

Analysis of Mistakes as a Method to Improve Test Case Design

Sigrid Eldh1,2

1
Radio System and Technology

Ericsson AB
Stockholm, Sweden

Sigrid.Eldh@ericsson.com

Hans Hansson2
2School of Innovation, Design, & Eng.

Mälardalen University
Västerås, Sweden

Hans.Hansson@mdh.se

Sasikumar Punnekkat2

2School of Innovation, Design, & Eng.

Mälardalen University
Västerås, Sweden

Sasikumar.Punnekkat@mdh.se

Abstract— Test Design – how test specifications and test

cases are created – inherently determines the success of

testing. However, test design techniques are not always

properly applied, leading to poor testing.

We have developed an analysis method based on

identifying mistakes made when designing the test cases.

Using an extended test case template and an expert review, the

method provides a systematic categorization of mistakes in the

test design. The detailed categorization of mistakes provides a

basis for improvement of the Test Case Design, resulting in

better tests. In developing our method we have investigated

over 500 test cases created by novice testers. In a comparison

with industrial test cases we could confirm that many of these

mistake categories remain relevant also in an industrial

context.

Our contribution is a new method to improve the

effectiveness of test case construction through proper

application of test design techniques, leading to an improved

coverage without loss of efficiency.

Keywords: Test Design, Test Case, Improvement Method, Test

Techniques, Efficient Testing

I. INTRODUCTION

In academia, a test design technique is assumed to be
known when published, and thus the implementation or
interpretation of a technique is inherently assumed to be
correct. Due to the vast number of publications and existing
interpretations, in addition to a large overlap of the
different test design techniques, this body of knowledge is
far from being well-defined enough to be an unambiguous
source for use by the practitioners. From an industrial
perspective, test design is paramount since the quality of
the test cases substantially affects how well the system is
tested, what failures (faults) will be found and what
coverage can be achieved.

Our main research questions in this study is “if there are
systematic mistakes testers do frequently during test case
construction”, which leads to reduced efficiency and
effectiveness of the testing efforts. By systematic we mean
repeating and frequent pattern occurring for more than 10
persons and more than 50 test cases in the context of the
study. In an industrial setting the number should probably
be lower, e.g. 5 persons.

The strength of our proposal lies in assessing the
likelihood of making a series of mistakes, the penetration of
mistakes made, and the identification of consequences
thereof – which all are aspects that enable a better defined
test design process, resulting in improved test cases.

We have collected empirical data during test case
creation, formulated a theory of systematic mistakes, and
compared our theory on existing test cases written in
industry. Our aim is to define distinguishing features of the
test case design process that can be applied generically to
different types and domains of systems [7], [9].

Our claim is that a deeper understanding of mistakes that
are made during test case construction, and conscious and
directed efforts in avoiding them, will lead to substantially
better test cases. This paper is structured as follows: First
we provide an overview of test design, including
terminology and related work. Then we present the study
from where we have collected the data. Section IV contains
a detailed description of our categories of mistakes. In
Section V, we compare our categories with industrial test
cases. Section VI presents our proposal for improving test
case design in practice. Finally, we conclude with threat
analysis, discussion and further work.

II. OVERVIEW OF TEST DESIGN

Test design describes the phase in a process, where test
specifications are written, and a resulting test procedure or
test cases are created. Following IEEE Standard 829 [1]
(1998 version) a Test Design Specification should consist
of:

• Test Case Specification Identifier;

• Test Items; (references for traceability)

• Input specifications & Output specifications;

• Environmental needs;

• Special procedural requirements;

• Inter-case dependencies.
This specification is straightforward, but does not include

the bookkeeping information normally used in industry,
such as information about version handling.

A test case is the result of applying a test (design)
technique to a specific software system. The test technique
delimits the type of test cases that can be created, according
to a concept, approach or selection. In industry, there is
typically no extra level of documentation for the test

2011 Fourth IEEE International Conference on Software Testing, Verification and Validation

978-0-7695-4342-0/11 $26.00 © 2011 IEEE

DOI 10.1109/ICST.2011.52

70

procedure. The test case includes all needed information
and is the executable similar to the test procedure,
regardless if the test case should be executed manually or
by a tool.

A test case should be repeatable by anyone (yielding the
same result) and thus measurable, in the sense that it should
be possible to determine if the test passed or failed. The test
procedure in the standard also calls for a wrap-up that
describes the actions necessary to restore the environment
(referred to as clean-up in our study).

The related work deals mainly with software faults/
failures and making improvements on how to avoid them
[6][8]. Improvement models as a general modus operandi is
found in e.g. [3]. Particular work on improving the test
design phase and assessing the test cases in this manner is,
to our knowledge, new.

III. ORIGIN AND DESIGN OF STUDY

Our overall aim is to improve the industrial testing
practice. We are focusing on the test design phase, and on
the efficiency, effectiveness and applicability of the
techniques used in this phase.

A. Process of this Study

The process of data collection for this study is described
in Figure 1. The first phases, I and II, were set up for
another study (hence are shown by dashed boxes), where
the goal was to understand the know-how in industry about
test design techniques and their usage.

Figure 1. Process of the Study

A simple open source system, Buddy [5] was used, since
it was intuitive to learn and small in size with a limited
number of functions. The system handles a personal
budget, creating accounts, making budgets, handling cash
withdrawal and deposits, etc. and is very rudimentary –
handling all input as strings, except some numerical fields.
We believe that any system with a set of test cases can be
used to replicate this study, as long as the know-how of the
system does not in itself become a hurdle – which will

otherwise make the experiment unmanageably time-
consuming.

In phase II, all subjects were from industry (both testers
and developers), including some with more than 30 years
experience. As a part of this study, the subjects were asked
to write test cases on a blank paper (since we assumed their
experience in writing test cases would be sufficient).

Observations from this study include that the quality of
the described test cases was in general very poor, even if
our research questions were answered. We saw this as a
result of the subjects being time constrained, but noticed
that the test case writers were very brief in their
descriptions. We also observed that since no template was
given, the variation of detail in the produced test cases was
large – a few wrote a much detailed step-by step
description whereas most test cases were written rather
schematically. These observations left us wondering,
whether the underlying problem was the inherent
complexity of specific test design techniques, or if it was
due to a lack of know-how of the test design techniques, or
if it was really just a case of poor test case writing. To
identify and analyze the main causes of the observed poor
test designs, we decided to conduct a large-scale
experimental study. However, since we were unsure about
how much the knowledge of industrial testers will affect
the results of such study. Due to practical reasons, we
decided to perform this study focusing on novice testers in
an academic setting. As our study turned out, studying
mistakes patterns are much easier if they mistakes are made
frequently.

This main empirical study was conducted as an element
of a Master-level testing course at Mälardalen University.
In preparing this study (Phase IV), which focused on the
understanding of test techniques and the ability to apply
them, we used the lessons learned from phase II that in
order to get properly documented test cases a test case
template is needed (phase III in Figure 1).

B. Empirical Study and Data Collection

The primary goal was to teach the students how to write
test cases in practice, transforming their theoretical know-
how into useful test cases. There were about 50 students
participating in this study, with the target of creating 10 test
cases each. Not all students delivered, and not all test cases
were written. The students can be considered novices in
testing real software. The students were then asked to do a
rather controlled exercise to apply their theoretical
knowledge. The same system, Buddy [5], was used. Since
it is easy to understand the basic functions of such a
system, no requirement specification was available to the
students, who had to use their own judgment to create
reasonable test cases using different test techniques. Each
student was asked to use a series of test techniques and fill
in a template. The template was explained, and
clarifications provided whenever necessary. Students were
particularly asked to be innovative – providing new and

II. Industrial
Setting (from
earlier Study)

IV. Empirical Study
 ~50 Students

 ~ 500 Test Cases

 Data collection

I. Selection

of System

and TDT’s

III. Test
case

Template
creation

V. Data
aggregation

Theory formulation

VI. Comparison with
test cases from industry

71

novel test cases – something that would also give them
extra credits.

C. Test Case Template

In this study we used a test case template based on IEEE
Standard 829 [1] with some additional fields (marked by *).
The template contained the following fields:

• Test case name (& number)

• Test suite, (version)

• Test technique used *

• Time to create the test case *

• Version or unique reference to:
o test items (test object lists, test artifacts, test

plans etc).
o software under test
o project & product
o test tool
o test environment (configuration)
o test specification (version)
o requirement (version)

• Assumptions (pre-requisites) *

• Starting position of test case (implicit, the inter-
dependencies)

• Input specification (input analysis, and selected
targeted input) *

• Step-by-step description of actions (procedure) of
actual test case

• Output specification (observable outcome to base
evaluation on)

• Clean-up including side-effects (post processing)
after test case execution

The test case template along with the related experimental
data for this study is available in [10]. The aim was to
create industrial-like test cases, and the template helped the
students describe the test cases with high readability. Time
to execute (not create) the template is used in industrial test
cases, but since we used trivial test cases for the students,
we thought the creation time would be more interesting.
Most students ignored or defaulted this category instead of
measuring it. For the field “assumption”, the tester was
asked to provide information on what (s)he believed to be
the relevant system response to the test case, since there
were no requirements or other specifications available for
the system under test. This field was intended to provide
information that enables definition of a suitable
verdict/result.

In an implementation, the starting point of execution is
particularly interesting – but many testers code their test
cases in a particular order, assuming that this order is
followed during test execution. This creates dependence
between test cases, which is undesirable since a test case
should always be self-contained. Defining intercase
dependencies is a requirement in the standard, but instead
we required the specification of a starting position (which

indirectly indicates if the test case is dependent – or self-
contained).

D. Considered Test Design Techniques

In this study, the following test design techniques were
explicitly taught in theory, including some simple
examples:

• The positive test case (valid input data) (Pos T) [15],
[12], [13], [21]

• The negative test case (invalid input data) performed
twice (Neg1 + 2) [14], [17], [19], [21]

• Magic input test case (0, -, float or other typical fault
invoking data) [4]

• Equivalence partitioning technique (EP), [11] also
referred to as Category Partitioning

• Boundary Value Analysis (BVA) [4], [11], [15]

• State-transition – preparing the model for the test
case (based on the system) (STModel) [20]

• Use State-transition, and make the transition in 3
steps in the test case. (Steps can be transformed into
a table.) (STable)

• Permutation of transitions/steps (identifying a
location where that is possible!) [6]

• Combination techniques: State-transition + input
analysis (Add EP-classes) (Comb)

IV. SYSTEMATIC MISTAKES ANALYSIS

The data collected in the above study was aggregated, and
treated statistically, as indicated in Figure 1 (phase V). A
bit surprised by the rather large amount of test cases
lacking a sufficient level of quality, we then tried to
identify what had gone wrong. After an iterative process of
identification, grouping and refinement, some patterns that
seems to posses the same qualities emerged. Based on our
findings we formulated our theory on systematic mistakes
presented in this section.

We had to define a way to determine the quality of each
test case as a matter of grading. We noticed that the
students had a strong tendency to repeat mistakes. If they
did miss one category, they probably did that for most of
the test cases. Then we could a see pattern among many of
the students, on why they failed. After this analysis the
structure emerged as the following list of categories, each
indicating a lack of understanding why the corresponding
knowledge is important for test case design:

A. Understanding instructions /level of details
B. Understand the purpose of the system and current

level and context of testing
C. Understanding test design techniques and how to

apply them
D. Assumptions, e.g. regarding correctness and

completeness of specifications
E. Elaborate test case creation, and not only using the

most obvious test case or input
F. Define a clear starting position for the test case

72

G. Make specifications of valid and invalid inputs
H. Step-by-Step description of test case execution
I. Test case evaluation (steps to take to make a clear

comparison with expected result should be clear)
J. Clean-up after test case, repeatability

In the following subsections, we will for each of these
categories, present the data supporting our claims, the
degree of failure for novice testers, and discuss some of the
consequences of failure. In Section V we further relate our
findings to the quality of a set of industrial test cases and
enhance this categorization.

A. Understanding Instruction/Level of Detail

In test design, frequently imperfect specifications need to
be translated to useful test cases. This process is the same
as implementing a code or design based on requirements. In
complex systems, the information in the requirements is
often insufficient, and additional information must be
gathered from different sources, but also be drawn from the
testers or developers experience on how the system and
software behaves. A tester should be able to infer exactly
what is meant, and in a detailed level follow instructions
and provide enough information, so that the test case is
unambiguous and can be repeated by any other tester.

Observations: 33% of the subjects did not read
instruction on delivery of test case (naming, or delivery
faulty) and 73% did not complete the entire template.

Discussion: Not being able to read an instruction is in
itself a failure, which could have many reasons. Here we
assume that the students were either not interested or did
not think it would matter, or just did not care. Examples of
mistakes are:

• Delivering the test cases in one file instead of as
separate test cases uniquely named

• Wrongly name the test cases against instruction

• Not filling in information as required by instruction
If it had been a recruitment situation, people would

probably not get a job as a tester based solely on the lack of
attention to detail. In general, failing to provide detailed
descriptions seems to be a human fallacy – where we in
general are much too imprecise to make coding and testing
a straightforward matter. Often the main solution is to
provide more details – and by doing so, minimize the
opportunity for multiple interpretations. The consequences
here are often failures based on misunderstandings, or that
the task of test case writing cannot be completed due to
insufficient information. We can see that the imprecise
level of detail is often generic in many of the categories
used. The problem was systematic to a person, and not very
varying with each test case, but we could also see
deterioration in the test cases and also a strong relation to
the success of applying the technique.

B. Understanding the Purpose of the System and Current

Level and Context of Testing

Understanding the purpose of the system, and current
level and context of the system is related to the abstraction
levels of the system. This is probably the most fuzzy and
hard to grasp concept of a software system when it comes
to testing and seems to be an understanding that people
acquire after some years working with the system. The
system impact could be based on the history of the system,
for instance how well documented the original
requirements are, and how the history of the test has been.
Who has been writing the test cases? What level were they?

This impacts how data is stored and handled, and also
how the test case construction looks like. Is a test case
written directly in code – or is it textual and manually
executed? Is the test case hidden in a tool, a model or are
there many documents and specifications to be read about
what is expected? How do you actually learn about the
system? Are there many similar systems on the market?
Are you as a tester also a typical user – or is the system
where you test a constructed artificial interface? System
impact is important in many aspects for understanding
levels and context e.g. what visibility of the domain is
possible, what software concept is used, and how that does
impact the test approach.

Observations: Measuring this comprehension is rather
difficult. We checked how many had understood that all
input in the system were string-based, and did not create
test cases that would assume the test should only handle
digits and letters. As much as 80% of the students failed on
this account, which led to a majority of test cases failed.

Discussion: By failing to understand the right context of
the system, the likely outcomes are that the important test
cases are missed, the focus of the test is outside the scope
or at the wrong abstraction level of the system, and that the
problems reported might be unimportant.

C. Understanding Test Design Techniques and How to

Apply Them

One can discuss the test design techniques and details,
overlap and variants, in depth. The first and obvious level is
to understand what the theory is, and then you need to be
able to apply the technique on the specific case in your
system, meaning, finding a location or situation where you
can apply the technique. Most test design techniques are
related to input, some are related to path of execution, and
few are related to order of execution. Also combinations of
techniques are possible. Depending on how, and sometimes
what type of system you apply it to, they carry different
names. When looking at variable input given, the best way
to get a good utilization of test design techniques is to
define the input domain and divide it into groups and
subgroups. A good basic approach to have in mind is that
the entire ASCII-table should be taken into account and to
that a variety of different sizes should be submitted. This
basic approach is normally documented in the test

73

specification, and should cover all forms of valid and
invalid input, whereas the specific test case should select a
specific executable.

Observations: The success of using various test design
techniques by the students is shown in Figure 2
(abbreviations are defined in Section III, D). The positive
test case technique (e.g. giving valid input), was the most
common technique performed, and also had the highest
success in producing an executable test case. Only 10 %
did honor that for BVA all three data must be executed,
even if this was highlighted during classroom teaching.

Discussion: The most common mistake seems to be
related to understanding what is required for each
technique, and also what input and boundaries really mean
in the context of this system. One mistake is that students
confused negative (invalid) input to using negative
numbers. Another mistake is to confuse boundary values to
negative test cases, specifically, input outside the boundary.
In reality, there are probably many more subgroups, but
this needs further analysis. The main goal is often to create
a test case for each input-class or sub-group. One can
define each input class or sub-group assuming that the
software treats the input equally within the class (but it
might not be true!). A consequence of this is that there
might be a series of variants of test cases, where the input
varies (and accordingly its output), and as a result there will
be a number of variants of the same test cases existing. In
addition, if a boundary exists, it is valuable to target that
immediately (three test cases – or one with three types of
input). Boundaries are more or less visible at different
levels in the software system, but should always be a target
to test – since it is a known source of problems.

Figure 2. Test Design Techniques % Full and partial success in

constructing executable test cases in the technique.

When using test design techniques to create test cases, the
first aim should be to create test cases to gain as much
coverage [21] as possible, by e.g. varying the input. This
has a higher likelihood of finding faults. Another technique,
permutation, suggests changing the order of execution of
different test cases, or changing order between steps within
a test case. Permutation mainly targets resource dependent

faults. Finally, the context could differ for the same
execution – for example if different security roles exist; or
depending on whether other parts of the software are
present or not. This means the same test case can have
totally different execution paths and results, depending
largely on the context of the execution of that test case.

D. Assumptions

This category relates to on which assumptions we judge
that a test case has passed or failed. An experienced tester
is likely to make judgments on correctness and
completeness of all aspects of the system. In the case of
judging a faulty requirement, experts would be more
inclined to assume that the requirement is incorrect and
should be changed. The novice would assume that what is
written is almost always correct, and design the test case
based on this faulty assumption. In this case, most students
did not accept the system, and defined assumptions outside
its current behavior.

Observations: More than 50% of students failed to create
an assumption that matched their expected result. Since
almost all students failed to identify what to expect based
on an understanding of the system, they failed making
realistic assumptions in relation to that.

Discussion: In this case, inventing an assumption became
totally unrealistic. We decided this was more a
consequence of not understanding the particular context of
the system, rather than making a fault assumption. In fact,
here we were more interested in understanding how the
student could postulate a defined truth – what should be
valid about the system, since no requirements or documents
existed to explain what would considered being a correct
system behavior.

E. Only Using the Most Obvious Test Case or Input

During analysis of the several hundreds of test cases, we
were interested in seeing the variety of test cases created.
We particularly asked the students to be creative in
inventing valid test cases for the system.

Observations: Only a few individuals (less than 5%) had
any variation within the system, or attempted anything
innovative with their test cases. The student most often
tested the function create account and the variation was
very limited (mostly names and numbers were tested). The
second most common test was looking at dates. A few did
attempt to look at some transactions which led to more
meaningful tests with slightly higher coverage.

Discussion: This mistake will result in systems where
the obvious aspects are probably the only parts of the
software which are tested, leaving many aspects of the
software untested, and leading to less robust systems. In
fact, this is an ineffective way of testing software. Doing a
transaction test, will additionally test that the accounts must
be created and can be used. This is a much higher level of
test approach, than checking that the software can store a

0

10

20

30

40

50

60

70

80

74

date, which in this case was a string. This type of tests had
little impact on the main functions of the system.

F. Starting Position for the Test Case

A common mistake is to only describe where the starting
position of the test case is, i.e., not being specific on how to
get to the starting position or which actions has to be taken
before; or just assuming that a particular location is obvious
from the test case context, or not saying anything at all.

Observations: 73% of the students failed on explaining
an unambiguous starting position.

Discussion: This would of course be easily detected
during automation of the test case that information is
insufficient to identify where the test case should start.
The most common assumption for this exercise, which
targets test of a very small program, is assuming that
information such as “Start the program” is enough. In this
case (and since we used an old version of the software), one
has to avoid downloading the new version automatically,
which none of the students remarked in their starting
position. Secondly, one could benefit from describing
exactly what to invoke and what part of the software state
should be available. A starting position defines if the test
case is independent or has intercase dependencies. A
consequence if you do not create restart options for your
software is that if a failure happens, the execution might get
stuck, and will not be able to continue on to the next test
case. The investment done in the test cases are better
catered for if the order of the test cases can be swapped
around, especially if the software execution is in any way
handling or impacted by resource factors in the system, e.g.
timing, buffer-sizes, priority queues, caching etc. The aim
is of course still to minimize the overlap in repeating
starting positions, and thus prepare a set of starting
positions. This is a part of the test architecture that is
needed in the testware.

G. Specification of Valid and Invalid Inputs

Defining input classes in the test/verification specification
simplifies the use of different test design techniques, and
the input selection of the test case. This is an efficient way
to capture the entire input domain, and also prepare for a
series of test design techniques. At the same time, one
could introduce variables to represent inputs, thereby
paving the way for test automation. It might be initially
difficult to define what an input is in this context, since
clicking on a predefined menu-item could at another
abstraction-level be regarded as input. Here we define input
as something you enter in a field that can vary the
execution path. We are particularly excluding pre-defined
clicks or selections of menus (or commands). The best
option for this type of user input is e.g. the ASCII- table,
including digits and letters in addition to other special
characters. In addition, a varied size of the input (defined in
range) should be explored.

Observation: This proved to be very difficult for the
students, and only 30 % of the students were even near the
idea intended with input analysis. The students were in
general better at providing valid input than making an
analysis on invalid input. None succeeded to grasp the
entire input domain.

Discussion: The consequences of poor input analysis are
several. First, the test case created becomes ineffective,
since it cannot be reused with many different inputs that
would increase the coverage. Secondly, the analysis
enables better usage of test design techniques and thus
better automation of the test case execution. This is done
using input as a variable saving serious space, instead of
hard-coding input data. In the context of the experiment,
the problem might be how this concept was taught and
clearly theory alone was not sufficient.

H. Step-by Step Description

A test case procedure is often described as a set of
actions, with a step-by-step description of actions (and
maybe also intermediate responses). To make the execution
path uniquely defined, the test case must often be described
in small and very detailed steps, exactly the same way as
writing code. Otherwise pseudo-code could be an
intermediate step, but one can rather question if working
with testing software should be done by people with no
knowledge of software or coding. The task would be to
make clear what information is needed in the code
procedure or step-by-step description – and what are
comments, or header/book-keeping information about the
code. The latter is an absolute necessity to be able to handle
the test case.

Observations: 47 % of the students provided insufficient
information and detail to provide steps that could be
unambiguously followed by another human, or required
mind-leaps that is needed to be added when creating a
program for execution.

Discussion: We could see that beginners (not thinking in
code) are writing too little information in the test case.
Most common mistake is missing or too abbreviated
information, which probably makes the automation of a
manual test case costly.

The consequence of missing specific detail in the step,
e.g. what particular values that should be used, is that the
test case execution path is not uniquely identifiable and the
execution might not be possible to recreate, thus if a fault is
found it could be hard to recreate the test case.

I. Test Case Evaluation

The main purpose of test execution is to get a
measurement of the software quality, by combining a large
series of test case evaluation results. To be a useful test
case, it must be possible to evaluate the outcome of the test
case to the defined criteria. For systems lacking these
criteria the concept of “Assumption” is useful. To
determine the verdict of the test case one must describe the

75

expected result or visible outcome, so that the outcome of
the test case could be compared with it. This could result in
a series of steps, comparing logs, or showing that certain
action took place.

Observations: As many as 28% missed giving evaluation
at all, and about 50% of the students could not formulate a
precise evaluation that would determine the outcome.

Discussion: In our system, when an account is created, it
is not enough to make sure that the test execution did not
encounter a crash, fault or problem when pressing save
after filling in an account name. One must also perform the
action of retrieving the account name into a visible state,
e.g. create a listing of account names. This also means that
the test case for checking that listing must be working.
Another way is to go through the back door, and check in
the data base that there is storage in the correct table with
the saved name. Both must be precisely described. These
sorts of events create problems when designing and testing
the system. If the name is not visible in the list, is it the list
function or the store function that is malfunctioning? In
systems there are often multitudes of ways to check a
specific aspect. In our system, one can try and repeat
exactly the same test case immediately. The next time the
test case should fail, since it probably would not be
possible to store another account with the same name
(assumption). Evaluations are in some systems the trickiest
parts. Observation is low, and one has to either wire-tap
that the information or signals really passed – or do some
complicated analysis to form a judgment. If this is left out,
the testers are at loss - but also – the testing is not complete.
The best questions to ask to be able to determine the
outcome are:

• How do you know the test case passed?

• What are signs for failing?
It may be evident if the system causes a crash, but in fault
tolerant systems even that might never happen.

J. Clean-up after Test Case Execution

Equally important to create a useful test case is that it
should be possible to repeat the test case, over and over.
Clean-up after test case executions include all those actions
that are needed to be able to remove the effects of
execution to be able to execute again.

Observations: Less than 5% of the students attempted to
clean-up.

Discussion: This category is easily forgotten, but an
obvious category when doing automation. Clean up might
contain many actions, and it could be particularly difficult
to clean-up in some systems that always store data, and do
not allow removal. Software is used for a long time and so
are its associated test cases. A test case should be
repeatable purely based on economic motive; to allow reuse
of the test case and the thought that went into the analysis
of the system. In Industry, it is not uncommon that a test
case is re-executed up to 100 times within a project, and
that it is used for many years. One cannot assume that the

person creating the test case will necessarily execute it in
the future. Repeatability is to be able to recreate any
problem found and requires precise information. It must be
possible to check if a specific problem has been corrected
afterwards, and the fault is removed. Therefore test cases
should not describe a group of data to be used, but should
always contain a specific value. And the specific value
must be removed after use to repeat the test case. A final
aspect of repeatability is to make test cases fast and
efficient to execute, typically by automating the execution.
In the context of the software life-cycle, probably the cost
and complexity of the testware has the same impact as the
cost and complexity of the software itself.

V. COMPARING WITH INDUSTRIAL TEST CASES

 After constructing the categories containing systematic
mistakes, we looked at each category and selected a series
of industrial test cases and verification specifications, and
investigated if any similar mistakes could be found.
Lacking full statistical data, we wanted to assess whether if
this approach could be taken into industry and used as a
means to improve the test case creation. We analyzed a
series of test specifications and test cases, and also
interviewed and discussed these improvements with a
series of managers, testers and developers, to get a more
thorough understanding of the results. Our conclusion is
that understanding and explaining the mistakes could lead
to both improved templates and new ways of working thus
improving industrial test cases.

We decided to grade the list, based on our results, into a
qualitative scale where the grading for the mistakes
frequency is in a three scale range: O (Often), H (it
Happens), S (Seldom), In addition, we added one more
category (11) and one sub-category (6a), and adapted the
category names. The observed grading for our categories
in industrial cases is as follows:

1. Understanding instructions /level of details (H)
2. Understanding the purpose of the system and

current level and context of testing (S)
3. Understanding test design techniques and use

them (O)
4. Assumptions, e.g. regarding correctness and

completeness of specifications (H)
5. Only using the most obvious test case or input (O)
6. Starting position for the test case (H)

a. Order of execution (O)
7. Lacking specification of valid and invalid inputs

(O)
8. Unambiguous step-by-step description of test case,

test execution, and test outcome evaluation (H)
9. Not clearly defining the test case evaluation (S)
10. Describe clean-up after test case, repeatability (O)
11. Separation of instruction and data (O)

76

A. Understanding Instructions, System and Test Design

This section describes the first three categories of mistakes
in our above list. Our first mistake category, the ability to
understand instructions and having appropriate level of
detail seems to be a pre-requisite for a tester’s job. We
could see that people accustomed to automated test case
creations, as well as developers, were much more skilled in
defining details. Still, this category with lack of appropriate
detail exists occasionally in industry. Test cases and
particularly verification specifications lacked sufficient
level of detail allowing for different interpretations
depending on the experience of the tester. This happens
occasionally in written text, but since most test cases are
automated, they possess enough detail. Interviews with the
testers revealed that the level of detail is added when
automation happens, which makes the automation a rather
costly step to take from the abbreviated manual test cases
or verification specifications. We could also see a great
variety depending on coding skills.

Our second category, lacking appropriate understanding
of the system and the test target goal or context is rather
rare in industry, and also self-regulating. Experienced
testers talked about beginners not making that connection,
and that it was mostly revealed on the type of failure
reports written – or shown when reviewing the test
documentation.

Our third category, the know-how and utilization of test
design techniques seems surprisingly low in industry,
which could be related to the time pressure, where taking
the most obvious test case and inputs dominates. Many
testers are aware of this and would like to explore negative
testing more, but this is seldom given priority. Most test
cases are written in the fashion that they take the first and
best positive input to validate (one aspect) of a requirement,
and demonstrating that it works. Seldom are techniques
utilized to make sure all input categories are explored, such
as negative testing using invalid data. By improving the test
case templates and verification specification, it would be
easier to utilize this result when automating the test cases.

B. Assumptions in Industry

The assumptions category e.g. regarding correctness and
completeness of specifications seems to be earned as a part
of one’s status and know-how when working in industry.
Many testers are rigid, as required by some systems, in the
sense that they are following rules strictly, and if the
specification (requirement) says so – it must be right. But,
if you have confidence and know-how of the system,
maybe your first thought as a tester is – maybe this
(requirement) is wrong (unclear)? We have also noticed
some cultural differences, where some cultures and
personalities seem better in confronting poor specifications
and, as a result, they create test cases targeting important
areas. There is clearly a need for both types of testers.

C. Obvious Selection of Input values and Test Case

We were rather disappointed that it seems like the
obvious input and test case is very common in industry.
This result is based on multiple factors, where time
pressure to write many test cases and confirm requirements
seem to be the dominating one. Other factors might be lack
of knowledge on test design techniques, not specifying
input ranges etc. in specifications.

D. Categories for Test Case Implementation: Starting

position, Descriptions and Evaluations

Definition of a starting position are sometimes missing in
the manual or written test specification, where it is assumed
users know and understand the context of the execution,
and this step is always added to get automatic suites –
which are the commonplace type of execution of test.
Again, waiting to specify it leaves the problem to the
implementation of the test case into executable code. A
comment from the testers interviewed is that the test
specifications are sometimes written so early, that the
specific path to get there might not be crystal clear, and is
deliberately left out. What was more interesting is that
almost all automated suites were built in a specific order of
execution, with rather long series of execution paths. Test
specifications in industry could be really large and dividing
them in different test cases is common, but they are kept
together as a suite. This has limitations, since the technique
of permutation, restarting suites at different positions when
things go wrong and other benefits of several independent
starting positions, are lost.

Therefore we are introducing a subcategory, Order of

execution, particularly aimed to make automation suites
less intercase dependent, with the intention to make
smaller, self-contained test cases that could be used in
different order in different suits, and re-used with a wide
variety of input data.

Specifying the input would greatly improve the utilization
of test cases written, and this mistake seems to be
commonplace, and we see a lack of know-how translating
this into effective test cases. It seems that valid input is
more often used than invalid ones since the specifications
are being written in this way.

Mistakes in the category of test evaluation are rare.
Unfortunately the use of exploratory test seems to influence
the perception that clear evaluation is not needed. An
unfortunate downside seems to be that these test cases are
not repeatable, and thus the know-how and time of creating
them are lost. Random execution is a good complement to
teach testers the feel and to better learn the system, but
expectancy of stumbling across serious faults in our domain
is very low.

With regards to repeatability of test cases, it seems
reasonable to assume that this is paramount for industry.
But when interviewing testers, and by looking at some test
suites, it becomes clear that it occasionally happens that, a
lot of detail and information is missing from the test cases,

77

making it difficult to repeat without thorough and specific
education. The opposite could also be true, that an
automated test suite could be encoded with little and no
documentation or heading/book-keeping information,
making it extremely difficult to update the suite, and thus
make it obsolete in a very short time. We have deemed that
the specifications of input and its ranges are a common
mistake and missing, but to our joy we could also find the
opposite. It turns out that the tool QuickCheck [18] has
been used, which requires a clarification of the valid and
the invalid by defining the borders (min – max). This is a
good step forward for improving the test coverage.

E. A New Category: Separation of Instruction and Data

The category is motivated by and related to the handling
of larger amounts (several thousands) of executed test cases
– often directly translated from manual test cases, creating
a rather unstructured set of test executions with many
overlaps and hard-coded data. It seems that not all test
organizations have utilized the possibility to re-structure
the test cases. A clear separation of the action/steps of
execution and the variety of parameters/variables/input
values would be a great improvement. This would enable a
better future-proof and document-minimalistic approach to
handle large input domains, or when there is a combinatory
explosion of the input domain (having a series of dependent
input variables). Instead of making a unique test case for
every input, fewer test cases chewing through a series of
input-output relations seems to be the most efficient way to
automate.

This results in a separation of instruction (the step-by-step
actions) and data (input). Also techniques like random
selection of data can then be used to vary the regression
suites. The savings of this approach comes in many forms,
by making the test code leaner, handling a variety of input
variables and utilizing the test case creation better.

I. SYSTEMATIC MISTAKE ELIMINATION METHOD

By our identification of categories of mistakes we
realized that even though most categories are very general,
the categorization is dependent on the considered
application domain and systems, as well as on the experts
performing the categorization. As noted when comparing
our results with industrial test cases, there may very well be
additional categories and/or subcategories that are relevant.
Due to this open-endedness of the problem we suggest a
meta-approach, which allows the basic method to be
extended with categories. Our improvement process works
according to Figure 3.

This process can be started at two steps, either by
assuming the categories in this paper as an initial start – or
by using the proposed test case template which would be at
phase e in Figure 3. Otherwise, the first and initial step
(assuming that test cases exist) is to select a sample of test
cases and test specification or similar documentation where
the test design phase is manifested. In step b an expert

reviews the different test cases based on how well they
have performed different test design techniques (which also
includes how well the test cases are at targeting faults and
contributing to coverage of the system). This will result in
the identification of a series of mistakes made.

Figure 3. Systematic Mistake Elimination Method

In c, different systematic mistakes are defined and
categories are created, which can then be measured for
frequency in the existing test cases. Improvements will then
be identified such as a new test template, or usage of new
test case design tools, or improving the required test
specifications template. Finally this new know-how must
be taught (as shown in phase f), followed by deployment at
the organization assessed. The result or improvements
should be measurable in g, in a series of measurements, e.g.
improved fault frequency, and must be periodically
reviewed by the organization.

II. THREATS TO VALIDATY

In regards to conclusion validity the major threat is that
the collection and judgment of data poses some researcher
bias and the categorization might have become different if
another person would have qualified and decided on some
of the tricky borderline cases.

The main potential threat to internal validity is diffusion
or imitation, since respondents could have been influenced
by each other. There was no way to check this, since all had
the same system under test. This means, that a result with
many mistakes could have been spread among students as
correct, and thus negatively influenced the result. The
interviews at industry were rather informal in nature, and
the researcher could have influenced the result.

We conclude that the threat to the construct validity to be
limited, since we have explicitly measured their
frequencies, based on our definitions of mistakes. The
evolutionary nature of this study and the fact that the
original intent of this study was different, could pose as a
threat to the construct validity.

The major threats to external validity, answering if these
results are possible to generalize, can be discussed. It seems

a. Select test
cases and test

specifications

e. Propose
new test

template

c. Define
mistakes

categories

b. Review
with expert
on test
design (incl.

interviews)
d. Measure

mistakes g. Measure efficiency

f. Teach template, test design
techniques and common

systematic mistakes & deploy

78

like our result is just a first attempt, and that replicating this
result is an obvious next step. The results from the test
design techniques in Figure 2 are not possible to generalize
since they are dependent on the system under test.
 Another confounding factor not taken into consideration is
that the student group and industry are from a limited
selection. We believe the amount of experimental data is
appropriate and adequate for such an initial study.
However, we have no sufficient data to support the
elaboration on what consequences this has in industry,
since it was a convenience sample. Therefore the result for
the new and added category identified in industry is not
sufficiently supported as a systematic mistake. The
industrial trial must definitely be better randomized, using
more respondents from different industries, so that the view
can be generalized.

III. CONCLUSION AND FURTHER WORK

This paper demonstrates the importance of dissecting the
process of test design and understanding details of mistakes
made when constructing test cases. It seems possible that
testers in industry make systematic mistakes frequently
during test case construction, leading to reduced efficiency
and effectiveness of the testing efforts, and analyzing these
mistakes will form an important basis for improvements in
the testing practice.

We have suggested a series of mistake categories, based
on analysis of mistakes novice testers made, and we have
used this as a starting point for assessing industrial test
design. We think this work implies improvements that can
be done for requirement formulation (specifically adding
input analysis based on the equivalence partitioning
technique). Another improvement is focusing on how to
better write the test cases in an automated fashion from the
beginning (code the step-by-step description, as well as the
result evaluation and clean-up aspects), to diminish the
effort of translating the often too simplified test case into
usable test scripts, where post-processing is defined from
the beginning. Creating unambiguous test cases at an early
stage also makes it possible to utilize a wider range of the
work-force in the execution, which would otherwise
become person dependent due to interpretation difficulties.

Making a larger study of a series of industries, using a
more randomized sample of test cases, is an obvious next
step to get better validation of our method. From an
industrial perspective, it would be even more interesting to
base on findings from applying our method, device
measures (e.g., targeted education and individual feedback
to testers) for improving the testing practice, as well as
evaluating the effects of these improvements.

ACKNOWLEDGMENT

We would like to thank Ericsson AB for funding our
work and for allowing us to publish these results. The

Knowledge Foundation is acknowledged for funding this
work through the SAVE-IT program.

REFERENCES

[1] IEEE Std. for Software Test Documentation 829-1998 & 2008

[2] Basili, V. and Elbaum, S. 2006. “Empirically driven SE research:
state of the art and required maturity”, Int. Conf Soft. Eng., ICSE,
2006

[3] Basili, VR. Rombach, HD., “The TAME project: Towards
improvement-oriented software environments”, Trans. of Softw.
Eng. June Vol 6. 1988

[4] Beizer, B. Software Testing Techniques, Int. Thomson Computer
Press, 2nd ed., Boston, 1990

[5] Buddy system http://buddi.digitalcave.ca/index.jsp

[6] DeMillo, R.A.; Lipton, R.J.; Sayward, F.G.; ”Hints on Test Data

Selection: Help for the Practicing Programmer” IEEE Computer,
Vol 11, Issue 4, pp 34 – 41, 1978

[7] Eldh, S., “On Evaluating Test Techniques In An Industrial
Setting”, Mälardalen Uni. Lic. Thesis No.78, 2007

[8] Eldh, S., Punnekkat, S., Hansson, H., Jönsson., P.: Component
Testing is Not Enough - A Study of Software Faults in Telecom
Middleware, Proc. 19th IFIP Int Conf. on Testing of Comm. Syst
TESTCOM/FATES, Springer , LNCS, Tallinn, Estonia 2007

[9] Eldh, S., Hansson, H., Punnekkat, S., Pettersson, A., Sundmark,
D.: “A Framework for Comparing Efficiency, Effectiveness and
Applicability of Software Testing Techniques.” Proc. TAIC, IEEE,
London, UK. 2006.

[10] Test Case Template & Additional data and information, regarding
Systematic Mistakes in Test Design Study:
http://www.idt.mdh.se/~seh01/ICST2011/

[11] Jorgensen, P. “Software Testing: A Craftsman’s Approach”,
Department of Computer Science and Information Systems, Grand
State University, Allendale, CRC Press, 1995

[12] King, J. C. A new approach to program testing. In Proc- of the Int.

Conf. on Reliable Software (Los Angeles, California, April 21 -
23, 1975). ACM, New York, NY, 228-233. 1975.

[13] King, J. C. x Symbolic execution and program testing. Commun.
ACM 19, 7 (Jul. 1976), 385-394. 1975.

[14] Legeard, B., Peureux, F., Utting M., Automated boundary testing
from Z and B, Lecture Notes in Computer Science, Springer
Verlag, 2002

[15] Myers, G. The Art of Software Testing. John Wiley & Sons Inc,
USA, 1979

[16] Murnane, T., Reed, K., Hall, R., “Tailoring Black-box methods”,
ASWEC , 2006

[17] Nguyen, D. C., Perini, A., and Tonella, P., A Goal-Oriented
Software Testing Methodology, V. 4951, p. 58-72, LCNS,
Springer Verlag, 2008

[18] QuickCheck http://www.quviq.com/

[19] Whittaker, J. A., How to Break Software: A Practical Guide to
Testing, Addison-Wesley, 2003

[20] Whittaker, J. A., Thomason, M.G., “A Markov Chain Model for

statistical software testing.” Transactions on Software
Engineering, VOL. 20, No. IO, Oct 1994

[21] Xu, D. and Xu, W. State-based incremental testing of aspect-
oriented programs. In Proc. of the 5th int. Conf. on Aspect-

Oriented Software Development (Bonn, Germany, March 20 - 24,
2006). AOSD '06. ACM, New York, NY, 180-189.

[22] Zhu, H., Hall, P.A.V., May, J.H.R., “ Software Unit Test Coverage
and Adequacy”, ACM Com. Surveys, Vol. 29, No.4 Dec 1997.

79

