
version of TIMES that supports tasks programmed in a subset of C (the same
subset is supported by version 3.6 of the UPPAAL model-checker 8).

For model-checking, the SAVE2TIMES tool produces a more abstract model
that preserves inter-component behaviours such as timing of components, data-
values of ports, and triggers. This model is useful for model-checking global
properties of a SaveCCM model. In the ACC model, the output port Brake
of the Object Recognition component must be preserved since it controls the
mode switch.

In addition to the two models, the SAVE2TIMES tool produces a list of
properties that can be checked using TIMES. The properties should normally
be satisfied in any SaveCCM model. We have checked three kinds of proper-
ties of the ACC model and its environment. The first two were automatically
generated, whereas the third was manually specified:

Preservation of triggering: No trigger input port is activated while the
corresponding component is executing. Since input trigger ports are reset when
a components execution is completed, the property must hold to ensure that no

8For more information about the UPPAAL tool, see the web site www.uppaal.com.

122 Paper C

50 Hz Distance
Output

Calc
Speed
Output

Calc
Speed
State

Update
Distance

State

Update

Recognition
Object

Limit
Speed

Controller
Brake

HMI Output
Logger

10 Hz

(5 ms) (5 ms) (2 ms) (2 ms) (2 ms) (2 ms)

(5 ms)(5 ms)

End-to-end constraint: max 15 ms

Figure 8.7: Component precedence relation, induced by triggering (computa-
tion time in parentheses). Solid arrows represent direct precedence, dashed
arrows represent conditional precedence.

triggering is lost. The order of triggering within the ACC model is shown in
Figure 8.7. Assuming that no triggers are lost, the order can be interpreted as a
precedence relation.

End-to-End Constraint: The Throttle port will be updated within 15 ms
after the 50 Hz trigger port is activated. When in the ACC mode, the ACC con-
trollers are triggered and the output port Throttle is updated by the Calculate
Speed Output component. The Throttle port is output to an actuator controlling
the throttle lever. The constraint is of interest because a quick response to input
is good for control stability. Checking such a constraint is done by annotating
the model and introducing an extra clock, as described by [28].

Schedulability: The tasks are guaranteed to meet their deadline. When
checking schedulability for the ACC we assume a fixed priority scheduling
policy (which is the case in RTXC, the real-time operating system currently
supported by SaveCCT), and that the logger component has the lowest priority.
The computation times are shown in Figure 8.7. Component code is modelled
as tasks, and response time is measured from the triggering of the component.
The system is schedulable if the worst-case response time (WCRT) for each
task is lower than its deadline. When performing schedulability analysis we
can extract the actual WCRT of each task. For example, the logger component
has the WCRT of 59 ms.

In addition to these properties we can model-check user specified reacha-
bility, liveness, and leads-to properties. For example we can check that the code
for the Calculate Speed Output component is reachable. A liveness property
could state that in all paths, Object Recognition will eventually be executed. An
example of a leads-to property is that the execution of the Calculate Distance
Output component will eventually lead to the execution of Update Distance
State.

8.5 Case Study: An Adaptive Cruise Controller 123

The properties were checked using TIMES installed on a 1.7 GHz PC.
Each property was successfully checked in less than 25 seconds using less than
11 Mb of memory.

8.5.4 Synthesis

As described in Section 8.2.2, the automated activity synthesis takes the tex-
tual representation of the ACC from the design tool as input, and generates all
low-level platform dependent code. The synthesis produced four tasks: one
task including Speed Limit, Object Recognition, and Mode Switch; one task
including Logger HMI Outputs; one task including Brake Controller; and one
task including the four components in the ACC Controller.

To verify the functionality and implementation of the ACC application, we
utilised the integrated simulation technique CCSimTech. This enabled execu-
tion of the application in a Windows environment, meaning that testing and
debugging could be performed with high observability compared to when us-
ing the target hardware. However, to be able to test the whole ACC application
an environment model and a control panel had to be developed. The control
panel was used to give stimuli (such as throttle lever, brake pedal and AC set-
tings) to the running system. The environment model was used to simulate the
physical behaviour of the system, such as the braking behaviour. Using this
test platform, application bugs could be found and eliminated early.

When moving to the CrossFire MX hardware, we used the compiler with
no optimisations. The whole target system was about 115 kb of which ap-
proximately 10 percent belongs to the application and the rest to the operating
system. The CPU utilisation in the different application modes was 7, 12 and
15 percents, respectively.

8.5.5 Evaluation

Although the interaction between the ACC and the rest of the system is sim-
plified compared to a real vehicular system, we believe that the example is
complex enough to illustrate key aspects of our approach. Designing the ACC
application according to component-based principles was relatively straight-
forward, and SaveCCM proved sufficiently expressive for this type of system.
In particular, the separation of triggering and data connections proved very
suitable for control loops, since it was easy to build loops with synchronized
forward and backward activities.

124 Paper C

The close integration of analysis tools, exemplified by LTSA and TIMES,
enabled us to derive a number of non-trivial properties automatically or with
little manual intervention. In particular, the high predictability imposed by the
SaveCCM semantics allowed analysis of properties crucial to ensure correct
real-time behaviour, such as end-to-end response times. Likewise, the integra-
tion of CCSimTech provided good support for testing.

The resulting system is sufficiently resource efficient. It utilises only a
small part of the available capacity in the target hardware, which is approxi-
mately the utilisation expected for this application in combination with state-
of-practice programming methods (i.e., C and C++). The explicit triggering al-
lows the synthesis mechanism to minimise communication overhead by iden-
tifying static triggering patterns. In the ACC example we note, e.g., that the
four components in the time-critical ACC Controller are bundled up in a single
task, with the result that the communication between them is achieved by or-
dinary function calls, without calls to OS functionality such as semaphores or
message queues.

8.6 Conclusions

We have presented SaveCCT, a component technology supporting component-
based development of vehicular systems. Typical application requirements
within this domain include resource-efficiency, predictability, and safety. We
believe that such cross-cutting concerns should be considered early in the soft-
ware process and treated through all stages in the process. This is supported
in SaveCCT by enabling easy usage of analysis and verification methods dur-
ing the whole software development phase, through automated connectivity to
tools for analysis and testing. We have illustrated the suitability of SaveCCT
through an example application developed in cooperation with our industrial
partners. The adaptive cruise controller application has been a recurring exam-
ple throughout the development of SaveCCT, which has been used for contin-
uous evaluation and guidance for improvements.

The expressiveness of the component model (SaveCCM) seems to be suf-
ficient for efficient application of component-based principles in the domain
of vehicular systems. SaveCCM is based on a control-flow (pipes-and-filters)
interaction model, combined with additional support for domain specific key
functionality, e.g., feedback control, system mode changes, and static config-
uration. SaveCCM is predictable enough to allow derivation of specialised
formal models, which enables automated integration of analysis tools. This

8.6 Conclusions 125

is an important advantage in the domain, due to the safety-critical nature of
vehicular systems.

Resource efficiency is of high importance in embedded systems, and SaveCCT
addresses this by an efficient synthesis mechanism. The dynamic component
binding of general-purpose component technologies, where changes to com-
ponents and connections are allowed during run-time, has been discarded in
favour of a more rigid approach where dynamicity is achieved by explicit
switch elements. This allows the synthesis mechanism to simplify component
communication at compile-time, so that resource efficient run-time platforms
can be utilised without additional overhead.

Our future work includes evaluating the usefulness of SaveCCT in a more
extensive industrial case-study, and investigating how well it suits embedded
systems outside the vehicular domain. We also want to extend the number of
integrated analysis tools to better cover the various needs in different phases of
the development process. Other future research directions include integrating
the technology with a real-time database mechanism for structured handling of
shared data, and with run-time monitoring support.

Bibliography

Bibliography

[1] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch or why
it’s hard to build systems out of existing parts. In Proceedings of the Sev-
enteenth International Conference on Software Engineering, April 1995.

[2] I. Crnkovic and M. Larsson. Building Reliable Component-Based Soft-
ware Systems. Artech House publisher, 2002. ISBN 1-58053-327-2.

[3] W. Wolf. What is embedded computing? IEEE Computer, 35(1):136–
137, January 2002.

[4] A. Sangiovanni-Vincentelli. Automotive electronics: Trends and chal-
lenges. In Convergence 2000. SAE, October 2000.

[5] Kurt-Lennart Lundbäck, John Lundbäck, and Mats Lindberg. Develop-
ment of dependable real-time applications. Arcticus Systems, December
2004.

[6] H. Hansson, H. Lawson, O. Bridal, C. Norström, S. Larsson, H. Lönn,
M. Strömberg. Basement: An architecture and methodology for dis-
tributed automotive real-time systems. IEEE Transactions on Computers,
46(9):1016–1027, Sep 1997.

[7] Rob van Ommering, Frank van der Linden, Kramer Kramer, and Jeff
Magee. The Koala component model for consumer electronics software.
IEEE Computer, 33(3):78–85, march 2000.

[8] K. C. Wallnau. Volume III: A Component Technology for Predictable
Assembly from Certifiable Components. Technical report, Software En-
gineering Institute, Carnegie Mellon University, April 2003.

126

Bibliography 127

[9] O. Nierstrass, G. Arevalo, S. Ducasse, , R. Wuyts, A. Black, P. Müller,
C. Zeidler, T. Genssler, and R. van den Born. A Component Model for
Field Devices. In Proceedings of the First International IFIP/ACM Work-
ing Conference on Component Deployment, June 2002.

[10] International Electrotechnical Commission IEC. International Standard
IEC 61131, Programmable controllers, 1992.

[11] H. Schmidt. Trustworthy components: compositionality and prediction.
Journal of Systems and Software, 65(3):215–225, 2003.

[12] Jeff Magee and Jeff Kramer. Concurrency: State Models & Java Pro-
grams. John Wiley & Sons, Inc., New York, NY, USA, 1999.

[13] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and
Wang Yi. TIMES: a tool for schedulability analysis and code generation
of real-time systems. In Proc. of 1st International Workshop on Formal
Modeling and Analysis of Timed Systems, 2003.

[14] Mikael Åkerholm, Anders Möller, Hans Hansson, and Mikael Nolin. To-
wards a dependable component technology for embedded system appli-
cations. In 10th IEEE Intl. Workshop on Object-Oriented Real-Time De-
pendable Systems. IEEE, 1 2005.

[15] Anders Möller, Jakob Engblom, and Mikael Nolin. Developing and test-
ing distributed can-based real-time control-systems using a single pc. In
10th international CAN Conference, Roma, Italy, March 2005.

[16] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren. SaveCCM -
a Component Model for Safety-Critical Real-Time Systems. In Proc. of
30th Euromicro Conference, September 2004.

[17] Jan Carlson, John Håkansson, and Paul Pettersson. SaveCCM: An
analysable component model for real-time systems. In Proceedings of the
2nd Workshop on Formal Aspects of Components Software (FACS 2005),
Electronic Notes in Theoretical Computer Science. Elsevier, 2005.

[18] Anders Möller, Ian Peake, Mikael Nolin, Johan Fredriksson, and Heinz
Schmidt. Component-based context-dependent hybrid property predic-
tion. In ERCIM Workshop on Dependable Software Intensive Embedded
Systems, Porto, Portugal, September 2005.

128 Bibliography

[19] Jonas Elmqvist, Simin Nadjm-Tehrani, and Marius Minea. Safety inter-
faces for component-based systems. In Rune Winther, Bjørn Axel Gran,
and Gustav Dahll, editors, SAFECOMP, volume 3688 of LNCS, pages
246–260. Springer, 2005.

[20] Alexander Dimov and Sasikumar Punnekkat. On the estimation of soft-
ware reliability of component-based dependable distributed systems. In
Ralf Reussner et al., editors, International Conference on Quality of
Software Architectures (QoSA), volume 3712 of LNCS. Springer-Verlag,
September 2005.

[21] Massimo Tivoli, Johan Fredriksson, and Ivica Crnkovic. A component-
based approach for supporting functional and non-functional analysis in
control loop design. In Tenth International Workshop on Component-
Oriented Programming, Glasgow, Scotland, July 2005.

[22] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[23] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell.
Int. Journal on Software Tools for Technology Transfer, 1(1–2):134–152,
October 1997.

[24] Sergio Yovine. KRONOS: A verification tool for real-time systems. Int.
Journal on Software Tools for Technology Transfer, 1(1–2):123–133, Oc-
tober 1997.

[25] Johan Bengtsson, W.O. David Griffioen, Kåre J. Kristoffersen, Kim G.
Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Verification of
an Audio Protocol with Bus Collision Using UPPAAL. In Proceedings of
CAV’96, pages 244–256, 1996.

[26] Alexandre David and Wang Yi. Modelling and analysis of a commercial
field bus protocol. In Proceedings of the 12th Euromicro Conference on
Real Time Systems, pages 165–172. IEEE Computer Society, 2000.

[27] Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal
modelling and analysis of an audio/video protocol: An industrial case
study using UPPAAL. In Proceedings of the 18th IEEE Real-Time Systems
Symposium, pages 2–13, 1997.

[28] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and Anal-
ysis of a Gearbox Controller. Int. Journal on Software Tools for Technol-
ogy Transfer, 3(3):353–368, 2001.

[29] Elena Fersman, Paul Pettersson, and Wang Yi. Timed automata with
asynchronous processes: Schedulability and decidability. In J.-P. Katoen
and P. Stevens, editors, Proc. of the 8th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, number
2280 in LNCS, pages 67–82. Springer–Verlag, 2002.

[30] L. Pernebo and B. Hansson. Plug and play in control loop design. In
Preprints Reglermöte 2002, Linköping, Sweden, May 2002.

Chapter 9

Paper D:
A Model for Reuse and
Optimization of Embedded
Software Components

Mikael Åkerholm, Joakim Fröberg, Kristian Sandström, and Ivica Crnkovic
In 29th International Conference on Information technology Interface (ITI 2007),
IEEE, Cavtat, Croatia, June, 2007

131

Abstract

In software engineering for embedded systems generic reusable software com-
ponents must often be discarded in favor of using resource optimized solutions.

In this paper we outline a model that enables the utilization of component-
based principles even for embedded systems with high optimization demands.
The model supports the creation of component variants optimized for different
scenarios, through the introduction of an entrance preparation step and an end-
ing verification step into the component design process. These activities are
proposed to be supported by tools working on metadata associated with com-
ponents, where the metadata is possible to automatically retrieve from many
development tools.

This paper outlines the theoretical model that is the basis for our current
realization work.

9.1 Introduction 133

9.1 Introduction

Component-Based Software Engineering (CBSE), promises independent de-
velopment and reuse of software components [1]. The foundation is that gen-
eral components are reused in many applications, and that problems with ar-
chitectural mismatches can be eliminated [2]. However, there are studies, e.g.,
[3, 4, 5] indicating that the development of reusable components in comparison
with optimized components for certain applications requires up to five times the
effort. A substantial part of the extra effort involves development addressing
potential future usage scenarios.

Due to extra-functional requirements present in embedded systems, soft-
ware must often be optimized and tailored for each application [6]. Embedded
systems are often produced in high volumes, implying that smaller memory
capsules and cheaper processors has high impact on the total production cost.
To enable the verification of other extra-functional properties, e.g., reliability,
safety, and timing; design choices must be simple in order to enhance pre-
dictability, testability, and analyzability. Thus, reusable components, which
are bigger and more complex, are often discarded for optimized solutions.

There are several promising component technologies for embedded sys-
tems, e.g., the Rubus component technology [7], Koala [8], and our research
prototype SaveCCT [9]. These technologies proves that different important
needs for embedded systems can be satisfied, e.g., real-time support, and re-
source efficient run-time systems. However, in industrial case-studies where
SaveCCT have been applied, we have found that much of the necessary support
is provided (or possible to provide) but that the need to optimize components
for certain applications remains a challenge [9].

The optimization problem has also been recognized in related research,
and a classification of different techniques is presented in [10]. Common for
many of these techniques is the support for configuration of components, e.g.,
[11, 12]. However, the flip-side is that future scenarios must be predicted, and
that the configuration code increase complexity and thereby resource usage.
The other main principle for existing techniques is to apply external adaptation
through wrappers [13], or adaptors [14]. The main limitation here is that opti-
mization of the componentŠs internal realization is not possible, e.g., it is not
possible to remove functionality. Thus, these techniques it is not suitable for
resource constrained embedded systems.

To address the problem, we are creating a framework supporting engineer-
ing activities related to optimization and adaptation of components. The frame-
work should be used in combination with a component technology, in our case

134 Paper D

it will be a part of SaveCCT. In this paper we present the founding model for
the framework, and this model is the contribution. The model is based on using
component metadata, most of which can be automatically retrieved from devel-
opment tools. Associating metadata with components is common, e.g., the MS
.Net framework [15] uses metadata for certain run-time properties. In [16] it is
showed how meta-data can be used to improve the test phase. In our work we
use that idea and extend it to cover the whole component development phase.
Similar to Built-In-Test (BIT) [17, 18, 19], our model includes reuse of tests,
but as specifications and results in the metadata instead of executable test cases
embedded in the components. In an initial phase of component design, our
model supports preparation activities such as selection of a suitable candidate
component to adapt, given a set of requirements forming a new usage scenario.
This initial phase provides an estimate of the amount of specialization that must
be performed. The need for similar component retrieval support has also been
recognized in, e.g., [20, 21]. During component design our model collects key
metadata from the tool-suite, in the design, realization, and test phases. At the
end of the process the model supports verification activities such as detection
of side-effects that have occurred during the specialization process.

In section 2, an overview of the proposed model is given. In section 3, the
central distinction of components, variants, and versions is defined. Section 4
presents the metadata that is a core part of the model, while algorithms using
the metadata are presented in section 5. Section 6 demonstrates the model by
an example. Finally section 7 concludes the paper.

9.2 Model Overview

Figure 9.1, shows a schematic overview of the suggested model, fitted into
a design process for software components. Characterizing for CBSE is that
component development and system development (using components) are sep-
arated activities. It is important to be aware of that the focus in this work is
on the component development process, and that the majority of the research
targeting software components are concerned with system development using
components Referring to the figure, the shown design process prior the integra-
tion of our model can be imagined as a waterfall model with four steps, design,
realization, test execution, and finally delivery to the component repository.
The main characteristics to emphasize after the introduction of our model are:

• There is a preparation step added as an entrance step into the process.
At this stage, given the requirements forming a new usage scenario, the

9.3 Components, Variants, and Versions 135

Metadata

Realization

Test
Execution

Repository

Verification

Design

Preparation

Start

Figure 9.1: Overview of the model

decision to create a component from scratch or to select a component to
specialize are taken through evaluation of the amount of work needed
for specialization. The output from this step is a plan, or work-order,
guiding design and verification efforts.

• There is an additional verification step at the end of the process. Here
unplanned side-effects (not according to the plan from the work-order)
are detected, e.g., functionality that has changed without intention in a
specialization.

• The model is based on metadata, which is automatically retrieved in the
design process. Given that tools are capable of exporting data, the need
for manual intervention is small.

• Not shown in the figure, but also a central concept, is that the model dis-
tinguish components from variants and versions in the repository. This
is described in next section.

9.3 Components, Variants, and Versions

In the repository a component may exist in several variants and versions. An
overview of the repository is shown in Figure 9.2. The elements shown in the
figure are defined below:

136 Paper D

• The repository Rep = {C1, · · · , Cn}. The repository on the top-level
stores all components in a flat set. The structure is flat since the com-
ponents have no dependencies to each others in contrast to, e.g., object-
oriented approaches were the inheritance relations may affect the storage
structure.

• Ci is an abstract component. It is a root node in the repository rep-
resenting all variants of the ith component in the repository. C i =
{Ci1, · · · , Cin}. The structure is flat indicating no interdependencies be-
tween the different variants; they are separate units for usage and main-
tenance.

• Each variant may exist in several versions Cij = {Cij1, · · · , Cijn}. Ver-
sioning of the variants is handled according to the rules of common ver-
sion management theory. The version created latest in time will have the
highest version number.

• Referring to a component Cijk , means version k of variant j of the ith

component in the repository. Cijk is a concrete component in a com-
ponent technology, e.g., [9, 8], according to common component defini-
tions, e.g. [22].

Assume that the function Req(x) gives the set of uniquely identified re-
quirements fulfilled by element x. How this is realized is described in the next
section. The following guarding conditions must be fulfilled for a software
element to qualify as a variant, or version of a component respectively:

• Commonality guard - for all variants j and versions k of component i,
{∩jkReq(Cijk)} �= ∅ . This implies that there must be at least one
requirement in common between all variants and versions of a certain
component. If this guard is not fulfilled, the variants and versions cannot
be stored under same component.

• Compatibility guard - for a new version k +1 of variant k, Req(C ijk) ⊆
Req(Cijk+1). This implies that a new version of a variant should fulfill
at least the same requirements as the previous version. When this strict
guard is fulfilled the new version is backwards compatible with the older
version, typically bug-corrections and improvements will sort under this
category. In our model, if this guard is not fulfilled the component may
be qualified as a new variant; otherwise a new component should be
created.

9.4 Metadata Definition 137

 Component Root 1
C1

Component 1
Variant 1
Version 1

C111

…

Component Root n
Cn

Component 1
Variant 1
Version n

C11n

Component 1
Variant n
Version 1

C1n1

Component 1
Variant n
Version n

C1nn

…
commonality

co
m

p
at

ib
ili

ty

Component n
Variant 1
Version 1

Cn11

Figure 9.2: Repository Layout

9.4 Metadata Definition

Metadata units are associated with all concrete components, i.e., all versions
of all variants of a component. The metadata manage requirements, elements
of design and verification of the software in the repository.

An overview of the metadata is shown in Figure 10.4. The figure show
more metadata compared to what will be formally defined in this paper; this
is to give an idea of the overall concept. The core metadata (thicker lines
in the figure), are the necessary parts required to provide the support that is
emphasized in this paper. Non core parts may be useful when browsing the
repository, e.g., containing abstract, keywords, usage statistics, and key design
patterns practiced when the component was developed .

To define the core parts of the metadata, let M ijk = (Sijk , Gijk) be the
metadata associated with Cijk . Sijk is a specification of the component Sijk =
(Rijk, Dijk, Vijk) where:

• Rijk is a set of uniquely identified requirements Rijk = {r1, · · · , rn}.
Rijk contains all documented requirements that the software element
tries to fulfill, including both functional and extra-functional require-
ments. The actual formulation or semantics of the requirement is not
strictly required. The important matter is that a unique identity is asso-

138 Paper D

Abstract

Requirements VerificationArchitectural
Entites

Design and
development

Key Patterns

Metadata

Figure 9.3: metadata associated with Cijk

ciated with each requirement.

• Dijk is a set of uniquely identified architectural entities Dijk = {d1, · · · , dn}.
Depending on the realization of the software element, these design en-
tities can be different artifacts, e.g., functions, data structures, objects,
components or analysis. As for requirements, design entities must be
associated with a unique identifier.

• Vijk is a set of uniquely identified verification cases Vijk = {v1, · · · , vn}.
Vijk includes all test-cases, together with expected results, and also ob-
tained results after the test phase. As for Rijk and Dijk each case needs
to be represented. Gijk = (CRijk , V Rijk), contains manually defined
relations, over the automatically derived sets D ijk , Rijk , and Vijk .

• CRijk ⊆ Dijk × Rijk , represents the causal relationships between ele-
ments of the design and their respective requirements. It represents the
reason, or the cause, for design elements to exist.

• V Rijk ⊆ Vijk × (Rijk ∪ Dijk) represents the verify relationships from
elements of the verification cases, to which requirements and/or design
entities, each case verifies. Relations from Vijk to Dijk represent white-
box test cases, while edges from Vijk to Rijk represent black-box cases.

9.5 Central Algorithms on the Metadata 139

9.5 Central Algorithms on the Metadata

Figure ?? emphasized the support provided first and last in the component
design process, the algorithms applied in the two different stages are described
in the following sub-sections.

9.5.1 Preparation

When a need for a new component is detected, a central decision is to decide
if the new component should be obtained through adaptation of an existing
component or if a new component should be developed. To support this deci-
sion, the metadata can be used to compare candidates for reuse and adaptation.
The following expressions determine what requirements that are addressed by
variants and versions of a specific component:

• SRi derives all requirements shared by all variants and versions of a
component. It is defined as the intersection of all requirements addressed
by all entities of a certain component Ci: SRi = {∩jkReq(Cijk)}

• NRi is the set containing the requirements addressed only by a sub-
set of the variants and versions of a certain component C i. NRi =
{∪jkReq(Cijk)} − SRi.

• AR(r) gives the set of versions and variants that address the requirement
r, of a certain component Ci, AR(r) = {Cijk | {r} ⊆ Req(Cijk)}

The application of the expressions above provides overview information
about the components. We can see divide requirements into those addressed
by all versions and variants, and those requirements addressed by certain sub-
sets. With this information developers are guided in the choice of candidate
components to investigate in the work to find a suitable component to reuse.

It is possible to derive a work-order for each concrete component, i.e., C ijk .
Initially work-orders are used to estimate the amount of work to apply changes
to certain concrete components to fit a new usage scenario. Thus, finding the
most feasible candidate to adapt is supported by comparison of work orders.
A component whose work order shows little need for adaptation is likely a
suitable starting point for a new variant. Later, during the development, the
work is guided by the work-order. For a certain concrete candidate C ijk , and
given the requirements forming a new usage scenario, the work order show
what design entities and what test cases to reuse as-is, to change, and to remove.

140 Paper D

It also shows what requirements that remains unimplemented and thus will
require new development. The functions that are needed to be applied on the
metadata are defined here.

An estimation of consequences of a changed requirement, r, in terms of the
set of affected design entities, AD(r), and set of affected test cases, AT (r), is
determined through:

• AD(r) = {x | CRijk(x, r)}
• AT (r) = {x | V Rijk(x, r)}
The consequences of a removed requirement, r, in terms of affected design

entities can similarly be determined by the same expressions. However, to
determine if the deign entity or test case is not only affected, but according
to the relationships expressed in the graphs can be removed, we must take the
whole set of all removed requirements into consideration. Let RR be the set
of requirements that is planned to be removed. Design entities that may be
removed are determined through the function RD(RR). Similarly test-cases
that may be removed are derived by the function RT (RR).

• RD(RR) = {x|¬∃r : [CRijk(x, r) ∧ r ∈ Rijk − RR]}
• RT (RR) = {x|¬∃r : [V Rijk(x, r) ∧ r ∈ Rijk − RR]}

9.5.2 Verification

When a resulting variant or version is created based on reuse of another, it
is possible to detect unplanned effects of the changes. To detect unplanned
side-effects that may have occurred in the process, regression testing is applied
based on information in the work order. The only allowed changes between the
results of reused test cases are those we knew would be affected in the work
order. If any other changes are detected, they must be investigated. There can
be one of two reasons that must be corrected by the developers:

• Unplanned or unnecessary parts were changed during the development
of the new variant, which must be found and corrected.

• Undocumented dependencies in the relations CR ijk and/or V Rijk should
be updated and added to achieve a continuous improvement of the deci-
sion supporting relations. It may also be useful to store statistics when
undocumented dependencies are discovered, to estimate a precision for
work orders.

9.6 Usage Example 141

9.6 Usage Example

Now that we have defined the elements in the model we will demonstrate the
support for design decisions. We do this through a simplified industrial case.

9.6.1 Initial Component

As a part of an order of a larger system, a component providing an interface to
a CAN chip is ordered forming requirements R ijk as below:

Rijk =




(11, Send),
(12, Receive),
(13, EnableRemoteReply),
(14, worstcaselatencyforSend1ms)




Given that this component is built from scratch, and stored in an empty
repository, i.e., Rep = {C1}, where C1 = {C111}. Depending on the devel-
opers design decisions, D111, and V111 of the local metadata associated with
C111 may have the following structure in the repository:

D111 =




(21, F rameTypes),
(22, ReceiveBuffer),
(23, Send),
(24, Receive),
(25, EnableRemoteReply),
(26, Analysisofsend, result500ms)




V111 =




(31, receiveBufTest,
(32, sendTest,
(33, receiveT est,
(34, remoteReplyT est,
(35, timeAnalysisSend,

expected : oldestDropped, observed : oldestDropped),
expected : allSent observed : allSent),

expected : (2, 3, 66), observed : (2, 3, 66)),
expected : remoteFrame2, observed : remoteFrame2),

expected :< 500ms, observed : 450ms)




Notice that the requirements, design, and verification sets R111, D111, and
V111 should be automatically created, given that it is possible to export data
from the tools. However, the causal and verification relations CR 111 and

142 Paper D

 R D

11

12
22

24

14
26

13

23

25

21

Figure 9.4: causal relations

 VR D

11

12

23 21

22

24

31

32

33

14
26

35

13

25
34

Figure 9.5: verify relations

9.6 Usage Example 143

V R111 remain to be manually defined. These relations can be presented and
created graphically, through directed graphs. CR 111 and V R111 for the case
are defined below, and the corresponding graphs are shown in figure 9.4 and
9.5 respectively. For now, ignore the fields surrounding, e.g., nodes with id 14
and 26.

CR111 = {(21, 11), (21, 12), (21, 13), (23, 11), (22, 12), (24, 12),
(25, 13), (26, 14)}

V R111 = {(31, 22), (32, 11), (33, 12), (34, 13), (35, 26), (35, 14)}
The metadata unit for C111 is now complete:

M111 = (S111, G111) = ((R111, D111, V111), (CR111, V R111))
We have now the initial version of a variant of a component that can not

only be reused. The component is also prepared for adaptation and specializa-
tion to form new variants addressing sets of requrements forming other usage
scenarios.

9.6.2 New Component

In negotiation with another customer at a later point in time, the requirements
on a similar component as a part of another system forms R ijk as below. Re-
quirement id 13 has changed, indicated here only by a ’*’, requirement id 14
has been removed, and requirement id 15 has been added.

Rijk =




(11, Send),
(12, Receive),
(13, EnableRemoteReply∗),
(15, GetRemoteFrameStatistics)




Applying the expressions in section 5.1, the work-order contains the infor-
mation in table 9.1. The results from the expressions are visualized in figure
4 and figure 5. The fields in the figures surrounding certain relations show the
same as the table, e.g., that due to changes in requirement id 13, design entities
21, 25 may be affected as well as test case 35.

The process may proceed guided by the work order, eventually when tests
are complete the results are verified according to section 5.2. In this case ac-
cording to the work-order it is expected that test case 34 might show other
results, and that observed results of cases 31, 32, 33 should be unchanged.

144 Paper D

Design Entities Test Cases
Reuse ids 22, 23, 24 31,32,33

Affected ids 21, 25 34
Remove ids 26 35

Covered requirement ids: {11,12,13}
Uncovered requirement ids: {15}

Table 9.1: A work order for the specialization

9.7 Conclusions

We are convinced that component-based principles are beneficial for all types
of software. Mature engineering disciplines always use standardized compo-
nents. One of the most important prerequisites for component based principles
is that components are general, so that they can be (re)used many times. This
prerequisite has shown be hard to meet in development of certain software,
e.g., embedded software with high specialization demands.

This paper introduces a model that supports developers of embedded soft-
ware components in using optimized variants of components. The benefits are
achieved by introducing a start and a completion step into a regular design
flow. The completion-phase provides automatic detection of accidentally in-
troduced side effects in redesign. The starting phase supports the selection of
the best matching candidate from a repository of components given a set of
requirements.

The model is based on associating metadata with components, and can be
highly automated and integrated in an existing development tool-suite, given
that it is possible to export data from the tools. An industrial case study is
planned, where a prototype realization will be integrated in an existing tool-
suite at a sub-contractor company. A sub-contractor company is often faced
with challenges in adapting and customizing components to the different needs
of customers with varying system architectures and choices in technology and
standards. Managing adaptation and optimization of components is therefore a
key value for sub-contractors.

Bibliography

[1] I. Crnkovic and M. Larsson. Building Reliable Component-Based Soft-
ware Systems. Artech House publisher, 2002. ISBN 1-58053-327-2.

[2] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch or why
it’s hard to build systems out of existing parts. In Proceedings of the Sev-
enteenth International Conference on Software Engineering, April 1995.

[3] Ivica Crnkovic. Component-based software engineering - new challenges
in software development. Software Focus, December 2001.

[4] Ivica Crnkovic and Magnus Larsson. A case study: Demands on
component-based development. In Proceedings, 22th International Con-
ference of Software Engineering, Limerick, Ireland, May 2000. ACM,
IEEE.

[5] M. Mrva. Reuse factors in embedded systems design. IEEE Computer,
30(8):93–95, 1997.

[6] W. Wolf. What is embedded computing? IEEE Computer, 35(1):136–
137, January 2002.

[7] K.L. Lundbäck and J. Lundbäck and M. Lindberg. Component-Based
Development of Dependable Real-Time Applications. Arcticus Systems:
http://www.arcticus.se (Last Accessed: 2005-01-18).

[8] R. van Ommering, F. van der Linden, and J. Kramer. The koala compo-
nent model for consumer electronics software. In IEEE Computer, pages
78–85, March 2000.

[9] Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John
Håkansson, Anders Möller, Paul Pettersson, and Massimo Tivoli. The

145

146 Bibliography

save approach to component-based development of vehicular systems.
Journal of Systems and Software, 80(5):655–667, May 2007.

[10] G. T. Heineman. An evaluation of component adaptation techniques. In
2nd ICSE Workshop on Component-Based Software Engineering, 1999.

[11] J. Bosch. Superimposition: A component adaptation technique. Informa-
tion and Software Technology, 5(41), 1999.

[12] K. Cooper, J. Zhou, H. Ma, I. L. Yen, and F. Bastani. Code parame-
terization for satisfaction of qos requirements in embedded software. In
Proceedings of the International Conference on Engineering of Reconfig-
urable Systems and Algorithms, 2003.

[13] J. Brant, B. Foote, R. e. Johnson, and D. Roberts. Wrappers to the res-
cue. In Proceedings of 12th European Confernece on Object-Oriented
Programming (ECOOP98), July 1998.

[14] D. M. Yellin and R. E. Strom. Protocol specification and component adap-
tors. ACM Trans. on Programming Languages and Systems, 2(19):292–
333, March 1997.

[15] J. Conard, P. Dengler, B. Francis, J. Glynn, B. Harvey, B. Hollis, R. Ra-
machandran, J. Schenken, S. Short, and C. Ullman. Introducing .NET.
Wrox Press Ltd, 2000. ISBN: 1-861004-89-3.

[16] A. Orso, M. J. Harrold, D Rosenblum, G. Rothermel, M. L. Soffa, and
H. Do. Using component metacontents to support the regression testing
of component-based software. In Proceedings of the International Con-
ference on Software Maintenance, November 2001.

[17] H.G. Groß, M. Melideo, and F. Barbier. Component+ Methodology.
Technical report.

[18] K.J. Fernandes, V.H. Raja, and M. Morley. A System Level Testing Mod-
eling Mechanism in a Reengineering Environment. Journal of Concep-
tual Modeling, 2001.

[19] Y. Wang, G. King, D. Patel, S. Patel, and A. Dorling. On coping with real-
time software dynamic inconsistency by built-in tests. Annals of Software
Engineering, 7(1):283–296, 1999.

[20] Y. Li, J. Yin, and J. Dong. A Component Management System for Mass
Customization. Proceedings of the First International Multi-Symposiums
on Computer and Computational Sciences-Volume 2 (IMSCCS’06)-
Volume 02, pages 398–404, 2006.

[21] H. Mili, F. Mili, and A. Mili. Reusing software: issues and research
directions. Software Engineering, IEEE Transactions on, 21(6):528–562,
1995.

[22] G. T. Heineman and W. T. Councill. Component-based Software Engi-
neering, Putting the Pieces Together. Prentice-Hall, 2001. ISBN: 0-201-
70485-4.

Chapter 10

Paper E:
Introducing Component
Based Software Engineering
at an Embedded Systems
Sub-Contractor

Mikael Åkerholm, Kristian Sandström, and Ivica Crnkovic
submitted for publication

149

Abstract

Attractive benefits with successful implementation of component-based prin-
ciples include managing complexity, reduction of time-to-market, increased
quality, and reusability. Deployment of component-based development is how-
ever not simple - it depends on many strategic, technical, and business deci-
sions. In this paper we report experiences from our attempts with finding a
correct implementation of component-based principles for the business situa-
tion of sub-contractors of embedded systems.

Findings related to suitable component models, component technologies,
and component management is presented.

10.1 Introduction 151

10.1 Introduction

In this paper we report our experiences from introducing Component-Based
Software Engineering (CBSE) [1, 2] at the company, CC Systems 1, acting as
sub-contractor and Commercial Off The Shelf (COTS) components supplier
for embedded systems.

CBSE can be seen as analogous to engineering approaches in other en-
gineering domains. For examples, mechanical engineers build systems us-
ing well-specified components such as nuts and bolts, and the building in-
dustry uses components as large as walls and roofs (in turn assembled from
smaller components). CBSE has proven to be effective for desktop and web-
applications, however, not yet for development of software for embedded sys-
tems. Implementation and deployment of CBSE for development of embedded
systems is not trivial. As its success depends on many factors where some of
them are, selection (or development) of a component technology that can be
efficiently used in the development and maintenance process, and satisfy the
run-time requirements of the particular domain.

We present experiences from four cases in this paper. One case, SaveCCT,
is a study where a group of researches demonstrates a prototype component
technology in a real industrial environment. The second case, CrossTalk, utilises
CBSE principles for realizing a software platform supporting "any" system
consisting of the company’s hardware. The third case, CC Components, make
use of a component repository when possibilities to create or reuse components
arise in the development projects. Finally, the fourth study is an evaluation of
a method supporting the sometimes necessary work with adaptation of compo-
nents to fit usage in different development projects.

Our findings indicate that CBSE principles are suitable for embedded sys-
tems sub-contractors, but it might be harder to practice CBSE as sub-contractor
than product owning company. The necessary technical needs of, e.g., expres-
siveness in the component models, resource efficiency of component based
applications, and analysis possibilities can be considered met.

The following section (section 10.2) presents the motivation and goals with
the research presented in this paper. Section 10.3 presents data for the different
cases we have studied. The findings from our experiences when working with
the different cases are reported in section 10.4. A discussion of the results is
provided in section 10.5. Finally, section 10.6 concludes the paper.

1Cross Country Systems, http://www.cc-systems.com

152 Paper E

10.2 Goals and Motivation

The primary goal of this experience paper is to contribute to the overall under-
standing of the needs of component technologies and processes for practicing
CBSE in the domain of embedded control systems for vehicles and machines.

The studies have all been performed at CC Systems engineering sites in
Finland and Sweden. CC Systems develops electronics targeting vehicles and
machines in rough environments. From software and hardware controlling
safety critical by-wire functions, to software and hardware for powerful on-
board display based information systems with back-office connections.

The studies focus on the control related part of the systems. The focus is
chosen because CBSE as approach have had a limited success for development
of such systems. These systems are the most critical for the overall vehicle
functionality, with maximum demands on qualities such as timeliness, safety,
and reliability. It is also known that these qualities are not addressed by most
existing commercial component technologies, and consequently these systems
cannot be developed with such component technologies. Many component
technologies that might be suitable exists within academia and some are to a
limited extent used within industry, e.g., Koala [3] used internally at Philips 2,
Rubus [4] used by some Swedish vehicle manufacturers, and different imple-
mentations of the IEC61131-3 standard [5]. However, as pointed out in [6],
there is currently no de-facto standard component technology within the do-
main of vehicular systems; although CBSE seams to get a lot of attention from
industry, e.g., East3 and Autosar4. This leads us to the goal of assessing if the
limited success of CBSE in the domain is depending on an inability of existing
commercial technologies to support the requirements of embedded vehicular
applications.

Another very interesting question is how an ideal component model for
the domain should take the trade-off between supporting predictability, and
ease to express common functionality in vehicular control systems? The core
part of a component model is related to defining what a component is, and
possibilities for component interaction. There are several important design
decisions that have to be made when defining a component model and one is the
trade-off between flexibility and predictability. It is the trade-off with respect to
ease of implementing vehicular control systems (high degree of flexibility), and
support for prediction of quality attributes considered important in the domain

2Philips, http://www.philips.com/
3East, http://www.east-eea.net/
4Autosar, http://www.autosar.org

10.3 CBSE Activities 153

(high degree of predictability). A design choice of our suggested component
model, SaveCCM [7], is in contrast to many of the current component models
to sacrifice some flexibility to facilitate analysis and predictability.

Finally resource-efficiency (the consumption of a minimum of resources in
achieving an objective) is important in the domain since products are typically
produced in high volumes. Poor resource efficiency in component frameworks
might be an important reason for not choosing CBSE [6]. At the same time the
basic ideas of CBSE has been driven from the needs of PC/Internet applica-
tions where resource efficiency typically is not an issue. A reusable component
should according to CBSE theory be general. An obvious method to create a
general component is to implement support for many methods that might suit
different purposes. Using this approach imply that you might end up with using
only a small part of the component, and the rest is "dead code" in the applica-
tion. This might be a problem for resource constrained embedded systems,
and highly recommended to avoid for systems with high Safety Integrity Level
(SIL), i.e., SIL 2 and above in IEC61508 [8].

10.3 CBSE Activities

Four CBSE activities are summarized in the following sub-sections, denoted
Case 1-4. Case 1 is a study by a group of researchers in a real industrial envi-
ronment; the study evaluates technical properties of a component technology.
In Case 2, the company utilises CBSE principles for realizing a Product-Line
Architecture (PLA) for platform software, here the suitability of CBSE and
the component technology are evaluated. In Case3 component-based reuse is
practiced when opportunities arise, here the CBSE principles in this context is
evaluated. Finally, Case 4 is an evaluation by researchers in an industrial en-
vironment of a method related to component adaptation, here the method itself
is evaluated. The experiences and lessons learned of the cases are summarised
in section 10.4.

10.3.1 Case 1, SaveCCT

Case 1, is a demonstration of the component technology SaveCCT [9], by us-
age on a fictive but representative application in a real industrial environment
at CC Systems. The main purpose with this case is evaluation of the technical
properties of the component technology.

The research prototype of the SaveComp Component Technology (SaveCCT)

154 Paper E

Figure 10.1: An overview of our research prototype SaveCCT

used during this study is visualized in Figure 10.1. SaveCCT is described on
the top level, by distinguishing manual design, automated activities, and exe-
cution.

Manual design is the entry point for the development; here a component-
based strategy is used, supported by a set of tools for design and analysis. The
SaveCCT design tool provides support for graphical assembly of applications
from existing components. The tool allows designers to specify the compo-
nent interconnection logics, and express high level constraints on the resulting
application. Assembling components is done with respect to the rules of the
SaveComp Component Model (SaveCCM) [7]. The component model defines
different component types that are supported by SaveCCT, possible interaction
schemes between components, and clarifies how different resources are bound
to components. As shown in the figure, SaveCCT incorporates a number of
analysis tools, which can be used for verifying specific attributes of the ap-

10.3 CBSE Activities 155

plication, e.g., related to timeliness and safety. To efficiently incorporate an
analysis tool, as much as possible of the translation from the model created
with the design tool to the model required by the desired analysis tool should
be automated. In this study we incorporated LTSA [10], and Times [11].

Automated activities produce necessary code for the run-time system (i.e.,
glue-code), and different specialized models of the application for analysis
tools. The synthesis activity generates all low level code (i.e., hardware and
operating system interaction), meaning that components are free from depen-
dencies to the underlying platform. Furthermore, the code generation step stat-
ically resolves resource usage and timing, with the strategy to resolve as much
as possible during compile-time instead of depending on costly run-time algo-
rithms.

To achieve efficient and predictable run-time behaviour, and reliable sup-
port for pre-runtime analysis, SaveCCT assumes a real-time operating system
(RTOS) as underlying platform. The prototype used the Quadros 5 RTXC oper-
ating system, which is a standard fixed-priority pre-emptive multitasking RTOS
used in some applications by CC Systems. The supported target hardware in
the current version is CrossFire MX1 from CC Systems, which is an elec-
tronic control unit intended for control systems running in rough environments.
To facilitate testing and debugging we incorporate CCSimTech [12], which is
a simulation framework that offers generic hardware emulation components
for common hardware in embedded systems, e.g., I/O (digital and analogue),
network technologies, and memories. This environment represents a typical
platform used in development projects by CC Systems, and thus serves as an
example of an industrial environment for the SaveCCT prototype.

10.3.2 Case 2, CrossTalk

Case 2, CrossTalk [13], is an initiative driven by CC Systems, which have
been taken influences from the research demonstrated in Case 1. The main
goal with this initiative is to take advantage of the support for product-line
architectures that component-based approaches give. The goal is rapid and
costs effective assembly of platform software, through enabling addition and/or
replacement of components to a baseline platform depending on the needs from
a certain application. The CrossTalk platform has been used in numerous real
development projects by CC Systems.

A CrossTalk based system is built on an open-ended component-based
CrossTalk platform, the concept is to have one platform to build any system

5Quadros, http://www.quadros.com/

156 Paper E

consisting of the company’s own hardware. Figure 10.2 illustrates the concept,
which we describe here with the following list:

1. System architecture, in terms of computer nodes and their responsibil-
ity is established. The hardware for a CrossTalk system are selected
among more than ten different nodes, e.g., control modules, commu-
nication gateways, and display units. The communication between the
different nodes on the machine is based on CANopen 6 this means that it
is also possible to integrate any third-party node in the system that uses
the CANopen protocol, but treatment of such nodes is beyond the scope
of this paper.

2. Based on the functionality designated each computer node, platform
components from the CrossTalk repository is selected to constitute soft-
ware platform for each node in the system. The repository is based on
a standard version control system, and the components are IEC61131-3
[5] components. The components are assembled using the CoDeSys tool
from 3S7.

3. The open-ended platform software is deployed on each of the nodes in
the system; the application is then built by the customer or by CC Sys-
tems in a separate project, by continuing the work in the CoDeSys tool.

10.3.3 Case 3, CCComponents

CC Components is another initiative with influences from Case 1. Here the in-
tention is to package reusable parts of applications into software components,
and to reuse components when suitable. Notice here that the intention is not to
build entirely component-based systems; systems are built through a combina-
tion of components and non-component-based software.

To efficiently take advantage of CBSE, development processes for system
development, component assessment, and component development are sepa-
rated, as proposed in e.g., [14].

As demonstrated in Figure 10.3, CC Systems has a system development
process based on Rational Unified Process (RUP)8, thus this process needs no
further description here. In the inception phase all development projects should

6CiA, CANopen, http://www.can-cia.org/
73S CoDeSys, http://www.3s-software.com/
8IBM Rational, http://www-306.ibm.com/software/rational

10.3 CBSE Activities 157

CrossTalk
Platform

Components

GPRS/
GSM

Control

Fleet
Management

Video

Diagnostics

Positioning

WLAN

1.

2.

3.

CAN-Open

GPS

BT

Figure 10.2: Workflow when assembling a software platform for a CrossTalk-
based system

158 Paper E

initiate a component assessment process with the intention to find suitable com-
ponents to reuse, and suggestions for specifications of components to develop.
The component assessment process has the following steps:

Find, component assessment starts with finding components that might pro-
vide the required functionality for some part in the project.

Select, if candidate components for reuse are found, the selection of which
components to reuse in the project is documented and motivated.

Specify, if no candidate components are found, but the project finds a certain
part of the system very suitable to be packaged as a reusable component
a specification for such a component is created.

Evaluate, specifications are evaluated by the CC Components board (a group
responsible for the repository). Generally, the board must be convinced
that the suggested component will be target for reuse in other projects,
before a separate component development project is initiated.

Verify, this step is required to test that the component really fits the intended
purpose as soon as possible to avoid that the component is assumed to be
fit and well-tested until the very late stages in the system development
project.

Component development is guided by the same RUP-based process as sys-
tem development, but the target to develop reusable components is made clear
through lifting the development from the process of a particular project to a
separate process ending with delivery to the common company-wide CC Com-
ponents repository. There is no formal component definition. The only tech-
nical requirement is that the components in the repository must have all their
dependencies specified in the interfaces, combined with requirements on stan-
dardized documentation.

10.3.4 Case 4, Component Metadata for Traceability

Case 4, is an evaluation of a prototype implementation [15] of a method sup-
porting component assessment, and component development. The theory be-
hind the method is described in [16], it is based on work by Orso et.al. [17] sug-
gesting to (re)use component metadata to support software engineering tasks.
The need is based on experiences from Case 3, where component assessments
often results in needs for component adaptations, this will be further discussed

10.3 CBSE Activities 159

Inception Elaboration Construction Deployment

P
ro

je
ct

 s
ta

rt

P
re

pa
re

d

E
st

ab
lis

he
d

C
on

st
ru

ct
ed

D
ep

lo
ye

d

S
ys

te
m

D

ev
el

o
p

m
en

t

C
o

m
p

o
n

en
t

A
ss

es
sm

en
t

C
o

m
p

o
n

en
t

D
ev

el
o

p
m

en
t

CC Components Repository

Select VerifyFind

Specify

Inception Elaboration Construction DeploymentInception Elaboration Construction Deployment

Evaluate

Figure 10.3: CC Components development processes
in section 10.4. This case is based on a prototype demonstration on a repre-
sentative software component, for a group consisting of two project managers,
four developers, and one sales manager.

Figure 10.4, gives an overview of the method. The method affects the
processes of component assessment, and component development, and there
is a metadata associated with all components which is central in the method.
The purpose of the metadata is to maintain traceability of requirements through
design and testing during component development.

The metadata is collected during component development, and the arrows
in the metadata in the figure illustrates that the metadata contains references
between requirements, design, and test cases associated with the component.
This information is traceability information of how the requirements fulfilled
by the component are related to the internal realization of the component, and
how the different test cases relate to different parts of the realization and dif-
ferent requirements.

The component assessment process has, in comparison to Case 3 Figure
10.3, a new activity after Find called Modify:

Modify, here modification requests of existing components are created, when
modifications are necessary for the system development project. These

160 Paper E

requests are then evaluated by the board of CC Components in the fol-
lowing Evaluation step, as previosly desribed in Case 3.

During the component assessment the metadata with traceability is utilized
for performing impact analysis of a desired modification of a component. The
purpose of the impact analysis is to estimate the amount of work and con-
sequences of performing the desired modification. A prototype tool has been
developed that automatically produces analysis of which parts of a components
design and test cases that are affected by a modification. Where the modifica-
tions are defined through giving the desired change of the requirements. The
output is used as input to the evaluation step where the board decides whether
the component modification should be performed or dismissed.

During the component development process where a new variant of a com-
ponent is developed, the impact analysis gives guidance to the work. It gives
information of which parts of the component that should be modified. It also
specifies which test case that should be used for regression testing after the
change, i.e., points out which test cases that must produce the same results.

The need to adapt software components have been known in the CBSE
community, e.g., a survey on the topic in 1999 [18]. Common for many of
the proposed techniques is the support for configuration of components, e.g.,
[19, 20]. However, the flip-side with these techniques is that future scenarios
must be predicted, and that the configuration code increase complexity and
thereby resource usage. The other main principle for existing techniques is to
apply external adaptation through wrappers [21], adaptors [22], or connectors
[23]. The main limitation here is that optimization of the component’s internal
realization is not possible, e.g., it is not possible to remove functionality. Thus,
none of these techniques is perfect for the problem we have encoutered with
resource constrained embedded systems.

10.4 Experiences

In this section we summarize the findings from the above reported cases. We
do this case by case.

10.4.1 Case 1

The component model is based on data-flow (or pipes-and-filters) interaction,
this has been chosen to give good support for expressing the key functionality

10.4 Experiences 161

C
o

m
p

o
n

en
t

A
ss

es
sm

en
t

C
o

m
p

o
n

en
t

D
ev

el
o

p
m

en
t

Requirements

Inception Elaboration Construction Deployment

Design Verification

M
et

ad
at

a

Select VerifyFind

Specify
Evaluate

Modify

Requirements Design Verification

Figure 10.4: Using metadata in component assessment and component devel-
opment

of control systems. Designing the fictive application according to component-
based principles was relatively straight-forward, and SaveCCM proved suffi-
ciently expressive for this type of system.

The close integration of analysis tools, exemplified by LTSA and Times,
enabled the researchers to derive a number of non-trivial properties automat-
ically or with little manual intervention. In particular, the high predictability
imposed by the SaveCCM semantics allowed analysis of properties crucial to
ensure correct real-time behaviour, such as end-to-end response times. Like-
wise, the integration of CCSimTech provided good support for testing.

The resulting system was sufficiently resource efficient. It utilizes only a
small part of the available capacity in the target hardware, which is approxi-
mately the utilization expected for this application in combination with state-
of-practice programming methods (i.e., C and C++). The explicit triggering
allows the synthesis mechanism to minimize communication overhead by iden-
tifying static triggering patterns.

We should also make clear that the demonstrated component technology
was considered unusable in real development projects, since the quality and
usability of the included prototype tools was considered below tolerable levels.
Mature tools is a basic need in practice.

162 Paper E

10.4.2 Case 2

The component model, i.e., IEC61131-3 with its roots in the automation do-
main, is based on data-flow (or pipes-and-filters) interaction. Studying this case
fortify that this is a suitable component interface also in the vehicular domain
for control related systems. Numerous control systems have successfully been
built for vehicles and machines based on the CrossTalk concept.

Reuse of low-level components (i.e., CrossTalk platform components) through
component based principles is successfully practiced in this case. The experi-
ence is that product-line architectures for platform software can be efficiently
created with component-based principles. The company also stresses that the
component-based principles in this case results in short and predictable devel-
opment projects, and higher software quality.

Regarding resource efficiency, it is known that the CoDeSys run-time frame-
work requires additional processing compared to realizing the system with
lower level programming of the hardware. Thus, it is a trade-off between re-
source efficiency and development efficiency.

10.4.3 Case 3

Overall the introduction of a company-wide component repository is a success,
every time a well-tested component can be reused "as is" without modification
there is a good return of the investments made in the component development.
Reuse was practiced before, but more unstructured, depending of the knowl-
edge about reusable software assets inside the project team. The evaluation
step of component specifications is seen as promising for the future to ensure
that only reusable components are developed.

However, problems with reusing components have also been identified,
which might be similar for other sub suppliers to customers with high volumes
or safety critical applications. The basic foundation of CBSE, to build general
components that can be (re)used in many applications, is harder to practice for
a sub-supplier, especially in the domain of embedded control systems. Com-
ponents may require functional additions or adaptation associated with reuse.
The adaptation needs seems to be higher for the sub-suppliers business case. At
the same time, due to domain requirements, components can often not include
any extra functionality. Instead of being based on general components, appli-
cations must be dedicated and specialized to its task for high volume products.
Safety critical applications are even worse since no "dead code" is allowed in
source files or on target for certification according to the higher SIL levels of,

10.5 Discussion 163

e.g., IEC61508 [8]. Practicing reuse under these circumstances often require
adaptations.

10.4.4 Case 4

The conclusion from Case 4 is that the method is promising to support the
adaptation needs. The method causes no overhead in the internal realisation of
software component itself, and the components can be highly specialized for
every scenario. If this can be efficiently implemented in practice, it supports
the adaptation needs identified at the company.

Another positive side is reuse of the documentation of the traceability infor-
mation given through the graphs in the metadata. This is becoming more and
more important for all companies in the domain, due to legislation of using
system safety standards in development. The IEC61508 standard [8], which
is the main standard for functional safety of electronic programmable systems,
requires traceability of requirements through the different stages of develop-
ment. CMMI [24], a process improvement approach, even requires bidirec-
tional traceability. This is the ability to trace requirements both forward and
backward, i.e., requirements through the development process into the prod-
uct and from the product backwards to requirements. This becomes possible,
reusable, and well-documented, through the metadata.

On the negative side were the developers’ concerns about using one tool
more, when you ideally would like as few tools as possible to work efficiently.
Another concern was the effort to create the dependency graphs, which might
be time consuming and complex for big components.

10.5 Discussion

Here we discuss the findings related to the goals stated in section 10.2.
One of the purposes with the studies was to evaluate CBSE as engineering

approach for the domain. To start with, the continuous interest and investments
from the company in these activities indicates that CBSE is an attractive engi-
neering approach. The success with both increased efficiency and quality in
Case 2 and Case 3, generally demonstrates the potential of CBSE and espe-
cially when it comes to PLA. It also shows that component technologies with
tool-suites that are mature enough for industrial needs exists, here manifested
through CoDeSys. Whether the functional blocks of the IEC61131-3 standard
qualifies as real software components according to some definition remains un-

164 Paper E

said, but it is here proven that it is possible to treat them as components. The
conclusion is that the use of CBSE in the domain should not be limited by
lack of existing commercial technologies, even if we cannot dismiss this as a
reason.

We could also observe that it can be problematic to reuse components for
sub-contractors, primary from Case 3. Sub-contractors, as CC Systems in this
case, might take contracts on realizing similar functions with slightly different
requirements for different customers. If the target systems are safety-critical or
produced in high volumes, general components (with the side-effect of being
bigger) must often be discarded in favour of solutions tailored for the particular
system.

It is interesting that it within the same company was possible to observe the
usage of CBSE as product owner in Case 2, and as sub-contractor Case 3. The
experiences from this is that it is definitively easier to take advantage of CBSE
being a product-owner, in fact being a product owner you actually plan for
reuse. The next generation of the system will most likely be an improvement
of the existing system; it becomes natural to take reuse of existing components
into consideration when planning for the next generation.

Next important concern from section 10.2 is the trade-off between flexibil-
ity and predictability in component models. Both in Case 1 and Case 2, where
more formal component models were used, the component model was based on
data-flow (or pipes-and-filters) interaction, this has been chosen to give good
support for expressing the key functionality of control systems. Designing
the fictive application according to component-based principles was relatively
straight-forward, and SaveCCM proved sufficiently expressive for this type of
system. CrossTalk has been used for numerous real control systems and it has
proven to be suitable in every case. The basic interaction mechanism is thus
well proven in practice, but important to stress is that we cannot dismiss other
component interaction approaches from our studies. The analysis of real-time
and reliability properties demonstrated in Case 1 shows that is possible to cre-
ate a component model that is expressive enough for the applications and at the
same restrictive enough to allow this type of predictions. However this has not
been proven in real projects.

The experiences also justify apprehensions concerning risks of poor re-
source efficiency of component-based applications. However, it is also demon-
strated in Case 1 that it is possible to resolve resource usage and timing stati-
cally during compile-time without costly run-time mechanisms, but this is not
yet common in commercial mature technologies. This might actually be one
of the reasons for the limited usage of CBSE in the domain today. Further-

10.6 Conclusions and Future Work 165

more, Case 4 demonstrated a method supporting the adaptation needs, which
got positive feedback to address the specialization problem, but it has not been
used in real projects.

10.6 Conclusions and Future Work

In this paper we have reported experiences from four cases where we have
introduced/demonstrated CBSE principles at CC Systems.

Overall our findings indicate that CBSE principles are suitable for embed-
ded systems sub-contractors, but also that it might be harder to practice CBSE
as sub-contractor than product owner. The most technical needs of expres-
siveness in the component models, resource efficiency of component based
applications, and analysis possibilities can be considered possible to fulfil with
a combination of the contents in the different cases. According to our studies
the most important need is related to resource efficiency. Resource efficient
component frameworks with mature tools together with support for adaptation
of software components themselves are needed.

For future work it would be interesting to explore more about the impact
from the business situation on CBSE. In the domain of control systems for
vehicles and machines we can identify three major business situations sub-
suppliers on contract basis, COTS suppliers, and product owners. Note that
it might be possible to study all these within a single company, as e.g., CC
Systems, hopefully with increased possibilities to limit influences from other
differences. Different goals with practicing CBSE would also be interesting to
explore in combination with the different business models.

10.7 Acknowledgements

This work was partially supported by the Swedish Foundation for Strategic
Research (SSF) via PROGRESS, Save, and Save-IT.

Bibliography

Bibliography

[1] I. Crnkovic and M. Larsson. Building Reliable Component-Based Soft-
ware Systems. Artech House publisher, 2002. ISBN 1-58053-327-2.

[2] G. T. Heineman and W. T. Councill. Component-based Software Engi-
neering, Putting the Pieces Together. Prentice-Hall, 2001. ISBN: 0-201-
70485-4.

[3] Rob van Ommering, Frank van der Linden, Kramer Kramer, and Jeff
Magee. The Koala component model for consumer electronics software.
IEEE Computer, 33(3):78–85, march 2000.

[4] Kurt-Lennart Lundbäck, John Lundbäck, and Mats Lindberg. Develop-
ment of dependable real-time applications. Arcticus Systems, December
2004.

[5] International Electrotechnical Commission IEC. International Standard
IEC 61131, Programmable controllers, 1992.

[6] Ivica Crnkovic. Component-based approach for embedded systems. In
9th International Workshop on Component-Oriented Programming, Oslo,
June 2004.

[7] Hans Hansson, Mikael Åkerholm, Ivica Crnkovic, and Martin Törngren.
SaveCCM – a component model for safety-critical real-time systems. In
Proc. 30th Euromicro Conference, pages 627–635, 2004.

[8] International Electrotechnical Commission IEC. Standard: IEC61508,
Functional Safety of Electrical/Electronic Programmable Safety Related
Systems. Technical report.

166

Bibliography 167

[9] Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John
Håkansson, Anders Möller, Paul Pettersson, and Massimo Tivoli. The
save approach to component-based development of vehicular systems.
Journal of Systems and Software, 80(5):655–667, May 2007.

[10] Jeff Magee and Jeff Kramer. Concurrency: State Models & Java Pro-
grams. John Wiley & Sons, Inc., New York, NY, USA, 1999.

[11] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Times: a
tool for schedulability analysis and code generation of real-time systems.
In In Proceedings of 1st International Workshop on Formal Modeling and
Analysis of Timed Systems. LNCS Springer, 2003.

[12] A. Möller and P. Åberg. A Simulation Technology for CAN-based Sys-
tems. CAN Newsletter, 4, December 2004.

[13] CC Systems. Crosstalk generic control system platform. Technical report,
CC Systems, 2007.

[14] Ivica Crnkovic, Michel Chaudron, and Stig Larsson. Component-based
development process and component lifecycle. In Proceedings of the In-
ternational Conference on Software Engineering Advances, ICSEA’06.
IEEE, October 2006.

[15] Q. Tien Le. Component design tool for embedded system components.
Technical report, Masters Thesis, MRTC, Mälardalen Univ., 2008.

[16] Mikael Åkerholm, Joakim Fröberg, Kristian Sandström, and Ivica
Crnkovic. A model for reuse and optimization of embedded software
components. In 29th International Conference on Information technol-
ogy Interfaces, (ITI 2007). IEEE, June 2007.

[17] A. Orso, M. J. Harrold, D Rosenblum, G. Rothermel, M. L. Soffa, and
H. Do. Using component metacontents to support the regression testing
of component-based software. In Proceedings of the International Con-
ference on Software Maintenance, November 2001.

[18] G. T. Heineman. An evaluation of component adaptation techniques. In
2nd ICSE Workshop on Component-Based Software Engineering, 1999.

[19] K. Cooper, J. Zhou, H. Ma, I. L. Yen, and F. Bastani. Code parame-
terization for satisfaction of qos requirements in embedded software. In

Proceedings of the International Conference on Engineering of Reconfig-
urable Systems and Algorithms, 2003.

[20] J. Bosch. Superimposition: A component adaptation technique. Informa-
tion and Software Technology, 5(41), 1999.

[21] J. Brant, B. Foote, R. e. Johnson, and D. Roberts. Wrappers to the res-
cue. In Proceedings of 12th European Confernece on Object-Oriented
Programming (ECOOP98), July 1998.

[22] D. M. Yellin and R. E. Strom. Protocol specification and component adap-
tors. ACM Trans. on Programming Languages and Systems, 2(19):292–
333, March 1997.

[23] K.-K. Lau, L. Ling, and Z. Wang. Composing components in design
phase using exogenous connectors. In Proceedings of the 32nd Euromicro
Conference on Software Engineering and Advanced Applications. IEEE,
2006.

[24] SEI. CMMI for development, version 1.2. Technical report, Technical
Report CMU/SEI-2006-TR-008, 2006, 2006.

