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ABSTRACT
Today’s computer games have thousands of agents moving
at the same time in areas inhabited by a large number of
obstacles. In such an environment it is important to be able
to calculate multiple shortest paths concurrently in an ef-
ficient manner. The highly parallel nature of the graphics
processor suits this scenario perfectly. We have implemented
a graphics processor based version of the A* path finding al-
gorithm together with three algorithmic improvements that
allow it to work faster and on bigger maps. The first makes
use of pre-calculated paths for commonly used paths. The
second use multiple threads that work concurrently on the
same path. The third improvement makes use of a scheme
that hierarchically breaks down large search spaces. In the
latter the algorithm first calculates the path on a high level
abstraction of the map, lowering the amount of nodes that
needs to be visited. This algorithmic technique makes it
possible to calculate more paths concurrently on large map
settings compared to what was possible using the standard
A* algorithm. Experimental results comparing the efficiency
of the algorithmic techniques on a NVIDIA GeForce GTX
260 with 24 multi-processors are also presented in the paper.
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1. INTRODUCTION
A* is a path finding algorithm that uses an informed search
technique to find the least-cost path from a start node to
a goal node in the presence of obstacles [7]. It is used for
example in computer games and in robotics. It has been
extended many times to reduce the memory needs of the
algorithm and to increase its speed [10, 11, 8, 2, 6, 12, 3].
Bleiweiss [1] made an implementation of the A* algorithm
for graphics processor and showed that it could outperform
a comparable CPU implementation. A more extensive lit-
erature review can be found in [9]. We have implemented
the A* algorithm for graphics processor that support the

CUDA architecture. Different techniques to improve the
performance of algorithm for different sized search spaces
have been applied and then compared with each other to
identify the optimal method.

Our main contribution is the implementation and evalua-
tion of the A* algorithm together with the three following
algorithmic optimizations:

1. Pre-Calculated Paths When many agents are find-
ing paths concurrently on a graph, some paths are re-
peated either fully or partially. To avoid the cost of
recalculating all these paths every time for every agent,
we precalculate some of the paths and bookkeep them.
These pre-stored paths are then used during run time
to cut down on the calculation cost of commonly used
paths.

2. Multiple Threads per Agent We allow multiple
threads to help an individual agent find the shortest
path by letting them concurrently evaluate different
nodes.

3. Hierarchical Breakdown For larger problems and
big search spaces, it takes a lot of time and memory to
calculate long paths. One solution is to sub-divide the
search space into many smaller parts called clusters.
These clusters are joined with each other using specific
nodes called exit points. The optimal paths between
the exit points in a cluster are then calculated and
stored. By joining these clusters together, we can build
an abstract weighted graph. The actual paths are then
found using a two-step method. First an abstract path
is computed using the abstract weighted graph. Then
the abstract path is refined by patching up the already
searched and stored detailed paths.

2. SYSTEM MODEL
NVIDIA’s graphics processors are based on a highly parallel
computing architecture called CUDA. To allow for the pro-
grammer to write programs for this architecture, NVIDIA
provides a C-based language that allows for functions to be
marked for execution on the graphics processor, instead of
upon the CPU. These marked functions are called kernels
and are executed on a set of threads in parallel on the GPU.
The kernel function can only be invoked by serial code from
the CPU. To instantiate a kernel function, the execution
configuration must be specified, i.e., the number of threads
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Figure 1: The CUDA grid and block structure.

in a thread block and the number of thread blocks within a
grid. Figure 1 describes the CUDA grid and block structure
graphically.

The graphics processor consists of multiple cores called mul-
tiprocessors, that can execute SIMD-instructions. Each mul-
tiprocessor has access to a processor local memory that can
be accessed with speed comparable to accessing a register.
This memory is known in CUDA terminology as the shared
memory as shown in Figure 1. A thread block consists of a
specific number of threads, and is assigned to a specific mul-
tiprocessor until it has finished its task. The threads in the
thread block works together to perform SIMD-instructions
and can communicate with each other using the shared mem-
ory together with the hardware thread-barrier function sync-
threads. This function acts as a synchronization point, caus-
ing threads to wait at this point until all of the threads in
the thread block have reached there. All multiprocessors ac-
cess a large global device memory that is relatively slow as
it does not provide caching.

The allocation of the number of thread blocks to each mul-
tiprocessor is dependent on the amount of shared memory
and the number of registers required by each thread block.
More memory and registers required by each thread block
means allocation of less thread blocks to each multiproces-
sor. In this case the remaining thread blocks have to wait
for their turn for execution.

3. IMPLEMENTATIONS
A* is a standard path finding algorithm used to find the
shortest path between two nodes in a graph. The classic
representation of the A* algorithm is f(x) = g(x) + h(x),
where g(x) is the total cost of the path to reach the current
node x from the start node, and h(x) is the estimated cost
of the path from the current node x to the goal node. f(x) is
the distance-plus-cost heuristic function (or simply F-cost).
This heuristic function is said to be admissible if the cost
of the path estimated by it never exceeds the lowest-cost
path. Since h(x) is part of f(x), the A* algorithm is guar-
anteed to give the shortest path, if one exists. We are using
the manhattan distance to estimate h(x) because manhattan
distance works better on the squared grid maps that we use
in our experimentation [5]. The manhattan distance is the

direct distance from current node to the goal node without
considering obstacles in the path, hence it always calculates
the shortest possible distance.

3.1 Standard A*
We are considering the map (search space) as a uniform two-
dimensional grid that is subdivided into small square shaped
walkable and non-walkable tiles. The algorithm searches
only walkable tiles of the map; non-walkable tiles are sim-
ply ignored. Figure 2 demonstrates the search space; Green
is start node; Red is goal node; Gray represents unwalk-
able nodes. Agents can move to adjacent tiles (eight ad-
jacent tiles in our case); including diagonals. The cost to
move straight horizontally or vertically is 10 and the diago-
nal movement cost is set to 14 (

√
102 + 102). The A* search

algorithm finds the optimal path using the F-cost value of
nodes. The nodes with the lowest F-cost values are remem-
bered and searched first. The nodes that have already been
visited are also remembered, so that they are not checked
repeatedly. In this way each node gets one of the following
statuses, ’not visited’, ’open’, or ’closed’. The node that
has status ’open’ is placed on a list called the open list. An
optimized way to maintain this sorted list is the use of a
priority queue [4], like the one by Sundell et al. [13]. When
all neighbor nodes of an open node have been visited, its
status is changed to ’closed’ and this node is removed from
the open list. The open list array is sorted using binary heap
sort according to the F-cost values.

 

 
Figure 1: Arrows are pointing towards parent nodes; final path is represented using cyan 

arrows. 

 
 

Figure 2: Standard A* algorithm search area.

The algorithm starts when the current node (start node at
the beginning) is placed on the open list. Then its eight
adjacent neighbor nodes are visited and are put on the open
list, their status becomes open, their G-cost, H-cost, and
F-cost values are computed and G-cost and F-cost values
are stored. The current node’s id is stored and marked as
the parent of these neighbor nodes. The current node is
done at this stage and its status is changed to closed, and
it is removed from the open list. In the next step, these
neighbor nodes become parent nodes of other visited nodes,
and so on. In Figure 2 the blue nodes represent the total
space searched to find the optimal path. At the end of the
search, if the path is found, the optimal path is retrieved by
moving backwards from the parent of target node towards
the start node. In Figure 2 the arrows are pointing towards
parent nodes and the final path is represented using cyan
arrows. This optimal path is stored in the path array. More



details and pseudocode is given in [9].

3.2 Pre-Calculated Paths
The algorithm runs in two phases. In the first phase, which
is done off-line, it computes a set of paths and stores them.
On a n×m map, the paths that are selected are the n paths
that go from the top of the map to the bottom, and the
m paths that go from the left to the right side of the map.
In the second phase, all agents run concurrently and tries
to find their respective paths with the help of these pre-
computed paths. When a new agent starts to find a path,
it first checks in the list of pre-computed paths whether this
path has already been computed and stored. If yes, then
the search is stopped and the path is simply copied. If no,
then the agent will check if there are partially pre-computed
paths. In the case no pre-computed paths are matched fully
or partially, the new path is computed from scratch.

3.3 Multiple threads per Agent
To allow for the A* algorithm to have multiple threads
helping the same agent, some improvements where required
to the basic algorithm. When many threads access the
same shared memory, thread synchronization becomes es-
sential for correct execution of the algorithm. We are using
eight threads in parallel to work concurrently instead of one
thread working in a loop. Eight threads are used because the
grid illustration is used for the map representation in which
each node has maximum eight neighbors. A data struc-
ture called a ’temporary list’ is placed on the CUDA shared
memory and is used by the eight threads in the thread block.
It has an array with eight positions; one position for each
thread. When each thread has evaluated the F-cost of its
assigned neighboring node, it is stored in the list. Then all
the threads are synchronized using the thread barrier func-
tion. After this step only one thread runs for the remaining
portion of the algorithm and the new nodes are placed on
the open list with their correct F-cost. The pseudocode is
given in [9].

3.4 Hierarchical Breakdown
For large graphs, the memory requirements of the algorithm
increases, which results in fewer thread groups running in
parallel on CUDA architecture and more time is required to
find the paths. Therefore, to find paths on larger graphs, we
have implemented a hierarchical breakdown scheme of A*
(HBDnA*) using path abstraction and a refinement tech-
nique. The idea is to find paths in small parts or slices
and then put those path slices together. The search space
is divided into smaller portions called clusters. Instead of
applying a search on the whole graph, the search is applied
on smaller clusters of the graph, hence lowering the memory
requirements and fulfilling the memory limitations of un-
derlying graphics card and CUDA architecture. The whole
process of path finding is then done in the two steps: Path
Abstraction and Path Calculation.

Path Abstraction
Path Abstraction also called path slicing, is a one time ac-
tivity in which an abstract weighted graph is made from a
grid map representation. The whole grid map is divided
into clusters, which are connected to each other at specific
points on the borders of the clusters called the exit points.

 

 

 

 

Figure 3: Abstract weighted graph for map A and
B using cluster size 20× 20.

Inter-edges (adjacent exit points of different clusters that are
connected) and intra-edges (exit points that are connected
to each other within the clusters) are computed to make
an abstract weighted graph. An adjacency list is used to
implement the graph. This graph is stored in memory and
all further path finding is done at a higher level of abstrac-
tion, using this weighted graph. Figure 3 shows the abstract
weighted graph for cluster size 20×20 for two different maps
used to take results.

Path Calculation
All the actual paths are computed after the path abstraction
phase. This is done in the following three steps: In the first
step all the start and target nodes are added to the abstract
weighted graph by connecting each start and target point to
all exit points of their respective clusters. Then the complete
abstract paths are computed on the abstract weighted graph
at a higher abstraction level instead of actual map. Paths
found at this higher level are optimal and small and do not
include low-level path details. They only include the high
level moves, i.e. moving from one cluster to another cluster
until target node is reached without considering low-level
detailed paths within the clusters. The abstract weighted
graph is much smaller in size as compared to the actual map
size, therefore; the search is fast. Further the smaller size
of abstract weighted graph also overcomes the memory lim-
itations of GPU architecture. The third step is called path
refinement and in this step all the abstract paths are refined
to low level paths. Already searched and stored detailed
paths are patched up to abstract path to give a complete
path. Figure 4 visualizes 1000 complete paths for the two
different maps used to take the results. The implementation
details of path abstraction and calculation are given in [9].

 

 

 

 

 

 
 

Figure 4: Complete paths for 1000 agents for map
A and B.



Our technique is similar to the hierarchical path-finding in
[2], where the technique is implemented on a single proces-
sor and the clusters are connected using eight exit points.
We have used twelve exit points. As a consequence, the ab-
stract weighted graph contains a greater number of nodes
compared to the technique in [2]; this helps in increasing
the path optimality.

4. EXPERIMENTAL EVALUATION
The graphics processor used to run the experiments was a
NVIDIA’s GeForce GTX 260 with 24 multi-processors; each
multiprocessor contains 8 processor cores, so it becomes a
total of 192 processor cores. It has a 576 MHz graphics clock,
1242 MHz processor clock, 896 MB standard memory, and
a 36.9 (billion/sec) texture fill rate.

Map Size Walkable Nodes Agents
M0 3× 3 8 64
M1 6× 6 32 1024
M2 9× 9 64 4096
M3 13× 13 129 16641
M4 17× 17 245 60025

Table 1: Benchmarks for standard A*, pre-
calculated paths and multiple threads per agent.

The experimental results for the standard A*, pre-calculated
paths and multiple threads per agent implementations have
been acquired using the same benchmarks used by Bleiweiss
[1] and are presented in Table 1. In these benchmarks we
measure the time it takes to calculate the path from each
walkable node to all other walkable nodes. The number of
agents are thus the square of the number of walkable nodes.
From the results shown in Figure 5, it is obvious that pre-
calculated paths and multiple threads implementation are
much faster than the standard A* implementation for GPUs.
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Figure 5: Standard A* compared to A* with pre-
calculated paths and multiple threads.

Pre-calculated paths implementation gives the most efficient
results because all the paths are not computed fully or par-
tially. The implementation of multiple threads per agent
takes less time than standard A*, but a little more when
compared to pre-calculated path due to the binary heap that
becomes the bottleneck. Eight threads run in parallel per
agent, but when it comes to place the values in the binary
heap, only one thread remains active and all the other seven
threads wait.

Map Number of clusters for the size
10× 10 15× 15 20× 20 25× 25

A 112 51 32 22
B 174 71 42 25
All walkable 182 81 46 30

Table 2: Number of clusters for different cluster
sizes.

The maps used to take results for standard A*, Pre-calculate
paths and Multiple Threads are very small in size, therefore,
not very practical. For bigger sized maps, the memory limi-
tations of GPU architecture is an obstacle. HBDnA* is used
to find paths on bigger sized maps. The results for HBDnA*
are based on two different maps (both sized 140×130 nodes),
where map A has less walkable area compared to map B. A
map with no obstacle is used in a few experiments to check
the effect this has on the efficiency of HBDnA*. Figure 3
shows the abstract weighted graph for cluster size 20×20 for
both maps, and Figure 4 visualizes 1000 calculated paths.

The results from running standard A* and HBDnA* on both
maps are shown in Figure 6. For map A both implementa-
tions show approximately the same results, except that the
standard A* can not handle more than 1600 agents due to
its high memory requirements. For map B the results re-
veal a drastic change in the behavior of the standard A*
algorithm. It not only stops at 1600 agents, but also takes
much more time to calculate the paths for fewer number of
agents than HBDnA*. We can see that HBDnA* show a
very steady and consistent result, even when the walkable
area increases (map B), compared to the standard A* that
shows a big increase in the path calculation cost with the
increase of walkable area.

Figure 7 shows a comparison of the results of HBDnA* (clus-
ter size 20×20) with standard A* on map A and B. HBDnA*
implementation provides more consistent and stable results
for both the maps and is not affected by the increase in the
walkable area. Hence it is good for calculating paths on big
images or images with more walkable or white space. While
Standard A* implementation provides irregular and change-
able results for both the maps and when the walkable area
increases (map B), the time for path calculation increases
and at 1600 agents it becomes almost double as compared
to time of map A.

To decided upon a suitable cluster size for HBDnA*, we
have performed experiments using different cluster sizes on
three different maps. The cluster sizes used are 10 × 10,
15× 15, 20× 20, and 25× 25. The total number of clusters
for these cluster sizes on the three maps (map A, map B,
and all walkable map with no obstacle) are given in Table 2.

Map A has less number of clusters because of less walkable
area, as no clusters are required on unwalkable areas. Map
B is divided in more clusters as compared to map A because
it has more walkable area than map A. All walkable map
(with no obstacle) is used to check the extreme values and to
decide about the most appropriate cluster size; it is divided
into the maximum possible number of clusters. Figure 8
presents the results of HBDnA* for the cluster sizes given



0

1000

2000

3000

4000

5000

6000

200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

m
s
)

Number of Agents

Map A (Less walkable nodes)

HBDnA* (20×20)

Standard A*

0

1000

2000

3000

4000

5000

6000

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

T
im

e
 (

m
s
)

Number of Agents

Map B (More walkable nodes)

HBDnA* (20×20)

Standard A*

Figure 6: Standard A* compared to A* with hierarchical breakdown.
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Figure 7: HBDnA* (cluster size 20× 20) compared to Standard A*.

in Table 2 for the maps A and B. It is obvious from the
results that the cluster size 10 × 10 takes much more time
than the other cluster sizes for both map A and B because of
the larger number of clusters. For map B it cannot run for
more than 1200 agents which mean that with the increase in
walkable area, the memory requirements for 10× 10 cluster
size increases rapidly and execution of more than 1200 agents
becomes impossible.

Smaller cluster sizes leads to a larger number of clusters,
which increases the GPU memory requirements and there-
fore, reduces the number of agents that can run concurrently.
A path calculated on the abstract graph is always optimal,
but the path at the lower level of the hierarchy can be sub-
optimal. The probability for sub-optimality increases as the
size of the cluster increases.

The efficiency of the HBDnA* implementation is therefore a
tradeoff between speed and optimality. The sub-optimality
increases with the increase in cluster size. While decreasing
the cluster size, increases the time to calculate the path. We
want to calculate a path that is close to the optimal path and
takes as little time as possible to calculate. Examining the
results of Figure 8, we can see that the cluster size 20 × 20
shows the best tradeoff. It takes less time to calculate paths
with this cluster size than with cluster sizes of 10 × 10 or
15×15, and we get paths that are closer to the optimal than
with a cluster size of 25×25. Figure 9 presents the results of
HBDnA* for the cluster size 20×20 for all the three maps. It
is obvious that the results are stable and even for increased
walkable area (like for map B and all walkable map) the
results are regular.

The abstract weighted graph calculation is a one time ac-

tivity that is performed at the start of the HBDnA*. The
total amount of time to calculate the abstract paths for all
the three maps using different cluster sizes is presented in
Figure 10. It indicates that it takes much shorter time to
calculate the abstract paths. Further different cluster sizes
do not affect the time required to calculate the abstract path
by much.

5. CONCLUSIONS
The memory requirements for the standard A* algorithm
grows quickly as the size of the map increases. This leads to
fewer number of thread blocks that can run concurrently on
the CUDA architecture and thus decreases the speed of the
algorithm. We have implemented three improvements to the
standard A* algorithm on a graphics processor to increase
performance and to allow it to calculate paths for a greater
number of concurrent agents.

We have shown that our pre-calculated path and multi-
ple thread implementations give good results for smaller
maps. In the pre-calculated paths implementation we have
pre-computed some paths and then shared these calculated
paths during run time with other agents. This reduces the
calculated cost of already computed paths. In the multiple
threads implementations we have made some improvements
to the standard A* algorithm to allow it to calculate each
path using multiple threads that run concurrently and use
shared memory and thread synchronization for communica-
tion. It reduced the total search time as compared to the
standard A* implementation.

The HBDnA* implementation shows faster and more consis-
tent results for larger maps. To overcome the high memory
needs for the larger maps, the search space is divided into
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smaller areas called clusters; an abstract weighted graph is
made that connects these clusters. Then multiple paths are
computed on this abstract weighted graph which is much
smaller in size than the original map. And finally, the com-
plete paths are found using path refinements. The abstract
weighted graph calculation is a one time activity and takes
very little time. Our results have shown that the most appro-
priate cluster size using HBDnA* for the graphics processors
is 20× 20.
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