
Supporting Usability in Product Line Architectures

Pia Stoll Len Bass Elspeth Golden, Bonnie E. John
Industrial Software

Systems
ABB Corporate Research

Västerås, Sweden

Software Engineering
 Institute

 Carnegie Mellon University
Pittsburgh, PA, USA

Human Computer Interaction
Institute

Carnegie Mellon University
Pittsburgh, PA, USA

pia.stoll@se.abb.com ljb@sei.cmu.edu egolden@cmu.edu, bej@cs.cmu.edu

Abstract

This paper addresses the problem of supporting usability
in the early stages of a product line architecture design. The
product line used as an example is intended to support a
variety of different products each with a radically different
user interface. The development cycles for new products
varies between three years and five years and usability is
valued as an important quality attribute for each product in
the line.

Traditionally, usability is achieved in a product by
designing according to specific usability guidelines, and
then performing user tests. User interface design can be
performed separately from software architecture design and
prototyping, but user tests cannot be performed before
detailed UI design and prototyping. If the user tests
discover usability problems leading to required
architectural changes, the company would not know about
this until two years after the architecture design was
complete. This problem was addressed by identifying a
collection of 19 well known usability scenarios that require
architectural support. In our example, the stakeholders for
the product line prioritized three of these scenarios as key
product-line scenarios for improving usability. For each of
these three chosen product-line scenarios we developed an
architectural responsibility pattern that provided support
for the scenario. The responsibilities are expressed in terms
of architectural requirements with implementation details
and rationales. The responsibilities were embodied in a web
based tool for the architects.

The two architects for the product line developed a
preliminary design and then reviewed their design against
the responsibilities supporting the scenarios. The process of
review took a day and the architects conservatively
estimated that it saved them five weeks of effort later in the
project.

1. Introduction

ABB, a global leader in power and automation
technologies, provides systems that enable utility and
industry customers to improve their performance while

lowering environmental impact. To that end, ABB must
design and implement extensive long-lived software
systems. This paper presents the results of a collaboration
between ABB Corporate Research, ABB core business
units, and Carnegie Mellon’s Software Engineering Institute
and Human-Computer Interaction Institute to support
usability within the context of a product line architecture
being newly developed.

The best method to support usability concerns through
software architecture has been the subject of some
investigation over the past years. In addition to the authors’
work [1,8,10], Folmer and his colleagues [6,7] and Juristo
and her colleagues [11] have investigated the relationship
between software architecture and usability. None of this
work has gained widespread industrial acceptance primarily
because all of the results reported require the hands-on
involvement of the researchers. Our goal in the project
reported on here was to deliver appropriate knowledge
concerning usability and software architecture to ABB’s
software architects in a format and at a time that would
benefit their design, in a way that could scale to worldwide
development efforts.

This paper reports the results of a new approach to
providing usability knowledge to software architects early
in the design process and without the active participation of
the researchers. The activities reported on include
• Stakeholders selecting several usability scenarios

important to the project under design
• The research team defining architectural patterns to

satisfy the scenarios chosen
• The research team embedding those patterns into a tool
• The architects using the tool for one day to review an

early version of their design. They did this without
previous exposure to the patterns and without any
participation by the research team.

• The architects reflecting on the impact of their use of
the tool. They estimated that it saved them five weeks
of work.

It was the next to last bullet – the architects using the
knowledge embedded in the tool – that can be scaled. Since
the tool is web based, architects in any project for which the
usability scenarios embedded in the tool are relevant can use

the tool and the knowledge embedded in it without any
involvement of the researchers involved.

2. Background

Prior to the collaboration reported in this paper, the
project team in an ABB business unit developing a new
product line of systems, together with an ABB research
team, had done a use case analysis, performed a Quality
Attribute Workshop to collect non-functional requirements
from prioritized scenarios [3], used the Influencing Factors
method [12] and conducted the first step of the Product Line
Architecture development approach [5] with the
identification of commonalities and variation points. Thus,
from the requirements collection and analysis perspective,
the project team was well prepared when they began to
outline the architecture. The software architects had just
starting sketching the architecture and had not yet written
any code. Their implementation plan started with the
backbone of the product line system, the core functionality,
which would support all the variation points for the
products. Usability had been prioritized as one of three most
important software qualities for the new architecture during
the Quality Attribute Workshop. One of the challenges for
this project therefore was how to incorporate usability
requirements into the core architecture early without having
either a designed user interface or a finished prototype for
user tests. The user interfaces are to be developed
individually for each product and each product will use
common core parts of the system. The product
development cycles will vary between three and five years.
Thus, the question was: How can we best support usability
early when the product prototypes cannot be user tested
until years after the architecture design is to be completed?

Most of standard usability evaluation techniques –
questionnaires, heuristic evaluation, think-aloud usability
studies – depend on having at least a paper prototype if not a
running system. These types of tests may find modifications
whose satisfaction requires changing the architecture. The
effort of re-working the product-line architecture and the
design for a line of products two years or even four years
after the architecture has been established would be
tremendous. The risk of finding severe usability problems
requiring architectural work late in this development cycle
was not acceptable and ABB decided to use usability-
supporting architectural patterns (USAPs) in a collaboration
with CMU. The decision was based on the fact that USAPs
use generic usability scenarios common in complex systems
and from these construct generic software architecture
responsibilities. By working this way ABB expected to
support some of the major usability issues early in the
software design phase without having an actual user
interface design in place.

A USAP is, as the name suggests, a software
architectural pattern that provides instructions as to how to
achieve specific usability scenarios. These patterns are at the

level of software architecture responsibilities. Examples of
such patterns are canceling a long-running command,
aggregating data, or supporting personalization of the user
interface. Note that these are software architecture patterns
in the flavor of [4] not usability patterns such as in [14].
Usability patterns describe user interface patterns such as an
organization’s look and feel whereas software architecture
patterns suggest software design solutions to specific
problems.

As originally conceived, a USAP included six types of
information. We illustrate the types with information from
the cancellation USAP [10].
1. A brief scenario that describes the situation that the

USAP is intended to solve. For example, “The user
issues a command then changes his or her mind, wanting
to stop the operation and return the software to its pre-
operation state.”

2. A description of the conditions under which the USAP is
relevant. For example, “A user is working in a system
where the software has long-running commands, i.e.,
more than one second.”

3. A characterization of benefits to the user from
implementing the USAP. For example, “Cancel reduces
the impact of routine user errors (slips) by allowing users
to revoke accidental commands and return to their task
faster than waiting for the erroneous command to
complete.”

4. A description of the forces that impact the solution. For
example, “No one can predict when the users will want
to cancel commands”

5. An implementation-independent description of the
solution, i.e., responsibilities of the software. For
example, one implication of the force given above is the
responsibility that “The software must always listen for
the cancel command.”

6. A sample solution using UML-style diagrams. These
diagrams were intended to be illustrative, not
prescriptive, and were, by necessity, in terms of an
overarching architectural pattern (e.g., MVC).
USAPs have been shown to significantly improve a

software architecture design in laboratory experiments [8].
They have also been used in real development settings, with
heavy involvement from the developers of the USAP [1].
However, these prior uses of USAPs suffer from two
defects. First, the industrial usages have all involved the
developers of USAPs. This clearly does not scale up.
Secondly, the laboratory experiments were paper-based and
the participants omitted important responsibilities of the
USAPs, leaving additional room for quality improvement.

Our initial goals when we considered applying USAPs to
the ABB project were to solve the two major problems that
we have discussed.
1. The designers should be able to utilize the USAPs

without immediate researcher involvement.
2. The designers should be encouraged to consider all of

the responsibilities.

3. Prior work

Prior to working with ABB, the last three authors
performed a laboratory experiment to test the utility of the
various types of information in a USAP. The results also
suggested directions for a delivery tool for USAPs, so
summarizing the experiment and results here sets a context
for the experience reported in this paper.

There were three different conditions in the experiment.
Participants in the first condition were given only the
scenario that describes the situation that the USAP is
intended to solve. This mimics a common relationship
between usability engineers and software designers in that
the usability engineers provide general requirements (e.g.,
the system must be able to cancel long-running commands)
but the creation of a design solution to fulfill those
requirements is up to the software engineers.

Participants in the second condition were provided with
the scenario plus a list of responsibilities that may have to
be fulfilled to satisfy the scenario, depending on the
particular system to which the scenario is being applied.
Participants in the third condition were provided with the
scenario, the list of responsibilities, and a sample solution
using the MVC overarching architecture pattern, expressed
in UML-style diagrams.

The results of the experiment were that providing the
participants with information about responsibilities and a
sample solution resulted in significantly better architecture
design than those created by participants provided with just
the scenario (p<0.05), but that the UML diagrams did not
significantly improve the architecture design over the
responsibilities alone. These results were reported in more
detail in [8]. Figure 1 shows the results of the laboratory
experiment.

Note, however, that there were 19 responsibilities in the

problem given to the participants in the laboratory study.
Figure 1 shows that the group with the best performance
achieved an average of only 9.5 responsibilities considered.
That is, the participants’ solutions, on average, only
addressed half of the responsibilities that might have been
considered.

4. Stakeholder choice of scenarios

The initial interactions between the ABB project team
and the CMU research team consisted of information
exchange about the project being developed and about the
USAP approach. The researchers then presented 19
usability scenarios possibly relevant to this domain.
• Progress feedback
• Warning/status/alert feedback
• Undo
• Canceling commands
• User profile
• Help
• Command aggregation
• Action for multiple objects
• Workflow model
• Different views of data
• Keyboard shortcuts
• Reuse of information
• Maintaining compatibility with other systems
• Navigating within a single view
• Recovering from failure
• Identity management
• Comprehensive search
• Supporting internationalization
• Working at the user’s pace

The ABB project team was asked to prioritize the general
usability scenarios and they decided to focus on two and add
an additional one. The chosen scenarios were User Profile
and Alarms and Events (renamed from Warning/status/alert
feedback). The additional scenario was Environment
Configuration.

5. USAP Patterns

In the process of developing the three USAPs that were
tested by the architects, we developed a Pattern Language
[2], consisting of foundational USAPs and end-user USAPs,
to exploit the commonalities among the USAPs. The pattern
language was not visible to the architect and we will not
describe it in this paper. The interested reader is referred to
[9] for a description of the pattern language.

There are two aspects of the patterns on which we will
focus. First there is an enumeration of textual
responsibilities. These responsibilities are implementation
independent. Collectively they cover the responsibilities
necessary for implementing the three USAPs. There were
31 responsibilities for the architect to examine; 26 are

Figure 1 Results of laboratory experiment

shared by all three USAPs and 5 are specific to Alarms and
Events. Each of the shared responsibility could pertain to
each USAP and so the architect must consider 83 distinct
situations.

An example of a responsibility is “The system must
provide a means for an authorized author to save and/or
export the [User Profile, Configuration description,
Conditions for Alarms, Events and Alerts] (e.g., by auto-
save or by author request). If other systems are going to use
the [User Profile, Configuration description, Conditions for
Alarms, Events and Alerts], then use a format that can be
used by the other systems.”

The portion of the responsibility that shows the three
USAPs under consideration “[User Profile, Configuration
description, Conditions for Alarms, Events and Alerts]” is
an artifact that results from the Pattern Language.
 For each responsibility, we also provided implementation
details. In the original formulation of USAPs, we provided
UML patterns. This provision of UML followed the
standard pattern writing advice of being very specific with
respect to the patterns described. Three things made us
replace the diagrams with “implementation details”
1. The results of the controlled experiment did not show a

significant improvement in the participants that had
access to diagrams over the participants that did not
have access to diagrams.

2. Several ABB architects (not those involved in the
product line development described here) felt that the
diagrams were too judgmental. Since the diagrams in
the solution were different than the diagrams of their
architecture, they felt that they were being told they had
designed their architecture incorrectly.

3. These architects also questioned whether it would be
possible to integrate three (or more) different USAPs
within the existing architecture. They had three
different UML sample solutions and could not readily
figure out how they should be integrated in practice.

The implementation detail provided for the responsibility

quoted above is:

If the initiation of the save was automatic:
That portion of the system that manages the authoring
process performs the initiation.
That portion of the system that manages the authoring
process stores and/or exports the specification.

If the initiation of the save was at the author’s request:
The portion of the system that renders output must render
a UI that allows the parameters needed by the system
(e.g., format, location) to be input and display them.
The portion of the system that accepts input from the user
must accept the parameters.
That portion of the system that manages the authoring
process stores and/or exports the specification.

Note that this is basically a textual description of what
would be represented in a diagram. The structural elements
of the implementation details are represented as “portions of
the system” and the behavioral elements as activities
performed by those portions of the system. By using the
word “portion of the system” instead of a visual description
in the form of a UML pattern, the designer can project the
words onto her/his design and verify that the portion exists
or, if not, design a new part in the solution corresponding to
the “portion of the system” and its described activities. We
will discuss the designers’ reaction to the implementation
guidance in the section on reactions.

6. Delivery tool

The challenge of encouraging the designers to consider
all responsibilities was met by transferring the USAPs into a
web-based tool [13]. The goals of the tool were ease-of-use,
ease-of-understanding, helping the designers to actively
consider all responsibilities, and the most important goal:
bridging the gap between usability requirements from a set
of general usability scenarios to software architecture
requirements in the form of responsibilities.

The ease-of-use and ease-of-understanding goals are
reflected in the tool by hiding the pattern language concepts
of foundational USAPs and end-user USAPs from the user.
The USAPs concept is instead visualized as a presentation of
the foundational responsibilities hierarchy in the navigational
menu without using the words “Foundational” or “End-User”
(see Figure 2). In the main window each foundational
USAP’s responsibilities are displayed with a pattern language
parameter furnished by the prioritized end-user USAPs:
Alarm & Events, User Profile, and Environment
Configuration. Each responsibility has a checkbox that is not
checked by the architect, but by an internal state that is only is
set to “check” when the designer has changed the state of the
radio-button associated with each end-user USAP related to
the responsibility. The radio-buttons states are set by the
designer and reflects hers/his architecture’s state in relation to
the responsibility and these are: “Architecture addresses this”,
“Must modify architecture” and “Not applicable”. The state
“Not yet considered” is the default state set when the designer
has not yet made an active choice. The user can only make an
adequate choice after reading the responsibility text
thoroughly. Otherwise it would be difficult for the user to
know her/his design’s state in relation to the responsibility.

The entire layout of the USAP delivery tool was
consciously made simple and direct. Additional
informational text was hidden and displayed only when the
user choose to display it by clicking a link, e.g. “Show
rationale” for a responsibility. The help text could be hidden
again by clicking a link, e.g. “Hide rationale.” We felt that
the information content otherwise would be overwhelming
for the users. The main page contained instructions on what
a USAP is and how to use the USAP delivery tool. The
states of the radio-buttons and checkboxes are persistent as

long as the web-tool is open, enabling the user to go back
and forth in the tool without losing data. Since the delivery
tool was a prototype we did not take it to the level of a full-
fledged content management tool with a database as the
backbone. We wanted user feedback from the tests to
inform the design before investing in this more expensive
development step.

Figure 2 shows a screen shot of some of the
responsibilities. If the designer wishes to discuss the
responsibility with the remainder of the design team or other
stakeholders, a check-box “Discuss this” can be checked by
the designer. A future extension would be to add the
possibility of including a comment for each responsibility.

The interface of the tool encourages the designer to set
the state of hers/his architecture in relation to each
responsibility. The checkboxes next to each responsibility
indicates to the designer whether the responsibility is fully
considered for each USAP or not. These features are
intended to address the problem that appeared in the

laboratory studies of subjects not responding to half of the
responsibilities.

It is also worth noting that the name of each of the three
USAPs chosen for delivery is enumerated under the
responsibility, and that the designer must respond to each
responsibility in the context of each USAP. It is possible
that state of the architecture will vary among the USAPs.
Making the state of the architecture explicit with respect to
each of the different USAPs will encourage the designer to
consider each responsibility’s applicability for each USAP.
Presenting the three instances of each responsibility
together, instead of organizing them by their USAP,
encourages the architect to consider common design
solutions.

Finally, observe that under each responsibility is a link
that when clicked displays the implementation details as
discussed above. When we discuss the results of using this
tool, we will discuss how the designers made use of this
feature.

Figure 2 Screen shot of the delivery tool for the USAPs

Once the designers have considered and responded to all
of the responsibilities, they can generate a “to do” list. This
is a list of the responsibilities that either have not yet been
considered or that require a modification of the architecture.
Figure 3 shows a screen shot of the “to do” list generated by
the screen shot in Figure 2. The “to do” list can then be
incorporated into whatever project management scheme the
designers use.

7. Results of using the USAP delivery tool

The two software architects from the product line system

project used the USAP delivery tool at a time when they had
completed a preliminary architecture design. One architect
was senior and had created most of the preliminary design.
The second architect had recently joined the project but
had a solid background as software architect at an
automobile company.

The Authorization foundational USAP was omitted from
the test we performed in order to make the number of

responsibilities tractable for a single day of testing. Since for
the product line under development, authorization would not
be needed, this did not impact the utility of the test from the
point of view of evaluating the current design for support of
the three chosen usability scenarios.

The two architects from the product line system project
used the USAP delivery tool in one session lasting six hours
interrupted by a one hour break for lunch and two 15-minute
breaks for coffee. They examined and discussed each
responsibility in turn, made notes as appropriate, and
decided what response to make to that responsibility. In the
six hours of work they completed consideration of all of the
responsibilities for each of the USAPs. They averaged about
12 minutes per responsibility.

Overall the designers felt that the USAP delivery tool
was quite helpful. Some of the quotes regarding the
helpfulness of the tool:

Designer 1: Yeah, I, I think it’s, it’s a very easy way to get

some kind of review of your work. You will not
get the complete picture of all your work, but it

Figure 3 Screen shot of part of a “to do” list generated by the USAP delivery tool

will be a very good check, or at least an
indication of the completeness of your system.

The main goal for ABB when applying the USAP
technique was to incorporate usability support early in the
design process in order to build in the support in the core
architecture. By building in usability support early in the
architecture, ABB expects to avoid late and costly redesign
after the users have tested an actual version of the product
line systems products. Some of the quotes that related to the
goal of early architectural usability support were:
Designer1: We have discussed lots of internal stuff in the

system but this gave us some picture of what
the user is going to see.

Designer2: And that is things that we were not going to get
that input, until very late in the design process,
if we hadn’t used this tool now. So it was good
to have these points of view come in this early.
I think we have identified at least a couple of
new subsystems.

Designer1: Yes. And some shortcomings of the previous
design.

Designer2: Yeah.
The designers also responded well about the level of

abstraction of the responsibilities:
Designer2: The tool raises very abstract discussions and

thoughts. It is much work to go through these
responsibilities.

Designer 2: The most useful thing with this tool is that it
guides your thoughts, and it helps you to think
about the architecture that you have from
different perspectives.

From preliminary reactions at another ABB business where
we showed the USAPs before removing the UML example
and developing the pattern language, we were concerned
that the designers would feel “supervised” or that they
would feel that they had received unwanted and/or
unhelpful recommendations. Instead, the reactions were
very positive:
Designer 1: It was like having a partner to discuss with.
Designer 2: The issues that you list in your tool, when you

are sitting several people talking together
about them, then you have to discuss how we
handle these issues in our system, in our
architecture. And that, that provides an
understanding for the peoples who are
important in the discussion, of how the
architecture works.

In contrast to the earlier negative reactions to UML
diagrams of a sample solution, we found that as the
designers examined the lists of responsibilities, they nearly
always examined and discussed the implementation
suggestions. One of their suggestions for improvement of
the tool was that the implementation suggestions could be

automatically included in the to-do list so that they would be
available for future use, indicating that they saw these
suggestions as useful instead of intrusive.

In summary, the reactions of the software architects to
the tool were very positive. The designers had viewed all
implementation details in a top-down fashion indicating
that for every responsibility they felt it helpful to view the
implementation guidelines. They also asked for a copy of
the tool so that they could have it available as they worked
through their to-do list.

During their use of the tool, the architects identified 14
issues that needed further consideration. Over the next
several weeks, the architects considered these fourteen
issues and their actual impact. The architects’ judgment as
to the resolution of each of the issues is detailed below.

Issue 1. Cost Saving: - would have been done any way
Issue 2. Cost Saving: - 1weeks
Issue 3. Cost Saving: - weeks
Issue 4. Cost Saving: - would have been done any way
Issue 5. Cost Saving: - very uncertain of value
Issue 6. Cost Saving: - very uncertain of value
Issue 7. Cost Saving: - very uncertain of value
Issue 8. Cost Saving: - 1 weeks
Issue 9. Cost Saving: - very uncertain of value
Issue 10. Cost Saving: - would have been done any way.
Issue 11. Cost Saving: - very uncertain of value
Issue 12. Cost Saving: - 2 weeks, could be more if this

idea is fully exploited
Issue 13. Cost Saving: - very uncertain of value
Issue 14. Cost Saving: - very uncertain of value

For the issues where the architect felt secure in providing
a value, 5 weeks were saved. Note the uncertainty of the
architect with respect to many of the other issues. In the
worst case, this uncertainty translates to no additional
savings but, likely, there were additional savings beyond
that estimated initially. In any case, saving 25 days (5
weeks) for less than one day of investment by two people is
still an amazing result.

The savings does not include the time the researchers
have invested in producing the USAPs but Alarms and
Events and user profiles are common usability scenarios.
These USAPs are reusable across many projects and thus
the investment to produce them will get amortized across
multiple projects.

8. Conclusions and Future Work

On the one hand, providing professionals with a check
list of activities they should perform is a very old concept.
Computerizing the checklist is not a major step. The
resulting tool is extremely simple. On the other hand,
getting a 25-to-2 return on investment (ROI) for the
architects - one day’s work by two people saved five weeks
- is an amazing result. One study with one estimate is not

scientific evidence but this study is one of the few reports of
ROI with respect to the use of any architectural technique.
Architectural knowledge can be encoded into very simple
tools and still be effective. Architectural tool builders might
consider simple methods to encode their knowledge rather
than attempting very sophisticated tools.

Furthermore, three aspects of this work are significant.

1. The patterns are primarily described at the level of
responsibilities. These are independent of
implementation, and lead the architects to think
about how a particular responsibility relates to their
current system design rather than forcing them to
attempt to compose structural instructions with their
current design.

2. Using textual descriptions for implementation
instructions rather than diagrams was well received
by the architects at ABB. The push back from
architects with respect to diagrammatic instructions
has not previously been reported.

3. Encouraging the architects through a tool to
examine all of the items in the checklist removes the
problems with paper delivery of the checklist.

In addition, there is nothing in the USAP delivery tool
that is specific to usability patterns. Any quality attribute
where the requirements can be expressed as a set of
responsibilities, e.g. security, could likely be included in the
tool. The same portions of a system could then be
represented in both a security responsibilities
implementation details and in a usability responsibilities
implementation details.

Acknowledgements

The Software Engineering Institute is a Federally Funded
Research and Development Center created by the US
Department of Defense. A portion of the third author’s time
on this research was funded by the Institute of Education
Sciences, US Department of Education, through Grant
R305B040063 to Carnegie Mellon University, and by ABB.
The views and conclusions herein are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of IES, SEI, the U.S.
Government, or ABB.

References

[1] Adams, R. J., Bass, L., & John, B. E. (2005) Applying general
usability scenarios to the design of the software architecture
of a collaborative workspace. In A. Seffah, J. Gulliksen and
M. Desmarais (Eds.) Human-Centered Software Engineering:
Frameworks for HCI/HCD and Software Engineering
Integration. Kluwer Academic Publishers.

[2] Alexander, C. (1977). A Pattern Language: Towns, Buildings,
Construction. USA: Oxford University Press. ISBN 978-
0195019193

[3] Barbacci, M., Ellison, R., Lattance, A, Stafford, J.,
WeinStock, C, and Wood,, W., “Quality Attribute
Workshops, 3rd Edition”, TECHNICAL REPORT
CMU/SEI-2003-TR.016, Pittsburgh, PA, 2003.

[4] Buschmann, F., Meunier, R., Rohnert, H. and Sommerlad , P.,
Pattern-Oriented Software Architecture Volume 1: A System
of Patterns, Wiley, 1996

[5] Clements, P., Northrop, L., Software Product Lines: Practices
and Patterns, Addison Wesley, 2001.

[6] Folmer, E. (2005) Software Architecture Analysis of
Usability, Ph.D. thesis. Department of Computer Science,
University of Groningen, Groningen.

[7] Folmer, E., van Gurp, J., Bosch, J. (2003) A Framework for
capturing the relationship between usability and software
architecture; Software Process: Improvement and Practice,
Volume 8, Issue 2. Pages 67-87. April/June 2003.

[8] Golden, E, John, B. E., & Bass, L. (2005) The value of a
usability-supporting architectural pattern in software
architecture design: A controlled experiment. Proceedings of
the 27th International Conference on Software Engineering,
ICSE 2005 (St. Louis, Missouri, May, 2005).

[9] John, B. E., Bass, L, Golden, El. Stoll, P. A Responsibility-
Based Pattern Language for Usability-Supporting
Architectural Patterns. Proceedings of the Engineering
Interactive Computer Systems conference, Pittsburgh, Pa, July
2009., ACM Press

[10] John, B. E., Bass, L. J., Sanchez-Segura, M-I. & Adams, R. J.
(2004) Bringing usability concerns to the design of software
architecture. Proceedings of The 9th IFIP Working
Conference on Engineering for Human-Computer Interaction
and the 11th International Workshop on Design, Specification
and Verification of Interactive Systems, (Hamburg, Germany,
July 11-13, 2004).

[11] Juristo, N., Moreno, A. M., Sanchez-Segura, M. (2007),
“Guidelines for Eliciting Usability Functionalities”, IEEE
Transactions on Software Engineering, Vol. 33, No. 11,
November 2007, pp. 744-758.

[12] Stoll, P., Wall, A., Norström, C.: Guiding Architectural
Decisions with the Influencing Factors Method. WICSA.
IEEE, Vancouver (2008)

[13] Stoll, P., John, B. E., Bass, L. J., Golden E. (2008) Preparing
Usability Supporting Architectural Patterns for Industrial Use,
Proceedings of the International Workshop on the Interplay
between Usability Evaluation and Software Development
(Pisa, Italy, September 24th, 2008)

 [14] Tidwell, J. (2006), Designing Interfaces: Patterns for
Effective Interaction Design. O’Reilly Media: Sebastopol,
CA.

