The Progress Process Guidelines (PPG)

Rikard Land, Jan Carlson, Stig Larsson, lvica Crnkovic

Madlardalen University, School of Innovation, Design and Engineering
PO Box 883, SE-721 23 Vdsterds, Sweden
+46 21 10 70 35

{rikard.land, jan.carlson, stig.larsson, ivica.crnkovic}@mdh.se

Abstract
This report proposes how the emerging model-driven and component-based paradigms can be
utilized in embedded systems development to achieve a potentially high level of project monitoring and
control, and thus reduce project risks. The guidelines are formulated as an extension of CMMI.

Keywords
Component-based development, Component-Based Software Engineering, Model-based development, Model-driven
development, Embedded systems development, Guidelines, CMMI.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE
Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

Table of Contents 2(39)

Table of Contents

PART I: INtroduction and EXAMPIEcuiiiiiiiiiece ettt sttt be e e s te e e saesteenenreenes 4
IIELOMUCTION ...ttt ettt h et a et e bt e bt e s bt e shtesateea bt eabe e bt e bt e bt e sbeeemeeemteenteenbeesbeesaeenas 4
INtrOAUCTIOTY EXAIMPIEc.viiiiiiiiiiieiieieerte e ete et ettt et s e et e e e saestaessaessseessaessaesseesssesssesssessseanseensassseesssensseans 5
SCOPE ANA ASSUIMPLIONS. ... evieurieerieriesttesiteireereeseesseesseesseesssesssessseasseesseesseesssesssssssessseasseesseessessseesssesssesssesssesssenssens 6
RESCAICH IMENOMooeiiiiiiiccce et ettt e et e e e bt e e e abeeetae e tbeeeabeeesssaesssaeensseessseeessaeesseessesanes 8
RELAEA WOTK ...ttt sttt s h et e bt e et et e e bt et et e sbe e st et e ebeemte bt eaeenteeneenees 8
Requirements in INAUSLIY TOAAYccviiiiuiiiiiiiciiece ettt e e e e s be e etae e beeesebeessaeesseeasseeessseesnsenas 10
Structure Of the GUIACIINEScccveiiiiiiiiiie ettt e et e e e b e e et e e estteesebeeeaaeeseseeessseesssesessseessseeesseanns 10
Conceptual Product Meta-IMOAEcccuiiiiiiiiiiiiie ettt etee et te e et e et eessteeesaeessseesnsaeessseesnseeesseesnseenn 11
The Interaction Of ENtities OVET TIME.....cc.uiiiiiiiiiiiiieitieeie ettt sttt ettt b e sbte et e st e e e eeeas 14
The Allocation of Entities t0 CIMMI ProCeSS ATCAS........cccueecveeerieriieriieriiereeseteseeeseeseesseesseesseesseesssesssessseesseessees 15
25 1) o) (USRS U PRSP S 15
REQUITEIMEIILS ...ttt ettt ettt ettt et e e bt e bt et e e bt e s s teeuteenseenteenseesseesaeesateeaseeaseenseenseasntesnseenseenseanseas 17
Planning Of MILESTONESccuveriiriieiieitiesteeseeste st et et esteesteesebessbeasseesseesseessaesssessseasseessaesseenseesseesssesssennseenseensees 17
Milestone MS1 (high-1eVel AESIZN)cccuiiiiiiiiiie ittt ettt e et e e s re e e ta e e tbeeeabee e sbeesbeessseeessseesnseeas 20
Milestone MS2 (70% COMPLELE)......c.eeeuieiieiieiietterte ettt ettt ettt et sat et eete et e beesteesseesneesseasstesneeenseenseenseas 21
Milestone MS3 (fEature COMPIETE)eivrieeiiiieiiieecieeciteetee et e et et e st e et esteeetaeessseesssseessseessseesnseesnsseesnseenn 24
MILESTONE MSA (AEIIVETY). uveiiiiiiiiie et eeite ettt e e ettt e ettt eeteeestbeeebeeesbeessseeessseesssaeassaeessesassaeessseeasseeessesnnsenan 24
PART [1: CIMMI PFOCESS ATBASccuiiuiiiiitiitieiee ittt sttt nr st n e re st re s m e e e ne s e e nn e neaneennenneennenneenees 25
Causal Analysis and ReSOIUtION (CAR) ...viiiuiiiiiiiiiciieieeteeteete sttt ettt s ae s b e e sbeesbeesteesbe e tsesssessseessaessens 25
Configuration Management (CIM)cccuiiiiieiiiieeiiiecciieeeteeeteeeieeesveesteeestaeeseseesbseessseeessaeesssessssasessseessseessssesssees 25
Decision Analysis and ReSolution (DAR).......ccueviiiiiiiiiiieieeieeeesesee sttt te e stae s e e ssaessaesnseenseensaenseas 25
Integrated Project Management +IPPD (IPM+IPPD)ccciiiiiiiiiiiiiieieeecee sttt esraesneas 25
Measurement and ANALYSIS (IMA)eieiieiieietierte ettt ettt ettt et esate s et e st e eateete e teesbeesseesseeseesaeeenseenseenseenseas 26
Organizational Innovation and Deployment (OID).........cccueviirieiieiiiieiiieiiereeree e eee e ere e seesaesresssessseenseensees 26
Organizational Process Definition +IPPD (OPDHIPPD)ccooiiiiiiiiiiiiiieece ettt et 26
Organizational Process FOCUS (OPF)......cc.ooiiiiiiii ettt sttt et ettt e eneas 26
Organizational Process Performance (OPP)........cccoccuiiiiiiiiiiiicciccece ettt ebeesbaesneas 26
Organizational Training (OT)......c.ceciiiiiiiiiie ettt e e e ta e e s reeebeeestbeessbeeesseesssaesssasesseessseeessessseens 26
Product INte@ration (PL).......c.cccieiieieieciece ettt ettt e e e s taestaeesseesseenseesseensaessaesnsesnsennseensaensens 27
Project Monitoring and Control (PMO)........c.ccciiiiiiiieiiieiie e eie ettt et este st e svesseeseesseestaestaesssessaesssassseasseessenssees 27

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

Table of Contents 3(39)

Project PIANNING (PP) ..cccuiiiiiiiieieeiteeete sttt ettt s e sttt et e e sseesssessseesseessaenseasseenseessaesnseansennseensaensens 27
SG 1 EStabliSh EStIMAEScecuieiuiiiiiieiieie ettt sttt ettt et e s bt e s ateeate et e eaeeeateenbeenbeesbeesanesaneans 28
SG 2 Develop @ ProJect PIanccuiiiiiiieieieee ettt ettt ettt st e be et eeteesbeesbeesaneenneens 28
SG 3 Obtain Commitment t0 the PLancccooiiiiiiiiee ettt 28

Process and Product Quality Assurance (PPQA)oooiiioiiiiee ettt et e a e e ane e 29
SG 1 Objectively Evaluate Processes and Work Productsc.occvviiiriieriieniienieniesieeeeieeieeie e 29
SG 2 Provide ODJectiVe INSIZNT.......ccciviiiiiiiiieiieesiiesteeie ettt ettt et estaesaessbeesbe e teesssesssessseesseesseesseessaesssessseans 29

Quantitative Project Management (QPIM)c.coiiiiiiiiiiieiieeniie sttt ettt sttt e e be et e st e bt e snteenteenseenseas 29

Requirements Development (RD)cccciiiiiiiiiiiieiieieesieesieste sttt et esteesteestaessaesssessseesseesseesseesssesssessseesseeses 30

Requirements Management (REQM)cooouiiiiiiiiiiiiciii ettt ettt e eetae e saveesveeessbeeestaeessaeesssaeensseennnes 30

Risk Management (RSKIM)cccuiiiiiiiiieiie ettt ettt et ettt ettt s at e sateeate e teebe e st anseesseesneesnseenseenseenseas 30

Supplier Agreement Management (SAM)........ccciecuieiierierierieeieeieeseeseeseessessseasseesseesseesssessseasseesseesseessessssesssenns 31

Technical SOIULION (TS) ..cuviiiiiieiie ettt e et e e te e e s tbeeeabaeeebeessbaeessseeassaeesaeesssaessseeensseessseeensseensses 31
SG 1 Select Product Component SOIULIONSceoiiriieiiieiieiiesiie ettt ettt esteeseestesbeebeebeesseesseesseesanesnseens 31
SG 2 DEVElOP the DESIZN ..veeuvieiieiiiiiiiiieeieesieesteestesteeveebe e st ebeessaesssessseasseasseesseesssasssesssesssesssessseesseesssesssesssenns 31
SG 3 Implement the Product DESIZIcccuuiiiiiiiiieeieeciee ettt etee et e et e e sveesbeeetaeeseseeesbaeessseessseeensseensses 32

ValIAAtION (VAL) ..ottt ettt et e et e e ete e e etae e et e e eteeeeateeebaeeasseeesseeesseeeateeeseeeaasesensseesanes 34

Verification (VER)ocuiiiiiiiicieetece ettt ettt ettt et et e e bt e s taestaeasbeesbeesbeesssesseassaessaestaessseasseesseesseenssensns 34
SG 1 Prepare for VETrifICAtIONccuieiuieiieiieiie ittt ettt ettt st sttt e et e e be e s bt e saeesnteenteenteenseeseesseesanesnseans 34
SG 2 Perform PEer REVIEWSc.eeiiiiiiiieiieieeee ettt sttt bttt ebe et eb et eneeemeenees 35
SG 3 Verify Selected WOrK PrOQUECEScccviiiiiieiie ettt re e e aee v e e ssbeeesbeesssaeessseensns 36

CONCIUSIONSuevieeetieeeiieeetie ettt e et e ettt e et eeetbeeebee e taeeeabeeetseessseaensseasasesansaeasseeansssaassaeassaeeasaeesseeensasensseesnseeennsessnseean 37
ACKNOWIEAZEIMENLScueiieiieeieeciie ettt et et e et e et eessteeesaeessseeesseeeasseesnsaeaseeansseessseeanseeesssaennseenn 37

RETEIEIICES ...ttt ettt h e et e e ettt e bt e bt e eb et sa e e e atesateeabeembe e bt enbeesmeeemteenbeenbeebeas 38

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example 4(39)

PART I: Introduction and Example

Introduction

Model-driven development (MDD) [1] and Component-Based Software Engineering (CBSE) [2] are two
approaches to software and systems development which have matured, and are increasingly used in
combination. Usually, the benefits of these approaches are formulated in technical terminology, such
as the software being correct by construction, possibility to predict the behavior of a system built from
components with known properties [3], and ensuring consistence and removing some potential
sources of introducing errors into the development process. There are only few examples of
presentations connecting these technical advances to processes [4][5][6].

One important way to lift these technology-based benefits to a project/organization level is to
investigate how these paradigms support risk reduction and a means for project monitoring and
control. This has been summarized as the CARMA principle, as formulated in [7]:

Components. Choose a component technology which supports compositional reasoning of
component properties. As early as possible, define the components of your system (i.e. the
architectural structure.)

Attributes. Keep track of the attributes, i.e., properties of (components of) your system through
component attributes. Use a tool that supports management of these properties, including
automatic composition.

Requirements. Refine your high-level system requirements into product requirements, and
specify these in terms of the attributes which are analyzable with (tools supporting the)
composition theories.

Milestones. Formulate milestones (e.g. project gates) in terms of tuples: <expected value in
relation to product requirement; method to generate this value>.

Analysis. The verification analysis is performed at these milestones. In addition, the individual
developers, architects, project manager, etc., may perform analyses of interest at any time; this
resembles debugging in direct connection to implementation, which is informally done (i.e. not

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example 5(39)

mandated by a formal process) but an invaluable tool for the individual developer before
passing the code (or, in model-driven development, the model) on to verification as part of the
formal process.
This report describes a set of guidelines intended to make this principle concrete. The principle itself,
and accompanying examples, have been published previously [7][8].

The guidelines have been given the name Progress Process Guidelines (PPG), after the PROGRESS
Centre for Predictable Embedded Software Systems® where this research is being carried out.

The PPG structure is based on CMMI [9], but is not limited to organizations explicitly using CMMI
(as clarified in section “Research Method” on page 8). Similarly, the guidelines stem from the methods,
technologies, and tools developed at the PROGRESS centre, but are not limited to these (as described
in section “Scope and Assumptions” below). Nevertheless, the PPG contains some references to
ProCom, the specific component model developed at Progress, when ProCom provides specific and
unique features. The first part of this report describes a conceptual product meta-model, where
concepts and their relationships are defined which are used to specify the actual guidelines in the rest
of the paper, and illustrates the intended use of PPG with an illustrative example on page 15. The
second part of the report, from page 25 onward, is organized according to CMMI process areas, in
alphabetical order, and extends it as described in section “Structure of the Guidelines” on page 10f.

Whether the CARMA principle and its interpretation PPG are useful in practice, is the topic for
several current and future studies [7]. The present report can be seen as a support for these other
empirical studies, intended to clarify the CARMA principle in detail within a well known terminology
and structure. Other studies include process simulation, tool implementation, and pilot projects [7].

Introductory Example

A simple explanatory example of these concepts is presented in Figure 1. There may be a (product)
requirement on the system’s response time, i.e. the total time from an external event occurs until an
actuator is actuated. The system’s response time is dependent on (at least):

e Component interconnections (arrows in the figure)

e Each component’s internal execution time (in some appropriate unit independent of hardware;

e.g. execution paths or some other behavioral model, ideally expressed in terms of input)

e Allocation of components to various hardware nodes (dashed arrows)

e Characteristics of the hardware (e.g. processor speed)

e The scheduling of the components

! See http://www.mrtc.mdh.se/progress

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example 6(39)

Similarly, memory usage, usage of other resources, and the overall functional behavior of the system,
can in principle be specified as a composition of the ingoing component’s properties (memory usage,
behavior, etc.). However, to achieve reliable as well as useful results, there must exist reliable and
practical methods used to generate component information as well as for aggregating the relevant
component information. In practice, execution time analysis is very time-consuming, and often
provides overly pessimistic results; only some of the most important parameters are listed above and
in the figure.

The scope of PPG is, when a Model- and Component-based approach is suitable, and when proper
tools and methods for development and analysis are available, to explain how to leverage on the
potential benefits in terms of project management and control, and risk reduction in the project.

Details about the ProCom component model, as an example of a component model supporting this
reasoning, can be found in [10][11], and details about the attribute framework in ProCom is provided
in [12]. Other similar component models and UML extensions are: AADL [13], Autosar?, SysML* and
MARTE?; the applicability of PPG to these has not been investigated.

Scope and Assumptions

The PPG covers some parts of several process areas, but is intended to provide guidelines only for the
parts that are related to working efficiently according to the CARMA principle. In particular, the PPG
concerns only (in CMMI terms) product requirements, i.e. technically oriented versions of the
requirements, and not customer requirements, which express customer needs. Nor does PPG concern
how product requirements are derived from customer requirements.

These guidelines fundamentally builds on the assumption that a component technology is available
so that for each component attribute of interest (e.g. behavior, timing properties, memory usage)
there exist a way to analyze a primitive component, as well as a composition theory or analysis
technology [14].

? See http://www.autosar.org/
? See http://www.sysml.org/

4 See http://www.omgmarte.org/

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example 7(39)

Network bus

Figure 1: Example of aggregating component attributes. The upper part of the figure describes
the software components, and the dashed lines show allocation to hardware elements at the
bottom of the figure.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example 8(39)

Research Method

The PPG intends to describe a set of guidelines describing what is believed to be a good match
between state-of-the-art research which has not yet found its way into a complete and integrated tool
suite, and current practice in industry. This restricts the possibilities for empirical studies of industrial
best practices, instead we are performing a set of complementary studies of various kinds, where the
current report intends to set a baseline in a well-known terminology (CMMI) which can be related to.
Other studies include process simulation, tool implementation, and hopefully pilot studies in a limited
setting [7].

The input to these guidelines comes from the following sources:

e Literature. Study of literature on model-based and component-based development processes
and roles [8]. This has led to the formulation of the CARMA principle [7]. The section “Related
Work” below describes the related literature.

e Interviews with researchers. Several rounds of open-ended interviews were performed with
PROGRESS researchers, in order to collect and understand the intended usage of various state-
of-the-art methods, tools, and not-yet fully implemented ongoing research. This study
consisted of some 20 formal interviews with a dozen researchers (in addition to other
collaboration at various levels).

e Industrial requirements specifications. Industrial requirements specifications, architecture
documents, and verification documents from several embedded system development projects
have been specifically studied in order to achieve relevance’. The general conclusions are
presented in section “Requirements in Industry Today” on page 10 below.

e CMMI [9] provides the PPG structure. Each process area, goal, etc. has been studied from the
point of view of where and how each part of the conceptual product meta-model (defined and
described on page 11ff) should be instantiated, and used. (For example, requirements
development in the CMMI process area “Requirements Development” involves defining
product component attributes with required values.)

Related Work

The principle behind Model-Driven Development (MDD) is to bridge the gap between various
development artifacts such as requirements, architectural descriptions, lower-level designs, and
implementation level [1][15][16]. MDD implicitly makes the development process more efficient

5 These specifications were studied particularly for this purpose, in addition to general knowledge and experience from other projects and
documentation of relevant systems. We are not allowed to share further information about these requirements specifications.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example 9(39)

through automatic or semi-automatic model transformations, and the likelihood of errors being
introduced is decreased. OMG’s Model-Driven Architecture (MDA)® is one important instantiation of
this principle, where the main objective is to achieve platform independence [16].

In the Component-Based Software Engineering (CBSE) paradigm [2], software systems are
constructed from smaller-grained components, which only interact at well-specified interfaces, and are
to a high degree self-contained and thus often reusable in several systems. One important goal for
CBSE is to enable composition of component properties into higher level (e.g. system) properties
[3][14]. However, component models and component technologies often regard a “component”
mainly as a deployable entity [2], while the PPG focuses on the concept of component identity
throughout the process, from early design to run-time. This is true for component models designed to
also adopt the Model-Driven Development paradigm, and modeling languages which have adopted the
CBSE paradigm, such as the ProCom component model [10][11] (which is the component model the
PPG explicitly builds on), AADL [13], Autosar’, SysML?, MARTE®, and EAST-ADL [4][17].

The exploratory analysis and milestone verification presented in this paper inherits the basic ideas
from the concepts of daily builds, continuous integration, continuous verification, and test-driven
development [18][19][20], and adapts them to fit the component-based approach. Other, parallel
research efforts have described similar, although more high-level, guidelines for early verification
based on the combined CBSE/MDD paradigm: the “methodology” of the TIMMO project [4]
acknowledges that early estimates may be combined with results achieved with e.g. analysis tools; the
SAVI project has also noted the possibilities of performing a “virtual integration” [5][6] early in the
process. This report has developed and generalized this notion further, and describes the process
explicitly as a reference text.

Descriptions of processes utilizing the advanced concepts of the CBSE paradigm (e.g. composition
of component attributes throughout the process) are scarce [4], and are usually at a more abstract
level [21]. In the field of MDD, process descriptions focus more on the division into platform
development and application development [15][16], and the new roles required for this, such as a
meta-team of language developers and code generator developers [22][23].

® See http://www.omg.org/mda
7 See http://www.autosar.org/
¥ See http://www.sysml.org/

% See http://www.omgmarte.org/

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example 10(39)

Requirements in Industry Today

According to our investigation and experience, requirements specifications today contain a mix of what
CMMI [9] labels product requirements, i.e. requirements specified in enough detail to allow specific
pass/fail criteria to be specified [7]. The requirements specifications also describe customer
requirements, i.e. the goals for the customer which is fairly imprecisely specified and difficult to verify
unambiguously (such as “it shall be easy to upload a new software version”). The PPG focuses on
product requirements, and for these, we have noted the following, which is relevant for the PPG and
conceptual product meta-model described in section “Conceptual Product Meta-Model” on page 11:

e Many product requirements are specified in terms of execution steps, sometimes using some
kind of dynamic diagram. Example: “During startup, register X shall first be read to determine
the cause of the last shutdown/reset. If it is...”

e Some product requirements describe timing behavior of some execution steps. “Example: The
first phase of startup shall take less than X ms; the second step Y ms; ...”

e Some product requirements, but not many, are hardware specifications. Example: “The
processor shall be of type X”; “the software image shall fit in X bytes of memory”.

e The requirements that are specified in the greatest detail (including the specifications on timing
and resource usage as described in the bullets above), and are formulated to be unambiguous
and verifiable, are the requirements that specify safety-related functions. This is due to the
potentially catastrophic effects of a specification error, concretely meaning adhering to a safety
standard, and passing the external assessment to achieve product certification.

Structure of the Guidelines

The structure of the guidelines (i.e. from page 25 onward) explicitly follows that of CMMI for
development, version 1.2 [9]. This makes PPG easily accessible to readers familiar with CMMI, and
allows the PPG to focus on the specifics of the component-based approach and the Progress methods
and technologies. The PPG thus omits other, generally applicable guidelines and suggested practices.
PPG should be perfectly applicable in organizations that do not explicitly follow or implement the
CMMI; CMMI is only a choice for presentation of the PPG. This is similar to other CMMI extensions
[24][25].

More specifically, the PPG is formulated as additions in the forms of notes, amplifications, typical
work products, references, and/or amplifications [9]. (For the CMMI process areas (or specific goals, or
specific practices) where PPG makes no additions, this is explicitly stated in the present report with
“nothing added”, preserving the CMMI structure.)

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE
Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example

11(39)

Figure 2 describes schematically how the PPG adds to some elements of CMMI which are used to
design a concrete organizational process (depicted in green):
e The contents of the CMMI [9] itself (in blue).
e The CARMA principles (in pink), which have been interpreted when constructing the PPG.
e The contents of PPG (in yellow). Each addition may be an addition of either a CMMI process
area, a specific goal, or a specific practice.

CMMI

Organization Process

CARMA principle

Usage
Usage Interpretation
N
* PPG
Process Area

Y T*

*
Augmentation
Goal
*
Practice Amplification Note Example Reference | | "Interms of..."

Figure 2: PPG in relation to CMMI and concrete organization processes.

Conceptual Product Meta-Model

PPG defines a conceptual product meta-model of the information needed; see Figure 3. This meta-
model is explicitly referred to from the PPG additions, and would form the data structure of tools to
support the processes'. It is consistent with the ProCom model, but simplifies it where appropriate in
order to presenting the PPG as concise as possible, and to not be unnecessarily restricted to the
ProCom component model. For example, in ProCom there are different types of components, which is

' Which is also part of our research agenda, see [7] for more details.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example 12(39)

not significant for PPG. Main references to ProCom are: the foundations of version 1.0 in [11], the
attributes in [12], and the elaboration of allocation to virtual and physical nodes in [26].

The prefixes within parenthesis in the figure are references to the CMMI process areas where the
concept is created. For example, creation of Components is the responsibility of the Technical Solution
(TS) process area, while Milestones are created as part of Project Planning (PP).

hierarchical decomposition

=

(TS) Component allocation (TS) Virtual Node allocation (TS) Physical Node

* *

f

connection

(TS) Connector

(TS) Network

* *

(RD) Attribute

+name
*
(TS) Attribute Value (PP/VER) Attribute Verification
- (PP) Milestone
+value +(RD) required value .
1 +(RD/VER) required source
1 ?

(TS) Attribute Metadata
+source
+version

Figure 3: The PPG conceptual product model.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE
Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example 13(39)

The basic building blocks of functionality are software Components. Components may be constructed
hierarchically from smaller components, thus the hierarchical composition self-relation. The system can
be considered as the top-level component.

Components are connected with Connectors. Mostly, connectors only describe how output from
one component is used by another component forward data, but they may also be more complex and
e.g. split one input into two outputs, merge several inputs, filter, buffer, or log the data on the channel.

Physical Nodes are models of the physical hardware nodes, connected with one or more Networks.

As a level of abstraction between Physical Nodes and Components, ProCom introduces Virtual
Nodes, which are largely self-sufficient packages with e.g. their own internal scheduling, and are thus
analyzable in isolation (to a certain extent), and are reusable entities.

Components and Connectors, Virtual Nodes, and Physical Nodes can all have any number of
Attributes. As described in section “Introductory Example” (page 5), in order to monitor the system
requirement of an end-to-end response time, as the measured delay from sensor input to actuator
output, relevant attributes to keep track of throughout the development could be: for Components,
worst-case execution time (or average-case execution time, or whatever metric is most suitable for the
definition of the requirement); for Virtual Nodes, resources such as memory or processor share, in
order to postpone deployment decisions and make a subsystem reusable; for Physical Nodes, the
processor speed.

An Attribute (say, “worst-case execution time”) may have several Attribute Values, with an actual
value in an appropriate unit (say, 150 us) and associated Attribute Metadata describing mainly the
source of the value (e.g. static analysis, or measured on specific hardware) and the version of the
owning entity (e.g. Component) the value refers to. Throughout the development, several Attribute
Values may be created and continue to live side by side, used for different purposes. For example, in
the middle of the project, the Attribute “worst-case execution time” for a Component may have the
following Attribute Values associated to it: 160 ps for the current implementation, guaranteed by a
static analysis tool (assuming some specific hardware); 125 us, measured on the previous product
(which used a slower processor); and 150 ps, estimated by an expert (for the new input domain and
target hardware). The reason to maintain several Attribute Values for the same Attribute is that each
has its particular usage and limitations: the value from static analysis is exact but parameterized
(depending on the clock speed of the processor) and overly pessimistic for some purposes; moreover,
it is at this stage limited since it refers to an implementation which is not yet finished (more features
will be added before the Component is finalized, likely to require more processor cycles). On the other
hand, the measured value refers to hardware used in a previous product but not the current. Another
useful type of attribute is an assigned budget, based on the system requirement broken down and
assigned to components. Such a budget is typically assigned or approved by the component
responsible. For simplicity, we have in the text discussed Attributes and Attribute Values represented
by single values; in general the value may be a model of some kind: a single value for static (program)

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example 14(39)

memory requirement, a statistical distribution of execution time, a state chart model of functional
behavior. All this is further illustrated with an in-depth example in section “Example” below (page 15).

As indicated by the CARMA acronym, the added value in terms of project management comes from
connecting the Component Attributes with Requirements and Milestones of PPG, and regularly or on-
demand performing an Analysis of the current status of the system. This is achieved by the remaining
concepts: Milestones are the planned checkpoints at specific points in time during the development,
with associated Milestone Verifications. A Milestone Verification describes what the milestone means
in terms of requirement fulfillment, and consists of the required value and required source for that
Milestone. For example, an early Milestone Verification may define a required value of 150 pus for the
Attribute worst-case execution time, using expert estimate as a required source, while a later in the
development, a later Milestone Verification may specify a static analysis tool as a required source, with
a required value of 75 ps (i.e. less than the required value for the finished product, since at this stage
the implementation will be only partially finished). The requirements specification for the product is
modeled as a final Milestone, for which the required value is the target value of the product, and the
required source should use the implementation as its basis. For example, static analysis and running an
automated test suite may be appropriate methods, while an expert estimate is probably not a reliable
enough method at this stage.

It has already been said that values for Attribute Values may be complex, which also applies to the
required values of Milestone Verification. Moreover, the required value is a model describing what
values are considered fulfilling the required value. In the simplest case, the required value may be a
predicate using a simple operator; for example, the required value for “response time of the system”
could be “less than or equal to 500 ms”, or “within the interval [200, 600] ms”. For more complex
models, such as functional behavior, there must exist methods to decide whether e.g. a state machine
model (of the implementation) fulfils the required behavior as specified by another state machine
model.

The Interaction of Entities over Time

From PPGs point of view, it is important to note that at any given time during development,
Components and Connectors, Virtual Nodes, and Physical Nodes may be created and developed
independently. In order to finalize and deploy a system, Components are allocated to Virtual Nodes,
and Virtual Nodes are allocated to Physical Nodes, but at an arbitrary point in time during
development, any given Component may or may not be allocated to a Virtual Node, any given Virtual
Node may or may not have Components allocated to it, and may or may not be allocated to a Physical
Node, and any given Physical Node may or may not have Virtual Nodes allocated to it. A Virtual Node
will “inherit” properties from the physical node it is allocated to, such as its processor speed, or

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example 15(39)

available static or RAM memory, but it may also derive requirements on the allocation to Physical
Nodes from Attributes of the Components, such as the required share of a processor in order to be able
to meet its budgeted execution time.

The allocation, if automatic, is thus a complex optimization problem where Virtual Nodes are
allocated to Physical Nodes and the connections between Virtual Nodes are resolved and scheduled to
Networks, and the resulting system Attributes have to meet their required values. From a verification
point of view, however, it is sufficient to ensure that all constraints are met by the allocation.

The Allocation of Entities to CMMI Process Areas

The PPG defines that each entity (and/or attribute of entities) of the conceptual product meta-model is
under the responsibility of a certain CMMI process area. This is indicated in Figure 3 with prefixes
within parentheses, and briefly described in the next paragraph. This is intended to serve as a guide
into the second part of the report which follows the CMMI structure (i.e., from page 25 onward).
Components and Connectors, Virtual Nodes, Physical Nodes, and Networks are created as part of
the Technical Solutions (TS) process area. The Attributes of interest are defined as part of the
Requirements Development (RD) process area, but the Attribute Verifications are the responsibility of
Project Planning (PP) and Verification (VER). The required values and required sources of the Attribute
Verifications are the responsibility of Requirements Development (RD) to specify, partly with some
planning and resources under the Verification (VER) process area. The Attribute Values and Attribute
Metadata are a result of the product development, i.e. belong to the Technical Solutions process area.

Example

To explain the guidelines and the conceptual product model, we outline the development of the
hypothetical system of Figure 4 and Figure 5, an electronic stability control system of a car. There are
four “wheels speed” components as well as four “brake valves” components, of which only one of each
is shown (FL = Front Left). During construction the analyses will help in identifying an allocation of
software components of Figure 4 to the two nodes in Figure 5, taking into account scheduling of
components on the CPUs, and of messages on the bus, so that all the requirements are satisfied
(examples of timing and memory consumption given below).

Figure 4 was previously used as an example system in [8][11], here the example is extended. All
numbers and other details are introduced for the purpose of illustration, and not to accurately model
this kind of system.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example 16(39)

Throttle adjustment "\ Activity indicator

FL wheel [|... FL brake
speed valve
o 0
;‘3% Stability D FL brakes pressure)>
> Control
L 51 System D— EE——e
) C
Traction
—>| Control > SCS Throttle adjust. >— |
[>— .
System > TCS Throttle adjust. > |]
Combiner
Anti-|F)Ck L_»>SCS Brakes pressure » > |
—>| Braking ~TCS Brakes pressure >—»> |
System [>——>>ABS Brakes pressure >—> |

Figure 4: Software component design of an electronic stability control (ESC) subsystem of a car.

| Actuator RL |
| Actuator RR |

Sensor FL

| Actuator FL |
| Actuator FR | | Sensor RR |

Front Node Rear Node

Network bus

Figure 5: Hardware design of the same electronic stability control (ESC) subsystem.
(FL = Front Left, FR = Front Right, RL = Rear Left, RR = Rear Right)

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE
Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example 17(39)

Requirements

Within the scope of the process area Requirements Development (RD), the customer requirement(s)
are re-formulated as a number of product requirements, of which we use four as an example:

e Functionality. The intended behavior of the system is described as a timed automaton (not
described here).

e Static memory consumption. The size of the software image is limited to 1024kb, given by the
intended hardware. A small memory overrun would require significantly more expensive
hardware.

e Dynamic memory consumption. Similarly, the maximum size of the dynamic memory (RAM)
used during execution is limited to 512 kb, given by the intended hardware. A small memory
overrun would require significantly more expensive hardware.

e Response time. The maximum response time of the system, i.e. the maximum allowed time
from sensor input to actuator output, is given by experience from control engineers to 15 ms.

The requirements are specified in Table 1.

Table 1: Requirements of the example system.

Attribute Name Required Value

Functionality Behavior specified by a timed automaton (not shown here)

Static memory consumption | Max 1024 kb per node

Dynamic memory Max 512 kb per node
consumption
Response time Max 15 ms

Also in this early phase, the structures depicted by Figure 4 and Figure 5 are essentially settled, as part
of early project planning, including budgeting for hardware acquisition. The milestones described
below refer back to both the requirements and this architecture.

Planning of Milestones

Within the scope of the process area Project Planning (PP), four milestones are defined in the project
plan where the requirements will be followed up in milestone verification. Therefore this plan is done
in cooperation with the process areas Verification (VER) and Requirements Development (RD).

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example 18(39)

e MS1 (high-level design). At this milestone, system functionality shall be broken down to
functionality of individual components, and each component should also be assigned a budget
for memory usage and timing requirements (and other requirements not discussed in the
example). These component attribute values shall at this milestone be confirmed by the
persons responsible for each subcomponent and when composed into system attributes they
should meet the target criteria specified in Table 2.

e MS2 (70% complete). This milestone is some way into the development. Much, but not all, of
the functionality will be available. Some components may have been selected from pre-existing
components, such as existing parts of previous generations of systems, or COTS components
offered by other vendors. At this point, it is still feasible to consider dropping some advanced
features, and reconsider acquiring more powerful (and more expensive) hardware. Since
everything is not implemented, the timing and memory footprint of the implementation will be
analyzed with some swift methods, and the results should be ca 70% of the requirements on
the final system (see Table 2).

e MS3 (feature complete). At this point in time, all features should be implemented, but there is
still time after this milestone to fine tune e.g. control parameters, allocate software
components differently, schedule bus messages and CPU tasks differently, and optimize the
code if needed. As Table 2 shows, it is allowed that the current memory footprint and timing
are slightly too large at this point in time, since from experience it is known that the code can
be optimized with some percent thanks to optimization, re-allocation and re-scheduling. The
strongest analysis methods are used to verify these properties, to avoid surprises at the
milestone MS4 where these methods will be used.

e MS4 (delivery). This is the final milestone, where the system is finally verified. The target values
equals the product requirements, and a combination of the strongest analysis methods are
used to verify that the implementation meets these requirements.

Table 2: Milestones, with required values for the various system properties, in relation to
required final values, and required source of these values.

Attribute Milestone ID Required Value Required Source
Name (brief explanation and/or
motivation)
Functionality | MS1 (high-level Behavior specified by atimed |Manual Review
design) automaton, not shown here
(Product requirement)

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example

19(39)

Attribute Milestone ID Required Value Required Source
Name (brief explanation and/or
motivation)
MS2 (70% Behavior specified by a timed | Composition of design models
complete) automaton, not shown here where possible, manual review
(Product requirement) of other parts
MS3 (feature Behavior specified by a timed | Automatic analysis of
complete) automaton, not shown here implementation
(Product requirement)
MS4 (delivery) Behavior specified by a timed | Automatic analysis of
automaton, not shown here implementation
(Product requirement)
Static MS1 (high-level Max 1024 kb per node Expert estimate of final system
memory design) (Product requirement)

consumption

MS2 (70%
complete)

Max 768 kb per node

(Ca 70% of product
requirement, since the code
will continue to grow)

Compilation and synthesis of the
existing parts

MS3 (feature
complete)

Max 1088 kb per node

(Ca 105% of product
requirement, since it is
assumed that final optimization
will reduce this value)

Compilation and synthesis

MS4 (delivery)

Max 1024 kb per node
(Product requirement)

Compilation and synthesis

Dynamic
memory
consumption

MS1 (high-level
design)

Max 512 kb per node
(Product requirement)

Expert estimate of final system

MS2 (70%
complete)

Max 350 kb per node

(Ca 70% of product
requirement, since the code
will continue to grow)

Static analysis on some parts,
(only partially implemented)

MS3 (feature
complete)

Max 560 kb per node

(Ca 110% of product
requirement, since it is
assumed that final optimization
will reduce this value)

Static analysis combined with
measurements

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example 20(39)

Attribute Milestone ID Required Value Required Source
Name (brief explanation and/or
motivation)
MS4 (delivery) Max 512 kb per node Static analysis combined with
(Product requirement) measurements
Response MS1 (high-level Max 15 ms Expert estimate of final system
time design) (Product requirement)
MS2 (70% Max 12 ms (Ca 70% of product | Static analysis on some parts,
complete) requirement plus some slack | (only partially implemented)
allowed for message passing
on the bus)
MS3 (feature Max 17 ms Static analysis combined with
complete) (Ca 110% of product measurements
requirement, since it is
assumed that final scheduling
and allocation can solve this)
MS4 (delivery) Max 15 ms Static analysis combined with
(Product requirement) measurements

Milestone MS1 (high-level design)

At milestone MS1 (high-level design), the overall software structure is defined and considered realistic
(Figure 4). The hardware layout of the system is also defined (not shown in a figure, but similar to the
lower part of Figure 1). The relevant system properties (i.e. the requirements on the system, as
specified by Table 1) are apportioned to subcomponents. As an example, the second and third column
of Table 3 shows the estimated dynamic memory usage and execution time of each component. (For
simplicity, we only show two attributes of the four we have specified to follow up; the general
description is identical for these as well.) With tool support, the components are allocated to either of
the Front Node or Rear Node in a search for an allocation where all values for milestone verification at
this milestone can be met. In the example, such an allocation was found, as described in the fourth
column of Table 3, and the last row shows that the values of dynamic memory consumption and
response time, aggregated from component attribute values, are within the criteria for this milestone
(as specified in Table 2).

Table 3: Values for two attributes of the ESC subcomponents, at milestone MS1.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example

21(39)

Component Name

Dynamic memory
consumption

(Source)

Execution or
response time

(Source)

Allocation

Wheels speed

48 kb
(Expert estimate)

Execution time =1 ms
(Expert estimate)

One instance allocated
to each node

(need to be co-located
with sensors)

(Expert estimate)

ms
(Expert estimate)

Stability Control System | 192 kb Execution time = 4 ms | Front Node
(Expert estimate) (Expert estimate)

Traction Control System | 256 kb Execution time = 6 ms | Rear Node
(Expert estimate) (Expert estimate)

Anti-lock Braking 96 kb Execution time =5 ms | Front Node

System (Expert estimate) (Expert estimate)

Combiner 48 kb Execution time = 0.5 |Rear Node

Brake Valves

48 kb
(Expert estimate)

Execution time =1 ms
(Expert estimate)

One instance allocated
to each node

(need to be co-located
with actuator)

ESC

Front Node = 480 kb
Rear Node = 496 kb

(Composition of
expert estimates)

Response time = 14.5
ms

(critical path is 10.5
ms, plus 2 ms twice
for network lag)

N/A

Milestone MS2 (70% complete)

The project progresses over time to milestone MS2. During this phase, some design and

implementation decisions are being made:

e For the Wheels speed component, there are three potential COTS components available. These
are investigated and one of these is chosen. If the component comes as a white box, i.e. with all
desired information, including source code, it can be used for the static memory analysis
required in some of the milestones. The same is true if the component is packaged as a black

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example 22(39)

box but comes with models of its memory usage, which can be used in the composition theory.
(This also requires there are certification mechanisms in place, so that the legal implications are
clear regarding the extent to which the system development organization can trust these
assertions.) In a less than ideal world, the component comes as a black box and with insufficient
information, in which case the system development organization has to rely on thorough
testing. In this case, the type of specification methods required in some milestones has to be re-
negotiated — or, if measurements are not considered safe enough, the COTS will have to be
replaced.

e The Stability Control System, Traction Control System, and Combiner require new development.
Of these, Stability Control System is outsourced to a subcontractor, while the others are
implemented internally. The Combiner is straightforward to implement, and implementation is
finished within a month, well before milestone MS2.

e The Anti-lock Braking System and Brake valves will be reused from the previous generation of
the car. No modifications are needed, other than those required to function in the ProCom
environment. However, it may happen that the source code does not follow some required
restrictions by the memory usage analysis tool, and for these components the verification
method also has to be re-negotiated, with either the result that for example measurements is a
qualified specification method, or that the source code has to be modified so as to fulfill the
requirements of the analysis tool, or that the component will be re-implemented completely in
ProCom (reusing the previous design). In the example, assume that Brake valves may be
statically analyzed, while the Anti-lock Braking System cannot but will be wrapped as a ProCom
component with as small modifications as possible nevertheless, and the project will therefore
have to rely on measurements of this component.

During development, developers and the architect perform exploratory analysis whenever they need
to explore some “what-if” scenarios (like “would it be fine to implement an algorithm that executes
faster but requires more memory?”) or to assure themselves that the current state of the work
products will pass the next milestone.

The same procedure for milestone verification as for MS1 is repeated, however with the tools
and methods required for this milestone (according to Table 2). We assume the software components
are allocated to the same hardware nodes as for MS1. When compared with the target value for each
attribute for this milestone (given by Table 2), it can be noticed that neither the memory limit (max 350
kb per node) nor the response time (12 ms) are met. This is an indication that the final product is
running the risk of not meeting its requirements of 512 kb per node and 15 ms response time. There
are a number of possible solutions to this:

e |t may be decided to switch to more powerful hardware, i.e. faster and equipped with more
memory. This solution has severe cost implications.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example

23(39)

e Some feature, not yet implemented, may be dropped. For example, some complicated
algorithm in the Traction Control System component may be replaced with a simpler one which

will be faster and require less memory. This may have schedule implications.

e |t may be noticed that some components are fully implemented, while others are slightly
lagging behind schedule. When the target values for milestone MS2 were decided, it was
assumed that the implementation would be ca 70% feature complete. If acknowledging that
the implementation is somewhere around 80% feature complete, it may be decided that there
is in reality a low risk for not meeting the target values for dynamic memory consumption and

response time.

After discussions with relevant stakeholders, a decision selecting one of these options (or some other),

and the project continues.

Table 4: Values for two attributes of the ESC subcomponents, at milestone MS2.

Component Name Dynamic memory Execution or Remarks
consumption response time
(Source) (Source)

Wheels speed 47 kb Execution time =1 ms |COTS
(Measurement) (Measurement)

Stability Control System |98 kb Execution time = 4 ms | Partially implemented,

(Static analysis)

(Static analysis)

according to plan

Traction Control
System

124 kb
(Static analysis)

Execution time =3 ms
(Static analysis)

Partially implemented,
lagging behind plan

Anti-lock Braking

97 kb

Execution time = 3 ms

Previous generation,

System (Measurements) (Measurements) have not been fully
wrapped as ProCom
component

Combiner 48 kb Execution time = 0.5 Fully implemented

(Static analysis)

ms
(Static analysis)

Brake Valves

48 kb
(Measurements)

Execution time =1 ms
(Measurements)

Wrapped as ProCom

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART I: Introduction and Example

24(39)

Component Name

Dynamic memory
consumption

(Source)

Execution or
response time

(Source)

Remarks

ESC

Front Node = 385 kb
Rear Node = 362 kb

(Composition of
measurements and

Response time = 12.5
ms

(critical path is 8.5 ms,
plus 2 ms twice for

(Inherits every
weakness of ingoing
composed values.)

static analysis) network lag)

Milestone MS3 (feature complete)

Milestone MS3 (feature complete) is performed in the same manner. First, it is ensured that the
implementation is on according to schedule, i.e. is actually complete with respect to features. With the
help of some tools, an allocation is (hopefully) found which allocates the software components to the
hardware nodes so that all the milestone verification criteria of Table 2 are met, as guaranteed by the
method specified as required source for MS3, and of course comparing with the attribute required
values of MS3. If no such allocation is found, the same or similar solutions as for MS2 need to be
discussed.

Milestone MS4 (delivery)

Similarly, milestone MS4 (feature complete) is performed by using the methods specified for MS4 in
Table 2, comparing with the attribute required values of MS4 (which are the same as the product
requirements). Hopefully, problems should have been identified and resolved earlier in the project, so
that the milestone verification passes satisfactory (otherwise, the project will be delayed, and some
decision involving one or more of a combination of more powerful hardware, removal of features,
optimization, or other ways to make all requirements be met, need to be made).

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART II: CMMI Process Areas 25(39)

PART Il: CMMI Process Areas

Causal Analysis and Resolution (CAR)

Nothing added.

Configuration Management (CM)

Note. The approach requires a mature use of configuration management to keep track of correct
versions of the various artifacts.

Note. We expect that for some milestones the need to create a formal baseline is not very
strong. For example, in the early phase where budgets and estimates are predominant, the assigned
values are not tightly connected to specific versions of the components. In later stages, when e.g. static
analysis and extensive testing is used to provide guarantees, there is a strong need to create
component and product baselines.

Decision Analysis and Resolution (DAR)

Nothing added.

Integrated Project Management +IPPD (IPM+IPPD)

Nothing added.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART II: CMMI Process Areas 26(39)

Measurement and Analysis (MA)

Nothing added.

Organizational Innovation and Deployment (OID)

Nothing added.

Organizational Process Definition +IPPD (OPD+IPPD)

Nothing added.

Organizational Process Focus (OPF)

Nothing added.

Organizational Process Performance (OPP)

Nothing added.

Organizational Training (OT)

Nothing added.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART II: CMMI Process Areas 27(39)

Product Integration (PI)

Note. It can be expected that any component-based approach, with proper tool support, makes
integration a less effort-consuming task [27]. The user will be aware of incompatible components
already during design; indeed with a proper tool it is not even possible to connect incompatible
interfaces. Similarly, missing connections are detected interactively during design and implementation.
In short, some integration activities are covered in the Technical Solution process area, and the Product
Integration process area will require less effort. However, there will still be many qualified integration
tasks to do, which however may be performed earlier in the development process. For example, the
actual deployment to hardware is not addressed in the current version of PPG, nor is the integration of
newly developed components (which by construction follow the rules of the component model) with
legacy systems. Also, the process needs to consider the relationship to software platforms such as
operating systems.

Reference. See process area Technical Solution (TS) concerning how Pl is addressed during design
and implementation.

Project Monitoring and Control (PMC)

Amplification (Software Engineering). Monitor whether milestone verifications have been conducted
as specified, and whether the results are satisfactory. Otherwise, some corrective action must be
taken, which may e.g. involve renegotiating requirements, schedule, or product features.

Reference. For project (re-)planning, see process area PP.

Reference. For requirements changes, see process areas RD, REQM.

Reference. To manage the risks of not meeting the set goals of a milestone verification, see process
area RSKM.

Reference. See more details on milestone verification under process area VER, in particular SG 3.

Reference. Process area PPQA SP 2.1 describes that noncompliance issues need to be
communicated to the proper level of management for resolution.

Project Planning (PP)

Reference. The definition of milestones should be done in cooperation with RD, and TS, and VER.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART II: CMMI Process Areas 28(39)

SG 1 Establish Estimates

SP 1.1Estimate the Scope of the Project

Nothing added.

SP 1.2Establish Estimates of Work Product and Task Attributes
Nothing added.

SP 1.3Define Project Lifecycle

Typical Work Products. Definition of major and minor milestones for the project. (In terms of the
Conceptual Product Meta-Model, this corresponds to instantiating a number of Milestone Verifications
and specifying required source.)

Reference. The definition of milestones should be done in cooperation with RD, TS, and VER.

SP 1.4Determine Estimates of Effort and Cost

Nothing added.

SG 2 Develop a Project Plan
Nothing added.

SG 3 Obtain Commitment to the Plan
Nothing added.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE
Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART II: CMMI Process Areas 29(39)

Process and Product Quality Assurance (PPQA)

Note. The whole verification-intensive approach is intended to increase product quality, as well as
provide the visibility necessary for efficient quality assurance.

SG 1 Objectively Evaluate Processes and Work Products
SP 1.10bjectively Evaluate Processes

Nothing added.

SP 1.20bjectively Evaluate Work Products and Services

Typical Work Products. Milestone Verification results and reports. The Milestone Verifications is the
primary means to regularly collect the progress on work products.

SG 2 Provide Objective Insight
Nothing added.

Quantitative Project Management (QPM)

Note. The data collected during verification activities help to quantitatively answering questions about
the project status.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART II: CMMI Process Areas 30(39)

Requirements Development (RD)

Note. The PPG concerns product requirements, i.e. requirements expressed in technical terminology
which can be measured and verified. The PPG does not concern customer requirements, i.e.
requirements expressing customer goals, and which typically relates to product validation.

Typical Work Products. In terms of the Conceptual Product Meta-Model, attributes are specified
the attributes on systems (and possibly components) that have requirements. Specify a Required Value
for the attribute. “Value” should here be interpreted in a broad sense; as described in section
“Conceptual Product Meta-Model” (p. 11ff) values include e.g. intervals, distributions, and more
complex models such as state machine models.

Reference. The definition of milestones should be done in cooperation with PP, TS, and VER.

Note. Not explicitly included in the PPG are additional conditions required for the attribute values
to be meaningful. For example, to claim that a specific early milestone has been reached, the design
models must be “detailed enough”, meaning that the component structure has to be “fine-grained
enough”.

Reference. The definition of milestones should be done in cooperation with PP, VER, and TS.

Note. First and foremost, product requirements will be specified for the “root component”, i.e. the
“system”, and its immediate children. It may also be specified for constituent components, provided
that it these requirements are related to some customer requirements. From a supplier chain
perspective, one may want to specify components to be developed by subcontractors as strict
“requirements” even if they from a product perspective are merely “budgets”.

Requirements Management (REQM)

Nothing added.

Risk Management (RSKM)

Note. Exploratory analysis and milestone verification are important methods of reducing risks in the
project.

Reference. Exploratory analysis is described in TS SP 3.1, and milestone verification in the VER SP
3.1.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART II: CMMI Process Areas 31(39)

Supplier Agreement Management (SAM)

Nothing added.

Technical Solution (TS)

Note. On the distinction between “design” and “implementation”: for some recent approaches,
including model-driven development [15][16] and the component-based approach as described in the
introduction, the distinction between design and implementation is blurred. For example, in the
component model ProCom, from the moment a component has been created in a design tool, it can be
used to generate its runtime representation. However, in ProCom the primitive components are
implemented with source code, and there is thus a distinction between designing such a component's
interface and providing its implementation. On the other hand again, if a system is built solely from
existing primitive (and composite) components, all design work can effectively also be seen as
implementation work. Also in these cases, we believe that at a conceptual level a distinction can still be
made between design tasks, in the sense “important decisions that will influence much of the
downstream work”, and implementation.
Reference. The definition of milestones should be done in cooperation with PP, RD, and VER.

SG 1 Select Product Component Solutions
Nothing added.

SG 2 Develop the Design

Note. ProCom and related Progress technologies strongly support this goal, since interface elements
are first-class entities and there is strong tool support to design interfaces and detect interface
mismatches.

SP 2.1Design the Product or Product Component

Nothing added.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART II: CMMI Process Areas 32(39)

SP 2.2Establish a Technical Data Package
Nothing added.
SP 2.3Design Interfaces Using Criteria

Typical Work Products. Specification of signals in the system. (In addition to the component interfaces
connected with connectors, the connectors themselves may be seen as signals in the system which
should be first-class entities and managed explicitly.)

SP 2.4Perform Make, Buy, or Reuse Analyses

Note. ProCom and related Progress technologies strongly support this practice, in the case where there
are potential ProCom components to reuse: it is possible to explore “what-if” scenarios by plug the
components into the architecture and analyze the system properties.

SG 3 Implement the Product Design

SP 3.1Implement the Design

Amplification. Implementation and design consists of (at least) the following major tasks:
e Component internal design and implementation, which may be either
— Subdivision into components (composite)
— COTS or some other package from a third party (primitive or composite)
- Imported legacy code (primitive)
- A small, relatively simple implementation of source code (i.e. primitive components;
this is how the primitive components in ProCom are implemented)
e Defining explicit connectors
e Connecting components with connectors
e Development of hardware structure (in several levels, “virtual” and “physical” [26])
e Allocation of software components to hardware nodes (in two steps: to “virtual nodes”
which are then allocated to physical nodes)
Note. To manage the inclusion of legacy components, methods are required that are capable of
safely encapsulating system parts into legacy subsystem compartments which have some analyzable
and predictable properties, but not all properties that components constructed completely in the

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART II: CMMI Process Areas 33(39)

component language has. For example, there may be mechanisms to suspend the wrapped legacy code
if it executes for too long, which gives a strict upper bound on execution time, which is necessary to
not interfere with other components on the same node; however this suspension makes it impossible
to guarantee that the component will always produce an output, which may affect the system
throughput and response time.

Reference. For COTS and third party packages, as well as importing legacy code, see also TS SP 2.4.

Typical Work Products. Component implementations.

Amplification (Software Engineering). Perform exploratory analysis at any time, by comparing any
value for attributes with their required values, using any information in the conceptual model available
at the time. See Figure 6. (The assighnment of values to component attributes could be of several kinds,
for example explicit and manual, such as when an architect enters an expert estimate, or explicit and
automatic, such as when someone executes an analysis tool on a component, or possibly implicit and
automatic, such as when a composite component is analyzed with a tool which traverses each
subcomponent and assigns attribute values before composing these values for the containing
component.)

: Verification . Attribute . Attribute Value

: TS role .
1 : Exploratory Analysis(L

For each Attribute)

2 : get Required Value()

3 : get Value()

4 : compare Value with Required Value()

Figure 6: Exploratory Analysis".

' Note on the figure: To keep the sequence diagrams simple, only the main flow is shown. For example, if some test fails as much
information as possible should be shown to the user, or, at least, made available, and it may or may not make sense to continue traversing
other attributes. Also, to keep the sequence diagrams simple, it is assumed that the correct attribute value is used, out of the potentially
many with different sources and versions.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART II: CMMI Process Areas 34(39)

Note. In exploratory analysis, the current values of attributes, which may be any combination of
estimates, values produced by tools based on incomplete implementations, etc. may be used
exploratory to answer questions like “how near the limit for memory consumption are we right now?”
There are no absolute guidelines how to perform this type of analysis; in some cases it is reasonable to
use the average of several values, or use the most pessimistic of all values for an attribute, or add 20%
to measured values to add a safe margin, or because some features are not implemented yet, or
decrease 20% from some measured values because it is believed that low-level optimization at the end
will achieve this. (See the example on page 15ff.)

Reference. Exploratory analysis can be seen as more relaxed version of milestone verification (see
process area Verification (VER)). (All the decisions described above as informal for exploratory analysis
are formalized in milestone verification.)

SP 3.2Develop Product Support Documentation

Nothing added.

Validation (VAL)

Nothing added.

Verification (VER)

According to the CARMA principle (see page 4), verification is performed not only at the end, but
regularly, as specified by milestones, utilizing the component-based approach, supported by proper
analysis tools.

SG 1 Prepare for Verification

Amplification. To follow up the product requirements, define milestones, consisting of (at least):
e Date of the milestone.
e Specify, for each attribute to be verified at that milestone:

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART II: CMMI Process Areas 35(39)

— Required value.
— Required source. Examples of such sources are: expert estimates, static analysis,
measurements, model checking.

e General criteria which are assumptions for the required attribute values to be valid
indications of progress. Examples include, for an early milestone, that the architecture is
mature enough, e.g. in terms of granularity of components, or, for a later milestone, that
implementation has progressed according to plan in terms of e.g. feature completion.

Note. As described in the section “Conceptual Product Meta-Model” on page 11ff, a “required value”
may be a predicate including a somewhat complex criterion, such as “less than X”, “within a the range
of”, or “equivalent with” or “a subset of” a certain behavioral model, etc.

Note. As the example on page 15fff illustrates, these values are typically specified in some relation
to the product requirement, such as 70% of the product requirement.

Reference. The definition of milestones should be done in cooperation with PP, RD, and TS.

SP 1.1Select Work Products for Verification

Amplification (Software Engineering). When all components are implemented in ProCom, verification
should be as automated and efficient so that in principle all components should be subject to extensive
verification of the properties of interest.

SP 1.2Establish the Verification Environment

Note. When using ProCom, there should be a backbone of Progress methods and technologies which
are applicable for verification of many properties that are of interest for many components. However,
it should be expected that there are both third-party tools compatible with, or integrated in, the
Progress tool suite, as well as separate verification tools. All tools to be used have to be specified, as
well as their interaction, and procedures for how and when to use them.

SP 1.3Establish Verification Procedures and Criteria

Typical Work Products. Specification of required value and required source for each attribute, for each
milestone.

SG 2 Perform Peer Reviews
Nothing added.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART II: CMMI Process Areas 36(39)

SG 3 Verify Selected Work Products

SP 3.1Perform Verification

Amplification. Perform milestone verification as planned. See Figure 7.

- Verification : Attribute . Attribute Value | | _: Milestone Verification

- VER role

1 : Milestone Verificatio;()é

For each Attribute) 2 : get Required Source()

3 : get Required Value()

4 : get Version from Milestone 1D()

5 : get Attribute Value matching Version ID and:Required Source(

[

6 : get Data()]

7 : Assert: Required Value == Data.Value()

8 : Test of additional conditions() Verify that e.g. the level of detail of the design X
- - " is fine-grained enough.

If all tests are OK, milestone verification has succeeded I5|

: I
Figure 7: Milestone Verification. (See footnote for Figure 6.)

SP 3.2Analyze Verification Results

Reference. See process areas PMC for how to use the verification results.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART II: CMMI Process Areas 37(39)

Conclusions

This report describes the CARMA (Components, Attributes, Requirements, Milestones, Analysis)
principle for development of software-intensive systems according to the Model-Driven Development
(MDD) and Component-Based Software Engineering (CBSE) paradigms. It does so by detailing out the
requirements on a development process in the form of a CMMI extension, thus providing guidelines in
the form of a reference text. The guidelines are a product of the PROGRESS Centre for Predictable
Embedded Software Systems, and the main goal of these guidelines is to describe how to utilize the
characteristics of a strong component model, accompanied with proper analysis methods and tools, to
design a process aimed at risk reduction and project monitoring and control.

The guidelines are based on several types of background research activities, ensuring relevance of
these guidelines. As the development of these guidelines is done in parallel with development of
suitable methods and technologies assumed to be used, the guidelines are not yet validated.

An example scenario (page 15ff) illustrates that the CARMA principle, accompanied with proper
methods and tools for allocation and analysis, is potentially a powerful principle to monitor the project
and highlight potential risks which can then be handled explicitly. It also shows that the assignment of
target values for milestones suffers from lack of complete knowledge of actual events and decisions
during the project, and that they therefore may be re-negotiated or ignored during the project, after
some careful consideration.

At this stage, they should be seen as a vision towards which industrial processes can be adopted, as
suitable, when the required languages, methods, and tools, are maturing and adopted. For example, it
is not known where the optimal tradeoff is between the effort required to formulate proper
milestones and perform the actual milestone verifications, and the risk reduction gained.

Further work include simulating a development process model which embeds the characteristics
set forward in this report, and providing tool support, as an extension to the PROGRESS suite of
development tools, and thus explore the benefit (if any) by adopting the CARMA principle with
simulations and pilot studies. Hopefully, as tools are maturing, we hope to study industries which
adopt the MDD/CBSE approach, and evaluate how the PPG can be adopted and what benefit it brings
in practice.

Acknowledgements

This work was partially supported by the Swedish Foundation for Strategic Research (SSF) via the
strategic research centre PROGRESS. The authors would like to thank J6érgen Hansson at the SEI for his
mentioning “Virtual Verification” in a talk, which brought some structure to our early ideas. See
“Related Work” section on page 8. We also would like to thank Branka Paveti¢ for collaboration which

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART II: CMMI Process Areas 38(39)

has included some parts of the interview study mentioned in section “Research Method” on page 8.
We also would like to thank all the researchers at the Progress centre which have participated in the
interviews as well as informal and fruitful discussions.

References

[1] Bran Selic, "The Pragmatics of Model-Driven Development," IEEE Software, vol. 20, no. 5, 2003.

[2] Clemens Szyperski, Dominik Gruntz, and Stephan Murer, Component Software — Beyond Object-Oriented
Programming, Second Edition ed.: Addison-Wesley , 2002.

[3] Kurt C. Wallnau, "Volume III: A Technology for Predictable Assembly from Certifiable Components,"
Software Engineering Institute, Technical Report CMU/SEI-2003-TR-009, 2003.

[4] Nico Feiertag, Arne Hamann, Daniel Karlsson, Jorg Kemmerich, Stefan Kuntz, Henrik Lonn, Elke Loschner,
Jennifer Neumiiller, Nadym Salem, and Martin Schlager, "TIMMO Timing Model : Methodology Version
2," TIMMO, Deliverable D7 2009.

[5] Peter H. Feiler and Jorgen Hansson, "Toward Model-Based Embedded System Validation through Virtual
Integration," DoD Software Tech News, vol. 12, no. 4, January 2010.

[6] Peter H. Feiler, Jorgen Hansson, D. de Niz, and L. Wrage, "System Architecture Virtual Integration: An
Industrial Case Study," Software Engineering Institute, CMU/SEI-2009-TR-017, 2009.

[7] Rikard Land, Jan Carlson, Stig Larsson, and Ivica Crnkovic, "Project Monitoring and Control In Model-
Driven and Component-Based Development of Embedded Systems : The CARMA Principle and Preliminary
Results," in 5th International Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE), Athens, Greece, 2010.

[8] Rikard Land, Jan Carlson, Stig Larsson, and Ivica Crnkovi¢, "Towards Guidelines for a Development
Process for Component-Based Embedded Systems," in Workshop on Software Engineering Processes and
Applications (SEPA) in conjunction with the International Conference on Computational Science and
Applications (ICCSA), Yongin, Korea, 2009.

[9] Mary Beth Chrissis, Mike Konrad, and Sandy Shrum, CMMI Second Edition : Guidelines for Process
Integration and Product Improvement. Boston: Addison Wesley, 2007.

[10] Séverine Sentilles, Aneta Vulgarakis, Tomas Bures, Jan Carlson, and Ivica Crnkovié, "A Component Model
for Control-Intensive Distributed Embedded Systems," in Proceedings of the 11th International Symposium
on Component Based Software Engineering (CBSE2008), Berlin, 2008, pp. 310-317.

[11] Tomas Bures, Jan Carlson, Ivica Crnkovi¢, Séverine Sentilles, and Aneta Vulgarakis, "ProCom - the Progress
Component Model Reference Manual, version 1.0," Vésteras, MRTC report ISSN 1404-3041 ISRN MDH-
MRTC-230/2008-1-SE, 2008.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

PART II: CMMI Process Areas 39(39)

[12] Séverine Sentilles, Petr Stépan, Jan Carlson, and Ivica Crnkovié¢, "Integration of Extra-Functional Properties
in Component Models," in 12th International Symposium on Component Based Software Engineering (CBSE
2009), vol. Springer, 2009.

[13] As-2 Embedded Computing Systems Committee, "Architecture Analysis & Design Language (AADL),"
Standard Document Number AS5506, 2009.

[14] Scott A Hissam, Gabriel A Moreno, Judith Stafford, and Kurt Wallnau, "Packaging Predictable Assembly
with Prediction-Enabled Component Technology," Pittsburgh, CMU/SEI-2001-TR-024, 2001.

[15] Thomas Stahl and Markus Volter, Model-Driven Software Development : Technology, Engineering,
Management.: John Wiley & Sons, 2006.

[16] Anneke Kleppe, Jos Warmer, and Wim Bast, MDA Explained : The Model Driven Architecture: Practice and
Promise. Boston: Pearson Education, 2003.

[17] ATESST Consortium, "EAST ADL 2.0 Specification," Draft Report 2008.

[18] Philippe Kruchten, The Rational Unified Process : An Introduction, 3rd ed. Upper Saddle River: Addison-
Wesley, 2004.

[19] Kent Beck, EXtreme Programming EXplained: Embrace Change.: Addison Wesley, 1999.

[20] Paul Duvall, Steve Matyas, and Andrew Glover, Continuous Integration: Improving Software Quality and
Reducing Risk.: Addison-Wesley Professional, 2007.

[21] Ivica Crnkovi¢, Michel Chaudron, and Stig Larsson, "Component-based Development Process and
Component Lifecycle," in International Conference on Software Engineering Advances (ICSEA'06), Tahiti,
2006.

[22] Holger Krahn, Bernhard Rumpe, and Steven Vdlkel, "Roles in Software Development using Domain
Specific Modelling Languages," in Proceedings of the 6th OOPSLA Workshop on Domain-Specific Modeling
(DSM' 06), Portland, Oregon, 2006.

[23] Jan @yvind Aagedal and Ida Solheim, "New Roles in Model-Driven Development," in Proceedings of
Second European Workshop on Model Driven Architecture (MDA), Canterbury, England, 2004.

[24] Defence Materiel Organisation, Australian Department of Defence, "SAFE, V1.2 : A Safety Extension to
CMMI-DEV, V1.2," SEI technical note CMU/SEI-2007-TN-006, 2007.

[25] Fergal McCaffery, John Burton, and Ita Richardson, "Improving software Risk Management in a Medical
Device Company," in ICSE Companion, 2009.

[26] Jan Carlson, Juraj Feljan, Jukka Méki-Turja, and Mikael Sjodin, "Deployment Modelling and Synthesis in a
Component Model for Distributed Embedded Systems," in 36th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), Lille, France, 2010.

[27] Stig Larsson, "Key Elements of Software Product Integration Processes," Visteras, PhD thesis, 2007.

MRTC report, ISSN: 1404-3041, ISRN: MDH-MRTC-247/2010-1-SE

Mailardalen Real-Time Research Centre, Madlardalen University, September 2010

