
* This work was partially supported by the Swedish Foundation for Strategic Research (SSF) via the strategic research centre (PROGRESS) at Mälardalen

University.

Blocking-Aware Partitioning for Multiprocessors*

Farhang Nemati, Thomas Nolte and Moris Behnam
Mälardalen Real-Time Research Centre

Mälardalen University, Sweden
{farhang.nemati, thomas.nolte, moris.behnam}@mdh.se

Abstract—In the multi-core and multiprocessor domain
there are two scheduling approaches, global and partitioned
scheduling. Under global scheduling each task can execute
on any processor while under partitioned scheduling tasks
are allocated to processors and migration of tasks among
processors is not allowed. Under global scheduling the higher
utilization bound can be achieved, but in practice the
overheads of migrating tasks is high. On the other hand,
besides simplicity and efficiency of partitioned scheduling
protocols, existing scheduling and synchronization methods
developed for uniprocessor platforms can more easily be
extended to partitioned scheduling. This also simplifies
migration of existing systems to multi-cores. An important
issue related to partitioned scheduling is how to distribute
tasks among processors/cores to increase performance
offered by the platform. However, existing methods mostly
assume independent tasks while in practice a typical real-
time system contains tasks that share resources and they
may block each other. In this paper we propose a blocking-
aware partitioning algorithm to distribute tasks onto
different processors. The proposed algorithm allocates a task
set onto processors in a way that blocking times of tasks are
decreased. This reduces the total utilization which has the
potential to decrease the total number of needed
processors/cores.

I. INTRODUCTION

Multi-core (single chip multiprocessor) is today the
dominating technology for desktop computing and the
performance of using multiprocessors depend on the
nature of the applications as well as the implementation of
the software. To take advantage of the concurrency
offered by a multi-core architecture, appropriate
algorithms have to be used to divide the software into
tasks (threads) and distribute tasks on cores to increase the
performance. Real-time systems can highly benefit from
multi-core processors, as critical functionality can have
dedicated cores and independent tasks can run
concurrently to improve performance and thereby enable
new functionality. Moreover, since the cores are located
on the same chip and typically have shared memory,
communication between cores is very fast. Since
embedded real-time systems are typically multi threaded,
they are easier to adapt to multi-core than single-threaded,
sequential programs. If the tasks are independent, it is a
matter of deciding on which core each task should
execute. For embedded real-time systems, practically, a
static and manual assignment of processors is often
preferred for predictability reasons.

There are two approaches for scheduling task systems
on multiprocessors systems [1, 3, 7, 8]; global and
partitioned scheduling. Under global scheduling, e.g.,
Global Earliest Deadline First (G-EDF), tasks are
scheduled by a single scheduler based on their priorities
and each task can be executed on any core. A single
global queue is used for storing jobs. A task as well as a
job can be preempted on a core and resumed on another
core (migration of tasks among cores is permitted).

Under partitioned scheduling tasks are statically
assigned to processors and tasks within each processor are
scheduled by uniprocessor scheduling protocols, e.g., Rate
Monotonic (RM) and EDF. Each processor is associated
with a separate ready queue for scheduling task jobs.

However there are systems in which some tasks cannot
migrate among cores while other tasks can migrate. For
such systems neither of global or partitioned scheduling
methods can be used. A two-level hybrid scheduling [8]
which is a mix of global and partitioned scheduling
methods is used for those systems.

Partitioned scheduling protocols have been used more
often and are supported (with fixed priority scheduling)
widely by commercial real-time operating systems [13],
because of their simplicity, efficiency and predictability.
However, partitioning, which allocates tasks to
processors, is a bin-packing problem which is known to
be a NP-hard problem in the strong sense; therefore
finding an optimal solution in polynomial time is not
realistic in the general case. Thus heuristic approaches and
sufficient feasibility tests for bin-packing algorithms have
been studied to find a near-optimal partitioning [1, 7].

While in real applications tasks often share resources,
many of the scheduling protocols and existing partitioning
algorithms for multiprocessors (multi-cores) assume
independent tasks.

A. Contributions

The first contribution of this paper is to propose a
blocking-aware heuristic algorithm to allocate tasks onto
the processors of a single chip multiprocessor (multi-core)
platform. The algorithm extends a bin-packing algorithm
with synchronization parameters. The second contribution
is to implement and evaluate the algorithm and compare it
to the blocking-agnostic bin-packing partitioning
algorithm. Blocking-agnostic algorithm, in the context of
this paper refers to a bin-packing algorithm that does not
consider blocking parameters to increase the performance
of partitioning, although blocking times are included in
the schedulability test. The new algorithm identifies task

constraints, e.g., dependencies between tasks, timing
attributes, and resource sharing, and extends the best-fit
decreasing (BFD) bin-packing algorithm with blocking
time parameters. The objective of the algorithm is to
decrease blocking overheads by assigning tasks to
appropriate processors (partitions).

In practice, industrial systems mostly use Fixed
Priority Scheduling (FPS) protocols. To our knowledge
the only synchronization protocol under fixed priority
partitioned scheduling, for multiprocessor platforms is
Multiprocessor Priority Ceiling Protocol (MPCP) which
was proposed by Rajkumar in [19]. Our algorithm
assumes that MPCP is used for lock-based
synchronization. Hence, we will discuss this protocol in
more details in Section III.

The rest of the paper is as follows: we present the task
and platform model in Section II, describe the MPCP in
Section III. We present the partitioning algorithm in
Section IV. In Section V the experimental results of our
algorithm are presented and the results are compared to
the blocking-agnostic BFD.

B. Related Work

A study of bin-packing algorithms for designing
distributed real-time systems is presented in [18]. The
method partitions software into modules to be allocated
on hardware nodes. In their approach they use two graphs;
a graph which models software modules and a graph that
represents the hardware architecture. The authors extend
the bin-packing algorithm with heuristics to minimize the
number of bins (processors) needed and the bandwidth
required for the communication between nodes. However,
their partitioning method assumes independent tasks.

Liu et al. [14] present a heuristic algorithm for
allocating tasks in multi-core-based massively parallel
systems. Their algorithm has two rounds; in the first
round processes (groups of threads - partitions in this
paper) are assigned to processing nodes, and the second
round allocates tasks in a process to the cores of a
processor. However, the algorithm does not consider
synchronization between tasks.

Baruah and Fisher have presented a bin-packing
partitioning algorithm (first-fit decreasing (FFD)
algorithm) in [3] for a set of sporadic tasks on
multiprocessors. The tasks are indexed in non-decreasing
order based on their relative deadlines and the algorithm
assigns the tasks to the processors in first-fit order. The
algorithm assigns each task ߬௜ to the first processor, ௞ܲ for
which both of following conditions, under the Earliest
Deadline First (EDF) scheduling, hold:

D୧ െ ∑ DBFכ൫τ୨, D୧൯தౠ א Pౡ ൒ C୧

and
1 െ ∑ u୨தౠ א Pౡ ൒ u୧

where C୧, D୧and T୧ specify worst-case execution time
(WCET), deadline and period of task τ୧ respectively, u୧ =
C౟
T౟

, and

DBFכሺτ୧, tሻ = ൜
ݐ ݂݅ ,0 ൏ D୧
C୧ ൅ u୧ ൈ ሺt െ D୧ሻ, otherwise

The algorithm, however, assumes that tasks are

independent while in practice tasks often share resources
and therefore blocking time overheads must be considered
while schedulability of tasks assigned to the a processor is
checked. Our algorithm not only considers resource
sharing when distributing tasks but it tries to reduce
blocking times as well. On the other hand their algorithm
works under the EDF scheduling protocol while most
existing real-time systems use fixed priority scheduling
policies. Our proposed algorithm works under fixed
priority scheduling protocols, although it can easily be
extended to other policies.

Of great relevance to our work is the work presented
by Lakshmanan et al. in [13]. In the paper they investigate
and analyze two alternatives of execution control policies
(suspend-based and spin-based remote blocking) under
MPCP. They have developed a blocking-aware task
allocation algorithm (an extension to BFD) and evaluated
it under both execution control policies.

In their partitioning algorithm, the tasks that directly
or indirectly share resources are put into what they call
bundles (we call them macrotasks) and each bundle is
tried to be allocated onto a processor. The bundles that
can not fit into any existing processors are ordered by
their cost, which is the blocking overhead that they
introduce into the system. Then the bundle with minimum
cost is broken and the algorithm is run from the
beginning. However, their algorithm does not consider
blocking parameters when it allocates the current task to a
processor, but only its size (utilization). Furthermore, no
relationship (e.g., as a cost based on blocking parameters)
among individual tasks within a bundle is considered
which could help to allocate tasks from a broken bundle to
appropriate processors to decreases the blocking times.

However, their experimental results show that a
blocking-aware bin-packing algorithm for suspend-based
execution control policy does not have significant benefits
compared to a blocking-agnostic bin-packing algorithm.
Firstly, for the comparison, they have only focused on the
processor reduction issue; they suppose that the algorithm
is better if it reduces the number of processors. In this
perspective they claim that in the worst case the number
of needed processors would be equal to the number of
tasks, while the worst case could be the case that an
algorithm fails to schedule a task set. In our experimental
evaluation, besides processor reduction, we have
considered this issue as well. If an algorithm can schedule
some task sets while others fail, we consider it as a
benefit. Secondly, in their experiments they have not
investigated the effect of some parameters such as the
different number of resources, variation in the number and
length of critical sections of tasks. By considering these
parameters, our experimental results show that in most
cases our blocking-aware algorithm has significantly
better results than blocking-agnostic algorithms.

In the context of multiprocessor synchronization, the
first protocol was MPCP presented by Rajkumar in [18],

which extends PCP to multiprocessors hence allowing for
synchronization of tasks sharing mutually exclusive
resources using partitioned FPS. Our partitioning
algorithm attempts to decrease blocking times under
MPCP and consequently decrease worst case response
times which in turn may reduce the number of needed
processors. Gai et al. [11, 12] present MSRP
(Multiprocessor SRP), which is a P-EDF (Partitioned
EDF) based synchronization protocol for multiprocessors.
The shared resources are classified as either (i) local
resources that are shared among tasks assigned to the
same processor, or (ii) global resources that are shared by
tasks assigned to different processors. In MSRP, tasks
synchronize local resources using SRP [2], and access to
global resources is guaranteed a bounded blocking time.
Lopez et al. [15] present an implementation of SRP under
P-EDF. Devi et al. [9] present a synchronization technique
under G-EDF. The work is restricted to synchronization of
non-nested accesses to short, simple objects, e.g., stacks,
linked lists, and queues. In addition, the main focus of the
method is on soft real-time systems.

Block et al. [4] present FMLP (Flexible
Multiprocessor Locking Protocol), which is the first
synchronization protocol for multiprocessors that can be
applied to both partitioned and global scheduling
algorithms, i.e., P-EDF and G-EDF. An implementation
of FMLP has been described in [5]. However, to our
knowledge there is no schedulability test for FMLP.

Recently, a synchronization protocol under fixed
priority scheduling, has been proposed by Easwaran et al.
in [10], but they focus on a global scheduling approach.

II. TASK AND PLATFORM MODEL

We will assume a task set that consists of n sporadic
tasks, ߬௜ሺ ௜ܶ, ,௜ܥ ,௜ߩ ሼܿ௜,௣,௤ሽሻ where ௜ܶ is the minimum inter-
arrival time between two successive jobs of task ߬௜ with
worst-case execution time ܥ௜ and ߩ௜ as its priority. The
tasks share a set of resources, ܴ which are protected using
semaphores. The set of critical sections, in which task ߬௜
requests resources in ܴ is denoted by ሼܿ௜,௣,௤ሽ, where ܿ௜,௣,௤
indicates the maximum execution time of the ݌௧௛ critical
section of task ߬௜ in which the task locks resource ܴ௤ א ܴ.
Critical sections of tasks should be sequential or properly
nested. The deadline of each job is equal to ௜ܶ. A job of
task ߬௜, is specified by ܬ௜ .The utilization factor of task ߬௜
is denoted by ݑ௜ where ݑ௜ ൌ ௜ܥ ௜ܶ⁄ .

We will also assume that the multiprocessor
(multi-core) platform is composed of identical, unit-
capacity processors (cores) with shared memory. The task
set is partitioned into partitions ሼ ଵܲ, … , ௠ܲሽ, and each
partition is allocated onto one processor (core), thus m
represent the minimum number of processors needed.

III. THE MPCP-MULTIPROCESSOR PRIORITY
CEILING PROTOCOL

A. Definition
The MPCP is used for synchronizing a set of tasks

sharing lock-based resources under a partitioned FPS

protocol, i.e., RM. Under MPCP, resources are divided
into local and global resources. Local resources are shared
only among tasks from the same processor and global
resources are shared by tasks assigned to different
processors. The local resources are protected using a
uniprocessor synchronization protocol, i.e., Priority
Ceiling Protocol (PCP) [20]. A task blocked on a global
resource suspends and makes the processor available for
the local tasks. A critical section in which a task performs
a request for a global resource is called global critical
sections (gcs). Similarly a critical section where a task
requests for a local resource is denoted as local critical
sections (lcs).

The blocking time of a task in addition to local
blocking, needs to include remote blocking where a task is
blocked by tasks (with any priority) executing on other
processors. However, the maximum remote blocking time
of a job is bounded and is a function of the duration of
critical sections of other jobs. This is a consequence of
assigning any gcs a ceiling greater than the priority of any
other task, hence a gcs can only be blocked by another gcs
and not by any non-critical section. Assume ߩு is the
highest priority among all tasks. The priority of a job ܬ௜
executing within a gcs in which it requests ܴ௞ is called
remote ceiling of gcs and equals to ߩு ൅ 1 ൅
max൛ߩ௝ห ௝߬ ݏݐݏ݁ݑݍ݁ݎ ܴ௞ ܽ݊݀ ௝߬ ݅ܬ ݊݋ ݐ݋݊ ݏ௜’s processor ൟ.

Global critical sections cannot be nested in local
critical sections and vice versa. Global resources
potentially lead to high blocking times, thus tasks sharing
the same resources are preferred to be assigned to the
same processor as far as possible. Our proposed
algorithms attempt to reduce the blocking times by
assigning tasks to appropriate processors.

To determine the schedulability of each processor
under RM scheduling the following test is performed:

1 ݇׊ ൑ ݅ ൑ ݊, ∑ ௞ܥ ௞ܶ⁄௜
௞ୀଵ ൅ ௜ܤ ௜ܶ⁄ ൑ ݅൫2ଵ ௜⁄ െ 1൯ (1)

where ݊ is the number of tasks assigned to the processor,
and ܤ௜ is the maximum blocking time of task ߬௜ which
includes remote blocking factors as well as local blocking
time. However this condition is sufficient but not
necessary. Thus for more precise schedulability test of
tasks our algorithm performs response time analysis [6].

B. Blocking times of tasks

Before explaining the blocking factors of the blocking
time of a job, we have to explain the following
terminology:

• ݊௜
ீ: The number of global critical sections of task

߬௜.
• ሼܬᇱ

௜,௥ሽ: The set of jobs on processor ௥ܲ (other than
 ௜’s processor) with global critical sections havingܬ
priority higher than the global critical sections of
jobs that can directly block ܬ௜.

 ௜,௥,௞: The number of global critical sections ofܪܰ •
job ܬ௞ א ሼܬᇱ

௜,௥ሽ having priority higher than a global
critical section on processor ௥ܲ that can directly
block ܬ௜.

• ሼܴܩ௜,௞}: The set of global resources that will be
locked by both ܬ௜ and ܬ௞.

 ௞ܬ ௜,௞: The number of global critical sections ofܥܰ •
in which it request a global resource in ሼܴܩ௜,௞}.

௜ߚ •
௟௢௖௔௟: The longest local critical section among

jobs with a priority lower than that of job ܬ௜
executing on the same processor as J୧ which can
block ܬ௜.

௜ܮߚ •
௚௟௢௕௔௟: The longest global critical section of any

job ܬ௞ with a priority lower than that of job ܬ௜
executing on a different processor than ܬ௜’s
processor in which ܬ௞ requests a resource in
ሼܴܩ௜,௞}.

௜,௞ܪߚ •
௚௟௢௕௔௟: The longest global critical section of

job ܬ௞ with a priority higher than that of job ܬ௜
executing on a different processor than ܬ௜’s
processor. In this global critical section, ܬ௞ requests
a resource in ሼܴܩ௜,௞}.

ᇱߚ •
௜,௞

௚௟௢௕௔௟: The longest global critical section of
job ܬ௞ א ሼܬᇱ

௜,௥ሽ having priority higher than a global
critical section on processor ௥ܲ that can directly
block J୧.

௜,௞ߚ •
௟௚: The longest global critical section of a lower

priority job ܬ௞ on the ܬ௜’s host processor.

The maximum blocking time ܤ௜ of task ߬௜ is a
summation of five blocking factors:

௜ܤ ൌ ௜,ଵܤ ൅ ௜,ଶܤ ൅ ௜,ଷܤ ൅ ௜,ସܤ ൅ ௜,ହܤ

where:
௜,ଵܤ .1 ൌ ݊௜

௜ߚீ
௟௢௖௔௟ each time job ܬ௜ is blocked on a

global resource and suspends the local lower
priority jobs may execute and lock local resources
and block ܬ௜ when it resumes.

௜,ଶܤ .2 ൌ ݊௜
௜ܮߚீ

௚௟௢௕௔௟ when a job ܬ௜ is blocked on a
global resource which is locked by a lower priority
job executing on another processor.

௜,ଷܤ .3 ൌ
∑ ڿ௜,௞ܥܰ ௜ܶ ௞ܶ⁄ ௜,௞ܪߚۀ

௚௟௢௕௔௟
ఘ೔ஸఘೖ ௔௡ௗ

௃ೖ௜௦ ௡௢௧ ௢௡ ௃೔ᇱ௦ ௣௥௢௖௘௦௦௢௥

when higher priority jobs on processors other than
 .௜ܬ ௜’s processor blockܬ

௜,ସܤ .4 ൌ ∑ ڿ௜,௥,௞ܪܰ ௜ܶ ௞ܶ⁄ ሼ௃ᇲא௃ೖۀ
೔,ೝሽ ௔௡ௗ

௉ೝ ஷ௃೔ᇱ௦ ௣௥௢௖௘௦௦௢௥

ᇱߚ
௜,௞

௚௟௢௕௔௟

when the gcs’s of lower priority jobs on processor
௥ܲ (different from ܬ௜’s processor) are preempted by

higher priority gcs’s of ܬ௞ א ሼܬᇱ
௜,௥ሽ.

௜,ହܤ .5 ൌ ∑ ݉݅݊ ሺ݊௜
ீ ൅ 1, ݊௞

ீሻఘೖஸఘ೔ ௔௡ௗ
௃ೖ ௢௡ ௃೔ᇱ௦ ௣௥௢௖௘௦௦௢௥

௜,௞ߚ
௟௚

when ܬ௜ is blocked on global resources and
suspends a local job ܬ௞ can execute and enter a
global section which can preempt ܬ௜ when it
executes in non-gcs sections.

IV. PARTITIONING ALGORITHM

In this section we present a partitioning algorithm that
groups tasks into partitions so that each partition can be
allocated and scheduled on one processor. The objective
of the algorithm is to decrease the blocking times of tasks.
This generally increases the schedulability of a task set
which may reduce the number of partitions (processors).

Considering the blocking factors of tasks under
MPCP, tasks with more and longer global critical sections
lead to more blocking times. This is also shown by
experiments presented in [11]. Our goal is to (i) decrease
the number of global critical sections by assigning the
tasks sharing resources to the same partition as far as
possible, (ii) decrease the ratio and time of holding global
resources by assigning the tasks that request the resources
more often and hold them longer to the same partition as
long as possible.

In our previous work [16, 17] we have proposed a
partitioning algorithm in which tasks are grouped together
based on task preferences and constraints. The algorithm
partitions tasks based on a cost function which is derived
from task preferences and constraints. In [16] the resource
sharing is only local by means of allocating the tasks that
directly or indirectly share resources onto the same
processor. Tasks that directly or indirectly share resources
are called macrotasks, e.g. if tasks ߬௜ and ௝߬ share resource
ܴ௣ and tasks ௝߬ and ߬௞ share resource ܴ௤, all three tasks
belong to the same macrotask. However if a macrotask
does not fit in one processor (is not schedulable) the
algorithm fails. In [17] tasks belonging to the same
macrotask can be allocated to different partitions
(processors), thus it is more flexible but it introduces
remote blocking overhead into the systems. The goal of
the algorithm is to put the tasks into appropriate partitions
so that the costs are minimized. The algorithm may have
different partitioning strategies, e.g., increasing cash hits,
decreasing blocking times, etc. The strategy of
partitioning may differ, depending on the nature of a
system, and result in different partitions. In current work,
however, we focus on decreasing remote blocking
overheads of tasks which leads to increasing the
schedulability of a task set and possibly reducing the
number of processors needed for scheduling the task set.

We have developed a blocking-aware algorithm that is
an extension to the BFD algorithm. In a blocking-agnostic
BFD algorithm, bins (processors) are ordered in non-
increasing order of their utilization and tasks are ordered
in non-increasing order of their size (utilization). The
algorithm tries to allocate the task from the top of the
ordered task set onto the first processor that fits it,
beginning from the top of the ordered processor list. If
none of the processors can fit the task, a new processor is
added to the processor list. At each step the schedulability
of all processors should be tested, because allocating a
task to a processor can increase the remote blocking time
of tasks previously allocated to other processors and may
make the other processors unschedulable. This means that
it is possible that even if a task is allocated to a new
processor, some of the previous processors become
unschedulable which makes the algorithm fail.

A. The Algorithm

The algorithm performs partitioning of a task set in
two parallel alternatives and the result will be the output
of the alternative with better partitioning results.
However, the algorithm performs a few common steps
before starting to perform the parallel alternatives. Each
alternative allocates tasks to the processors (partitions) in
a different strategy. When a bin-packing algorithm
allocates an object (task) to a bin (processor), it usually
puts the object in a bin that fits it better, and it does not
consider the unallocated objects that will be allocated
after the current object. However, the first alternative of
our algorithm considers the tasks that are not allocated to
any processor yet; and tries to take as many as possible of
the best related tasks (based on remote blocking
parameters) with the current task. On the other hand, the
second alternative considers the already allocated tasks
and tries to allocate the current task onto the processor
that contains best related tasks to the current task. The
second alternative performs more like the usual
bin-packing algorithms, although it considers the remote
blocking parameters while allocating a task to a processor.

The common steps of the algorithm before the two
alternatives are performed in parallel are as follows.
1. Each task is assigned a weight. The weight of each

task, besides its utilization, depends on parameters that
lead to potential remote blocking time caused by other
tasks:

௜ݓ ൌ

ඃሺܥ௜ ൅ ∑ ௜,௞ఘ೔ழఘೖܥܰ ڿ௜,௞ߚ ௜ܶ ௞ܶ⁄ ۀ ൅ ௜ܥܰ ఘ೔ஹఘೖݔܽ݉ /௜,௞ሻߚ ௜ܶඇ (2)

where, ߚ௜,௞ is the longest critical section of task ߬௞ in
which it shares a resource with ߬௜, and ܰܥ௜ is the total
number of critical sections of ߬௜.

2. Macrotasks are generated; the tasks that directly or

indirectly share resources are put into the same
macrotask. A macrotask has two alternatives; it can
either be broken or unbroken. If a macrotask cannot fit
(cannot be scheduled) in one processor, it is assigned
as broken, otherwise it is denoted as unbroken. If a
macrotask is unbroken, the partitioning algorithm
always allocate all tasks in the macrotask to the same
partition (processor). This means that all tasks in the
macrotask will share resources locally relieving tasks
from remote blocking. However, tasks within a
broken macrotask will be distributed into more than
one partition. Similar to tasks, a weight is assigned to
each unbroken macrotask, which equals to the sum of
weights of its tasks.

3. The unbroken macrotasks together with the tasks that
do not belong to any unbroken macrotasks are ordered
in a single list in non-increasing order of their weights.
We call this list the mixed list.

The strategy of allocation of tasks in both alternatives

depends on attraction between tasks. The attraction of task
߬௞ to a task ߬௜ is defined based on the potential remote

blocking overhead that task ߬௞ can introduce to task ߬௜ if
they are allocated onto different processors. We represent
the attraction of task ߬௞ to task ߬௜ as ݒ௜,௞ which is defined
as follows:

௜,௞ݒ ൌ ቊ
NC୧,୩ߚ௜,௞ڿ ௜ܶ ௞ܶ⁄ ,ۀ ݅ߩ ൏ ݇ߩ
NC୧ߚ௜,௞ , ݅ߩ ൒ ݇ߩ

 (3)

Now we present the continuation of each alternative

separately.

Alternative 1:
After step 3 the following steps are repeated by

alternative 1 until all tasks are allocated to processors
(partitions):
4. All processors are ordered in their non-increasing

order of utilization.
5. The object at the top of the mixed list is picked.

a. If the object is a task and it does not belong to a
broken macrotask it will be allocated onto the first
processor that fits it, beginning from the top of the
ordered processor list (similar to blocking-agnostic
BFD). If none of the processors can fit the task a
new processor is added to the list and the task is
allocated onto it. In this case if one or more of the
processors becomes unschedulable this alternative
of the algorithm fails.

b. If the object is an unbroken macrotask, all its tasks
will be allocated onto the first processor that fits
them. If none of the processors can fit the tasks,
they will be allocated onto a new processor and in
this case, if one or more of the processors becomes
unschedulable the Alternative 1 fails.

c. If the object is a task that belongs to a broken
macrotask, the algorithm orders the tasks (those
that are not allocated yet) within the macrotask in
non-increasing order of attraction to the task based
on equation (3). We call this list the attraction list
of the task. The task itself will be on the top of its
attraction list. The best processor for allocation is
selected, which is the processor that fits the most
tasks from the attraction list, beginning from the
top of the list. If none of the existing processors
can fit any of the tasks, a new processor is added
and as many tasks as possible from the attraction
list are allocated to the processor. However, if the
new processor cannot fit any task from the
attraction list, i.e., one or more of the processors
become unschedulable, the Alternative 1 fails.

Alternative 2:

The following steps are repeated until all tasks are
allocated to processors:

1. The object at the top of the mixed list is picked.
a. If the object is a task and it does not belong to a

broken macrotask it will be allocated onto the first
processor that fits it, beginning from the top of the
ordered processor list (similar to blocking-agnostic
BFD). If none of the processors can fit the task a
new processor is added to the list and the task is

allocated onto it. In this case if one or more of the
processors becomes unschedulable the
Alternative 2 fails.

b. If the object is an unbroken macrotask, all its tasks
will be allocated onto the first processor that fits
them. If none of the processors can fit the tasks,
they will be allocated onto a new processor and in
this case, if one or more of the processors becomes
unschedulable the Alternative 2 fails.

c. If the object is a task that belongs to a broken
macrotask, the ordered list of processors is a
concatenation of two ordered lists of processors.
The top list contains the processors that include
some tasks from the macrotask of the task; this list
is ordered in non-increasing order of processors’
attraction to the task based on equation (3), i.e. the
processor which has the greatest sum of attractions
of its tasks to the picked task is the most attracted
processor to the task. The second list of processors
is the list of those processors that do not contain
any task from the macrotask of the picked task and
are ordered in non-increasing order of their

utilization. The picked task will be allocated onto
the first processor from the processor list that will
fit it. The task will be allocated to a new processor
if none of the existing ones can fit it. And this
alternative of the algorithm fails if allocating the
task to the new processor makes some of the
processors unschedulabe.

The algorithm fails if both alternatives fail to schedule

a task set. If one of the alternatives fails the result will be
the output of the other one. Finally if both succeed to
schedule the task set, the one with less partitions
(processors) will be the output of the algorithm.

V. EXPERIMENTAL EVALUATION

In this section we present our experimental results of
the blocking-aware bin-packing algorithm together with
the blocking-agnostic algorithm. For a number of systems
(task sets), we have compared the performance of the
algorithms in two different aspects; 1) The total number of
systems that each of the algorithms can schedule, 2) The

(a) 3 tasks per processor

(b) 6 tasks per processor
Figure 1. Total number of task sets that the algorithms successfully schedule (task sets generated from 3 fully utilized
processors).

total number of systems that one of the algorithms
schedules with fewer processors when both succeed.

A. Task Set Generation

We generated systems (task sets) for different
workloads; we denote workload as a defined number of
fully utilized processors. Given a workload, the full
capacity of each processor (utilization of 1) is randomly
divided into a defined number of tasks utilizations.
Usually for generating systems, utilization and periods are
randomly assigned to tasks and worst case execution
times of tasks are calculated based on them. However, in
our system generation, the worst case execution times
(WCET) of tasks are randomly assigned and the period of
each task is calculated based on its utilization and WCET.
The reason is that we had to restrict that the WCET of a
task not to be less than the total length of its critical
sections. Since we have limited the maximum number of
critical sections to 10 and the maximum length of any
critical section to 10 time units, hence the WCET of each
task should be greater than 100 (10×10) time units. The
WCET of each task was randomly chosen between 100
and 150 time units. The system generation was based on

different settings; the input parameters for settings are as
follows.

1. Workload (3, 4, 6, or 8 fully utilized processors),
2. The number of tasks per processor (3 or 6 tasks per

processor),
3. The number of resources (2, 4, 6, or 8),
4. The range of the number of critical sections per

task (1 to 2, 3 to 4 or 5 to 6 critical sections per
task),

5. The range of length of critical sections (1 to 2, 3 to
4, or 5 to 6).

For each setting, we generated 100.000 systems, and
combining the parameters of settings (288 different
settings), the total number of systems generated for the
experiment were 28.800.000.

 With the generated systems we were able to evaluate
our partitioning algorithm with respect to different factors,
i.e., various workloads (number of fully utilized
processors), number of tasks per processor, number of
shared resources, number of critical sections per task, and
length of critical sections.

(a) Workload: 6 fully utilized processors, 3 tasks per processor

(b) Workload: 8 fully utilized processors, 6 tasks per processor

Figure 2. Total number of task sets that the algorithms successfully schedule

B. Results
In this section we present the evaluation results of our

blocking-aware algorithm. We compare them to the
results of the blocking-agnostic bin-packing algorithm.

The first aspect of comparison of the results from the
two algorithms is the total number of systems that each
algorithm succeeds to schedule. Comparison for 3 fully
utilized processors is represented in Figure 1. Figures 1.a
and 1.b represent the results for 3 task per processor and 6
tasks per processors respectively. The vertical axis shows
the total number of systems that the algorithms could
schedule successfully. The horizontal axis shows three

factors in three different lines; the bottom line shows the
number of shared resources within systems (Res. Num.),
the second line shows the number of critical sections per
task (Cs. Num.), and the top line represents the length of
critical sections within each task (Cs. Len.), e.g.,
Res. Num.=4, Cs. Num.=1-2, and Cs. Len.=1-2 represents
the systems that share 4 resources, the number of critical
sections are between 1 and 2, and the length of these
critical sections are between 1 and 2.

As depicted in Figure 1, considering the total number
of systems that each algorithm succeeds to schedule, our
blocking-aware algorithm performs better (more systems

(a) 3 fully utilized processors, 3 tasks per processor

(b) 3 fully utilized processors, 6 tasks per processor

(c) 6 fully utilized processors, 3 tasks per processor
Figure 3. Total number of task sets that either of algorithms schedule with fewer processors than the other.

are schedulable) compared to the blocking-agnostic
algorithm. By increasing the number of resources, the
number of successfully scheduled systems in both
algorithms is slightly increased. The reason for this
behavior is that with fewer resources, more tasks share the
same resource introducing more blocking overheads
which leads to fewer schedulable systems. However, it is
shown that the blocking-aware algorithm performs better
as the number of resources is increased. It is also shown
that increasing the number and/or the length of critical
sections significantly reduces the number of schedulable
systems in both algorithms. As the number of tasks per
processor is increased from 3 (Figure 1.a) to 6 (Figure
1.b), the blocking-aware algorithm performs significantly
better (schedules more systems) than the blocking-
agnostic algorithm.

As the workload (the number of fully utilized
processors) is increased, although the blocking-aware
algorithm still performs better than the blocking-agnostic
algorithm, the number of schedulable systems by both
algorithms is reduced (Figure 2). The reason for this
behavior is that the number of tasks within systems are
relatively many (48 tasks per each system in Figure 2.b)
and the workload is high (8 fully utilized processors in
Figure 2.b), and all the tasks within systems share
resources. This introduces a lot of interdependencies
among tasks and consequently a huge amount of blocking
overheads, making fewer systems schedulable. In practice
in big systems with many tasks, not all of the tasks share
resources, which leads to fewer interdependencies among
tasks and less blocking times. However, we continued the
experiment with higher workload in the same way as the
other experiments (that all tasks share resources) to be
able to compare the results with the previous results. We
believe that realistic systems, even with high workload
and many tasks can significantly benefit from our
partitioning algorithm to increase the performance.

The second aspect for comparison of performance of
the algorithms is the total number of systems that each
algorithm schedules with fewer processors than the other
one (better in processor reduction). The results show

(Figure 3) that our blocking-aware algorithm mostly
performs significantly better than the blocking-agnostic
bin-packing algorithm, especially given a lower number
of critical sections per task and shorter critical sections.
However, for lower number of shared resources (e.g., 2
shared resources) especially for higher workloads (e.g., 6
fully utilized processors) the blocking-aware algorithm
does not always perform better (Figure 3).

In the experiment we also studied the results of both
alternatives of the algorithm separately. The results show
that the alternative 1 mostly performs significantly better
than the alternative 2, although in some cases the
alternative 2 performs better especially as the number and
the length of critical sections increase.

C. Combination of Algorithms

The results in Section V.B. show that our
blocking-aware partitioning algorithm mostly performs
significantly better in both increasing the number of
schedulable systems as well as processor reduction.
However, finding an optimal solution with a bin-packing
algorithm is not realistic (bin-packing is a NP-hard
problem in the strong sense), hence there may exist
schedulable systems that our algorithm fails to schedule.
As illustrated in Figure 4, the number of systems that our
algorithm can exclusively schedule (i.e., the
blocking-agnostic algorithm fails to schedule them) are
significantly higher compared to the number of systems
exclusively schedulable by the blocking-agnostic
algorithm. However, there are still some systems that are
only schedulable by the blocking-agnostic algorithm.
Thus, combination of both algorithms can be convenient
to improve the overall results. It can also be noticed in
Figure 1 that combining the results of both algorithms
leads to more schedulable systems (Total successes).
Furthermore, as shown in Figure 2, there are some
systems that the blocking-agnostic algorithm schedules
with fewer processors (it performs better in processor
reduction). Hence a combined approach will lead to an
improvement in processor reduction as well.

Figure 4. Total number of task sets that the algorithms exclusively schedule successfully (workload of 3 fully utilized processors,
6 tasks per processor).

VI. SUMMARY AND FUTURE WORK

In this paper we have proposed a heuristic
blocking-aware algorithm, for real-time multiprocessor
systems, which extends a bin-packing algorithm with
synchronization parameters. The algorithm allocates a
task set onto the processors of a single-chip
multiprocessor (multi-core) with shared memory. The
objective of the algorithm is to decrease blocking times of
tasks by means of allocating the tasks that directly or
indirectly share resources onto appropriate processors.
This generally increases shedulability of a task set and can
lead to fewer processors compared to blocking-agnostic
bin-packing algorithms.

Since in practice most systems use fixed priority
scheduling protocols, we have developed our algorithm
under MPCP, the only existing synchronization protocol
for multiprocessors (multi-cores) which works under fixed
priority scheduling. This protocol introduces large
amounts of blocking time overheads especially when the
global resources are relatively long and the access ratio to
them is high.

Our experimental results confirm that our algorithm
mostly performs significantly better with respect to
system schedulability and processor reduction. However,
given a NP-hard problem, a bin-packing algorithm may
not achieve the optimal solution, i.e., our results show
that, although our algorithm mostly performs significantly
better, there still exist some cases that can only be solved
by the blocking-agnostic approach. Thus we show that a
combination of both algorithms improves the results with
respect to the total number of schedulable systems and
processor reduction.

A future work will be extending our partitioning
algorithm to other synchronization protocols, e.g., MSRP
and FMLP for partitioned scheduling. Another interesting
future work is to apply our approach to real systems and
study the performance gained by the algorithm on these
systems. In the domain of multiprocessor scheduling and
synchronization our future work also includes
investigating global and hierarchical scheduling protocols
and appropriate synchronization protocols.

REFERENCES

[1] T. Baker. A Comparison of Global and Partitioned EDF
Schedulability Test for Multiprocessors. Technical Report
TR-051101, Department of Computer Science, Florida State
University, 2005.

[2] T. Baker. Stack-based Scheduling of Real-time Processes.
J.Real-Time Systems, vol. 3, no. 1, pp. 67-99, 1991.

[3] S. Baruah, and N. Fisher. The Partitioned Multiprocessor
Scheduling of Sporadic Task Systems. In proceedings of
26th IEEE Real-Time Systems Symposium (RTSS’05), pp.
321- 329, 2005.

[4] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A
Flexible Real-time Locking Protocol for Multiprocessors. In
13th IEEE Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA’07), pp.
47-56, 2007.

[5] B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J.
Anderson. Synchronization on Multiprocessors: To Block or
not to Block, to Suspend or Spin? In proceedings of 14th

IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’08), pp. 342-353, 2008.

[6] A. Burns. Preemptive Priority Based Scheduling: An
Appropriate Engineering Approach. In S. Son, editor,
Advances in Real-Time Systems, pp. 225-248, Prentice-Hall,
1994.

[7] J. Carpenter, S. Funk, P. Holman, J. Anderson, and S.
Baruah. A Categorization of Real-time Multiprocessor
Scheduling Problems and Algorithms. In J. Y. Leung, editor,
Handbook on Scheduling Algorithms, Methods, and Models,
pp. 30.1-30.19. ChapmanHall/CRC, 2004.

[8] U. Devi. Soft Real-Time Scheduling on Multiprocessors.
PhD thesis, www.cs.unc.edu/˜anderson/diss/devidiss.pdf.
2006.

[9] U. Devi, H. Leontyev, and J. Anderson. Efficient
synchronization under global edf scheduling on
multiprocessors. In proceedings of 18th IEEE Euromicro
Conference on Real-time Systems (ECRTS’06), pp. 75-84,
2006.

[10] A. Easwaran, B. Andersson. Resource Sharing in Global
Fixed-Priority Preemptive Multiprocessor Scheduling. In
Proceedings of 30th IEEE Real-Time Systems Symposium
(RTSS’09), 2009.

[11] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini,
and P. Marceca. A comparison of MPCP and MSRP when
Sharing Resources in the Janus Multiple Processor on a Chip
Platform. In Proceedings of 9th IEEE Real-Time And
Embedded Technology Application Symposium (RTAS’03),
pp. 189-198, 2003.

[12] P. Gai, G. Lipari, andM. D. Natale. Minimizing Memory
Utilization of Real-time Task Sets in Single and Multi-
processor Systems-on-a-Chip. In proceedings of 22nd IEEE
Real-Time Systems Symposium (RTSS’01), pp. 73-83, 2001.

[13] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated
Task Scheduling, Allocation and Synchronization on
Multiprocessors. In Proceedings of 30th IEEE Real-Time
Systems Symposium (RTSS’09), 2009.

[14] Y. Liu, X. Zhang, H. Li, and D. Qian. Allocating Tasks in
Multi-core Processor Based Parallel Systems. Network and
Parallel Computing Workshops, in conjunction with
IFIP’07, pp. 748-753, 2007.

[15] J. M. López , J. L. Díaz , and D. F. García. Utilization
Bounds for EDF Scheduling on Real-time Multiprocessor
Systems. Real-Time Systems, v.28 n.1, pp. 39-68, 2004.

[16] F. Nemati, M. Behnam, and T. Nolte. Multiprocessor
Synchronization and Hierarchical Scheduling. In
Proceedings of First Intl. Workshop on Real-time Systems
on Multicore Platforms: Theory and Practice (XRTS-2009)
in conjunction with ICPP'09, 2009.

[17] F. Nemati, M. Behnam, and T. Nolte. Efficiently Migrating
Real-Time Systems to Multi-Cores. In Proceedings of 14th
IEEE International Conference on Emerging Techonologies
and Factory (ETFA'09), Mallorca, Spain, September, 2009.

[18] D. de Niz, and R. Rajkumar. Partitioning Bin-Packing
Algorithms for Distributed Real-Time Systems. Intl. Journal
of Embedded Systems, Vol. 2, No. 3-4, pp. 196-208, 2006.

[19] R. Rajkumar. Synchronization in multiple processor
systems. In Synchronization in Real-Time Systems: A
Priority Inheritance Approach. Kluwer Academic
Publishers, 1991.

[20] L. Sha, R. Rajkumar, and J. Lehoczky. Priority Inheritance
Protocols: An Approach to Real-time System
Synchronization. IEEE Transactions on Computers, 39(9),
pp. 1175-1185, 1990.

