
Execution Time Monitoring in Linux∗

Mikael Åsberg, Thomas Nolte
MRTC/Mälardalen University

P.O. Box 883, SE-721 23,
Västerås, Sweden

mikael.asberg@mdh.se

Clara M. Otero Pérez
NXP Semiconductors/Research

High Tech Campus 32 (102)
5656 AE Eindhoven, Holland
clara.otero.perez@nxp.com

Shinpei Kato
The University of Tokyo

7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
shinpei@rt.k2.keio.ac.jp

Abstract

This paper presents an implementation of an Execution
Time Monitor (ETM) which can be applied in a resource
management framework, such as the one proposed in the
Open Media Platform (OMP) [4]. OMP is a European
project which aims at creating an open, flexible and re-
source efficient software architecture for mobile devices
such as cell phones and handsets. One of its goals is to
open up the possibility for software portability and fast
integration of applications, in order to decrease develop-
ment costs. The task of the ETM is to measure task exe-
cution time and provide this information to the scheduler
which then can schedule tasks in a more efficient and dy-
namic way. This implementation is our first step towards
a full resource management framework that later will in-
clude a hierarchical scheduler, for soft real-time systems.

1 Introduction

Our previous work includes, among others, a synchro-
nization protocol for hierarchical scheduling [9] and the
implementation of a two-level Hierarchical Scheduling
Framework (HSF) in VxWorks [8]. This paper presents a
continuation of our research and aims towards HSF in soft
real-time scheduling, such as media applications. HSF
provides temporal isolation among concurrent executing
applications. This isolation enables guaranteed resource
availability for multiple media applications in the context
of open platforms, such as the one targeted by the Open
Media Platform (OMP) [4]. In this project, media com-
ponents encapsulating functionality (such as video/audio
decoders) have the capability to trade Quality Of Service
(QoS) for resource usage, e.g., memory or CPU resources.
The aim of the OMP project is to standardize the inter-
faces, used to adapt QoS, to achieve portability, reusability
and easy integration. In particular, to trade resources, the
Resource Management Framework (RMF) offers an in-
terface to allocate a guaranteed amount of resource (e.g.,
CPU) to components, based on the component resource

∗The work in this paper is supported by the Swedish Foundation for
Strategic Research (SSF), via the research programme PROGRESS.

estimate and the current system state. For example, if only
one component is active, then it can run at the maximum
QoS using 75% of a given resource. However, if a sec-
ond identical component is started, then both components
will have to adapt to a lower QoS where each of them uses
50% of the same resource.

In media processing systems, the load is very dynamic
and the worst case is often unknown (unpredictable) or too
high to do worst case resource allocation (since it will im-
ply wasting resources). The initial resource estimate pro-
vided by the component is used to create the initial allo-
cation of resources. However, this initial allocation has to
be monitored, at run time, to make sure that the allocation
matches the actual resource utilization. For example, the
estimated processor cycles of decoding one frame of an
H264 stream, measured in a given platform, can vary more
than 5 times depending on the video content (and type of
frame, number of reference frames .etc). The RMF keeps
track of the actual usage (with the use of an ETM) and
signals an alarm when a component consistently under or
over utilizes its initial allocation. This alarm mechanism
enables the upper software layers to learn and adapt the
resource allocation to the real need. The aim of the ETM
is to measure CPU resource utilization and give this in-
formation to the RMF, in order for it to conduct resource
allocation adjustments during runtime. The implementa-
tion of the ETM is done in Linux because it has a high
degree of functionality (an abundance of libraries and de-
vice drivers) in embedded systems and mobile phones [2].

Resource management The Resource manager (Fig-
ure 1) is in charge of allocating/deallocating resources to
application components. It also provides admission con-
trol (checking feasibility before allocating requested re-
sources) and enforcement to ensure that the allocated re-
sources are also guaranteed. The resource manager has
an overview of the system resources, whereas for ev-
ery shared resource, the corresponding Resource con-
troller implements the resource allocation and monitoring
mechanisms for that resource. For each resource, the re-
source controller keeps track of the allocation of resources
(Resource budget), its users (Resource users which is
basically components) and the runtime usage (Resource

usage) of a given resource user on a given resource bud-
get.

Resource budget 16%

Resource (CPU)

Resource controller

Resource manager

Resource controller

Resource (memory)

Resource usage 35%

Resource usage 39%

Resource user

Figure 1. Resource management

CPU resource allocation The CPU resource controller
is realized with a HSF, illustrated in Figure 2. Our next
step is to implement this scheduler with minimum mod-
ification on the operating system, similar to the imple-
mentation in [8]. The Global scheduler will schedule the
Budgets according to their allocation (Time interface)
and an arbitrary scheduling scheme. Tasks are scheduled
within the budget according to the scheduling strategy of
the Local scheduler. The global scheduler schedules the
budgets periodically, the budget runs according to a pre-
defined amount of time and the order of execution of the
budgets are decided by the budget priorities. The admis-
sion control checks whether the current configuration of
budgets are schedulable. This check is done if new bud-
gets are activated or if running budgets need to change pa-
rameters in their time interface. Tasks within a budget are
assumed to be schedulable, with respect to the budget time
interface. Parameters in the budget time interface such as
period, execution time and priority may be dynamic, e.g.,
they may change during runtime. Unused budget may be
allocated to tasks belonging to other budgets (weak en-
forcement).

Global scheduler

Budget

Task

Local
Scheduler

Time interface

Task ...

Budget

Task

Local
Scheduler

Time interface

Task ...

Budget

Task

Local
Scheduler

Time interface

Task

Figure 2. Hierarchical scheduling framework

Scheduling classes in Linux Starting from Linux ker-
nel version 2.6.23 (released in October of 2007) [6],
there is a distinction between real − time and regular
tasks. This is done by the introduction of two schedul-
ing classes: real-time and fair scheduling (sched rt.c
and sched fair.c). Basically, a Linux process is either
regular or real − time depending on which scheduling
policy that it is configured with. The processes which are
real−time have higher priority (0-99 where 0 is the high-
est) than regular processes. Whenever there is a schedul-
ing event (time-slice expiration, task suspend/sleep, etc.),
the CPU (for which the scheduling event belongs to) run-
queue (ready-queue) is fetched. The Linux core scheduler

then iterates trough a chain of scheduling classes (Fig-
ure 3), where each of these classes tries to fetch the next
running task. Eventually, idle class will pick a next task to
run if no higher class has succeeded with this. All schedul-
ing classes share the same interface (set of functions), this
makes it is easy to add new scheduling classes without
changing the core scheduler.

class = sched class highest /* The latter is a global kernel variable,
1st: real-time scheduling class. */

WHILE (TRUE)
p = class.pick next task(run queue)
IF(p)

RETURN p
ENDIF
class = class.next /* 2nd: fair scheduling class. */

ENDWHILE

Figure 3. Sample pseudo-code of function pick next task,
which is part of the Linux scheduler (sched.c)

The outline of the paper is as follows: Section 2
presents related work. In Section 3 we present the im-
plementation of our ETM in Linux and discuss how it can
be applied. Finally, Section 4 concludes.

2 Related work

The AQuoSA framework [11] is a RMF based on CBS
scheduling with advanced adaptive resource reservation.
The framework is built on a patch which exports appro-
priate scheduling hooks.

In [12], the authors present a RMF consisting of server
based scheduling of tasks and a predictable disk schedul-
ing mechanism. CPU usage monitoring is used within the
framework to calibrate application resource usage.

RTAI [7] is a collection of loadable modules that pro-
vides a rich real-time Application Programming Interface
(API) to the user, trough the usage of a hardware abstrac-
tion layer named ADEOS [1]. The RTAI API includes
add/delete hooks for every task start, switch and delete.

RT-Linux [5] is a patch to the Linux kernel and intro-
duces a layer between the OS and the hardware. Linux is
scheduled as low priority task while real-time tasks have
higher priority (similar to [7]).

Related to CPU allocation, cgroups [3] is a Linux
patch which partitions processes into groups and give
them a specified share of the processor. Each partition is
scheduled according to its period and will run a predefined
amount of time. All groups must have the same period.

3 Execution time monitoring

The ETM provides the resource manager with infor-
mation, in order for it to analyze the suitability and to
fit a resource budget for a given resource user(s). Most
monitors are time-stamp based with a coarse time-base,
e.g., time consumed by a task during the past 5 seconds.

In this case we get an average value, without knowledge
of whether the time was consumed from its own bud-
get or from a different one. To accurately fit a periodic
budget we need to monitor resource usage per scheduling
event, e.g., how much of a given budget allocation a task
consumed during the past budget period. This, so called
event based monitoring, also enables the possibility that
a task can keep track of its own progress. A decoder that
has decoded half of a frame can make a request to the
monitor of how much budget that is left for the period.
In this way, it can derive whether it is able to decode the
remainder of the frame within this budget period.

Implementation The Linux operating system offers, to
the best of our knowledge, only the proc file − system
and taskstats/cgroupstats [6] as a way to monitor pro-
cess/thread information. However, these approaches are
not suitable for our application for several reasons. It re-
quires additional interrupt-routines/tasks (extra overhead).
Alternatively, it must be fully integrated with the HSF.
However, this is not a modular solution. Also, the pre-
sented solutions [7, 13] in Section 2 require to much ker-
nel modifications. We have chosen to implement our ETM
as a task switch hook interface (event based monitoring)
that can be used in kernel space. The hook is implemented
in a kernel module (similar to our work in [10]) which
makes it easy to modify (without the need to modify and
re-compile the kernel). It is just a matter of loading the
module into the kernel. Our interface is simply a function
called task switch hook which is called at every sched-
uler tick. The supplied information is the previous and
next running tasks thread identification (TID) and a flag,
informing whether the task switch is between a regular
and real − time task (or vice versa) or not.

The task switch hook implementation requires a min-
imum patch, simply by removing the const statement
from each of the two data-structures fair sched class and
rt sched class (Figure 4). Security and kernel stability is
not considered in this implementation.

static const struct sched class rt sched class = {
.
.
.

.pick next task = pick next task rt,

Figure 4. Sample of scheduling class rt sched class
(sched rt.c)

The reason for removing the read-only access for
these two data-structures is because we can then reas-
sign the .pick next task (Figure 4), of a scheduling class,
to point to our own defined function (Figure 5). The
.pick next task (in fair sched class and rt sched class)
are called by the scheduler (Figure 3) whenever there
should be a task context switch (at least at those oc-
casions). This implies that our function will also be
called. The next step is to define hook rt (Figure 6) and

hook fair.

org pick next task rt = sched class highest.pick next task
sched class highest.pick next task = hook rt

Figure 5. Redirection of .pick next task in rt sched class

FUNCTION hook rt(run queue)
prev task = current /* The latter is a global kernel variable. */
next task = org pick next task rt(run queue)
task switch hook(prev task, next task, HOOK RT)
RETURN next task

ENDFUNCTION

Figure 6. Function hook rt

Applicability of the ETM This chapter gives a pro-
posal of how the ETM can be used and also compares
the two following approaches to monitor execution time
in Linux: 1) having tasks or interrupts reading total exe-
cution time of tasks from the kernel (proc file− system
or taskstats/cgroupstats) or, 2) by using task switch
hooks and timestamp task start and end. Note that ap-
proach 2) could alternatively be integrated in the HSF,
which would not require it to have tasks or interrupts.
However, as mentioned previously, it is more modular to
keep the monitor and scheduler separate.

The main task of the ETM is to measure the execution
time of a group of tasks within time intervals. The in-
tervals could be the Least Common Multiplier (LCM) of
all task periods within a budget, defined as LCMbudget.
This is illustrated in Figure 7, where the LCMbudget of
the tasks within the budget is 120. If tasks are fixed within
a budget, then LCMbudget can be computed off-line.

0 20 40 60 80 100 120

Budget (Period=50, Exec. time=20)
Task A (Period=30, Priority=2)
Task B (Period=60, Priority=1)
Task C (Period=40, Priority=0)

Task A
Task C Task B

Task A
Task C Task A

Task B
Task A

Task C

LCM
budget

 = 120
Task B
Task A

Task C

Budget period start Task period start

Figure 7. Tasks executing within a budget

In this way, the CPU utilization of the tasks within
a budget could be derived and compared against the re-
source budget periodically (at each LCMbudget). With
approach 1), it would require either to have one or sev-
eral tasks or interrupt handlers running periodically (at
end and start of all budgets LCMbudget) and reading the
task execution time counters. In the example in Figure 7,
the task/handler would run at time 0 and 120 and log the
tasks execution time counters at those two events. With
approach 2), if we assume that pick next task (Figure 3)
is executed whenever the Linux scheduler is invoked, even
if there is no task context switch, then our monitor will

run at the precise moments when LCMbudget starts and
ends. This assumption is valid since the scheduler checks
whether pick next task has chosen another task (other
than the current running task) to run (according to the
Linux scheduler function schedule() in sched.c). In the
example in Figure 7, monitoring the tasks would start (and
end) when the hook is executed at period start of either
task A, B or C at time 0 and 120 (our hook will notice this
by checking the status of the run-queue). The advantage
with approach 2) is that it does not add to extra context
switch overhead (besides the execution of the monitor)
since the task context switch overhead would exist even
if we did not use the hook. Also, the monitor is executed
more precisely (than approach 2 which would have to rely
on a periodic timer) at the moments when the measuring
periods start and end.

If the global scheduler uses weak enforcement then any
unused budget will be given to background tasks (belong-
ing to other budgets). This approach increases CPU uti-
lization. The problem here is that approach 1) would con-
sider task execution time within other budgets (Not Al-
located Consumed (NAC)) as execution time within its
own budget (Allocated Consumed (AC)), since the total
task execution time counter cannot know the difference in
which context the task executes. Approach 2) would con-
sider in which context the task executes in. At each hook
execution instance, it could check the Task Control Block
(TCB) or the global scheduler to see if a task is within
NAC or AC.

The motivation for monitoring AC and NAC time is
that it reveals not only if the budget supply is sufficient
enough but also, if budget execution time is properly dis-
tributed. A task may use NAC time if it has insufficient
budget supply and/or if the budget execution time distri-
bution is insufficient (task is mostly active when there is
no budget execution time available). This is illustrated in
Figure 8 where example a) shows that the amount of bud-
get supply is sufficient with respect to the task demand,
but the budget execution time distribution is inadequate.
In b), clearly the budget supply is insufficient, that is why
the task uses NAC time.

Budget
Task

NAC

a)

b)

Budget period start Task period startAC

Figure 8. NAC and AC execution time

4 Summary

Task execution monitoring in Linux is challenging due
to its lack of real-time support. Most real-time oper-
ating systems support the task switch hook mechanism,
which is a popular method for monitoring task execution
time. With respect to a Resource Management Framework
(RMF), such as the one proposed in Open Media Platform
(OMP) [4], a monitor should give as exact results as pos-

sible and it should also support task execution monitoring
within different contexts. For example, a task may be exe-
cuting within its own budget or in other budgets (depend-
ing on the enforcement of the global scheduler). Also, the
monitor should be as independent as possible with respect
to the Hierarchical Scheduling Framework (HSF) in order
the have a modular design. We have motivated why our
solution (implementation of the task switch hook mecha-
nism) is best fitted for monitoring in a RMF in Linux. Im-
plementing task switch hooks seems to impose less over-
head in comparison with reading task execution informa-
tion from the kernel. This makes it interesting (and will
be part of our future work) to perform an evaluation of our
solution together with, for example, proc file − system
and taskstats/cgroupstats [6] solutions.

Future work will include the implementation of a HSF
in Linux. The task switch hook implementation presented
in this paper can be useful in that it can suppress the Linux
scheduler functionality (because we are in control of the
actual task switch). The goal however, is to implement a
hierarchical scheduler in Linux as a middleware (similar
to [8]) without any patches of the kernel. This requirement
is inherent from embedded systems, which have higher re-
liability and stability requirements and they prefer to use
proven versions of the Linux kernel. None of the tech-
niques/solutions presented in Section 2 [5, 7, 11, 12] ful-
fills this requirement except for using cgroups [3]. The fi-
nal step is to perform an evaluation of our HSF and prefer-
ably compare it against other similar schedulers [11, 12]
as well as native Linux mechanisms such as cgroups [3].

References

[1] Adeos. http://home.gna.org/adeos.
[2] Limo Foundation.

http://www.limofoundation.org.
[3] LXR. http://lxr.linux.no.
[4] Open Media Platform project.

http://www.openmediaplatform.eu.
[5] RTLinuxFree. http://www.rtlinuxfree.com/.
[6] The Linux Kernel Archives.

http://www.kernel.org.
[7] Rtai-the realtime application interface for linux from

diapm. https://www.rtai.org.
[8] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. J. Bril.

Towards hierarchical scheduling on top of vxworks. In
OSPERT ′08, July 2008.

[9] M. Behnam, I. Shin, T. Nolte, and M. Nolin. Sirap: A
synchronization protocol for hierarchical resource sharing
in real-time open systems. In EMSOFT ′07, 2007.

[10] S. Kato and N. Yamasaki. Modular real-time linux. In
RTLWS′08, October 2008.

[11] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari.
Aquosa—adaptive quality of service architecture. Softw.
Pract. Exper., 39(1):1–31, 2009.

[12] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Re-
source kernels: a resource-centric approach to real-time
and multimedia systems. pages 476–490, 2001.

[13] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-
Hartman. Linux security modules: General security sup-
port for the linux kernel. In USENIX ′02, August 2002.

