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Abstract—In the multi-core and multiprocessor domain 
there are two scheduling approaches, global and partitioned 
scheduling. Under global scheduling each task can execute 
on any processor while under partitioned scheduling tasks 
are allocated to processors and migration of tasks among 
processors is not allowed. Under global scheduling the higher 
utilization bound can be achieved, but in practice the 
overheads of migrating tasks is high. On the other hand, 
besides simplicity and efficiency of partitioned scheduling 
protocols, existing scheduling and synchronization methods 
developed for uniprocessor platforms can more easily be 
extended to partitioned scheduling. This also simplifies 
migration of existing systems to multi-cores. An important 
issue related to partitioned scheduling is how to distribute 
tasks among processors/cores to increase performance 
offered by the platform. However, existing methods mostly 
assume independent tasks while in practice a typical real-
time system contains tasks that share resources and they 
may block each other. In this paper we propose a blocking-
aware partitioning algorithm to distribute tasks onto 
different processors. The proposed algorithm allocates a task 
set onto processors in a way that blocking times of tasks are 
decreased. This reduces the total utilization which has the 
potential to decrease the total number of needed 
processors/cores.    

I. INTRODUCTION 

Multi-core (single chip multiprocessor) is today the 
dominating technology for desktop computing and the 
performance of using multiprocessors depend on the 
nature of the applications as well as the implementation of 
the software. To take advantage of the concurrency 
offered by a multi-core architecture, appropriate 
algorithms have to be used to divide the software into 
tasks (threads) and distribute tasks on cores to increase the 
performance. Real-time systems can highly benefit from 
multi-core processors, as critical functionality can have 
dedicated cores and independent tasks can run 
concurrently to improve performance and thereby enable 
new functionality. Moreover, since the cores are located 
on the same chip and typically have shared memory, 
communication between cores is very fast. Since 
embedded real-time systems are typically multi threaded, 
they are easier to adapt to multi-core than single-threaded, 
sequential programs. If the tasks are independent, it is a 
matter of deciding on which core each task should 
execute. For embedded real-time systems, practically, a 
static and manual assignment of processors is often 
preferred for predictability reasons. 

There are two approaches for scheduling task systems 
on multiprocessors systems [1, 3, 7, 8]; global and 
partitioned scheduling. Under global scheduling, e.g., 
Global Earliest Deadline First (G-EDF), tasks are 
scheduled by a single scheduler based on their priorities 
and each task can be executed on any core. A single 
global queue is used for storing jobs. A task as well as a 
job can be preempted on a core and resumed on another 
core (migration of tasks among cores is permitted).  

Under partitioned scheduling tasks are statically 
assigned to processors and tasks within each processor are 
scheduled by uniprocessor scheduling protocols, e.g., Rate 
Monotonic (RM) and EDF. Each processor is associated 
with a separate ready queue for scheduling task jobs.  

However there are systems in which some tasks cannot 
migrate among cores while other tasks can migrate. For 
such systems neither of global or partitioned scheduling 
methods can be used. A two-level hybrid scheduling [8] 
which is a mix of global and partitioned scheduling 
methods is used for those systems.   

Partitioned scheduling protocols have been used more 
often and are supported (with fixed priority scheduling) 
widely by commercial real-time operating systems [13], 
because of their simplicity, efficiency and predictability. 
However, partitioning, which allocates tasks to 
processors, is a bin-packing problem which is known to 
be a NP-hard problem in the strong sense; therefore 
finding an optimal solution in polynomial time is not 
realistic in the general case. Thus heuristic approaches and 
sufficient feasibility tests for bin-packing algorithms have 
been studied to find a near-optimal partitioning [1, 7].      

While in real applications tasks often share resources, 
many of the scheduling protocols and existing partitioning 
algorithms for multiprocessors (multi-cores) assume 
independent tasks. 

  
A. Contributions 

The first contribution of this paper is to propose a 
blocking-aware heuristic algorithm to allocate tasks onto 
the processors of a single chip multiprocessor (multi-core) 
platform. The algorithm extends a bin-packing algorithm 
with synchronization parameters. The second contribution 
is to implement and evaluate the algorithm and compare it 
to the blocking-agnostic bin-packing partitioning 
algorithm. Blocking-agnostic algorithm, in the context of 
this paper refers to a bin-packing algorithm that does not 
consider blocking parameters to increase the performance 
of partitioning, although blocking times are included in 
the schedulability test. The new algorithm identifies task 



 

constraints, e.g., dependencies between tasks, timing 
attributes, and resource sharing, and extends the best-fit 
decreasing (BFD) bin-packing algorithm with blocking 
time parameters. The objective of the algorithm is to 
decrease blocking overheads by assigning tasks to 
appropriate processors (partitions). 

In practice, industrial systems mostly use Fixed 
Priority Scheduling (FPS) protocols. To our knowledge 
the only synchronization protocol under fixed priority 
partitioned scheduling, for multiprocessor platforms is 
Multiprocessor Priority Ceiling Protocol (MPCP) which 
was proposed by Rajkumar in [19]. Our algorithm 
assumes that MPCP is used for lock-based 
synchronization. Hence, we will discuss this protocol in 
more details in Section III.  

The rest of the paper is as follows: we present the task 
and platform model in Section II, describe the MPCP in 
Section III. We present the partitioning algorithm in 
Section IV. In Section V the experimental results of our 
algorithm are presented and the results are compared to 
the blocking-agnostic BFD.  

 
B. Related Work  

A study of bin-packing algorithms for designing 
distributed real-time systems is presented in [18]. The 
method partitions software into modules to be allocated 
on hardware nodes. In their approach they use two graphs; 
a graph which models software modules and a graph that 
represents the hardware architecture. The authors extend 
the bin-packing algorithm with heuristics to minimize the 
number of bins (processors) needed and the bandwidth 
required for the communication between nodes. However, 
their partitioning method assumes independent tasks. 

Liu et al. [14] present a heuristic algorithm for 
allocating tasks in multi-core-based massively parallel 
systems. Their algorithm has two rounds; in the first 
round processes (groups of threads - partitions in this 
paper) are assigned to processing nodes, and the second 
round allocates tasks in a process to the cores of a 
processor. However, the algorithm does not consider 
synchronization between tasks. 

Baruah and Fisher have presented a bin-packing 
partitioning algorithm (first-fit decreasing (FFD) 
algorithm) in [3] for a set of sporadic tasks on 
multiprocessors. The tasks are indexed in non-decreasing 
order based on their relative deadlines and the algorithm 
assigns the tasks to the processors in first-fit order. The 
algorithm assigns each task ߬௜ to the first processor, ௞ܲ for 
which both of following conditions, under the Earliest 
Deadline First (EDF) scheduling, hold:     

 
D୧ െ ∑ DBFכ൫τ୨, D୧൯தౠ א Pౡ  ൒  C୧   

and 
1 െ ∑ u୨தౠ א Pౡ   ൒  u୧ 

 
where C୧, D୧and T୧ specify worst-case execution time 
(WCET), deadline and period of task τ୧ respectively,  u୧ = 
C౟
T౟

, and 

DBFכሺτ୧, tሻ = ൜
ݐ ݂݅                                      ,0 ൏  D୧ 
C୧  ൅ u୧  ൈ ሺt െ D୧ሻ,   otherwise 

 
The algorithm, however, assumes that tasks are 

independent while in practice tasks often share resources 
and therefore blocking time overheads must be considered 
while schedulability of tasks assigned to the a processor is 
checked. Our algorithm not only considers resource 
sharing when distributing tasks but it tries to reduce 
blocking times as well.  On the other hand their algorithm 
works under the EDF scheduling protocol while most 
existing real-time systems use fixed priority scheduling 
policies. Our proposed algorithm works under fixed 
priority scheduling protocols, although it can easily be 
extended to other policies.    

Of great relevance to our work is the work presented 
by Lakshmanan et al. in [13]. In the paper they investigate 
and analyze two alternatives of execution control policies 
(suspend-based and spin-based remote blocking) under 
MPCP. They have developed a blocking-aware task 
allocation algorithm (an extension to BFD) and evaluated 
it under both execution control policies.  

In their partitioning algorithm, the tasks that directly 
or indirectly share resources are put into what they call 
bundles (we call them macrotasks) and each bundle is 
tried to be allocated onto a processor. The bundles that 
can not fit into any existing processors are ordered by 
their cost, which is the blocking overhead that they 
introduce into the system. Then the bundle with minimum 
cost is broken and the algorithm is run from the 
beginning. However, their algorithm does not consider 
blocking parameters when it allocates the current task to a 
processor, but only its size (utilization). Furthermore, no 
relationship (e.g., as a cost based on blocking parameters) 
among individual tasks within a bundle is considered 
which could help to allocate tasks from a broken bundle to 
appropriate processors to decreases the blocking times.    

However, their experimental results show that a 
blocking-aware bin-packing algorithm for suspend-based 
execution control policy does not have significant benefits 
compared to a blocking-agnostic bin-packing algorithm. 
Firstly, for the comparison, they have only focused on the 
processor reduction issue; they suppose that the algorithm 
is better if it reduces the number of processors. In this 
perspective they claim that in the worst case the number 
of needed processors would be equal to the number of 
tasks, while the worst case could be the case that an 
algorithm fails to schedule a task set. In our experimental 
evaluation, besides processor reduction, we have 
considered this issue as well. If an algorithm can schedule 
some task sets while others fail, we consider it as a 
benefit.  Secondly, in their experiments they have not 
investigated the effect of some parameters such as the 
different number of resources, variation in the number and 
length of critical sections of tasks. By considering these 
parameters, our experimental results show that in most 
cases our blocking-aware algorithm has significantly 
better results than blocking-agnostic algorithms.  

In the context of multiprocessor synchronization, the 
first protocol was MPCP presented by Rajkumar in [18], 



 

which extends PCP to multiprocessors hence allowing for 
synchronization of tasks sharing mutually exclusive 
resources using partitioned FPS. Our partitioning 
algorithm attempts to decrease blocking times under 
MPCP and consequently decrease worst case response 
times which in turn may reduce the number of needed 
processors. Gai et al. [11, 12] present MSRP 
(Multiprocessor SRP), which is a P-EDF (Partitioned 
EDF) based synchronization protocol for multiprocessors. 
The shared resources are classified as either (i) local 
resources that are shared among tasks assigned to the 
same processor, or (ii) global resources that are shared by 
tasks assigned to different processors. In MSRP, tasks 
synchronize local resources using SRP [2], and access to 
global resources is guaranteed a bounded blocking time. 
Lopez et al. [15] present an implementation of SRP under 
P-EDF. Devi et al. [9] present a synchronization technique 
under G-EDF. The work is restricted to synchronization of 
non-nested accesses to short, simple objects, e.g., stacks, 
linked lists, and queues. In addition, the main focus of the 
method is on soft real-time systems.  

Block et al. [4] present FMLP (Flexible 
Multiprocessor Locking Protocol), which is the first 
synchronization protocol for multiprocessors that can be 
applied to both partitioned and global scheduling 
algorithms, i.e., P-EDF and G-EDF. An implementation 
of FMLP has been described in [5]. However, to our 
knowledge there is no schedulability test for FMLP.  

Recently, a synchronization protocol under fixed 
priority scheduling, has been proposed by Easwaran et al. 
in [10], but they focus on a global scheduling approach. 

II. TASK AND PLATFORM MODEL 

We will assume a task set that consists of n sporadic 
tasks, ߬௜ሺ ௜ܶ, ,௜ܥ ,௜ߩ ሼܿ௜,௣,௤ሽሻ where ௜ܶ is the minimum inter-
arrival time between two successive jobs of task ߬௜ with 
worst-case execution time ܥ௜ and ߩ௜ as its priority. The 
tasks share a set of resources, ܴ which are protected using 
semaphores. The set of critical sections, in which task ߬௜ 
requests resources in ܴ is denoted by ሼܿ௜,௣,௤ሽ, where ܿ௜,௣,௤ 
indicates the maximum execution time of the ݌௧௛ critical 
section of task ߬௜ in which the task locks resource ܴ௤ א ܴ. 
Critical sections of tasks should be sequential or properly 
nested. The deadline of each job is equal to ௜ܶ. A job of 
task ߬௜, is specified by ܬ௜ .The utilization factor of task ߬௜ 
is denoted by ݑ௜ where ݑ௜ ൌ ௜ܥ ௜ܶ⁄ . 

We will also assume that the multiprocessor 
(multi-core) platform is composed of identical, unit-
capacity processors (cores) with shared memory. The task 
set is partitioned into partitions ሼ ଵܲ, … , ௠ܲሽ, and each 
partition is allocated onto one processor (core), thus m 
represent the minimum number of processors needed.  

III. THE MPCP-MULTIPROCESSOR PRIORITY 
CEILING PROTOCOL 

A. Definition 
The MPCP is used for synchronizing a set of tasks 

sharing lock-based resources under a partitioned FPS 

protocol, i.e., RM.  Under MPCP, resources are divided 
into local and global resources. Local resources are shared 
only among tasks from the same processor and global 
resources are shared by tasks assigned to different 
processors. The local resources are protected using a 
uniprocessor synchronization protocol, i.e., Priority 
Ceiling Protocol (PCP) [20]. A task blocked on a global 
resource suspends and makes the processor available for 
the local tasks. A critical section in which a task performs 
a request for a global resource is called global critical 
sections (gcs). Similarly a critical section where a task 
requests for a local resource is denoted as local critical 
sections (lcs).  

The blocking time of a task in addition to local 
blocking, needs to include remote blocking where a task is 
blocked by tasks (with any priority) executing on other 
processors. However, the maximum remote blocking time 
of a job is bounded and is a function of the duration of 
critical sections of other jobs. This is a consequence of 
assigning any gcs a ceiling greater than the priority of any 
other task, hence a gcs can only be blocked by another gcs 
and not by any non-critical section. Assume ߩு is the 
highest priority among all tasks. The priority of a job ܬ௜ 
executing within a gcs in which it requests ܴ௞ is called 
remote ceiling of gcs and equals to ߩு ൅ 1 ൅
max൛ߩ௝ห ௝߬ ݏݐݏ݁ݑݍ݁ݎ ܴ௞ ܽ݊݀ ௝߬ ݅ܬ ݊݋ ݐ݋݊ ݏ௜’s processor ൟ.  

Global critical sections cannot be nested in local 
critical sections and vice versa. Global resources 
potentially lead to high blocking times, thus tasks sharing 
the same resources are preferred to be assigned to the 
same processor as far as possible. Our proposed 
algorithms attempt to reduce the blocking times by 
assigning tasks to appropriate processors.  

To determine the schedulability of each processor 
under RM scheduling the following test is performed: 
 

1 ݇׊ ൑ ݅ ൑ ݊, ∑ ௞ܥ ௞ܶ⁄௜
௞ୀଵ ൅ ௜ܤ ௜ܶ⁄ ൑ ݅൫2ଵ ௜⁄ െ 1൯    (1) 

 
where ݊ is the number of tasks assigned to the processor, 
and ܤ௜ is the maximum blocking time of task ߬௜ which 
includes remote blocking factors as well as local blocking 
time. However this condition is sufficient but not 
necessary. Thus for more precise schedulability test of 
tasks our algorithm performs response time analysis [6].  
  
B.  Blocking times of tasks 

Before explaining the blocking factors of the blocking 
time of a job, we have to explain the following 
terminology: 

• ݊௜
ீ: The number of global critical sections of task 

߬௜. 
• ሼܬᇱ

௜,௥ሽ: The set of jobs on processor ௥ܲ (other than 
 ௜’s processor) with global critical sections havingܬ
priority higher than the global critical sections of 
jobs that can directly block ܬ௜. 

 ௜,௥,௞: The number of global critical sections ofܪܰ •
job ܬ௞ א ሼܬᇱ

௜,௥ሽ having priority higher than a global 
critical section on processor ௥ܲ that can directly 
block ܬ௜.  



 

• ሼܴܩ௜,௞}: The set of global resources that will be 
locked by both ܬ௜ and ܬ௞. 

 ௞ܬ ௜,௞: The number of global critical sections ofܥܰ •
in which it request a global resource in ሼܴܩ௜,௞}. 

௜ߚ •
௟௢௖௔௟: The longest local critical section among 

jobs with a priority lower than that of job ܬ௜ 
executing on the same processor as J୧ which can 
block ܬ௜. 

௜ܮߚ •
௚௟௢௕௔௟: The longest global critical section of any 

job ܬ௞ with a priority lower than that of job ܬ௜ 
executing on a different processor than ܬ௜’s 
processor in which ܬ௞ requests a resource in 
ሼܴܩ௜,௞}. 

௜,௞ܪߚ •
௚௟௢௕௔௟: The longest global critical section of 

job ܬ௞ with a priority higher than that of job ܬ௜ 
executing on a different processor than ܬ௜’s 
processor. In this global critical section, ܬ௞ requests 
a resource in ሼܴܩ௜,௞}. 

ᇱߚ •
௜,௞

௚௟௢௕௔௟: The longest global critical section of 
job ܬ௞ א ሼܬᇱ

௜,௥ሽ having priority higher than a global 
critical section on processor ௥ܲ that can directly 
block J୧.  

௜,௞ߚ •
௟௚: The longest global critical section of a lower 

priority job ܬ௞ on the ܬ௜’s host processor.  
 

The maximum blocking time ܤ௜ of task ߬௜ is a 
summation of five blocking factors: 

 
௜ܤ ൌ ௜,ଵܤ ൅ ௜,ଶܤ ൅ ௜,ଷܤ ൅ ௜,ସܤ ൅  ௜,ହܤ

where:  
௜,ଵܤ .1 ൌ ݊௜

௜ߚீ
௟௢௖௔௟ each time job ܬ௜ is blocked on a 

global resource and suspends the local lower 
priority jobs may execute and lock local resources 
and block ܬ௜ when it resumes. 

௜,ଶܤ .2 ൌ ݊௜
௜ܮߚீ

௚௟௢௕௔௟ when a job ܬ௜ is blocked on a 
global resource which is locked by a lower priority 
job executing on another processor. 

௜,ଷܤ .3 ൌ
∑ ڿ௜,௞ܥܰ ௜ܶ ௞ܶ⁄ ௜,௞ܪߚۀ

௚௟௢௕௔௟
ఘ೔ஸఘೖ ௔௡ௗ

௃ೖ௜௦ ௡௢௧ ௢௡ ௃೔ᇱ௦ ௣௥௢௖௘௦௦௢௥
 

when higher priority jobs on processors other than 
 .௜ܬ ௜’s processor blockܬ

௜,ସܤ .4 ൌ ∑ ڿ௜,௥,௞ܪܰ ௜ܶ ௞ܶ⁄ ሼ௃ᇲא௃ೖۀ
೔,ೝሽ ௔௡ௗ

௉ೝ ஷ௃೔ᇱ௦ ௣௥௢௖௘௦௦௢௥

ᇱߚ
௜,௞

௚௟௢௕௔௟ 

when the gcs’s of lower priority jobs on processor 
௥ܲ (different from ܬ௜’s processor) are preempted by 

higher priority gcs’s of ܬ௞ א ሼܬᇱ
௜,௥ሽ. 

௜,ହܤ .5 ൌ ∑ ݉݅݊ ሺ݊௜
ீ ൅ 1, ݊௞

ீሻఘೖஸఘ೔ ௔௡ௗ
௃ೖ ௢௡ ௃೔ᇱ௦ ௣௥௢௖௘௦௦௢௥

௜,௞ߚ
௟௚ 

when ܬ௜ is blocked on global resources and 
suspends a local job ܬ௞ can execute and enter a 
global section which can preempt ܬ௜ when it 
executes in non-gcs sections. 

IV. PARTITIONING ALGORITHM 

In this section we present a partitioning algorithm that 
groups tasks into partitions so that each partition can be 
allocated and scheduled on one processor. The objective 
of the algorithm is to decrease the blocking times of tasks. 
This generally increases the schedulability of a task set 
which may reduce the number of partitions (processors).  

Considering the blocking factors of tasks under 
MPCP, tasks with more and longer global critical sections 
lead to more blocking times. This is also shown by 
experiments presented in [11]. Our goal is to (i) decrease 
the number of global critical sections by assigning the 
tasks sharing resources to the same partition as far as 
possible, (ii) decrease the ratio and time of holding global 
resources by assigning the tasks that request the resources 
more often and hold them longer to the same partition as 
long as possible.  

In our previous work [16, 17] we have proposed a 
partitioning algorithm in which tasks are grouped together 
based on task preferences and constraints. The algorithm 
partitions tasks based on a cost function which is derived 
from task preferences and constraints. In [16] the resource 
sharing is only local by means of allocating the tasks that 
directly or indirectly share resources onto the same 
processor. Tasks that directly or indirectly share resources 
are called macrotasks, e.g. if tasks ߬௜ and ௝߬ share resource 
ܴ௣ and tasks ௝߬ and ߬௞ share resource ܴ௤, all three tasks 
belong to the same macrotask.  However if a macrotask 
does not fit in one processor (is not schedulable) the 
algorithm fails. In [17] tasks belonging to the same 
macrotask can be allocated to different partitions 
(processors), thus it is more flexible but it introduces 
remote blocking overhead into the systems. The goal of 
the algorithm is to put the tasks into appropriate partitions 
so that the costs are minimized. The algorithm may have 
different partitioning strategies, e.g., increasing cash hits, 
decreasing blocking times, etc. The strategy of 
partitioning may differ, depending on the nature of a 
system, and result in different partitions. In current work, 
however, we focus on decreasing remote blocking 
overheads of tasks which leads to increasing the 
schedulability of a task set and possibly reducing the 
number of processors needed for scheduling the task set.   

We have developed a blocking-aware algorithm that is 
an extension to the BFD algorithm. In a blocking-agnostic 
BFD algorithm, bins (processors) are ordered in non-
increasing order of their utilization and tasks are ordered 
in non-increasing order of their size (utilization). The 
algorithm tries to allocate the task from the top of the 
ordered task set onto the first processor that fits it, 
beginning from the top of the ordered processor list. If 
none of the processors can fit the task, a new processor is 
added to the processor list. At each step the schedulability 
of all processors should be tested, because allocating a 
task to a processor can increase the remote blocking time 
of tasks previously allocated to other processors and may 
make the other processors unschedulable. This means that 
it is possible that even if a task is allocated to a new 
processor, some of the previous processors become 
unschedulable which makes the algorithm fail.  



 

 
A.  The Algorithm 

The algorithm performs partitioning of a task set in 
two parallel alternatives and the result will be the output 
of the alternative with better partitioning results. 
However, the algorithm performs a few common steps 
before starting to perform the parallel alternatives. Each 
alternative allocates tasks to the processors (partitions) in 
a different strategy. When a bin-packing algorithm 
allocates an object (task) to a bin (processor), it usually 
puts the object in a bin that fits it better, and it does not 
consider the unallocated objects that will be allocated 
after the current object. However, the first alternative of 
our algorithm considers the tasks that are not allocated to 
any processor yet; and tries to take as many as possible of 
the best related tasks (based on remote blocking 
parameters) with the current task. On the other hand, the 
second alternative considers the already allocated tasks 
and tries to allocate the current task onto the processor 
that contains best related tasks to the current task. The 
second alternative performs more like the usual 
bin-packing algorithms, although it considers the remote 
blocking parameters while allocating a task to a processor.  

The common steps of the algorithm before the two 
alternatives are performed in parallel are as follows.   
1. Each task is assigned a weight. The weight of each 

task, besides its utilization, depends on parameters that 
lead to potential remote blocking time caused by other 
tasks: 

 
௜ݓ ൌ 

ඃሺܥ௜ ൅ ∑ ௜,௞ఘ೔ழఘೖܥܰ ڿ௜,௞ߚ ௜ܶ ௞ܶ⁄ ۀ ൅ ௜ܥܰ ఘ೔ஹఘೖݔܽ݉ /௜,௞ሻߚ ௜ܶඇ  (2) 
 

where,  ߚ௜,௞ is the longest critical section of task ߬௞ in 
which it shares a resource with ߬௜, and ܰܥ௜ is the total 
number of critical sections of ߬௜. 
 
2. Macrotasks are generated; the tasks that directly or 

indirectly share resources are put into the same 
macrotask. A macrotask has two alternatives; it can 
either be broken or unbroken. If a macrotask cannot fit 
(cannot be scheduled) in one processor, it is assigned 
as broken, otherwise it is denoted as unbroken. If a 
macrotask is unbroken, the partitioning algorithm 
always allocate all tasks in the macrotask to the same 
partition (processor). This means that all tasks in the 
macrotask will share resources locally relieving tasks 
from remote blocking.  However, tasks within a 
broken macrotask will be distributed into more than 
one partition. Similar to tasks, a weight is assigned to 
each unbroken macrotask, which equals to the sum of 
weights of its tasks.  

3. The unbroken macrotasks together with the tasks that 
do not belong to any unbroken macrotasks are ordered 
in a single list in non-increasing order of their weights. 
We call this list the mixed list.  

 
The strategy of allocation of tasks in both alternatives 

depends on attraction between tasks. The attraction of task 
߬௞ to a task ߬௜ is defined based on the potential remote 

blocking overhead that task ߬௞ can introduce to task ߬௜ if 
they are allocated onto different processors. We represent 
the attraction of task ߬௞ to task ߬௜ as ݒ௜,௞ which is defined 
as follows: 

 

௜,௞ݒ ൌ ቊ
NC୧,୩ߚ௜,௞ڿ ௜ܶ ௞ܶ⁄ ,ۀ ݅ߩ ൏ ݇ߩ
NC୧ߚ௜,௞                , ݅ߩ ൒ ݇ߩ

                     (3) 

 
Now we present the continuation of each alternative 

separately. 
 

Alternative 1: 
After step 3 the following steps are repeated by 

alternative 1 until all tasks are allocated to processors 
(partitions):  
4. All processors are ordered in their non-increasing 

order of utilization.  
5. The object at the top of the mixed list is picked.  

a. If the object is a task and it does not belong to a 
broken macrotask it will be allocated onto the first 
processor that fits it, beginning from the top of the 
ordered processor list (similar to blocking-agnostic 
BFD).  If none of the processors can fit the task a 
new processor is added to the list and the task is 
allocated onto it. In this case if one or more of the 
processors becomes unschedulable this alternative 
of the algorithm fails. 

b. If the object is an unbroken macrotask, all its tasks 
will be allocated onto the first processor that fits 
them. If none of the processors can fit the tasks, 
they will be allocated onto a new processor and in 
this case, if one or more of the processors becomes 
unschedulable the Alternative 1 fails. 

c.  If the object is a task that belongs to a broken 
macrotask, the algorithm orders the tasks (those 
that are not allocated yet) within the macrotask in 
non-increasing order of attraction to the task based 
on equation (3). We call this list the attraction list 
of the task. The task itself will be on the top of its 
attraction list. The best processor for allocation is 
selected, which is the processor that fits the most 
tasks from the attraction list, beginning from the 
top of the list. If none of the existing processors 
can fit any of the tasks, a new processor is added 
and as many tasks as possible from the attraction 
list are allocated to the processor. However, if the 
new processor cannot fit any task from the 
attraction list, i.e., one or more of the processors 
become unschedulable, the Alternative 1 fails.  

 
Alternative 2: 

The following steps are repeated until all tasks are 
allocated to processors:    

1. The object at the top of the mixed list is picked.  
a. If the object is a task and it does not belong to a 

broken macrotask it will be allocated onto the first 
processor that fits it, beginning from the top of the 
ordered processor list (similar to blocking-agnostic 
BFD).  If none of the processors can fit the task a 
new processor is added to the list and the task is 



 

allocated onto it. In this case if one or more of the 
processors becomes unschedulable the 
Alternative 2 fails.  

b. If the object is an unbroken macrotask, all its tasks 
will be allocated onto the first processor that fits 
them. If none of the processors can fit the tasks, 
they will be allocated onto a new processor and in 
this  case, if one or more of the processors becomes 
unschedulable the Alternative 2 fails. 

c. If the object is a task that belongs to a broken 
macrotask, the ordered list of processors is a 
concatenation of two ordered lists of processors. 
The top list contains the processors that include 
some tasks from the macrotask of the task; this list 
is ordered in non-increasing order of processors’ 
attraction to the task based on equation (3), i.e. the 
processor which has the greatest sum of attractions 
of its tasks to the picked task is the most attracted 
processor to the task. The second list of processors 
is the list of those processors that do not contain 
any task from the macrotask of the picked task and 
are ordered in non-increasing order of their 

utilization. The picked task will be allocated onto 
the first processor from the processor list that will 
fit it. The task will be allocated to a new processor 
if none of the existing ones can fit it. And this 
alternative of the algorithm fails if allocating the 
task to the new processor makes some of the 
processors unschedulabe. 

 
The algorithm fails if both alternatives fail to schedule 

a task set. If one of the alternatives fails the result will be 
the output of the other one. Finally if both succeed to 
schedule the task set, the one with less partitions 
(processors) will be the output of the algorithm.  

V. EXPERIMENTAL EVALUATION 

In this section we present our experimental results of 
the blocking-aware bin-packing algorithm together with 
the blocking-agnostic algorithm. For a number of systems 
(task sets), we have compared the performance of the 
algorithms in two different aspects; 1) The total number of 
systems that each of the algorithms can schedule, 2) The 

(a) 3 tasks per processor 

(b) 6 tasks per processor 
Figure 1. Total number of task sets that the algorithms successfully schedule (task sets generated from 3 fully utilized 
processors). 



 

total number of systems that one of the algorithms 
schedules with fewer processors when both succeed. 

 
A.  Task Set Generation 

We generated systems (task sets) for different 
workloads; we denote workload as a defined number of 
fully utilized processors. Given a workload, the full 
capacity of each processor (utilization of 1) is randomly 
divided into a defined number of tasks utilizations. 
Usually for generating systems, utilization and periods are 
randomly assigned to tasks and worst case execution 
times of tasks are calculated based on them. However, in 
our system generation, the worst case execution times 
(WCET) of tasks are randomly assigned and the period of 
each task is calculated based on its utilization and WCET. 
The reason is that we had to restrict that the WCET of a 
task not to be less than the total length of its critical 
sections.  Since we have limited the maximum number of 
critical sections to 10 and the maximum length of any 
critical section to 10 time units, hence the WCET of each 
task should be greater than 100 (10×10) time units. The 
WCET of each task was randomly chosen between 100 
and 150 time units. The system generation was based on 

different settings; the input parameters for settings are as 
follows.  

1. Workload (3, 4, 6, or 8 fully utilized processors), 
2. The number of tasks per processor (3 or 6 tasks per 

processor),  
3. The number of resources (2, 4, 6, or 8), 
4. The range of the number of critical sections per 

task (1 to 2, 3 to 4 or 5 to 6 critical sections per 
task),  

5. The range of length of critical sections (1 to 2, 3 to 
4, or 5 to 6). 

For each setting, we generated 100.000 systems, and 
combining the parameters of settings (288 different 
settings), the total number of systems generated for the 
experiment were 28.800.000. 

 With the generated systems we were able to evaluate 
our partitioning algorithm with respect to different factors, 
i.e., various workloads (number of fully utilized 
processors), number of tasks per processor, number of 
shared resources, number of critical sections per task, and 
length of critical sections.  

 

(a) Workload: 6 fully utilized processors, 3 tasks per processor 

(b) Workload: 8 fully utilized processors, 6 tasks per processor 

Figure 2. Total number of task sets that the algorithms successfully schedule  



 

B.  Results 
In this section we present the evaluation results of our 

blocking-aware algorithm. We compare them to the 
results of the blocking-agnostic bin-packing algorithm.  

The first aspect of comparison of the results from the 
two algorithms is the total number of systems that each 
algorithm succeeds to schedule. Comparison for 3 fully 
utilized processors is represented in Figure 1. Figures 1.a 
and 1.b represent the results for 3 task per processor and 6 
tasks per processors respectively. The vertical axis shows 
the total number of systems that the algorithms could 
schedule successfully. The horizontal axis shows three 

factors in three different lines; the bottom line shows the 
number of shared resources within systems (Res. Num.), 
the second line shows the number of critical sections per 
task (Cs. Num.), and the top line represents the length of 
critical sections within each task (Cs. Len.), e.g., 
Res. Num.=4, Cs. Num.=1-2, and Cs. Len.=1-2 represents 
the systems that share 4 resources, the number of critical 
sections are between 1 and 2, and the length of these 
critical sections are between 1 and 2.  

As depicted in Figure 1, considering the total number 
of systems that each algorithm succeeds to schedule, our 
blocking-aware algorithm performs better (more systems 

(a) 3 fully utilized processors, 3 tasks per processor 

(b) 3 fully utilized processors, 6 tasks per processor 

(c) 6 fully utilized processors, 3 tasks per processor 
Figure 3. Total number of task sets that either of algorithms schedule with fewer processors than the other. 



 

are schedulable) compared to the blocking-agnostic 
algorithm. By increasing the number of resources, the 
number of successfully scheduled systems in both 
algorithms is slightly increased. The reason for this 
behavior is that with fewer resources, more tasks share the 
same resource introducing more blocking overheads 
which leads to fewer schedulable systems. However, it is 
shown that the blocking-aware algorithm performs better 
as the number of resources is increased. It is also shown 
that increasing the number and/or the length of critical 
sections significantly reduces the number of schedulable 
systems in both algorithms. As the number of tasks per 
processor is increased from 3 (Figure 1.a) to 6 (Figure 
1.b), the blocking-aware algorithm performs significantly 
better (schedules more systems) than the blocking-
agnostic algorithm.   

As the workload (the number of fully utilized 
processors) is increased, although the blocking-aware 
algorithm still performs better than the blocking-agnostic 
algorithm, the number of schedulable systems by both 
algorithms is reduced (Figure 2). The reason for this 
behavior is that the number of tasks within systems are 
relatively many (48 tasks per each system in Figure 2.b) 
and the workload is high (8 fully utilized processors in 
Figure 2.b), and all the tasks within systems share 
resources. This introduces a lot of interdependencies 
among tasks and consequently a huge amount of blocking 
overheads, making fewer systems schedulable. In practice 
in big systems with many tasks, not all of the tasks share 
resources, which leads to fewer interdependencies among 
tasks and less blocking times. However, we continued the 
experiment with higher workload in the same way as the 
other experiments (that all tasks share resources) to be 
able to compare the results with the previous results. We 
believe that realistic systems, even with high workload 
and many tasks can significantly benefit from our 
partitioning algorithm to increase the performance. 

The second aspect for comparison of performance of 
the algorithms is the total number of systems that each 
algorithm schedules with fewer processors than the other 
one (better in processor reduction).  The results show 

(Figure 3) that our blocking-aware algorithm mostly 
performs significantly better than the blocking-agnostic 
bin-packing algorithm, especially given a lower number 
of critical sections per task and shorter critical sections. 
However, for lower number of shared resources (e.g., 2 
shared resources) especially for higher workloads (e.g., 6 
fully utilized processors) the blocking-aware algorithm 
does not always perform better (Figure 3).   

In the experiment we also studied the results of both 
alternatives of the algorithm separately. The results show 
that the alternative 1 mostly performs significantly better 
than the alternative 2, although in some cases the 
alternative 2 performs better especially as the number and 
the length of critical sections increase.  

 
C.  Combination of Algorithms  

The results in Section V.B. show that our 
blocking-aware partitioning algorithm mostly performs 
significantly better in both increasing the number of 
schedulable systems as well as processor reduction. 
However, finding an optimal solution with a bin-packing 
algorithm is not realistic (bin-packing is a NP-hard 
problem in the strong sense), hence there may exist 
schedulable systems that our algorithm fails to schedule. 
As illustrated in Figure 4, the number of systems that our 
algorithm can exclusively schedule (i.e., the 
blocking-agnostic algorithm fails to schedule them) are 
significantly higher compared to the number of systems 
exclusively schedulable by the blocking-agnostic 
algorithm. However, there are still some systems that are 
only schedulable by the blocking-agnostic algorithm. 
Thus, combination of both algorithms can be convenient 
to improve the overall results. It can also be noticed in 
Figure 1 that combining the results of both algorithms 
leads to more schedulable systems (Total successes). 
Furthermore, as shown in Figure 2, there are some 
systems that the blocking-agnostic algorithm schedules 
with fewer processors (it performs better in processor 
reduction). Hence a combined approach will lead to an 
improvement in processor reduction as well.    

Figure 4. Total number of task sets that the algorithms exclusively schedule successfully (workload of 3 fully utilized processors, 
6 tasks per processor). 



 

VI. SUMMARY AND FUTURE WORK 

In this paper we have proposed a heuristic 
blocking-aware algorithm, for real-time multiprocessor 
systems, which extends a bin-packing algorithm with 
synchronization parameters. The algorithm allocates a 
task set onto the processors of a single-chip 
multiprocessor (multi-core) with shared memory. The 
objective of the algorithm is to decrease blocking times of 
tasks by means of allocating the tasks that directly or 
indirectly share resources onto appropriate processors. 
This generally increases shedulability of a task set and can 
lead to fewer processors compared to blocking-agnostic 
bin-packing algorithms.  

Since in practice most systems use fixed priority 
scheduling protocols, we have developed our algorithm 
under MPCP, the only existing synchronization protocol 
for multiprocessors (multi-cores) which works under fixed 
priority scheduling. This protocol introduces large 
amounts of blocking time overheads especially when the 
global resources are relatively long and the access ratio to 
them is high.  

Our experimental results confirm that our algorithm 
mostly performs significantly better with respect to 
system schedulability and processor reduction. However, 
given a NP-hard problem, a bin-packing algorithm may 
not achieve the optimal solution, i.e., our results show 
that, although our algorithm mostly performs significantly 
better, there still exist some cases that can only be solved 
by the blocking-agnostic approach. Thus we show that a 
combination of both algorithms improves the results with 
respect to the total number of schedulable systems and 
processor reduction. 

A future work will be extending our partitioning 
algorithm to other synchronization protocols, e.g., MSRP 
and FMLP for partitioned scheduling.  Another interesting 
future work is to apply our approach to real systems and 
study the performance gained by the algorithm on these 
systems. In the domain of multiprocessor scheduling and 
synchronization our future work also includes 
investigating global and hierarchical scheduling protocols 
and appropriate synchronization protocols.   

REFERENCES 

[1] T. Baker. A Comparison of Global and Partitioned EDF 
Schedulability Test for Multiprocessors. Technical Report 
TR-051101, Department of Computer Science, Florida State 
University, 2005. 

[2] T. Baker. Stack-based Scheduling of Real-time Processes. 
J.Real-Time Systems, vol. 3, no. 1, pp. 67-99, 1991. 

[3] S. Baruah, and N. Fisher. The Partitioned Multiprocessor 
Scheduling of Sporadic Task Systems. In proceedings of 
26th IEEE Real-Time Systems Symposium (RTSS’05), pp. 
321- 329, 2005.  

[4] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson.  A 
Flexible Real-time Locking Protocol for Multiprocessors. In 
13th IEEE Conference on Embedded and Real-Time 
Computing Systems and Applications (RTCSA’07), pp. 
47-56, 2007. 

[5] B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. 
Anderson. Synchronization on Multiprocessors: To Block or 
not to Block, to Suspend or Spin? In proceedings of 14th 

IEEE Real-Time and Embedded Technology and 
Applications Symposium (RTAS’08), pp. 342-353, 2008. 

[6] A. Burns. Preemptive Priority Based Scheduling: An 
Appropriate Engineering Approach. In S. Son, editor, 
Advances in Real-Time Systems, pp. 225-248, Prentice-Hall, 
1994. 

[7] J. Carpenter, S. Funk, P. Holman, J. Anderson, and S. 
Baruah. A Categorization of Real-time Multiprocessor 
Scheduling Problems and Algorithms. In J. Y. Leung, editor, 
Handbook on Scheduling Algorithms, Methods, and Models, 
pp. 30.1-30.19. ChapmanHall/CRC, 2004. 

[8] U. Devi. Soft Real-Time Scheduling on Multiprocessors. 
PhD thesis, www.cs.unc.edu/˜anderson/diss/devidiss.pdf. 
2006. 

[9] U. Devi, H. Leontyev, and J. Anderson. Efficient 
synchronization under global edf scheduling on 
multiprocessors. In proceedings of 18th IEEE Euromicro 
Conference on Real-time Systems (ECRTS’06), pp. 75-84, 
2006. 

[10] A. Easwaran, B. Andersson. Resource Sharing in Global 
Fixed-Priority Preemptive Multiprocessor Scheduling. In 
Proceedings of 30th IEEE Real-Time Systems Symposium 
(RTSS’09), 2009. 

[11] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, 
and P. Marceca. A comparison of MPCP and MSRP when 
Sharing Resources in the Janus Multiple Processor on a Chip 
Platform. In Proceedings of 9th IEEE Real-Time And 
Embedded Technology Application Symposium (RTAS’03), 
pp. 189-198, 2003. 

[12] P. Gai, G. Lipari, andM. D. Natale. Minimizing Memory 
Utilization of Real-time Task Sets in Single and Multi-
processor Systems-on-a-Chip. In proceedings of 22nd IEEE 
Real-Time Systems Symposium (RTSS’01), pp. 73-83,  2001.  

[13] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated 
Task Scheduling, Allocation and Synchronization on 
Multiprocessors. In Proceedings of 30th IEEE Real-Time 
Systems Symposium (RTSS’09), 2009.  

[14] Y. Liu, X. Zhang, H. Li, and D. Qian. Allocating Tasks in 
Multi-core Processor Based Parallel Systems. Network and 
Parallel Computing Workshops, in conjunction with 
IFIP’07, pp. 748-753, 2007. 

[15] J. M. López , J. L. Díaz , and D. F. García. Utilization 
Bounds for EDF Scheduling on Real-time Multiprocessor 
Systems. Real-Time Systems, v.28 n.1, pp. 39-68, 2004. 

[16] F. Nemati, M. Behnam, and T. Nolte. Multiprocessor 
Synchronization and Hierarchical Scheduling. In 
Proceedings of  First Intl. Workshop on Real-time Systems 
on Multicore Platforms: Theory and Practice (XRTS-2009) 
in conjunction with ICPP'09,  2009. 

[17] F. Nemati, M. Behnam, and T. Nolte. Efficiently Migrating 
Real-Time Systems to Multi-Cores. In Proceedings of 14th 
IEEE International Conference on Emerging Techonologies 
and Factory (ETFA'09), Mallorca, Spain, September, 2009. 

[18] D. de Niz, and R. Rajkumar. Partitioning Bin-Packing 
Algorithms for Distributed Real-Time Systems. Intl. Journal 
of Embedded Systems, Vol. 2, No. 3-4, pp. 196-208, 2006. 

[19] R. Rajkumar. Synchronization in multiple processor 
systems. In Synchronization in Real-Time Systems: A 
Priority Inheritance Approach. Kluwer Academic 
Publishers, 1991. 

[20] L. Sha, R. Rajkumar, and J. Lehoczky. Priority Inheritance 
Protocols: An Approach to Real-time System 
Synchronization. IEEE Transactions on Computers, 39(9), 
pp. 1175-1185, 1990. 


