
A Loadable Task Execution Recorder for
Hierarchical Scheduling in Linux

Mikael Åsberg and Thomas Nolte
MRTC/Mälardalen University

P.O. Box 883, SE-721 23,
Västerås, Sweden

{mikael.asberg,thomas.nolte}@mdh.se

Shinpei Kato
Carnegie Mellon University

Department of Electrical and Computer Engineering
Shinpei@ece.cmu.edu

Abstract—This paper presents a Hierarchical Scheduling
Framework (HSF) recorder for Linux-based operating systems.
The HSF recorder is a loadable kernel module that is capable
of recording tasks and servers without requiring any kernel
modifications. Hence, it complies with the reliability and stability
requirements in the area of embedded systems where proven
versions of Linux are preferred. The recorder is built upon
the loadable real-time scheduler framework RESCH (REal-time
SCHeduler). We evaluate our recorder by comparing the
overhead of this solution against another (patched) recorder.
Also, the tracing accuracy of the HSF recorder is tested by
running a media-processing task together with periodic real-time
Linux tasks in combination with servers. The tests are recorded
with the HSF recorder, and the Ftrace recorder, in order to
show the correctness of the experiments and the HSF recorder
itself.

Index Terms—real-time systems, hierarchical scheduling,
replay debugging, execution visualization

I. INTRODUCTION

Introduction The research that we conduct is primarily
focused on the development of hierarchical scheduling [1],
[2], [3]. Our previous and ongoing work within hierarchical
scheduling includes practical (implementation) aspects of this
kind of scheduling [4], [5], the applicability/usage [6], [7] of
it, as well as applying formal methods [8] on it. In server-
based scheduling (the predecessor of hierarchical scheduling),
tasks (a sequence of instructions) are only allowed to execute
whenever their server (the virtual task which they belong to)
runs. The server itself executes according to some scheduling
scheme (global scheduling) which is independent of the tasks.
The advantage is that it can improve the response time (the
time length between task activation and completion) of event
triggered tasks, and still keep the scheduling deterministic
since the server scheduling parameters are known and included
in the schedulability analysis. Further, introducing a scheduler
within each server (local scheduling) makes it more general
since it supports time triggered tasks as well. This can be
generalized even further by representing a task as a set of tasks
together with a scheduler. When we have separate scheduling
inside a server, i.e. both global and local scheduling, then we
refer to hierarchical scheduling or a Hierarchical Scheduling
Framework (HSF), this is illustrated in Figure 1.

Hierarchical scheduling has several advantages, besides
improving response time of event triggered tasks. It enables

Sy
ste

m

CPU

Global scheduler

Server Task Server

Local
scheduler

Local
scheduler

Interface Interface Interface

.

… … … …

Fig. 1. Hierarchical Scheduling Framework

parallel development of system parts (subsystems), simplifies
integration of subsystems (analysis), supports runtime tem-
poral partitioning and safe execution of tasks etc. However,
except for ARINC653 [9], [10] compliant operating systems
that are commonly found in avionics applications, hierarchical
scheduling is rarely an integrated part of an operating system
(OS). Indeed, there is a need to develop/implement new
scheduling algorithms, such as hierarchical scheduling, in the
area of embedded and/or real-time systems [6]. A motivation
of this can be found in our scheduling example in the evalua-
tion (Section IV), where we let a media-processing task (which
does a movie playback) execute within a server (server-based
scheduling). The server executes with a certain frequency,
giving (guaranteeing) the media task an even amount of CPU
power which improves the playback quality of the movie,
even though it executes among other time triggered tasks. The
media task has an unknown execution pattern, i.e., the releases
are undefined. Still, we get predictability (since we can analyze
the behavior) from both the media tasks point of view, and the
time triggered tasks. Also, we avoid (temporal) interference at
runtime, meaning that we get a safe execution environment for
the tasks because temporal errors do not propagate between
the media task and the time triggered tasks.

From a practical point of view, it is an advantage if
hierarchical scheduling can be implemented easily/efficiently
and without modifying the kernel. The latter makes it easier

for both developers and users since there is no need to
maintain/apply kernel modifications every time the kernel is
replaced or updated. Moreover, keeping the scheduler isolated
in a kernel module, without modifying the kernel, simpli-
fies debugging and potential certification of its correctness
(component-based development advantages). We see that the
RESCH scheduling framework [11] is useful because it has
the advantages mentioned, since it does not need any kernel
modifications. Also, it makes scheduler development easier
because it simplifies the scheduling interface to the user and it
supports the development of schedulers (plugins) which run as
independent kernel modules. However, while the development
of schedulers are simplified with this framework, it lacks
support for debugging the schedulers. That is why we have
developed a HSF recorder, which can easily be plugged in to
a server-based/hierarchical scheduler, developed in RESCH.
The recorder does not require kernel modifications and it is
of course also suitable for analyzing the runtime behavior of
tasks/servers since the recorded trace can be visualized graph-
ically with the Tracealyzer [12] or Grasp [13] visualization
tools. In turn, these tools can present valueable trace data such
as execution- and response-time.

The HSF recorder is able to record the following scheduling
events during run-time:

1) The time instance when a task/server is released (even
though it might not start to execute).

2) The time instance when a task/server starts to execute.
3) When there is a task/server context switch, the recorder

distinguishes between preemption and non-preemption.
4) The time instance when a task/server finishes its execu-

tion.
Contribution The main contributions of this paper are:
1) We have implemented a task/server recorder with the use

of RESCH, i.e., it does not require any kernel modifica-
tions. The recorder enables debugging at task and server
level, in Linux based real-time/general-purpose OSs.

2) We have evaluated our HSF recorder by implementing
yet another recorder (Section II-C), using the technique
presented in [14], and compared the overhead of this
recorder, with the HSF recorder.

3) We have tested our recorder by running a media-
processing task together with time triggered tasks and
servers. The example shows how the playback quality
gets improved by putting the media-processing task in
a server. The HSF recorder is used in this example to
debug and display the runtime behavior.

Outline The outline of this paper is as follows: Section II
presents preliminary background, in Section III we describe
the HSF-recorder implementation. Section IV evaluates the
overhead and tracing accuracy of the HSF recorder. Section V
presents related work, and finally, Section VI concludes.

II. PRELIMINARIES

A. System model
We assume fixed-priority, preemptive, scheduling of pe-

riodic tasks, according to the periodic task model [15].

A task i is presumed to have the following parameters,
〈Ti,WCET i, Di, pri〉, where the period Ti represents the
frequency in which the task is released for execution, WCET i

is the worst case execution time of the task, the relative
deadline Di (within the period) is when the task must complete
its execution (RESCH monitors this) and pri is the task
priority (lower value represents higher priority). Also, all tasks
are assumed to execute independently of eachother and on the
same core, i.e., single core.

The servers are also assumed to have fixed priority and
they are scheduled preemptively and periodic. A server j has
similar parameters as tasks, i.e. 〈Pj , Qj , prj〉, where Pj is the
server period, Qj is defined as a budget (which is the time
given at each period Pj to the tasks within the server) and prj

is the server priority (lower value represents higher priority).

B. RESCH

We have been developing a loadable real-time scheduler
framework, RESCH [11], designed to work with the POSIX-
compliant SCHED FIFO scheduling policy implementation.
RESCH has previously been used as the basis for another
scheduler called AIRS [16] - a multi-core CPU scheduler
for interactive real-time applications. As mentioned previ-
ously, RESCH is a modification-free scheduling framework
for Linux. It supports periodic tasks which can be sched-
uled in a fixed-priority preemptive manner. RESCH is sim-
ply composed of external kernel modules and user-space
libraries for easy installation. It gives both an interface to
the users in user space (e.g. a task specific interface like
rt_wait_for_period()) as well as in the kernel space.
The kernel space API (Application Programming Interface)
has the interface shown below:

1) task run plugin()
2) task exit plugin()
3) job release plugin()
4) job complete plugin()
These functions can be implemented by a RESCH plugin

(Figure 3), i.e., a kernel module that has access to the RESCH
kernel API. These functions are called in the RESCH core at
certain events which are illustrated in Figure 2. Functions 1)
and 2) are executed every time a task registers/unregisters to
RESCH. With register we mean that the task does a RESCH
API call, transforming it to a RESCH task, which creates a
RESCH TCB (Task Control Block) and puts it in the RESCH
ready-queue etc. A RESCH TCB has, among other real-time
specific data, a reference to its corresponding Linux task TCB
(task_struct). Once the task is registered in RESCH,
it will be scheduled periodically (and preemptive) according
to its real-time priority. The primitives 3) and 4) are called
whenever a RESCH task is released for execution or when
it has finished its execution. The plugins get these scheduling
notifications and can thereby affect scheduling, trace tasks etc.
The plugin notifications are shown in Figure 2. When a task
notifies RESCH that it has finished its execution in its current
period, the RESCH core will inform any plugin about this
event and set a timer for the release of the tasks next period.

As a last step, it will call the Linux kernel to re-schedule
another task. The next running task might be a RESCH task
or any other Linux process.

user level
kernel level

RESCH task

RESCH core

RESCH plugin

Linux kernel

interrupt context
kernel-thread context

rt_wait_for_period()

job_complete_plugin()
schedule()

mod_timer()

timer
job_release_plugin()

wake_up_process() switch_to()

Fig. 2. RESCH control flow

When the kernel responds to the corresponding timeout
(task release), a handler in the RESCH core will get notified
about this event. The handler will notify any plugin about the
task release and then call the kernel to wake up the task.

RESCH
core

HSF
plugin

Linux Kernel

Real-time task

Timers

RESCH
libraryApplication

ApplicationApplication

Ke
rn

el
Sp

ac
e

Us
er

Sp
ac

e

RESCH
task

Scheduler

Fig. 3. RESCH framework

In Linux, since kernel version 2.6.23 (October of 2007),
tasks can be either a fair or a real-time task. The latter group
has higher priority (0-99 where 0 is highest) than fair tasks
(100-140). A task that registers to RESCH is automatically
transformed to a real-time task. RESCH is responsible for
releasing tasks, and tasks registered to RESCH must notify
when they have finished their execution in the current period.
In this way, RESCH can control the scheduling. RESCH uses
an absolute-time clock, i.e., it does not wrap around. Also,
release times are stored as absolute values, so release patterns
are exact.

The cost of having a modification-free solution is that
RESCH can only see scheduling events related to its registered
tasks. Real-time tasks with higher priority than RESCH tasks
(i.e. tasks that are not registered in RESCH) can thereby

interfere with RESCH tasks without the RESCH core being
able to detect it. A simple solution to this problem is to
schedule all real-time tasks with the RESCH framework.

C. Task-switch hook patch

Our previous work [14] includes an implementation of
a task_switch_hook function (Figure 4), residing in a
kernel module, which is called by the Linux scheduler at every
scheduler tick. In this way, it is possible to record task schedul-
ing events. This solution requires modification of two code
lines in two separate kernel source files (sched_rt.c and
sched_fair.c). The modification of file sched_rt.c
is illustrated in Figure 4 (a similar change is done in
sched_fair.c). Linux has (since kernel version 2.6.23)
two scheduling classes, namely the fair and the real-time
scheduling classes. When a new task should be released, the
Linux scheduler iterates through its scheduling classes (first
the real-time class, secondly the fair class) in order to find
the next task to release.

The modification (Figure 4) makes it possible to re-direct
a scheduling class’ function pointer .pick_next_task to
point to a user defined function (i.e., our function
task_switch_hook), instead of the original function
pick_next_task_rt. Our function will instead point
to pick_next_task_rt, in this way, we do not alter
the kernel functionality other than executing our function
task_switch_hook (which contains user defined code)
just before pick_next_task_rt starts to execute. Our
function (hook) can be inserted and removed during runtime. A
task recorder can easily be implemented (as a kernel module)
and use the task_switch_hook function to register task
context switches, however, the kernel must be modified.

Static const struct sched_class rt_sched_class = {
.
.
.

.pick_next_task = pick_next_task_rt,

sched_rt.c

re-compile
kernel

Linux kernel
rt_sched_class

.pick_next_task

Execution time monitor

task_switch_hook
after

Loadable kernel module

pick_next_task_rt

patch

before

Fig. 4. Hook patch

III. IMPLEMENTATION

The implementation of the HSF recorder is based on the
scheduler plugin HSF which in turn is based on the scheduling
framework RESCH. Figure 5 shows that the HSF scheduler
uses primitives exported by RESCH and exports these, as well
as server specific primitives, to the recorder. These primitives
are used to register server and task context switches. Note that
the flexible structure allows for new scheduler plugins to reuse
the recorder as long as they export the same primitives.

HSF
plugin

RESCH core

HSF recorder
plugin

server_complete
server_release

job_complete_plugin
job_release_plugin

Fig. 5. HSF-recorder plugin

For the recording to work correctly, it is assumed that no
higher priority real-time Linux tasks, which are not registered
by RESCH, are executed.

The current implementation does not support
load balancing (a function in Linux that migrates tasks to
other CPUs based on load). This is because the RESCH
scheduler cannot detect task migrations made by the Linux
scheduler.

Each recorded event has 2 records:
• ID of the next task/server to execute.
• Timestamp of the event.
The ID of the next task/server is used to calculate the

previous task/server. The 4 hook functions (Figure 5) are used
by the recorder to save scheduling records in memory (this is
a circular implementation). The recorder flushes the recorded
data to disk when it gets unloaded by the user. The recording
format can easily be converted to match any visualization tool.
We have successfully converted the format to fit with the
Tracealyzer [12] and the Grasp [13] visualization tools. We
use Grasp in the evaluation (Section IV) in order to visualize
the trace of the HSF recorder since it also supports hierarchical
scheduling in addition to regular (flat) scheduling.

Figure 6 illustrates how the HSF recorder gets triggered. As
can be seen, the HSF scheduler gets triggered by its own timers
as well as by the RESCH core. The HSF scheduler relays task
releases and completions to the HSF recorder when the HSF
scheduler itself is triggered by the RESCH core. Whenever the
HSF scheduler gets triggered by a timer, it automatically calls
its server release/completion plugin, which in turn starts the
recorder. The figure also shows that the HSF recorder executes
mostly in interrupt context. This makes it less expensive in
terms of context-switch overhead.

IV. EVALUATION

We have evaluated our HSF recorder by recording a set
of tasks and servers (Table I and II). In our example, task
rt_task1 belongs to server Server0, rt_task2 and
rt_task3 does not belong to any server while rt_task4
belong to server Server1 and rt_task5 to Server2.

The evaluation shows two aspects: the measured overhead
(section IV-A) of the HSF recorder compared to the patched

recorder [14], and an example of how the Quality of Service
(QoS) of multimedia tasks can be improved with hierarchical
scheduling as well as how our HSF recorder can assist in this
work (section IV-B). In the multimedia example we used our
HSF recorder and the Ftrace [17] recorder.

During our experiments, the two recorders were recording
the tasks and servers simultaneously.

Task-name T WCET D Prio Server
rt task1 80 9 80 0 Server0
rt task2 200 75 200 1 -
rt task3 105 9 105 2 -
rt task4 500 100 500 3 Server1
rt task5 - - - 4 Server2

TABLE I
TASKS USED IN THE EVALUATION

Server-name P Q Prio
Server0 40 6 1
Server1 90 23 2
Server2 25 8 0

TABLE II
SERVERS USED IN THE EVALUATION

A. Overhead measurements

In order to estimate the overhead impact, we measured the
execution time of the patched and the HSF recorder, running
simultaneously and recording the same trace. We also noted
the amount of data (in kilo bytes) that the two recorders
produced (out of curiosity we also measured Ftrace). We
implemented an optimized version of the patched recorder,
Patch (Table III) so that it only saved recorded data of the
tasks that we were interested in recording. In this way, the
comparison to the HSF recorder became fair since it is only
triggered at task/server events related to the tasks/servers we
are interested in recording (RESCH related task and servers).

Recorder Exec. time (µs) Rec. data (KB)
HSF 45 10.5
Patch 1246 17.4

Ftrace - 888.6

TABLE III
MEASUREMENTS OF THE RECORDERS

The values listed in Table III are the average measured
values of 10 runs and the recorders recorded about 4 seconds
at each run. We see that the HSF recorder has a ratio of 4.3
µs/KB while Patch has 71.6 µs/KB. The conclusion is that
the HSF recorder produces less overhead than the patched
recorder, comparing the execution-time/data ratio. The small
amount of recorded data compared to Ftrace suggests that our
recorder might be a better option if the user is only interested
in a subset of tasks. Having a small amount of overhead is
attractive for recorders since they can remain active in shipped

user level
kernel level

RESCH task

RESCH core

RESCH HSF

Linux kernel

interrupt context
kernel-thread context

rt_wait_for_period()

schedule()

mod_timer()

tim
er job_release_plugin()

wake_up_process()

sw
itc
h_
to(

)

RESCH server

HSF recorder

job_complete_plugin()

server_release()

mod_timer()

re
lea

se

sto
p

server_complete()

re
lea

se

Fig. 6. HSF recorder control flow

products (without wasting too much resources), and thereby
eliminating the probe effect.

B. Multimedia example

The purpose of this example is to show how a multime-
dia task (processing a movie) can benefit from hierarchical
scheduling in such a way that the movie playback runs more
smoothly. The HSF scheduler has never been evaluated (and
debugged) as properly as the example we are about to show,
so this is a good case study for the HSF recorder. We run
the multimedia task in different setups (with and without
hierarchical scheduling), and measure its performance. The
hierarchical scheduling gives the multimedia task an even
amount of CPU power, and thereby improves the movie
playback. Note that all of this is done, including the recording,
without modifying the kernel. The HSF recorder plays a key
role since knowledge of the scheduling behavior is important
in order for the result of this evaluation to be correct. For
example, the recorder shows that the tasks and servers get the
amount of CPU that we specify (i.e., that tasks run within
their servers) and that the tasks/servers run according to the
specified frequency and WCET/Q. During our experiments,
the recording showed that the HSF cannot keep tasks within
their server if they do a lot of blocking (e.g. multimedia tasks).
Therefore, we set lowest priority to the multimedia task and
add idle tasks with higher priority than the multimedia task.
This will keep the multimedia task within its server, thereby
guaranteeing the upper limit on its resource supply. This was
confirmed by the recording of our HSF recorder. A second
recorder (Ftrace) was also used in order to show that the
HSF recorder recorded correctly. We used the Grasp tool [13]
to visualize our recordings (for both the HSF recorder and
Ftrace), since it can display both tasks and servers.

In this example, we have 5 tasks, i.e., rt_task1 to
rt_task5 (Table I). Tasks rt_task1 to rt_task4 are
dummy tasks, i.e., they just loop (rt_task1 in Figure 7).
rt_task5 does a movie playback, its task body is shown in
Figure 7.

// rt task1
int main(int argc, char *argv[])
{

.

.
for (i = 0; i < NR OF JOBS; i++) {

for (j = 0; j < USEC UNIT; j++) {
}
if (!rt wait for period()) {

printf(”deadline is missed!\n”);
}

}
.
.

}
// rt task5
int main (int argc, char *argv[])
{

.

.
libvlc media player play(player);
.
.

}

Fig. 7. Task bodies

rt_task5 used the libVLC1 for movie playback and the
library itself has the nice property that the movie processing
can be executed by a task running in real-time mode. We
executed rt_task5 in 4 different setups:

1libVLC http://wiki.videolan.org/Libvlc

1) rt_task5 with lowest priority and tasks rt_task1
to rt_task4 with priority order as in Table I.

2) rt_task5 with medium priority (in between
rt_task2 and rt_task3) and tasks rt_task1 to
rt_task4 with priority order as in Table I.

3) rt_task5 with highest priority and tasks rt_task1
to rt_task4 with priority order as in Table I.

4) rt_task5 executed in server Server2, and
rt_task1 and rt_task4 in server Server0 and
Server1 respectively (rt_task2 and rt_task3
was not included in this setup).

Given these 4 setups, task rt_task5 will get different
amount/distribution of CPU power and the processing of
movie images (frames) will therefore also be affected. The
movie processing is measured in amount of produced frames
per second (FPS). The CPU utilization (percantage of CPU
time) of task rt_task5 is shown in Table IV as well as
the frame rate of which rt_task5 is processing a movie.
We measured the FPS by timestamping the beginning and end
of the movie playback system call and dividing the amount
of frames of the movie with the measured time. The amount
of frames is 91 and this value was generated by Mplayer2

(using the benchmark flag). It is important to note that the
CPU utilization given in Table IV is the available CPU time,
it does not mean that task rt_task5 uses this CPU time.
The FPS values may not considered to be 100% accurate,
but it shows the approximate efficiency. For example, running
rt_task5 with 100% CPU should of course not give worse
FPS value than running it with 32% CPU. These values
are of course affected by overhead from the Linux kernel
etc. We ran the the experiments on an Intel Pentium Dual-
Core (E5300 2,6GHz) platform, equipped with a Linux kernel
version 2.6.31.9, running with load balancing disabled. The
recorded tasks (and servers) ran on the same core, i.e., all tasks
were migrated to CPU #0 at initialization phase.

Setup CPU utilization (%) FPS
Lowest prio 22.65 22.55
Medium prio 51.25 23.57
Highest prio 100 25.48

HSF 32 25.66

TABLE IV
FPS OF TASK rt_task5

The conclusion based on Table IV is that the distribution
of CPU power influences the frame frequency a lot and that
utilization alone is not sufficient for determining this. For
example, giving task rt_task5 51.25% of the CPU produces
less FPS than giving it 32%. The 32% CPU is guaranteed (no
more no less) and it is distributed evenly as can be seen by
the recording of HSF recorder in Figure 8 (visualized with the
Grasp tool [13]).

2Mplayer http://www.mplayerhq.hu/design7/news.html

Apparently, (during our experiments) task rt_task5 must
have been active when other higher priority tasks were occu-
pying the CPU, thereby temporarely getting less than 51.25%
CPU. This is not the case when running the multimedia task
in its server, since it is always supplied 32%.

0 50 100 150 200 250 300 350

idle

rt_task5

s3_idle

s1_idle

rt_task4

s0_idle

rt_task1

0

4

8

Server2

0

3

6

Server0

0

12

23

Server1

0

1125

2250

Server3

Fig. 8. Tasks and servers recorded with the HSF recorder

Figure 9 shows the same trace as in Figure 8, but recorded
with the Ftrace recorder. As can be seen, the HSF recorder
records correctly, also, it shows that task rt_task5 does not
consume CPU continuously (i.e., it blocks often).

0 50 100 150 200 250 300 350

idle

rt_task5

s3_idle

s1_idle

rt_task4

s0_idle

rt_task1

Fig. 9. Tasks recorded with the Ftrace recorder

Figure 10 shows a trace by our HSF recorder when task
rt_task5 was running with lowest priority, without HSF.
As can be seen, the CPU availability for task rt_task5 is
highly dependant on when higher priority tasks execute.

Our example shows that it is difficult to fine tune the
CPU supply for a multimedia task, i.e., we can only do it
by changing the priority of the task since it is not periodic.
However, it is possible to do tuning by setting server period,
budget and priority, when using HSF. The main contribution of
this example is the trace (Figure 8) made by the HSF recorder
which shows the correctness of the CPU distribution, made
by HSF, to real-time tasks (with media processing). We have
also tested the correctness of the HSF recorder by comparing

0 50 100 150 200 250 300 350

idle

rt_task5

rt_task4

rt_task3

rt_task2

rt_task1

Fig. 10. Tasks recorded with the HSF recorder

its trace results with the Ftrace recorder, i.e., the trace in
Figure 8 is identical with the trace in Figure 9, which shows
that it records correctly. Also, the trace in Figure 8 shows the
amount of unused CPU time (slack time) at both server level
and within each server, since the different idle tasks represent
this. For example, server Server3 (which has lowest priority)
and its task s3_idle represent slack time at server level,
while s0_idle represent unused time in Server0. The
conclusion is that the HSF recorder can be a good tool for
debugging hierarchical schedulers in RESCH, since it records
accurately and with low overhead. Further, this example shows
that our (HSF) recorder and scheduler records (and schedules)
correctly, even though we do not modify the kernel.

V. RELATED WORK

The idea of our solution is based on the replay debugging
approach [18], which records system events online and replays
them offline. In later work [19], the replay debugging has
been extended to be compiler- and OS-independent. While
the replay debugging works with off-the-shelf compilers for
application-level debugging, our solution is self-contained
software using Grasp [13] for OS-level debugging, and it is
primarily focused on real-time scheduler debugging.

The SCHED DEADLINE project [20], which is in charge
of the EDF scheduler implementation for Linux, has used the
sched switch tracer provided by the Ftrace toolkit [17] to
output the recordings of context switches. The output logs are
later converted to the Value Change Dump (VCD) format so
that GtkWave can visualize the task execution traces. The
trace can of course be converted to other trace formats, such
as the Tracealyzer [12] or the Grasp [13] format. Given that
Ftrace is supported by the Linux community, it is reasonable
to use this toolkit to trace task executions for kernel debugging,
but it is dedicated to the Linux kernel, so it is not necessarily
suitable for real-time scheduler debugging in general. For
instance, sched switch does not catch job releases, however,
context switches are precisely traced, and it can distinguish
between task completions and task preemptions. Our solution
is more flexible and integrated in that it is available not only
for the Linux kernel, but also for other OSs, once the RESCH
framework is ported to other platforms.

Our previous work [21] includes a simple task recorder in
Linux (based on RESCH) which supports the Tracealyzer [12]
and the Grasp [13] format. Further, we have also implemented

a task recorder [14] (in Linux) which is able to record all task
scheduling events, but it requires modifications to the kernel.

DTrace [22], SystemTrap [23], LTT [24], and LTTng [25]
are advanced tools for OS debugging. They are oriented for
tracing entire kernel events, so it is required that the developers
understand how to use them. Meanwhile, our solution is more
simplified by focusing on real-time scheduler debugging, and
it is very easy to use in practice.

Real-Time Application Interface for Linux (RTAI) [26] is
a collection of loadable kernel modules and a kernel patch
which together provides a rich real-time API to the user. It
gives the possibility to add/delete hooks for every task-start,
task-switch and task-delete. These hooks give the possibility
to monitor task execution in a detailed level.

Tracealyzer [12] is a visualization and analysis tool for
embedded systems. It can visualize task traces as well as task
communication. Recorders implemented in the OSs VxWorks,
OSE, Rubus and RTXC support the Tracealyzer format.

VI. CONCLUSION

We have presented the implementation and evaluation of a
task/server recorder based on the RESCH (REal-time SCHed-
uler) framework in Linux. RESCH is a scheduling framework
for Linux which support scheduler plugins, i.e., multi-, uni-
core, flat-, server-based-scheduling etc. Our recorder imple-
mentation is a plugin on top of an already existing hierarchical
scheduler plugin called HSF (Hierarchical Scheduling Frame-
work). This framework supports fixed-priority preemptive
scheduling of servers as well as tasks. The HSF recorder uses
scheduling primitives supported by RESCH itself, and HSF, in
order to record scheduling events. The RESCH framework, the
HSF scheduler plugin as well as our HSF recorder require no
modification of the kernel and this is the main contribution
of this approach. To the best of our knowledge, this is
the first attempt to perform task tracing (within hierarchical
scheduling) in Linux, without kernel modifications.

The evaluation of the HSF recorder includes two parts:
• Overhead comparison against an optimized version of

our previously implemented task-switch patch [14].

• The correctness of the HSF recorder (as well as the HSF
scheduler) is tested with a media processing example.
The tracing capability and accuracy of the HSF recorder
is compared against the main-line Linux recorder Ftrace
[17].

Our HSF recorder produces very low overhead, in terms
of CPU consumption, compared to the task-switch patch. The
amount of recorded data is also much smaller than Ftrace,
suggesting that the HSF recorder could be a better choice if
only a subset of Linux tasks is of interest to monitor.

The media-processing example shows 5 real-time tasks
running with, and without servers, i.e., with the HSF scheduler
activated and with only RESCH. In the example, we show
that one of the tasks (which is processing a movie) produces
higher frame rate with theoretically lower CPU utilization
(using the HSF scheduler) than with higher CPU utilization

(using only RESCH). The reason for this is that HSF gives
the media-processing task better CPU resource distribution.
In this example, the HSF recorder contributes by showing
that the media task uses only its allocated CPU resource,
thereby showing that the example is correct. It also shows a
weakness with the HSF scheduler in that it has problems with
keeping media tasks (and similar tasks which blocks often)
within its server. However, non-blocking real-time tasks are
shown to be properly contained inside their servers. All traces
from the HSF recorder, in this example, are done in parallel
with the Ftrace recorder, thereby showing the accuracy (and
correctness) of our HSF recorder.

The conclusion is that the HSF recorder could be a good tool
for debugging hierarchical schedulers in RESCH. The recorder
can, together with a visualization tool, such as Grasp [13],
visualize the execution of tasks and servers as well as display
worst-case, best-case and average value of both execution-
and response-time of tasks. In case that the Linux kernel is
configured with Ftrace, then it could be useful to use also,
since it complements our recorder well. Our recorder can
record server events and task releases, while Ftrace can record
the context switches between the RESCH real-time tasks and
other Linux tasks.

Future work includes merging Ftrace and the HSF recorder
to get more detailed and complete traces. We will also continue
with improving the HSF scheduler plugin as well as develop-
ing new server-based schedulers (Bandwidth Sharing Server,
Constant Bandwidth Server, Sporadic Server etc.) and support
for multi-core scheduling (and tracing).

REFERENCES

[1] P. Goyal, X. Guo, and H. M. Vin, “A Hierarchical CPU Scheduler for
Multimedia Operating Systems,” in Proc. of the 2nd USENIX Symposium
on Operating Systems Design and Implementation, 1996.

[2] Z. Deng and J. W.-S. Liu, “Scheduling Real-time Applications in an
Open Environment,” in Proc. of the 18th IEEE International Real-Time
Systems Symposium, 1997.

[3] J. Regehr and J. A. Stankovic, “HLS: A Framework for Composing
Soft Real-Time Schedulers,” in Proc. of the 22nd IEEE International
Real-Time Systems Symposium, 2001.

[4] M. Åsberg, M. Behnam, T. Nolte, and R. J. Bril, “Implementation of
Overrun and Skipping in VxWorks,” in Proc. of the 6th International
Workshop on Operating Systems Platforms for Embedded Real-Time
Applications, 2010.

[5] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. J. Bril, “Towards
Hierarchical Scheduling on top of VxWorks,” in Proc. of the 4th
International Workshop on Operating Systems Platforms for Embedded
Real-Time Applications, 2008.

[6] M. Åsberg, M. Behnam, F. Nemati, and T. Nolte, “Towards Hierarchical
Scheduling in AUTOSAR,” in Proc. of the 14th International Conference
on Emerging Technologies and Factory Automation, 2009.

[7] M. Åsberg, T. Nolte, and P. Pettersson, “Prototyping and Code Syn-
thesis of Hierarchically Scheduled Systems using TIMES,” Journal of
Convergence (Consumer Electronics), vol. 1, no. 1, pp. 77–86, 2010.

[8] M. Åsberg, P. Pettersson, and T. Nolte, “Modelling, Verification and
Synthesis of Two-Tier Hierarchical Fixed-Priority Preemptive Schedul-
ing,” in Proc. of the 23rd Euromicro Conference on Real-Time Systems,
2011.

[9] ARINC, ARINC 653: Avionics Application Software Standard Interface
(Draft 15). Airlines Electronic Engineering Committee (AEEC), 1996.

[10] ARINC/RTCA-SC-182/EUROCAE-WG-48, “Minimal Operational Per-
formance Standard for Avionics Computer Resources.” RTCA, Incor-
porated, 1828 L Street, NW, Suite 805, Washington D.C. 20036, 1999.

[11] S. Kato, R. Rajkumar, and Y. Ishikawa, “A Loadable Real-Time
Scheduler Suite for Multicore Platforms,” Technical Report CMU-
ECE-TR09-12, 2009. [Online]. Available: http://www.contrib.andrew.
cmu.edu/∼shinpei/papers/techrep09.pdf

[12] Editors: T. Maragria and B. Steffen, “Leveraging Applications of Formal
Methods,” Proc. of the 1st International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation. Springer,
pp. 140–141, 2004.

[13] M. Holenderski, M. M. H. P. van den Heuvel, R. J. Bril, and J. J.
Lukkien, “Grasp: Tracing, Visualizing and Measuring the Behavior of
Real-Time Systems,” in Proc. of the 1st International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems,
2010.

[14] M. Åsberg, T. Nolte, C. M. O. Perez, and S. Kato, “Execution Time
Monitoring in Linux,” in Proc. of the W.I.P. session in the 14th Interna-
tional Conference on Emerging Technologies and Factory Automation,
2009.

[15] C. Liu and J. Layland, “Scheduling Algorithms for Multi-Programming
in a Hard-Real-Time Environment,” ACM, vol. 20, no. 1, pp. 46–61,
1973.

[16] S. Kato, R. Rajkumar, and Y. Ishikawa, “AIRS: Supporting Interactive
Real-Time Applications on Multicore Platforms,” in Proc. of the 22nd
Euromicro Conference on Real-Time Systems, 2010.

[17] T. Bird, “Measuring Function Duration with Ftrace,” in Proc. of the
Japan Linux Symposium, 2009.

[18] H. Thane and H. Hansson, “Using Deterministic Replay for Debugging
of Distributed Real Time Systems,” in Proc. of the 12th Euromicro
Conference on Real-Time Systems, 2000.

[19] H. Thane, D. Sundmark, J. Huselius, and A. Pettersson, “Replay
Debugging of Real-Time Systems Using Time Machines,” in Proc. of
the 17th International Parallel & Distributed Processing Symposium,
2003.

[20] D. Faggioli and F. Checconi, “An EDF Scheduling Class for the Linux
Kernel,” in Proc. of the 11th Real-Time Linux Workshop, 2009.

[21] M. Åsberg, J. Kraft, T. Nolte, and S. Kato, “A Loadable Task Execution
Recorder for Linux,” in Proc. of the 1st International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems,
2010.

[22] B. Cantrill, M. Shapiro, and A. Leventhal, “Dynamic Instrumentation of
Production Systems,” in Proc. of the USENIX conference, 2004.

[23] V. Prasad, W. Colhen, F. Eigler, M. Hunt, J. Keniston, and B. Chen,
“Locating System Problems Using Dynamic Instrumentation,” in Proc.
of the Ottawa Linux Symposium, 2005.

[24] K. Yaghmour and M. Dagenais, “Measuring and Characterizing System
Behavior Using Kernel-Level Event Logging,” in Proc. of the USENIX
conference, 2000.

[25] M. Desnoyers and M. Dagenais, “The LTTng Tracer: A Low Impact
Performance and Behavior Monitor of GNU/Linux,” in Proc. of the
Ottawa Linux Symposium, 2006.

[26] D. Beal, E. Bianchi, L. Dozio, S. Hughes, P. Mantegazza and S.
Papacharalambous, “RTAI: Real Time Application Interface,” Linux
Journal, vol. 29, no. 10, 2000.

