
 
 
 
 
 
 
 

USING CASED-BASED REASONING DOMAIN KNOWLEDGE TO 
TRAIN A BACK PROPAGATION NEURAL NETWORK IN ORDER 

TO CLASSIFY GEAR FAULTS IN AN INDUSTRIAL ROBOT 
 

Erik Olsson 
 

School of Innovation, Design and Engineering, 
Mälardalen University, P.O. Box 883, SE-721 23 Västerås, Sweden, 

phone +46 21 10 73 35, fax +46 21 10 14 60 
 
 
ABSTRACT
 
The classification performance of a back propagation neural network classifier highly depends on its 
training process. In this paper we use the domain knowledge stored in a Case-based reasoning system in 
order to train a back propagation neural network to classify gear faults in an industrial robot. Our 
approach is to compile domain knowledge from a Case-based reasoning system using attributes from 
previously stored cases. These attributes holds vital information usable in the training process. Our 
approach may be usable when a light-weight classifier is wanted due to e.g.  lack of computing power or 
when only a part of the knowledge stored in the case base of a large Case-based reasoning system is 
needed. Further, no use of the usual sensor signal classification steps such as filtering and feature 
extraction are needed once the neural network classifier is successfully trained. 
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INTRODUCTION 
 
In this paper we use the domain knowledge already stored in a Case-based reasoning (CBR) (Amodt and 
Plaza, 1994) system in order to train a back propagation neural network (NN) to classify gear faults in an 
industrial robot. Our approach may be usable when a simple classifier is wanted due to e.g. lack of 
computing power, ease of use or when only a part of the knowledge stored in the case base of a large 
CBR system is needed. CBR offers a method to implement intelligent diagnosis systems for real-world 
applications (Nilsson et al., 2003). Motivated by the doctrine that similar situations lead to similar 
outcomes, CBR is able to classify sensor signals based on experiences of past categorizations saved as 
cases in a case-base. This paper is based on a CBR system used to diagnose audible faults in industrial 
robots (Olsson et al., 2004) as mechanical fault in industrial robots often show their presence through 
abnormal acoustic signals. The system uses CBR and acoustic signals as a proposed solution of 
recognizing audiable deviations in the sound. The sound is recorded by a microphone and compared with 
previously made recordings; similar cases are retrieved and a diagnosis of the robot can be made. The 
system uses three different steps in its classification process; pre-processing, feature identification and 
classification. The pre-processing process is responsible for filtering and removal of unwanted noise. In 



the feature identification process, the system uses a two-pass model, first identifying features and then 
creating a vector with features. Features are extracted using methods such as FFT and wavelet analysis 
(Lee and White, 1998), (Lin, 2001). A feature in the case is a normalized peak value at a certain 
frequency and time offset. Once the features are identified, the system classifies the feature vector. The 
classification is based on previously classified measurements stored as cases in a case base. Cases are 
retrieved using a nearest neighbor function that calculates the Euclidian distance between the new case 
and the cases stored in the case library. A list with the k nearest neighbors is retrieved based on the 
distance calculations.  When a new sound has been classified, the system learns by adding it as a new case 
to the case-base. At recent time, the system stores classified cases of recordings of gearboxes from 24 
healthy and 6 faulty robots. We have used CBR domain knowledge from two of those cases in order to 
train a NN classifier to classify one type of gear fault. Our approach may be usable when only a small and 
simple classifier is wanted that might use only a part of the knowledge stored in a CBR system. Further, 
no use of the usual sensor signal classification steps involving filtering and feature extraction are needed. 
Once successfully trained, the neural network classifier can be directly applied on noisy sensor data and it 
will represent the part of the case-base used in its training process and it will respond accordingly e.g. it 
might act as a red/green light in response to its input, signaling a failed/normal gearbox. The paper is 
organised as follows: section 2 gives a formal description of the CBR system that is used as the source for 
domain knowledge. Section 3 presents the method used to extract this domain knowledge. Section 4 
describes how to train a simple NN classifier using the extracted domain knowledge. Section 5 presents 
an evaluation of the classification performance of the neural network classifier and section 6 gives a brief 
conclusion of the paper.
 
THE CBR SYSTEM 
 
The CBR system consists of the tuple (CB,sim)  (Perner, 2007) where CB denotes its case-base and sim  
is a similarity function that classifies a case by searching for similar cases already processed and stored in 
the case base. A case base (CB) contains a sequence of  cases . The cases are indexed in a 
flat hierarchy with . A case 
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measuring the Euclidian distance between two feature vectors and . The k nearest neighbours of 1FV 2FV
X indexed by are retrieved and the class of 1FV X is determined by the class of these neigbours.  
 
 
EXTRACTING DOMAIN KNOWLEDGE 
 
The domain knowledge for  can be seen as the information stored in the cases contained in the 
cluster  formed by all cases  having feature vector where , and consequently, 
domain knowledge for  can be seen as the information stored in the cases contained in the cluster 

 formed by all cases  having feature vector  where 
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cluster  to train a stand-alone NN classifier to classify sensor data of , and consequently, a 
cluster  can be used to train the same stand-alone NN classifier to classify sensor data of  etc. 
In this manner, explicit domain knowledge from a case base can be transferred and transformed into 
implicit domain knowledge inside a NN classifier. 
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We have used CBR domain knowledge in the form of time offsets from two cases  and  in order to 
train a two-layer back propagation neural network (Bishop, 1995). The cases contain sound recordings 
from a normal  and a broken  gearbox originating from two industrial robots. The output 
gear in the broken gearbox had a broken gear tooth generating impact sounds (Barber, 1992) whereas the 
normal gearbox did not generate any impact or any other abnormal sound whatsoever. Both sound 
recordings were contaminated with noise originating from the gearboxes themselves and from the noisy 
factory environment the robots was situated in. Case  and  are described as follows 
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Where case  contains no description of an impact or any other abnormal sound whatsoever and case 

 reveals two impulse sound peaks;  and , caused by a broken gear tooth on the output 
gear.  is located at time offset  with an amplitude of  and a frequency of f(50).  
is located at time offset  with an amplitude of  and a frequency of . Figure 1 depicts 
the unprocessed sound signal as it is stored in case  and Figure 2 shows the same sound recording 
as depicted in figure 1 but filtered at frequency  in order to reveal impulse sound  and  
caused by the broken gear tooth on the output gear. 
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Figure 1 Unfiltered sound recording from the gearbox 

 

 
Figure 2 Impulse sound peaks hidden in the noisy sound recording 

 



 
TRAINING A NEURAL NETWORK CLASSIFIER 
 
A two-layer (Bishop, 1995) NN classifier consisting of layers: ] output hidden[input 1512 === , with a 
tan-sigmoid transfer function (Russel and Norvig, 2003) in the hidden layer and a linear transfer function 
in the output layer was created using Matlab (mathworks). We form cluster  by extracting training 
examples from sensor data  by using time offset t   from feature triplets (A,t,f) in . Cluster  is 
formed by picking 400 training examples representing  from sensor signal  at location time 
offset  and by picking 400 additional training examples representing  from sensor signal  
at location time offset .   Training examples are extracted from unprocessed sound data. Equally we 
form cluster by extracting training examples from unprocessed sound data . As  contains no 
feature triplets, cluster  is formed by picking 4000 training examples from randomly chosen time 
offsets from the sound signal  representing the sound from a healthy gearbox. We used a sliding 
window approach (Dias et al., 2006) when picking training examples. The window was of length 12 
relating to the number of input neurons in the network and it was shifted one sample to the right each time 
a new sequel training example was to be obtained from a time offset. We then equally distributed cluster 

 into sub clusters , and where  stands for training, validation and evaluation 
consequently. In the same manner, we make sub clusters , and  from . The network 
was trained using supervised training and it was trained to output 1 when exposed to examples from 
cluster  (sound data containing impact sounds) and 0 when exposed to examples from cluster  
(sound data not containing any impact sounds or any other abnormal sounds whatsoever).  
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EVALUATION 
 
The NN classifier was trained using clusters as described in section 4 and then evaluated. In the 
evaluation, we focused on the ability of the NN classifier to separate between faulty and normal sound 
recordings. As a result of the training, the NN classifier should ideally output values closer to 1 when 
exposed to impact sounds and otherwise values closer to 0. However, the NN classifier are not likely to 
have quantized outputs. So, a simple post-processing algorithm depicted in figure 3 was applied. 
 

For all values y in NN output: 
y=round(y) 

 
Figure 3 Post-processing algorithm 

 
 
We evaluated the classification performance of the NN classifier by exposing it to unprocessed sound 
recordings from similar gearboxes recorded during similar conditions. Sound recordings from 6 
gearboxes were used for evaluation. 2 sound recordings were obtained from gearboxes containing similar 
faults as described in section 2 and 4 sound recordings were obtained from normal gearboxes containing 
no prominent impact sounds whatsoever. The NN classifier managed to achieve a correct classification 
score of 100%. 
 
 
 
 



 
CONCLUSIONS 
 
We have shown that our method successfully can be used to train back propagation neural networks on 
noisy sound recordings in order to classify gear faults that generates impact sounds caused by a broken 
gear tooth. Our approach may be usable when a simple classifier is wanted due to e.g. lack of computing 
power, ease of use or when only a part of the knowledge stored in the case base of a large Case-based 
reasoning system is needed. Further, no use of the usual sensor signal classification steps involving 
filtering, feature extraction and classification are needed once the neural network classifier is successfully 
trained. We find there is no reason not to believe that our approach would be successful for similar 
classification tasks. 
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