
On Hierarchical Scheduling in VxWorks

by

Mikael Åsberg (mag04002@student.mdh.se)

Master thesis
Supervisor: Moris Behnam
Examiner: Thomas Nolte

Mälardalen University
Department of Computer Science and Electronics

June 5, 2008

Västerås

Abstract

Theoretically, hierarchical scheduling has many advantages when it comes to integrating
real-time applications on a single CPU. Even though each subsystem (real-time application)
will get less resource in the form of CPU (as they are required to share the CPU), they will
not be forced to have their properties changed (periods, priorities, etc.) during the integration
and their scheduling policy is allowed to remain the same.
Each subsystem will still be isolated as if it would be executing in isolation and the error of
one subsystem can not propagate and a�ect other subsystems.
A subsystem can be viewed as a virtual task which in turn have it's own properties. Virtual
tasks will be scheduled by a global scheduler and virtual tasks execution includes the schedul-
ing of it's local tasks (by the virtual tasks local scheduler) as well as the local task execution
[18].

The cost of all the explained advantages is the overhead of the global scheduler. In facilitating
the above mentioned bene�ts a more complex scheduler has been developed. A hierarchical
scheduling framework (HSF) will only be of use and interest if it is time e�cient (low over-
head) and if it is possible to implement it on top of already existing industrial systems.

This thesis address these issues and speci�cally exploit the possibilities of designing and
implementing a HSF on top of one of the most commonly used commercial industry real-time
operating system, namely Vxworks.
The focus during the development of the HSF has been to �nd, evaluate and choose the most
time e�cient design solutions in order to impose as little system overhead as possible.

The work can be separated into two sections.

First we designed and implemented two extensions to the native vxworks priority preemptive
scheduler. The �rst extension was to implement a module that had support to schedule tasks
periodically. This module has an absolute time based multiplexed software timer event queue
(TEQ). The second extension was an Earliest Deadline First (EDF) implementation. These
two extensions together with the native vxworks scheduler form two new local schedulers, a
Fixed Priority (FPS) periodic task scheduler and an EDF periodic task scheduler.

When the local schedulers were implemented, we moved on and designed and implemented
two global schedulers (FPS and EDF). The HSF uses these two global schedulers (one of
them) and schedules servers according to the periodic server model. Each subsystem is then
internally scheduled by either our local FPS or EDF scheduler.
Server execution time (budget) and period, as well as tasks periods and deadlines, are handled
by the TEQ. Each local system will each have their own TEQ and the servers will have one
common TEQ.

Detailed scheduling overhead analysis for the local and global FPS scheduler was derived
using the Response Time Analysis (RTA). Moreover, we did extensive time measurements of
the local schedulers, the global schedulers and the HSF itself. Execution traces from tests are
graphically shown using execution recording of tasks.

Acknowledgments

I want to thank Johan Kraft for his support and help with VxWorks.

Contents

1 Introduction 2

1.1 Introduction . 2
1.2 Related work . 3
1.3 Thesis goal . 5

2 Theoretical background 6

2.1 Real time systems . 6
2.2 VxWorks task scheduling . 8

2.2.1 Native and POSIX scheduler . 8
2.2.2 Custom scheduler . 9
2.2.3 Interrupts and VxWorks scheduler . 9
2.2.4 Tasks in VxWorks . 10

2.3 Scheduling analysis . 11
2.3.1 Fixed priority scheduling analysis . 11
2.3.2 EDF scheduling analysis . 13

2.4 Hierarchical scheduling framework . 15
2.4.1 Hierarchical scheduling . 15
2.4.2 Hierarchical scheduling analysis . 17

3 Design & implementation 21

3.1 Custom periodic task scheduler . 21
3.1.1 Motivation . 21
3.1.2 Design . 22
3.1.3 Implementation . 23
3.1.4 Scheduling analysis with overhead . 26
3.1.5 Calculation of amount of interrupts . 29

3.2 Hierarchical framework . 30
3.2.1 Overview . 30
3.2.2 Detailed design . 32
3.2.3 Scheduling analysis with overhead . 37

4 Results 39

4.1 Interrupt overhead measurements . 39
4.2 Local scheduler . 42

4.2.1 Time measurements of the local schedulers 42
4.2.2 Comparison of scheduling overhead formula with execution measurements . 45

4.3 Hierarchical framework . 47
4.3.1 Time measurements of the global schedulers 47
4.3.2 Comparison of scheduling overhead formula with execution measurements . 49
4.3.3 Jitter . 52
4.3.4 Test execution of tasks in delayed and pended state 53

5 Conclusion & Future work 55

5.1 Conclusion . 55
5.2 Future work . 56

6 Appendix A 59

6.1 A.1 Mean time measurement graphs of local scheduler interrupt routines with non
optimized TEQ . 59

6.2 A.2 Mean time measurement graphs of local scheduler interrupt routines with op-
timized TEQ . 61

6.3 A.3 Mean time measurement graphs of global scheduler interrupt routines with
optimized TEQ . 63

7 Appendix B 64

7.1 B.1 Pseudocode for algorithm Count_Double_Hit 64

8 Appendix C 66

8.1 C.1 Screenshot from Tracealyzer test of the local FPS scheduler 66
8.2 C.2 Screenshot from Tracealyzer test of task executing in a server 67
8.3 C.3 Screenshot from Tracealyzer test of task in delayed and pended state 68

1 Introduction

1.1 Introduction

Hard real-time applications have strict timing properties which most often are mathematically
analyzed, based on the system properties, and thereby known to be schedulable or not. The
schedulability of a system is strict dependant on the system properties and these should not be
altered in order for the system to remain schedulable.

However, integrating di�erent real-time systems on the same computer is positive due to a poten-
tial cost reduction inherent in lowering the amount of hardware needed.
The execution of di�erent real-time applications in one system have a great impact on the timing
requirements of each application. These application's timing requirements are dependant on the
amount of resources (for example CPU) available for the application the be schedulable. This
makes it di�cult to share resources among real-time systems while at the same time preserving
temporal behavior [19]. It might be very di�cult, time consuming or in the worst case impos-
sible to adopt real-time software to new environments where it must share resources with other
applications. Merging several real-time systems together, sharing a CPU, is a big challenge. All
systems must have their properties re-con�gured and re-analyzed to be able to execute together.
The re-con�gurations of the systems might be very complex. Moreover, there might be other
downsides as well, inherent in that all systems will a�ect all other systems. We will not have any
isolation between applications which means that an unexpected error in one application might
a�ect other applications [18].

We see that it is a big challenge to let real-time applications share resources with eachother.
A solution to this problem is to introduce hierarchical scheduling [19].

2

1.2 Related work

We did not (during the 6 months of this project) �nd any hierarchical scheduling implementations
on top of VxWorks operating system.

VxWorks have developed a special operating system version 653 which provides extra safety and
security properties for mission critical applications. A global scheduler (in kernel space) schedules
partitions in a prede�ned time basis. Each partition schedules tasks in a priority-preemptive fash-
ion using the VxWorks, POSIX or ARINC API. [16]

In [15] the authors present the design of a HSF for which support the scheduling of systems
at an arbitrary amount of levels. The implementation is done in RED-Linux, which is a modi-
�ed linux kernel with support for real-time scheduling. The scheduling framework in RED-Linux
consists of a Dispatcher and Allocator. The �rst mentioned component is in charge of choosing
a job among jobs for execution. The second component translates a scheduling policy to speci�c
parameters for each job in the group of jobs. The authors managed to implement so that each
group had it's own scheduling policy and that jobs were either just jobs or a group of jobs. Note
that in this implementation, the authors did not modify the kernel but extended the existing
scheduler.

[21] describes an algorithm to handle time representation in conjunction with an EDF imple-
mentation. The technique used is the circular time model in which the time is absolute and at
some point over�ows.

An hierarchical implementation is presented in [22] where the target operating system is Linux/RK,
an extended linux version with resource kernel functionality. Linux/RK supports partitioned re-
serves where the budgets are replenished at every period. The authors extend the hierarchical
implementation by supporting multilevel hierarchy where each reserve has a list of child reserves.

In [17], the authors design and implement a two level HSF in the real-time kernel pSOS. A
virtual task, de�ned as RCE (Resource Consuming Entity), was designed to have a group of tasks,
a budget (execution time) and replenishment period. At the top level, scheduling was done with
the Rate Monotonic (RM) scheduling policy. Each subsystem was scheduled according to priority
based preemptive scheduling (a task has a priority).
A RCE was scheduled periodically with execution time equal to it's budget. A special timer
component was developed that multiplexed several software timers against one or more hardware
timers. Budgets were set with a so called one-shot timer and RCE periods with periodic timers.
Each timer (periodic or one-shot) was sorted in a queue, the lowest value in this queue was set as
expiration on the hardware timer. The timer values in the queue were relative so at each expira-
tion, the �rst timer value would be reset and all the others decremented with the elapsed time.
When the global scheduler executed a RCE, all tasks in that RCE would get their priority raised
while the tasks in the RCE before would be set to low priority values.
The execution time of the global scheduler was measured and subtracted from the next executing
RCE's budget. This would decrease the execution time of RCE's but eliminate drift caused by
the global scheduler.
Scheduling at the bottom layer was not explained in detail but it is assumed that the existing OS
scheduler takes care of this, based on the task priorities and perhaps also their periods.

Our design and implementation of the HSF in VxWorks is similar to the work presented in [17],
although their framework is based on scheduling soft tasks while our system is suited for hard
tasks. Another di�erence is that we also implemented local task schedulers (FPS and EDF) which
is extensions to the native VxWorks task scheduler. Also, our TEQ component and server taskset
switching strategy di�ers (ours are more time e�cient). Reducing drift by subtracting server bud-
gets is a strategy we also used, this is of course included in the scheduling overhead formulas that

3

we have derived.

The preliminary results of this thesis was published in [24] and was accepted to the OSPERT
2008 conference in Prague, Czech Republic.

4

1.3 Thesis goal

The aim of this thesis is to investigate and explore the possibilities and limitations to design and
implement hierarchical scheduling in the commercial real-time operating system VxWorks.
The chosen design must by all means be as e�cient as possible (cause minimum overhead) and
not cause extensive drift. The advantages of hierarchical scheduling is not worth anything if the
implementation causes to much overhead. That is why this thesis has the strong requirement of
investigating and choosing the most time e�cient strategies for the design of this system.

Because hard tasks are meant to be scheduled by this HSF, the chosen design must have a relating
mathematical analysis that express the overhead caused by our system.

VxWorks, as many other RTOS, lacks the property of periodic scheduling of tasks. This as-
pect must be thought of in the design.

The report is organized as follows:

Chapter 2

Theoretical background is given to real-time systems in general, how hierarchical scheduling works,
introduction to the RTOS VxWorks and theories about scheduling analysis for both local systems
as well as hierarchical systems.

Chapter 3

We �rst explain the design of the local schedulers and then the HSF. The design of the local
scheduler has great impact on the design of the HSF.

Chapter 4

The results of both the local scheduling systems as well as the hierarchical system is presented.
Time measurements of the schedulers and comparison of the scheduling analysis against execution
measurements are shown. In many of the tests we record task executions with a special tool and
then show the recorded traces graphically.

Chapter 5

We discuss and conclude our work and give suggestions to improvements of our system.

Appendix A

Time measurement graphs for both the local and global schedulers are shown.

Appendix B

Pseudocode for a function related to local scheduling analysis is presented.

Appendix C

Screenshots from task execution traces are shown.

5

2 Theoretical background

2.1 Real time systems

A real-time system is a system that does not only operate correctly, but also does it within a
speci�ed time. A key feature in these kind of systems is that operations are executed before their
deadlines.

High level timing requirements for a real-time system can be re-de�ned as timing properties of
system tasks, which are sequential programs that perform an assignment. Tasks run together
according to some schedule.
Scheduling of tasks is important because it a�ects when a task start and end it's execution.
Scheduling algorithms can be categorized as follows. [1]

Preemptive or non-preemptive

Preemptive scheduling is when tasks interrupt eachother during execution. Tasks always completes
their execution without being interrupted by other tasks if the scheduling is non-preemptive.

Static or dynamic scheduling

Static scheduling means that scheduling decisions are based on �xed parameters, it is dynamic
when the parameters change during system execution.

O�-line or on-line scheduling

O�-line scheduling means that is it is based on a pre-de�ned time table, where each task has a
de�ned start and end time. On-line is when scheduling decisions are made during runtime based
on task parameters.

O�-line scheduling schedules according to a pre-de�ned task schedule (Figure 1).

Figure 1: O�-line scheduling

Because real-time systems have time requirements, tasks typically have a time before it should
end it's execution called deadline. Tasks can be classi�ed based on the importantness of �nishing
it's execution before it's deadline.

Hard and soft deadlines

A hard deadline means that if a task misses it's deadline then the consequences could be catas-
trophic. Missing a soft deadline can at most just decrease system performance.

6

Tasks can be characterized by the following parameters.

Period (T)
The time interval in which the task is to be executed.

Relative deadline (D)
The time relative to the start time of the period in which the task must �nish it's execution.

Worst case execution time (C)
The execution time in one period.

Release time (RT)
The time relative to the start of the period in which the task starts executing.

Priority (P)
The priority level of the task, the task with the highest priority of all tasks is scheduled to execute.

The above parameters are illustrated in Figure 2, where T=5, D=3, C=2 and RT=0 for a task.

Figure 2: Task parameters

There exist three kinds of tasks, periodic, sporadic and aperiodic tasks. The �rst mentioned
executes periodically according to the period parameter. The second has a minimum inter-arrival
time and a hard deadline where as the third one arrives at irregular intervals and may have hard
or soft deadlines.
Aperiodic tasks can be handled in the scheduling by introducing a special task called server. A
server is essentially a periodic task that services aperiodic requests, the server execution time is
normally referred to as the budget. Servers are normally used to service aperiodic tasks but it is
of course possible to service periodic or sporadic tasks as well.
[2]

7

2.2 VxWorks task scheduling

2.2.1 Native and POSIX scheduler

VxWorks can be con�gured with either the Native VxWorks scheduler or the POSIX scheduler.
These can in turn be customized by the developer. [10]
Both VxWorks schedulers can schedule tasks and pthreads in a preemptive priority based fashion
or according to the round robin policy. In the �rst mentioned case, the highest priority task or
pthread in the ready queue is always allocated for the CPU. With round robin, each task with the
same priority executes according to it's time slice in round robin fashion. Higher priority tasks
may preempt another task during it's time slice. It will resume and execute the rest of it's time
slice after the high priority task is removed from the ready queue.

Tasks and pthreads are actually threads but they are scheduled globally according to their priority
no matter if they belong to a process or execute in kernel mode.
VxWorks 6.0 introduced the notion of Real-Time Processes (RTP), before that all user tasks exe-
cuted in kernel mode.
Tasks and pthreads are similar in that they are scheduled in the same way by the Native VxWorks
scheduler, pthreads have more scheduling options if they run in a real time process (RTP) and the
POSIX scheduler is used.
Tasks and pthreads that are created from within a RTP share the same virtual memory. ISR:s,
kernel memory space and direct hardware access (among other) are prohibited. Tasks and pthreads
that are created outside of a RTP execute in kernel mode, these tasks are allowed in VxWorks
version 6.0 and forward.
Pthreads in RTP's can only be scheduled by the POSIX scheduler and vice versa pthreads can
not be created in RTP:s if VxWorks is not con�gured with the POSIX scheduler. In all other
cases, the Native and POSIX scheduler can schedule pthreads and tasks (in user or kernel mode)
in preemptive priority-based fashion or round robin (Figure 3).

Figure 3: VxWorks scheduler properties

8

All pthreads and tasks in a VxWorks system are scheduled according to the default scheduling
policy except pthreads running in RTP's. These may have other scheduling policies than the
rest of the system, i.e. round robin, preemptive priority-based or sporadic scheduling. Sporadic
scheduling is best �tted for aperiodic tasks. The pthread is scheduled periodically at a high priority
at speci�c time intervals, and at a low priority the rest of the time.
The POSIX scheduler has it's own round robin and preemptive priority-based scheduling, these
are however similar to the Native VxWorks scheduler. Note that, in VxWorks versions before 6.0,
neither POSIX nor the Native VxWorks scheduler can schedule tasks periodically.

2.2.2 Custom scheduler

In order to implement a HSF, the native VxWorks or POSIX scheduler must be used, but with
extended functionality. The goal is to develop a middleware (hierarchical extension) between the
actual VxWorks scheduler and the applications. This middleware must execute in kernel mode in
order to manipulate scheduler data structures, execute code in interrupt level and have access to
hardware. Having a middleware is a modular and general solution considering that it will be able
to run on any VxWorks version.
The VxWorks scheduling framework is �exible so that it easily can be customized. The customiza-
tion is actually to extend the Native VxWorks or POSIX scheduler with either a customized ready
queue structure or to de�ne a interrupt handler that is executed at every clock tick. [10]
The Native VxWorks or POSIX scheduler allocates the highest priority task in the ready queue to
the CPU. Having a custom interrupt routine running before the scheduler at every instant in time
when the ready queue must be re-ordered is actually enough. The ready queue can be manipulated
by resuming or suspending tasks, priorities can be changed etc. with system calls (taskLib).
The frequency of the clock tick interrupts can be set and read, this notion of time together with
task system calls are good tools for customizing the Native VxWorks or POSIX scheduler.

2.2.3 Interrupts and VxWorks scheduler

The VxWorks scheduler is always invoked after the execution of an interrupt handler no matter
which kind of interrupt. The interrupt handler is actually a program function that is connected
to a speci�c interrupt vector in a interrupt vector table. An exception is that some CPU and
board support packages (BSP) only have one interrupt vector, so all interrupts are connected to
the same program function.
The program function is wrapped in between interrupt initialization code and interrupt exit code.
The �rst part does the context switch (switch from task execution to interrupt handler execution)
and saves the context among other operations which means that CPU registers are manipulated.
After the interrupt handler has executed, the last part invokes the scheduler if necessary or other-
wise restores the saved context to the CPU. If the interrupt handler has not re-ordered the ready
queue then the scheduler will not be invoked, the interrupted tasks data will be restored in CPU
registers.
The exit code will restore the interrupted interrupt handler if interrupts are nested. If the sched-
uler has been locked by the interrupted task then the scheduler will not be invoked.
A notation is that troughout this paper, we will de�ne a context switch (CS) as the switch from
a task to an interrupt handler or opposite. An interesting fact is that VxWorks context switches
are known to have very low overhead.
[11]
Figure 4 below illustrates how the interrupt handler is wrapped.

9

Figure 4: Interrupt handler wrapping

2.2.4 Tasks in VxWorks

A task in VxWorks can be created either in conjunction with the native or POSIX scheduler.
No matter which scheduler is used, VxWorks will allocate a task control block (TCB) for each
task. All relating task data is saved in this structure, for example priority, program counter, stack
pointer etc.
VxWorks tasks can have the states shown in Figure 5 below or combinations of them. The status
�ag in the TCB holds information about the task state.
A task in suspend state is unavailable for execution but not delayed or suspended, in pended
state the task is blocked waiting for some resource other than the CPU and in delayed state it
is asleep for some time. If a task is in the ready state then it is ready to execute. Tasks that
are ready are sorted in the VxWorks ready queue based on task priority. Each node in the ready
queue has a reference to the corresponding tasks TCB. The �rst task in the ready queue (highest
priority) is allocated the CPU. [10]

Figure 5: Task transitions

10

2.3 Scheduling analysis

In this section, we will present scheduling analysis for local and hierarchical systems.

2.3.1 Fixed priority scheduling analysis

Response time analysis (RTA) is a method for analysing the schedulability of each task in a set of
�xed priority tasks. [20]
The response time (R) of a task is the point in time, relative to the time when it is released,
when it has �nished it's execution. The time when it is released is the worst case scenario (critical
instant), that is when all tasks are released at the same time. The response time of a task is
it's execution time added together with the execution time of all higher priority tasks times the
amount of instances they execute during the whole response time.
The formula is iterative, starting with the task execution time. The response time will increase
after an iteration, which may collide with new period instances from higher priority tasks, this
will again increase the response time and so on.
Tasks properties such as execution time, period, deadline and priority are input to RTA which
then determines if the response time is less than a tasks deadline. If a tasks response time is
smaller than it's deadline then it is schedulable. If this is true for all tasks in a task set then the
whole system is schedulable.
To sum it up, all tasks in a system must have the sum of their execution time and interference
time smaller than their deadline.

∀i ∈ {1, 2, .., n}, Ri < Di

where n is the number of tasks

The RTA formula has the following appearance.

Rn+1
i = Ci +

∑
∀j∈hp(i)

⌈
Rn

i

Tj

⌉
· Cj (1)

Where n is the iteration number, i and j are the task numbers, R is the response time, T is the
period, C is the execution time and hp(i) is the set of tasks that have higher priority than task τi.

The formula start value is: R0
i = Ci. The iteration stops either when

Rn+1
i > Di or when Rn+1

i = Rn
i .

This is how the formula can be interpretted. The start is that R0
i is equal to task τi:s execu-

tion time, then this value is brought to the next iteration. Rn
i

Tj
means that we derive the amount of

executions of other tasks during the execution time of task τi. When all tasks τj have preempted
task τi then we have a new value for our R0

i , which now is R1
i .

11

The calculation of task τ2's response time is as follows, the task set is shown in Table 1.

Name Period Executiontime Deadline Priority (4 = highest)
τ1 15 1 15 1
τ2 13 3 13 2
τ3 5 1 5 3
τ4 4 2 4 4

Table 1: Task set

R0
2 = 3

R1
2 = 3 +

(⌈
3
5

⌉
· 1

)
+

(⌈
3
4

⌉
· 2

)
= 6

R2
2 = 3 +

(⌈
6
5

⌉
· 1

)
+

(⌈
6
4

⌉
· 2

)
= 9

R3
2 = 3 +

(⌈
9
5

⌉
· 1

)
+

(⌈
9
4

⌉
· 2

)
= 11

R4
2 = 3 +

(⌈
11
5

⌉
· 1

)
+

(⌈
11
4

⌉
· 2

)
= 12

R5
2 = 3 +

(⌈
12
5

⌉
· 1

)
+

(⌈
12
4

⌉
· 2

)
= 12

The calculation is illustrated in Figure 6.

Figure 6: τ2's response time

12

2.3.2 EDF scheduling analysis

When analysing task schedulability for a task system scheduled under EDF, the following formula
can be used. [1]

∀ 0 < t ≤ LCMtasks :
n∑

i=1

⌊
t + Ti −Di

Ti

⌋
· Ci ≤ t (2)

where LCMtasks is de�ned as the least common multiplier of all tasks in the system.

In the case when the period is not equal to the deadline, the last instance will not require an
entire period for the execution to complete. This is shown in the �gure (Figure 7).

Figure 7: Period instances when T 6= D

The task will �nish it's last execution instance before the deadline, not the period. That is why
the expression Ti - Di is added to the numerator, so it is accounted for.

The equation (2) can be used for tasks that have deadline less or equal to it's period.
Every tasks execution demand during a certain time period t are added together. If they request
more execution time than available (t), then they will not be schedulable.

Table 2 below shows a task set which is not schedulable according to the formula (2).

Name Period Executiontime Deadline
τ1 3 1 3
τ2 5 1 5
τ3 2 1 2

Table 2: Non-schedulable task set

((⌊
30 + 3− 3

3

⌋
1
)

+
(⌊

30 + 5− 5
5

⌋
1
)

+
(⌊

30 + 2− 2
2

⌋
1
))

≤ 30

(10 + 6 + 15) ≤ 30

31 ≤ 30

13

Figure 8 shows the execution scenario. At time 28, all tasks request 3 time units when there
is only 2 time units left before their deadlines expire at time 30.

Figure 8: EDF scheduling example

14

2.4 Hierarchical scheduling framework

2.4.1 Hierarchical scheduling

Hierarchical scheduling can be seen as a number of separate schedulers scheduling nodes in a
tree like structure (Figure 9). A node can represent either a task or a scheduler (which in turn
schedules it's nodes). The tree may have an arbitrary number of levels and each node may have
an arbitrary number of children. [19]

Figure 9: Hierarchical scheduling tree

The remainder of this chapter will describe various ways of constructing two-level hierarchical
scheduling systems, since this thesis implements such a scheduler. Some constructs can of course
be applied to multi-level hierarchical systems, since two-level systems are just special cases of
multi-level systems.

A common way of constructing a two-level system is by having a global on-line scheduler that
schedules servers (Figure 10). These in turn consists of an application with a local scheduler
that schedules a group of tasks. The global scheduler may be either Dynamic Priority Scheduling
(DPS) [8] or FPS [9].
Depending on the server algorithm that is used, the server parameters may be either static or
dynamic.
The server period and budget form the CPU utilization of the server, the sum of all server utiliza-
tion may of course not exceed 100 % on a single CPU.

Figure 10: Two level scheduling system

Another way of constructing a two-level system is to use o�-line global scheduling. Examples of
such systems can be found in [4], [7] and [6].
O�-line scheduling can of course be realized with an on-line scheduler, but then the server must
be of type that does not have dynamic parameters.

15

No matter what kind of global scheduler that is used, the local schedulers may be DPS or FPS.
Local schedulers can also be of type non-preemptable. An example of a non-preemptable local
scheduler can be found in [5], where EDF and a re-designed CBS [1] is used in the global level and
FCFS (�rst come �rst serve) is used as a local scheduler.

Not all two-level hierarchical systems fall in the categories mentioned so far. Most often, the
global scheduler use the server parameters when doing scheduling decisions. This is however not
true for all two-level systems. For example, in [3], a two-level hierarchical scheduling system is
presented which do not incorporate any notion of servers.
The global scheduler is a FPS scheduler which schedules applications based on their �xed priority
levels and the task priorities. Each application has either a FPS scheduler or an EDF scheduler
and a priority level.
The scheduling algorithm changes depending on the local application scheduler. When an appli-
cation is introduced to the system, the tasks may be split up into di�erent system applications.

16

2.4.2 Hierarchical scheduling analysis

A server's resource is de�ned as how much budget it executes each period. When analysing the
schedulability of a hierarchical system, two aspects are looked upon. First, the sum of all server
resource's may not exceed the available system resource. Second, a task set resource demand may
not exceed it's servers resource. This must be true for all task sets and their servers.
If these two aspects are complete then the hierarchical system is schedulable.

There exists di�erent ways to perform hierarchical scheduling analysis. The authors in [23] present
a approach to perform analysis of FPS at both global and local level. The analysis assumes that all
server parameters are known, the schedulability is therefore less pessimistic because the execution
trace of the whole server system is known. However, this approach is not suitable for systems that
are developed independently.

A more simple approach can be found in [14]. Server parameters are not considered, so analysis
is not dependant on knowledge of other servers in the system. The results are more pessimistic
than the other approach, but it is easier to develop subsystems independently.
We have chosen to express our scheduling overhead together with the analysis in [14]. However,
it is easy to extend our analysis to make it suitable for the approach in [23].

The following describes de�nitions of a hierarchical model. [14]

A set of servers in a hierarchical system is de�ned as

S

A server Si, where Si ∈ S, is described as

Si(Wi,Γi, Ai)

where Wi is a task set, Γi is the server resource and Ai is the local scheduling algorithm

A task set Wi is further described as

Wi(τ1, τ2, τ3, ..., τn)

where n is the number of tasks in Si

Each server has a resource de�ned as
Γi(Πi,Θi)

where Πi is the server period and Θi is the server budget

First, let's look at how to analyze wether a task set Wi is schedulable according to it's servers
resource Γi.
We �rst de�ne the resource supply function sbf which, for a resource Γ, gives the minimum amount
of resource as a function of the time interval t. The supply function is de�ned as

sbfΓ(t) =
⌊

t − (Π − Θ)
Π

⌋
· Θ + εs (3)

where εs is de�ned as

εs = max

(
t − 2(Π − Θ) − Π

⌊
t − (Π − Θ)

Π

⌋
, 0

)
(4)

The minimum supply function is illustrated in Figure 11.

17

Figure 11: Minimum supply function

The part (Π − Θ) makes the formula assume that the interval t starts right after a budget instant
which in turn starts at the same time as the corresponding period, no budget will occur in this
interval so it is subtracted from the formula. The formula also assumes that the last budget in-
stance starts as late as possible. The �oor sign will not account for the fraction of the last budget,
this fraction is calculated by the εs.
To sum it up, given any time interval t, the function will return the worst case minimum amount
of resource.

The other way around is that given an amount of execution time, calculate the worst case (max-
imum) amount of time that it takes to supply that execution time. The service time function
tbfΓ(t) does exactly this calculation.

tbfΓ(t) = (Π − Θ) + Π ·
⌊

t

Θ

⌋
+ εt (5)

where

εt =
{

Π−Θ + t−Θ·
⌊

t
Θ

⌋
if

(
t−Θ·

⌊
t
Θ

⌋)
> 0

0 otherwise
(6)

The function tbfΓ(t) is illustrated in Figure 12 below.

Figure 12: Service time function

(Π−Θ) assumes that we just missed a budget,
⌊

t
Θ

⌋
·Π includes the number of periods to supply

whole budgets and εt includes the last fraction budget if any.

18

The part εt is illustrated in Figure 13.

Figure 13: Illustration of εt

If we consider a local scheduler with EDF, that is a server Si(Wi,Γi, EDF), the task set Wi is
schedulable with respect to the resource Γi if the following holds

∀ 0 < t ≤ LCMWi :
∑

j ∈ Wi

⌊
t

Tj

⌋
· Cj ≤ sbfΓi

(t) (7)

where LCMWi is the least common multiplier (LCM) of all task periods

The equation states that the maximum (worst case) amount of execution time that the task
set Wi demands during the time interval t must be less or equal to the minimum (worst case)
amount of execution time that can be supplied by the resource Γi during that same time interval
t. If this statement is true for t = LCMWi then it is guaranteed that the task system Wi will
always, no matter which time interval, have enough resources.
It is important to note that it is not su�cient to just look at the end values, that is, at time point
equal to LCMWi . The demand curve must stay below the supply curve at all time instants until
LCMWi , so all points where task period instants occur must be checked as illustrated in Figure 14.

Figure 14: Demand and supply curve

Even though the resource supply may be larger than the demand in the end of the interval, there
may be points in time where the opposite occurs. If all tasks period instances are checked within

19

the interval, then one can be sure that the entire interval is checked. The main reason why this
checking is necessary is because the supply curve is not constant growing compared to when re-
source supply is 1, in this case the demand can never be more than supply during time instants
before the end of t.

When looking at a local FPS system, the worst case response time of a task in such system
Si(Wi,Γi, FPS) is calculated with the RTA formula

Rn+1
i = Ci +

∑
∀j∈hp(i,Wk)

⌈
Rn

i

Tj

⌉
· Cj (8)

where hp(i,Wk) denotes all higher priority tasks than τi in the task subset Wk

Because a periodic resource does not assume that an amount of execution time t will take an
amount of time t to �nish but maybe more, each iteration in the response time must be added
some time (blackout duration) for which is the empty time between budgets.

r
(k)
i (Γ) = tbfΓ(I(k)

i) (9)

where

I
(k)
i = Ci +

∑
∀j∈hp(i,Wk)

⌈
r
(k−1)
i (Γ)

Tj

⌉
· Cj (10)

The task set Wi is schedulable with respect to it's servers resource supply Γi if the following
holds

∀ j ∈ Wi : rn
j ≤ Dj (11)

When all subsystems have a su�cient resource supply with respect to it's demand, these resource
supplies must be added and checked so they do not exceed system utilization. The following must
hold for the entire hierarchical system to be schedulable in the case of a global EDF scheduler

∀ 0 < t ≤ LCMS :
n∑

i=1

⌊
t

Πi

⌋
· Θi ≤ t (12)

where LCMS is the LCM of all server periods and n is the number of servers

In order to analyze a hierarchical system with a global FPS scheduler, the RTA is used

Rn+1
i = Θi +

∑
∀j∈hp(i,S)

⌈
Rn

i

Πj

⌉
· Θj (13)

where hp(i, S) is the set of servers for which has higher priority than server i in the system S

The servers in a global FPS system is schedulable if the following holds

∀ i ∈ S Rn
i ≤ Πi (14)

20

3 Design & implementation

3.1 Custom periodic task scheduler

3.1.1 Motivation

As mentioned in the previous chapter, the VxWorks native scheduler does not have support for
scheduling periodic tasks. The POSIX scheduler avaliable in version 6.0 and forward can schedule
pthreads periodically [10]. Using this scheduling policy has a few drawbacks, it does not check
deadlines and it has it's own priority mechanism (low and high priority depending on time in-
tervals) together with �xed priority scheduling (FPS) only. The positive aspect is that one can
specify which tasks that should have this scheduling policy, so a custom scheduling policy can
reside together with this POSIX scheduling policy. This is important considering that a HSF
should have support for several di�erent local scheduling policies.
The problem of incorporating the POSIX periodic scheduling policy with a HSF is that old Vx-
Works systems (5.x) does not support it. Second, the POSIX scheduler is not �exible enough to
�t as a local scheduler. Consider the scheduling timeline for servers in Figure 15.

Figure 15: Server execution trace

Server S4 has the highest priority and a period of 7 time units, so server S1 (lowest priority) will be
preempted at this time. If some task in server S1 is scheduled by the POSIX periodic scheduling
policy, then an interrupt will occur at that tasks period start and insert the task in the ready
queue. Thus, server S4 will be preempted and in worst case the task in S1 will execute if it has
higher priority than the current running task in S4.
According to [12] (page 51) the POSIX periodic scheduler uses the system periodic timer for
time accounting. Disabling the system timer interrupt might stop the scenario in Figure 15 but
other facilities that rely on the system clock such as watchdog timers and perhaps the hierarchical
implementation itself will not work properly.
The POSIX periodic scheduler might work as a FPS local scheduler for the hierarchical system,
but we would probably want other scheduling policies as well.
In the end, we decided to implement our own local schedulers which should support FPS and
EDF.

21

3.1.2 Design

The main actions of the local FPS and EDF schedulers are to put tasks in the ready queue at every
period start and in the case of EDF, set new task priorities according to the absolute deadline
values. Setting new priorities means that we actually set new priority values in the task TCB's
and also re-order the ready queue (according to the new priorities).
Our local scheduler should just re-order the ready queue, it should not take the highest priority
task in the ready queue and put it to execution. Putting a task to execution means that CPU
registers are set. Some data from the task TCB is copied to these registers, for example the pro-
gram counter (PC) value. All of this is done by the VxWorks scheduler. Our FPS and EDF local
schedulers should just execute before the VxWorks scheduler at each interrupt and manipulate
the ready queue. So in a sense, we just extend the VxWorks scheduler so it can handle periodic
tasks. The EDF scheduler will also re-assign priorities.

As we described in section 2, the VxWorks scheduler is invoked at every interrupt not matter
which source that is responsible. The VxWorks scheduler will only do a task switch if there has
been a change in the ready queue.
Our schedulers should have the following functionalities.

• Put tasks in the ready queue at every task period. In the case of EDF, re-assign priorities
of all tasks (based on their absolute deadlines) current in the ready queue.

• Do a check at every task deadline.

The solution is to have a routine, executed at every task period or deadline, which manipulates
the ready queue. The VxWorks scheduler will then take care of task switching if it is necessary.
The routine must be executed at every time instance when there is a period or deadline. A sorted
Time Event Queue (TEQ), with the nearest event �rst in the queue, should hold all tasks period
and deadline times. The routine should sleep the amount of time labeled in the �rst node of
the TEQ. When the routine is awakened, the �rst node or node's with the same time should be
updated. The appropriate action should then be taken considering if it is a period or deadline
event.
The work �ow is illustrated in Figure 16.

Figure 16: Work�ow of local scheduler

22

3.1.3 Implementation

The implementation of the local schedulers were done by using an interrupt handler that was con-
nected to the system hardware clock. The handler could be set to invoke after a speci�c amount
of time. An ABB robotics controller with a Pentium 200 MHz processor was used, running a Vx-
Works version 5.2 operating system. The ABB controller's operating system was con�gured with
the native VxWorks scheduler. Our local scheduler was therefore implemented as an extension to
this scheduler, and not the POSIX scheduler.
We used system call routines and low level routines to changed task priorities and manipulate the
ready queue.
The schedulers (FPS and EDF) follow an absolute timeline (starting at time 0) which wrap at
some point so the time will restart again with the value of 0. Periods and deadlines may of course
not exceed the wrap-around value.
We used system clock ticks as time base for our scheduler which can vary depending on OS con-
�guration.
The ABB controller had a limitation of 32-bit integers, the counter would thereby wrap around
at value 232 − 1. Having the ABB controllers maximum clock resolution of 4660 ticks per second
would give a life span of approximately 256 hours before the conter would wrap around.

The handler has a local counter which hold the current absolute time. Each tasks absolute deadline
and period times are stored in the TEQ. Updating the next event is simply a matter of getting the
lowest value of all tasks deadlines and periods in the TEQ. These values wrap around in the same
manner as the absolute timeline, thus the system must keep track of which absolute deadlines and
periods have past the wrap-around value. The next interrupt will occur at the nearest absolute
deadline or period time.
The TEQ itself is implemented as a sorted double linked list with two pointers pointing at the
�rst and middle node (Figure 17). Extracting the �rst node is fast because of the �rst mentioned
pointer. The second pointer is always adjusted so it always points at the middle node. Having a
middle pointer speeds up insertions because the binary search method is used.
A sorted double linked list with binary search has the advantage that it has an even performance
no matter which side of the middlepoint that the new node is inserted. An array with binary
search is very e�ective when insertions are made in the beginning of the queue but rather slow in
the opposite side of the queue. This is because it is fast in traversing but it has to move all nodes
to the right of the new inserted node. Allocating extra memory could of course solve this matter,
but the cost of vasting memory is not very appealing.
A second version of the sorted double linked list was implemented at a later point during this
project. Two optimizations were added, two event queues were used with task deadlines in one of
them and task periods in the other. The second optimization was to remove all nodes (with equal
values) and then insert them all afterwards, instead of �rst remove and then insert each node.
This is memory consuming but increases performance if there are nodes with equal values in the
TEQ. Time measurements were made on both versions of the TEQ, the results can be found in
the next chapter.

Figure 17: TEQ

23

The following pseudocode (Figure 18) describes the work�ow for the FPS/EDF local scheduler
interrupt handler.

function local_scheduler_interrupt_handler()

// Deadline-event: check if the task is still in the ready queue

for ALL_DEADLINE_EVENTS, i = 0, i = i + 1

if (DEADLINE_EVENT_QUEUE[i].task = READY)

log(deadline_miss, DEADLINE_EVENT_QUEUE[i].task)

endif

update_event_queue(DEADLINE_EVENT_QUEUE[i].task)

endfor

// Period-event: tasks are put in the ready queue at period starts

for ALL_PERIOD_EVENTS, i = 0, i = i + 1

insert_task_in_READY_queue(PERIOD_EVENT_QUEUE[i].task)

// Tasks absolute deadlines and/or periods are updated in the sorted TEQ.

// Updating the event queue is a matter of removing the node,

// update the node's value and inserting the node.

update_event_queue(PERIOD_EVENT_QUEUE[i].task)

endfor

// Set new priorities to tasks currently in the ready queue.

// Task absolute deadlines are sorted in ascending order in the TEQ,

// so priorities are set based on the order of the tasks deadlines in this queue.

if EDF

for ALL_TASKS_IN_READY_QUEUE, i = 0, i = i + 1

set_priority(DEADLINE_EVENT_QUEUE[i].task, i)

endfor

endif

// The nearest event is updated by extracting the smallest

// absolute deadline or period in the TEQ's

next_event = get_nearest_event(DEADLINE_EVENT_QUEUE, PERIOD_EVENT_QUEUE)

expiration_time = next_event - ABSOLUTE_SYSTEM_TIME

// Set next interrupt to invoke at nearest event

set_next_interrupt(expiration_time, local_scheduler_interrupt_handler)

// Update our local counter

ABSOLUTE_SYSTEM_TIME = next_event

endfunction

Figure 18: Pseudocode for local scheduler

24

Figure 19 illustrates how the TEQ works with FPS (it works the same as with EDF). Tasks
τ1, τ2 and τ3 data is shown in Table 3 below.

Name Period Executiontime Deadline Priority (0 = highest)
τ1 100 10 100 0
τ2 250 10 250 1
τ3 500 100 150 2

Table 3: Task set

Figure 19: Example of how TEQ works

Note that if a wrap around �ag (Tf or Df) in Figure 19 is set to 1, then it's corresponding value
is not considered when choosing the next event. When all �ags have the value of 1, then they are
all reset to 0.

25

3.1.4 Scheduling analysis with overhead

This chapter will only focus on the scheduling overhead for local FPS systems. The reason for
this is that the EDF scheduling formula does not account for the number of preemptions as the
RTA does. Calculating the number of preemptions in a EDF system is to complex to be included
in this paper. Knowing the number of preemptions is crucial for expressing scheduler overhead.
The rest of this chapter will show how to include overhead in the RTA formula.

Each task in a FPS system will have interrupts (local scheduler handler) associated with it. These
interrupts will occur periodically at every task period and deadline. These interrupts are illus-
trated in Figure 20.

Figure 20: Interrupts associated with a task

These interrupts, that the scheduler is responsible for, can be seen as tasks themselves but with
very short execution time (interrupt handler execution).
De�nitions that are related to interrupts are the following.

• The execution time of an interrupt associated with a deadline check is de�ned as CDint

• The execution time of an interrupt associated with a period start is de�ned as CTint

• The amount of time to switch between a task and an interrupt routine (or vice versa) is de�ned
as CS

• The amount of time to execute the VxWorks scheduler is de�ned as COS

When dealing with task systems that are scheduled with FPS, we analyse them with RTA. As
stated earlier, each task will have one or two periodic interrupt executions associated with it.
Interrupt executions related to a low priority task can preempt a high priority task because in-
terrupts have higher priority than tasks (interrupts do not consider task priorities). This is why
we include, in equation (15), that even lower priority tasks associated interrupt executions may
preempt higher priority system tasks.
If deadline is equal to period then the deadline interrupt interference is the number of interrupt
period instances (�oor) times the execution time of CDint and two context switches CS.
If deadline is not equal to the period then the deadline interrupt interference is the number of
deadline instances (�oor) times the deadline interrupt execution and the context switches.
Period interrupts are counted with the mathematical ceiling. If there is room for a preempting
task execution then there will also be room for a period interrupt execution. This is however not
true for deadline interrupt executions.

26

RTA with scheduling overhead

Rn
i = Ci + CTint + 2CS

∑
j∈hp(i)

⌈
Rn−1

i

Tj

⌉
· (Cj + 2COS + 4CS + CTint) +

∑
j∈lp(i)

(CTint + 2CS) + Z

(15)

Z =

∑

j∈hp(i)

⌊
Rn−1

i + Tj −Dj

Tj

⌋
· (CDint + 2CS) if Ti 6= Di

∑
j∈hp(i)

⌊
Rn−1

i

Tj

⌋
· (CDint + 2CS) otherwise

Figure 21 (T = D) and Figure 22 (T 6= D) below illustrates how parts of the RTA formula
corresponds to the execution scenario.

Figure 21: RTA with scheduling overhead (T = D)

27

Figure 22: RTA with scheduling overhead (T 6= D)

28

3.1.5 Calculation of amount of interrupts

The RTA scheduling formula overhead calculations have overestimations. A more accurate calcu-
lation, which is easy and that may have great e�ect if interrupts are of high frequency and they
often occur at the same time, can be done by subtracting interrupts that occur at the same time.
If the interrupt handlers execution will handle more than one event (period or deadline events)
then there will still only be two context switches. There will maybe also be a shorter execution
if there is much execution that is shared and not dependant on each event handling, for example
setting the timer for the next expiration. For simplicity, we will only subtract the extra context
switches that the overhead calculation overestimates.
The algorithm Count_Double_Hit (Appendix B) compares two tasks at a time and searches for
time instances where they both have interrupts. Every instance where two or more interrupts
occur at the same time will be counted.

Figure 23 below is a simple example of how the algorithm traverses the tasks in the search for
double instances. First, task τ1 is compared to τ2 and τ3, then τ2 against τ3.

Figure 23: Algorithm traversing

This function can be integrated to the RTA scheduling formula to reduce the overestimation of the
amount of interrupt context switches. Below is the formula (16) with the function Count_Double_Hit
inserted.

RTA with scheduling overhead and optimized interrupt counting

Rn
i = Ci + CTint + 2CS

∑
j∈hp(i)

⌈
Rn−1

i

Tj

⌉
· (Cj + 2COS + 4CS + CTint) +

∑
j∈lp(i)

(CTint + 2CS) + Z

− (Count_Double_Hit(Rn−1
i)· (2CS)) (16)

29

3.2 Hierarchical framework

3.2.1 Overview

Having the local schedulers implemented as well as the interrupt handling and time event queue
handling, we now look into how to put the global scheduler on top of this and introduce the notion
of servers. Figure 24 below illustrates how these subsystems are layered.

Figure 24: Subsystem layering

The bottom layer Interrupt handling is responsible for how interrupts are administrated. This
layer could use the VxWorks watchdog facility or some other more hardware speci�c solution such
as manipulating hardware timers directly. The important aspect is that the interface is not af-
fected, so the other subsystems do not need changes.
The Global scheduling layer supports both FPS and EDF scheduling together with the periodic
server model.
Global scheduler is responsible for handling all events in the system which can be local task sub-
system events, server period events or server budget events.
Local scheduler is not aware of the fact that it schedules di�erent task systems, it's interface to
Global scheduler is a server which has it's own task tcb and task TEQ's.

Figure 25 illustrates how parameters in the hierarchical framework are related.

Figure 25: Overview of HSF parameters

30

In Figure 25, there exists a server ready queue (Server READY queue) with references to
server TCB's. These TCB's contain the following.

ID is a unique number associated with each server.

period_event_queue is a reference to the servers tasks TEQ which holds task periods.

period is the actual period of the server.

deadline_event_queue is a reference to the servers tasks TEQ which holds task deadlines.

budget is the servers de�ned budget.

budget_event_queue is the servers TEQ holding one budget node.

remain_budget is the current remaining budget of the server. In the case of server preemp-
tions, the server will store the amount of budget left to execute.

priority is the servers priority, this parameter will change if the global scheduler is EDF.

sched_algorithm is the servers local scheduling algorithm.

task_TCB_list is a reference to a part of the VxWorks TCB list. It references those task
TCB's that are associated with the server.

The Server event queue stores server periods, these nodes also store a reference to it's associated
server. In the case of a server period interrupt execution, the server event queue is examined. The
server period events can easily be handled due to the reference to the server TCB. The server
TCB is referenced into the server ready queue when the server has a period start.
Those tasks that are in the VxWorks ready queue have a reference from the queue to it's TCB.
Each node in the period_event_queue and deadline_event_queue have each a reference to it's
associated tasks TCB. In the case of task period interrupt execution, the TCB can easily be ref-
erenced and put in the task ready queue.

The global scheduler chooses the closest event of the running servers task deadline TEQ, the
task period TEQ, the server budget TEQ (only one node) and the server period TEQ (we assume
that server period is equal to server deadline). In the example in Figure 25 above, the next event
would be a task deadline at absolute time 30 if server 1 was the active server at that point.
Figure 25 also illustrates that each server has a reference to a part of the VxWorks task ready
queue, this is hidden from the local scheduler which schedules as if this is the whole task tcb of
the system.

Even the scheduler absolute time and each server budget is implemented as a TEQ. The rea-
son for this is because it makes it easier to keep track of absolute time wrap arounds. The TEQ
module keeps track of all TEQ's in the system, it wraps the absolute time back to zero in all
queue's when all the TEQ's has past time zero. If a queue pass the absolute time zero it will not
actually wrap around to zero, but keep on going without wrapping. This is illustrated in Figure
26 below.

31

Figure 26: Time wrap around example

In Figure 26 above server S2 has two task events at time 999 respectively 5 which can not be
handled due to the preemption by server S1. At time 7 server S2 will run again, at this point there
might be TEQ's that have wrapped and which may have not. Those TEQ's that have wrapped
must still keep the high time value 1007 as well as the absolute system time, otherwise it will be
di�cult to compare events in di�erent queue's. Also, handling event with time 999 can not be
done if the system time is 7 because it is in the future and will not be handled. The solution here
is to keep all TEQ's and system time high until the last event in the last TEQ has past time zero.

3.2.2 Detailed design

This section describes more precise how the hierarchical framework is designed and implemented.
Some changes were done on the local scheduler to be able to work correct in the hierarchical
system. The fact that task events might not always be handled in time but some time later forced
some changes to the implementation of the local scheduler. The di�erence is that it now can
handle events in the past.

The TEQ module was also modi�ed, now it can handle more than one TEQ and it also keeps
track of all TEQ's wrap arounds. All queue's will wrap when all queue's has wrapped including
the system time as well.

A server has three TEQ's, task periods, task deadlines and the server budget. Having sepa-
rate budget TEQ's for each server is necessary otherwise we do not know if the budget TEQ has
wrapped. This is because it will store budgets from di�erent servers, the previous value is from
another server which even might make it become smaller.

There is a separation between the global and local scheduler because the server keeps it's own
task tcb, task TEQ's and information about which local scheduling algorithm that is used.

The static view of the HSF's modules is shown in Figure 27 below.

32

Figure 27: Static view of HSF

In the subsystem Interrupt_handling, the function interrupt_handler is connected to whatever
library or timer that is used. It is called at the speci�ed delay for which the registered interrupt
function interrupt_function will return. The only demand on the user interrupt function is that
it returns the amount of ticks for which the next interrupt should occur.
set_user_interrupt_function and start_interrupt_handler is used at system initialization to
register an interrupt function and start the interrupt handling. global_scheduler is the function
to register to the interrupt handling if our HSF is to be used. The function return_next_event is
used internally by global_scheduler to fetch the nearest event. The subsystem Global_scheduler
uses the Server_ready_queue to organize Server's that are ready.
The Local_scheduler is used by Global_scheduler to schedule the tasks associated with a Server.
The local and global scheduler uses Event_queue (TEQ) for handling task and server time events.

The user function registration is illustrated in Figure 28 below.

Figure 28: Function registration

33

There are three di�erent types of events that the global scheduler must be able to handle:

• Task period or deadline event

• Server period event

• Budget exhaustion event

The following sequence diagram (Figure 29) illustrates a task event.

Figure 29: Task event

In the case of an interrupt, interrupt_handler calls it's registered function global_scheduler.
The global scheduler runs the local scheduler in case of task event. All period and deadline events
at the current and past absolute time are handled. Deadlines misses are logged and tasks are put
in the VxWorks ready queue in case of period start. In the case of a local EDF subsystem, all
tasks in the ready queue are sorted according to their deadlines.
At the end, the nearest event is fetched and returned to interrupt_handler.

34

A server period event is illustrated in Figure 30 below.

Figure 30: Server period event

The sequence diagram shows that the server events are handled �rst, then the corresponding
servers are also put in the server ready queue. The �rst server in the ready queue is fetched, at
this point, there are three cases:

• There is a server context switch (server preemption), remove previous server and insert new

• It was idle before, insert new server

• No server context switch (do nothing)

The �rst two cases are illustrated in Figure 30. Removing a server means that we have to re-
move the servers tasks from the ready queue, these tasks are �agged so we know which tasks to
insert later. Tasks that are in a blocked state will get it's priority lowered to the lowest possible.
The removed server will also have it's remaining budget updated. This means that it's saved
timestamp value (which it got when it started to execute) will be subtracted with the current
timestamp, this value in turn is subtracted from the remaining budget.
Activating a server means that it's tasks are inserted in the ready queue, it will get the current
timestamp value, it's budget timer will be updated (system time added with it's budget) and last
it's tasks will be scheduled by the local scheduler.

In the last case, the global scheduler will do nothing after the server events are handled.

35

The third and last event is when a server budget is exhausted, this is shown in the sequence
diagram below (Figure 31).

Figure 31: Server budget exhaustion

As shown in Figure 31, the running server is removed from the server ready queue. Also, it's tasks
are removed from the task ready queue. A new server is then fetched from the ready queue if it is
not empty. Activating a new server is the same procedure as shown in Figure 30. There may be
a new server that starts to execute or the idle task will run if no server is ready to execute.

36

3.2.3 Scheduling analysis with overhead

The extra overhead that the global scheduler generates as well as the local scheduling overhead is
modelled as a part of server budget in order to minimize system drift caused by the HSF.

The execution time of the global scheduler can be separated by:

• Server period start interrupt execution (including period starts from all servers in a hierar-
chical system) and budget interrupt execution (including activating and deactivating a server)
(CΠint and CΘint).

• Inserting or removing a server task from the task ready queue (CQ).

The distinction from di�erent types of server execution time and the dependancy to server task
sets is included in the global scheduler overhead analysis.

The following de�nitions are related to the global scheduling overhead analysis.

The number of tasks belonging to server Si is de�ned as: Ni

To analyze wether a taskset is schedulable with it's server and our implemented local sched-
uler, we use the formula derived in section 3.1.3.

Scheduling analysis for a system

Si(Wi,Γi(Πi,Θnew
i), FPS)

with respect to it's server is done with the new budget de�nition Θnew

Θnew
i = Θi − Oglobal

i (17)

where Oglobal
i is the global scheduling overhead for server Si de�ned as

Oglobal
i = CΠint + 2CS + (Ni+M)·CQ + COS +

∑
j∈hp(i,S)

⌈
Rn

i

Πj

⌉
· (CΘint + 2CS + (Ni + Nj)·CQ)

(18)

where Rn
i is the response time of server Si and M is de�ned as

M = max(Nj | ∀ j ∈ lp(i, S)) (19)

where lp(i, S) is the set of servers with lower priority than server Si

M is the maximum number of tasks for a server (Sj) for which has lower priority than server
Si.

37

Our local scheduling overhead formula for FPS (15) together with hierarchical scheduling for
local FPS systems looks as follows.

r
(k)
i (Γi) = tbfΓi

(R(n)
i)

where R
(n)
i is the response time of our local scheduling overhead formula

A local FPS system is schedulable if the following holds.

∀ j ∈ Wi : rn
j ≤ Dj

The budget interface Θnew
i is the 'real' budget that tasks actually can use and for which is used for

the service time function tbfΓi when analysing local tasks systems against the server parameters.

Each preemption of higher priority servers and the server period start will decrease the bud-
get Θnew

i . The cause of this is that any scheduling overhead will be subtracted from the next
running server. This fact is illustrated in Figure 32 below.

Figure 32: Budget decrease caused by preempting servers

The global scheduling analysis with overhead has the same appearance as equation (13) and (14).
The global FPS scheduler analysis assumes that switching tasks to/from the task ready queue is
done on all respectively servers tasks when a server preemption occurs and not only on those tasks
that are in the ready queue.

Including scheduling overhead in the budget will have a big a�ect on decreasing the drift that
the HSF causes. This is implemented by measuring the global and local scheduler execution and
subtract that value from the next running servers budget.
Figure 33 below illustrates HSF overhead included in server budgets to reduce drift.

Figure 33: Drift reducing

38

4 Results

4.1 Interrupt overhead measurements

There are di�erent ways to use timer interrupts in VxWorks. We can use di�erent hardware timers
such as the system clock, auxiliary clock or other external timers. VxWorks provide libraries that
can be used to connect interrupt handlers to hardware timers. The system and the auxiliary clock
timers can be used through these libraries. The library in VxWorks 5.2 in the ABB robotics
controller did not support the auxiliary clock at frequencies higher than 60 ticks/second, so we did
not use this timer. Our remaining options were to use the watchdog timer facility (uses the system
clock) or connect a handler to the system clock. The system clock library supported frequencies
up to 4660 ticks/second, this clock rate could be changed through library calls during runtime.
We want to be able to set the time between each interrupt. Changing the clock rate is the way
to do it, but it is not accurate enough. Suppose we want the interrupt to invoke in exactly 66
milliseconds, the clock rate of 15 ticks/second will cause an interrupt in 1000/15 = 66,666... mil-
liseconds. The solution (using libraries) is to either use watchdog timers (Figure 35) where you
can set the next expiration in number of ticks, or have a interrupt handler that is invoked at every
tick and uses a local counter (Figure 34).

/* Handler that is connected to the system clock (without tick announce) */

void handler() {

static int counter = 0;

static int next_expiration = 0;

if (counter == next_expiration) {

// User code

next_expiration = ...;

counter = 0;

}

counter++;

}

Figure 34: Handler connected to system clock

/* Handler that is connected to the system clock through the watchdog library */

void handler() {

int next_expiration;

// User code

next_expiration = ...;

wdStart(handler, next_expiration);

}

Figure 35: Watchdog

The above solutions (Figure 34 and Figure 35) causes overhead between each expiration. The �rst
solution executes an if-statement and a counter increment at each tick between the user speci�ed
expirations. The second solution uses the watchdog facility which in turn uses the system clock

39

interrupt routine (usrClock) to count the time to the next expiration (Figure 36).

/* System clock interrupt routine */

void usrClock() {

tickAnnounce();

}

Figure 36: System clock interrupt routine

The system clock interrupt routine announces a tick to the kernel tick counter at every clock
interrupt. The watchdog uses this kernel tick counter to administrate the time delay between each
watchdog interrupt. This can be proved by disabling clock interrupts, the kernel tick counter will
not increment and watchdog timers will not work.
We measured the overhead that these two solutions causes between each expiration. The measure-
ment was done by reading a timestamp value at the start and end of a task, and then subtracting
these two values. The timestamp reading was done by reading a memory mapped address of a
dsq500 hardware timer counter register. The dsq500 hardware counter had a frequency of 12000000
ticks/second, approximately 83 nanoseconds per counter tick. We �rst measured the task execu-
tion time with interrupt disable, and then with interrupt enable. The di�erence in values is the
overhead from the system clock interrupt routine. Finally we measured the overhead from a watch-
dog timer (Figure 35) and an interrupt handler connected to the system clock (Figure 34). The
ABB robotics controller was running with a system clock rate of 4500 ticks/second during these
tests.

System configuration Number of test runs Mean time (microsec)
Interrupt disable 10 997911,73
Interrupt enable 80 1015942,91

Watchdog 80 1015929,53
Interrupt handler (without tick announce) 80 1012461,68

Interrupt handler (with tick announce) 80 1016057,12

Table 4: Interrupt overhead

The variation in execution time for the task was low when running at interrupt disable, so we
were satis�ed with only 10 test runs.
From the result (Table 4) we see that the watchdog facility overhead is so small compared to
interrupt enable that it does not show in the tests.
When installing an interrupt handler, the system clock interrupt routine is detached. The di�er-
ence in time between interrupt disable and having an interrupt handler (without tick announce)
is the handler execution time only. Note that some system facilities will not work due to that the
kernel tick counter will not increment. We get the same functionality as having the system clock
interrupt routine attached if we include the tick announce functionality to the interrupt handler.
The test results show that there is a very small di�erence in overhead between watchdog and
interrupt handler (with tick announce). The interrupt handler may still function properly without
the kernel tick counter, where as the watchdog will not work without it. If the application is not
dependant on the kernel tick counter then using the interrupt handler (without tick announce) is
the best choice considering overhead.

40

The best interrupt routine solution is to manipulate hardware registers directly through mem-
ory mapped registers. Hardware timers usually have two registers, a terminal count register and
a counter register. When the counter register value reaches zero or the terminal count value (de-
pending on hardware), an interrupt will �re at the speci�ed interrupt vector. Setting the terminal
count register value is equal to setting the time to the next interrupt. The counter register ticks
at very high frequencies so it is very accurate.
This solution will not cause overhead between expirations, the downside is that the implementation
is hardware dependant. Watchdogs or interrupt handlers are completely hardware independent,
but the cost is the extra overhead between expirations.

Our implementation uses the watchdog library.

41

4.2 Local scheduler

4.2.1 Time measurements of the local schedulers

The interrupt execution of the deadline check (CDint) and the period start (CTint) was measured
on the ABB robotics controller with a clock rate of 1000 ticks/second. Measurements were made
with the dsq 500 hardware timer, the timer was read in the beginning and at the end of of the
interrupt handler function. All tasks had the same period, deadline and execution time, T=200
ms, D=150 ms and C=1 ms. Each CTint and CDint handles all tasks simultaneously.

Scheduler Number of tasks Number of test runs Mean time (µs)
FPS 10 45 79,63
FPS 20 45 147,76
FPS 30 45 217,66
FPS 40 45 298,98
FPS 50 45 378,31
FPS 60 45 479,43
FPS 70 45 571,91
FPS 80 45 686,68
FPS 90 45 792,68
FPS 100 45 916,12

Table 5: Period start interrupt execution for FPS (CTint)

Scheduler Number of tasks Number of test runs Mean time (µs)
EDF 10 45 83,11
EDF 20 45 155,69
EDF 30 45 234,74
EDF 40 45 315,59
EDF 50 45 399,71
EDF 60 45 510,48
EDF 70 45 611,03
EDF 80 45 743,69
EDF 90 45 852,55
EDF 100 45 990,93

Table 6: Period start interrupt execution for EDF (CTint)

Scheduler Number of tasks Number of test runs Mean time (µs)
FPS 10 45 74,20
FPS 20 45 138,23
FPS 30 45 208,65
FPS 40 45 288,38
FPS 50 45 359,87
FPS 60 45 458,51
FPS 70 45 548,48
FPS 80 45 657,74
FPS 90 45 760,12
FPS 100 45 873,30

Table 7: Deadline check interrupt execution for FPS (CDint)

42

Scheduler Number of tasks Number of test runs Mean time (µs)
EDF 10 45 72,58
EDF 20 45 135,47
EDF 30 45 206,35
EDF 40 45 283,07
EDF 50 45 353,59
EDF 60 45 448,39
EDF 70 45 540,38
EDF 80 45 651,97
EDF 90 45 751,84
EDF 100 45 864,51

Table 8: Deadline check interrupt execution for EDF (CDint)

Here are the handler interrupt execution time measurements where two optimizations are included
to the TEQ that the handler uses.

Scheduler # tasks # test runs Mean time (µs) Max time (µs) Min time (µs)
FPS 10 50 65,75 71 63
FPS 20 50 109,75 119 106
FPS 30 50 158,25 172 155
FPS 40 50 202,00 214 197
FPS 50 50 256,08 266 249
FPS 60 50 305,83 318 299
FPS 70 50 352,00 367 341
FPS 80 50 404,42 422 397
FPS 90 50 459,42 473 453
FPS 100 50 516,50 527 511

Table 9: Period start interrupt execution with optimized TEQ for FPS (CTint)

Scheduler # tasks # test runs Mean time (µs) Max time (µs) Min time (µs)
EDF 10 50 69,75 74 68
EDF 20 50 118,58 131 115
EDF 30 50 172,75 187 169
EDF 40 50 228,00 241 220
EDF 50 50 280,58 296 275
EDF 60 50 338,75 359 331
EDF 70 50 396,83 415 390
EDF 80 50 453,58 476 444
EDF 90 50 523,08 539 515
EDF 100 50 589,33 600 583

Table 10: Period start interrupt execution with optimized TEQ for EDF (CTint)

43

Scheduler # tasks # test runs Mean time (µs) Max time (µs) Min time (µs)
FPS 10 50 60,75 70 57
FPS 20 50 100,25 111 95
FPS 30 50 141,92 151 137
FPS 40 50 180,33 192 175
FPS 50 50 225,75 236 219
FPS 60 50 268,00 282 262
FPS 70 50 309,50 324 304
FPS 80 50 354,17 371 349
FPS 90 50 398,08 415 393
FPS 100 50 442,25 459 436

Table 11: Deadline check interrupt execution with optimized TEQ for FPS (CDint)

Scheduler # tasks # test runs Mean time (µs) Max time (µs) Min time (µs)
EDF 10 50 61,25 72 57
EDF 20 50 99,42 112 95
EDF 30 50 138,83 155 132
EDF 40 50 185,08 197 179
EDF 50 50 227,67 241 222
EDF 60 50 268,50 279 263
EDF 70 50 309,08 325 303
EDF 80 50 353,67 365 346
EDF 90 50 396,83 416 390
EDF 100 50 444,08 461 437

Table 12: Deadline check interrupt execution with optimized TEQ for EDF (CDint)

The corresponding graphs and equations of the table data above (Table 5-12) can be found in
Appendix A.

44

4.2.2 Comparison of scheduling overhead formula with execution measurements

In order to compare the formula against execution measurements, we need to approximate CDint,
CTint, CS and COS . With these values estimated, we can then calculate response time for a
task system using the overhead formula (15). Further, the same task system can be executed and
measured in a VxWorks system. The comparison of the calculated and measured values reveal
how accurate the overhead formula is.

The context switch (CS) was measured by running a task with execution time of 1000,006 ms
with interrupt enable and interrupt disable. When interrupts were enabled, an empty interrupt
handler was executed. The clock rate on the ABB robotics controller was set to 1000 ticks/second.
The di�erence in time between interrupt disable and enable should correspond to the two context
switches at each interrupt. Dividing this di�erence in time with each interrupt (1000) times two
context switches (per interrupt) gives a value of:

CS : 1, 573 µs

Three test runs were done, the above value is the mean time of these test run values.

The value of COS was estimated by having one task restarted (inserted in the ready queue)
by an interrupt routine. If the ready queue is altered then the VxWorks scheduler will be invoked,
as in this case. The dsq 500 hardware timer was read at the end of the interrupt routine and at
the beginning of the task. This is illustrated in Figure 37 below.

Figure 37: How to measure COS

The context switch in between these two timestamps is subtracted (1,573 µs). The clock rate on
the ABB controller was set to 1000 ticks/second and the execution time of the task was less than
1 ms. The following value was measured:

COS : 14, 57 µs

500 test runs were done, the above value is the mean time of these test run values.

The task set in Table 13 below was calculated with the RTA scheduling overhead formula (15).

45

Task C (ms) T (ms) D (ms) Priority (0 = highest)
τ1 10 100 60 0
τ2 10 100 70 1
τ3 10 100 80 2
τ4 10 100 90 3
τ5 10 100 100 4
τ6 10 100 100 5
τ7 10 100 100 6
τ8 10 100 100 7
τ9 10 100 100 8

τ10 1000 15000 15000 9

Table 13: Task set

The following overhead constants (Table 14) were used.

Overhead constant V alue (µs)
CTint 25
CDint 25

CS 1,5
COS 15

Table 14: Overhead constants

Note that the values for CTint and CDint are overestimated. A part of the execution time is
independent, no matter how many tasks that are handled at the same time. This shared execu-
tion time is, for example, setting the next expiration time for the timer.
We calculated the response time of task τ10 with formula (15). The measurements of the task set
were made on the ABB controller with the software tool Tracealyzer [13] which in turn uses the
dsq 500 timer as time base. The system clock rate was set to 1000 ticks/second. Task execution
times were measured with the dsq500 hardware timer with interrupt disable.
We got the following results (Table 15).

Theoretical value (ms) Calculated value (ms) Measured value (ms)
10000 R33

τ10 = 10893 10506,2

Table 15: Response time results

Screenshots from the Tracealyzer software can be found in Appendix C.
We used a watchdog interrupt routine which means that system interrupt (1000 ticks/second)
executions are present. These interrupts will cause some overhead which will have some e�ect on
the measurement.

46

4.3 Hierarchical framework

4.3.1 Time measurements of the global schedulers

The interrupt execution of the budget exhaustion (CΘint) and the period start (CΠint) was mea-
sured on the ABB robotics controller with a clock rate of 1000 ticks/second. Measurements were
made with the dsq 500 hardware timer, the timer was read in the beginning and at the end of of the
interrupt handler function exclusive the local scheduler execution and inserting/removing servers
tasks. All servers had the same period and budget, Π=200 ms, Θ=1 ms. The measurements are
presented in Table 16 and Table 17.

Scheduler # servers # test runs Mean time (µs) Max time (µs) Min time (µs)
FPS 10 100 89 91 85
FPS 20 100 145,92 149 139
FPS 30 100 205,67 212 189
FPS 40 100 267,58 274 243
FPS 50 100 333,08 344 318
FPS 60 100 399,67 412 388
FPS 70 100 466,17 483 417
FPS 80 100 534 548 509
FPS 90 100 604,67 630 525
FPS 100 100 667,5 689 570

Table 16: Period start interrupt execution for FPS (CΠint)

Scheduler # servers # test runs Mean time (µs) Max time (µs) Min time (µs)
EDF 10 100 106,42 109 103
EDF 20 100 184,67 189 175
EDF 30 100 267,5 273 253
EDF 40 100 353,25 361 334
EDF 50 100 444,92 454 435
EDF 60 100 539,33 545 522
EDF 70 100 632,33 642 587
EDF 80 100 732,83 740 716
EDF 90 100 834,08 856 760
EDF 100 100 929,83 955 841

Table 17: Period start interrupt execution for EDF (CΠint)

Comparing the scheduler execution time (Table 16 and Table 17) for FPS and EDF, we see a
big di�erence. The cause of this is that changing priorities of servers is time consuming because
every server must be removed and inserted in the server ready queue. In other words, our server
ready queue is not time e�cient.
The graphs of Table 16 and Table 17 can be found in Appendix A.

47

The budget exhaustion execution CΘint measurements include both activating and deactivat-
ing a server (server switch). FPS and EDF global scheduler have the same values because we do
not update priorities during a budget exhaustion execution (Table 18).

test runs Mean time (µs) Max time (µs) Min time (µs)
100 30,92 35 14

Table 18: Budget exhaustion interrupt execution (CΘint)

48

4.3.2 Comparison of scheduling overhead formula with execution measurements

The ABB robotics controller is limited to maximum 4660 ticks/second which gives a bad resolution
for setting the next handler expiration. Due to this problem, we instead used a computer with a
Pentium 4 processor running a VxWorks operating system version 6.6. All tests on this computer
was done with a clock rate of 200000 ticks/second. We hardcoded the subtraction of handler
execution time from server budget because the Pentium 4 computer did not have an external
hardware timer as the ABB controller has (dsq500 timer) which can measure handler execution
time accurately. The system clock (or auxiliary clock) could not be used for timestamping in the
interrupt routine because the handler usrClock did not run during our handler which means that
the tick counter will not be updated.
The following table (Table 19) presents constants that were measured on the Pentium 4 computer.

Measured constant Measured value (µs)
CQ 1
CS 1

COS 8
CTint 12
CBint 12
CΠint 20
CΘint 15

Table 19: Measured constants

We measured a server set of 100 servers. These are presented in Table 20.

Server Π (ms) Θ (ms)
Server1 − Server99 1000 10

Server100 10000 10

Table 20: Server set

Server100's respons time was calculated with equation (13) and measured on the Pentium 4 com-
puter (Table 21).

Calculated value (ms) Measured value (ms)
R1

S100
= 1000 998,525

Table 21: Response time results

Server100's budget was calculated with equation (17) Θnew and measured on the Pentium 4
computer (Table 22).

Calculated value (µs) Measured value (µs)
Θnew

100 = 8087 9985

Table 22: Server budget

49

Next, we measured a taskset of three tasks (τ1, τ2, τ3) belonging to a server of total three
servers (Table 23 and Table 24).

Task Server T (ms) C (ms) Priority (0 = highest)
τ1 S3 10000 10 0
τ2 S3 10000 20 1
τ3 S3 300 20 2
τ4 S1 - ∞ 0
τ5 S2 - ∞ 0

Table 23: Task set

Server Π (ms) Θ (ms) Priority (0 = highest)
S1 100 40 0
S2 100 40 1
S3 100 20 2

Table 24: Server set

We measured and calculated the response time of task τ3, it's execution trace is illustrated in
Figure 38 below.

Figure 38: Execution trace of τ3

Task τ3's response time was calculated with equation (20) and (21) and the execution of task τ3's
was done on the Pentium 4 computer (Table 25).

Calculated value (ms) Measured value (ms)
r3
3 = 370, 07 289,695

Table 25: Response time results

The tbf formula assumes that the task will start executing right after it's servers budget, this

50

will add 80 ms to the task response time (Π − Θ). This scenario was not present in our test,
τ3 started executing at time 0 which is when the system starts. If the taskset should have been
released at time -80 it would theoretically just miss the budget. So adding 80 ms to the test result
will match the calculated response time of task τ3:

80 + 289, 695 = 369, 695 Ms

Server S1 and S2 had each a task that had in�nite execution time. The test showed that the
taskset of server S3 was not a�ected by these two erroneous tasksets of servers S1 and S2.

Task τ3's execution trace is included in Appendix C.

51

4.3.3 Jitter

We measured a hierarchical system with the following servers and tasks (Table 26 and Table 27).

Task Server T (ms) C (ms) Priority (0 = highest)
τ1 S3 140 7 0
τ2 S3 150 7 1
τ3 S3 320 30 2
τ4 S1 - ∞ 0
τ5 S2 - ∞ 0

Table 26: Task set

Server Π (ms) Θ (ms) Priority (0 = highest)
S1 5 1 0
S2 6 1 1
S3 70 20 2

Table 27: Server set

We timestamped the period start, release time and �nish time for task τ3 during 100 period
instances. The following tables (Table 28, Table 29) presents the data of τ3' jitter.

Mean time (µs) Max time (µs) Min time (µs) Absolute release jitter (µs)
17547 62335 1057 61278

Table 28: Release time

Mean time (µs) Max time (µs) Min time (µs) Absolute finishing jitter (µs)
166406 208945 98664 110281

Table 29: Finish time

52

4.3.4 Test execution of tasks in delayed and pended state

The last tests were done with tasks that were in delayed and pended state. A requirement of the
hierarchical framework is that no task should ever execute during other servers budgets but their
own. Also, a task should be able to be in delayed or pended state between it's servers budgets
without any side e�ects. By side e�ects we mean that it should not execute during other servers
budgets and the task should execute normally during the next budget of it's server.
If a task is in delayed (for example sleeping) or pended (for example waiting for a semaphore)
state when it's servers budget gets exhausted, that task will get the minimum VxWorks priority
(255). If the VxWorks scheduler should by some reason put this task in the ready queue during
another servers execution, it will not execute assuming that the tasks in that server has higher
priority than 255. When the tasks servers budget gets reloaded and starts executing again, any
task that had it's priority lowered will be raised to it's normal priority.

We performed three tests.

• (1) Set a task to sleep and let the VxWorks scheduler wake it up during another servers budget.

• (2) Set a task to sleep and let the VxWorks scheduler wake it up during it's servers next
budget.

• (3) Make a task block for a semaphore between two of it's servers budgets.

The last testcase (3) is equal to testcase (2), the motivation for this test is to see that nothing
unexpected happens when a task starts blocking waiting for a resource and then gets unblocked
during it's servers next budget.

The three test cases (1), (2) and (3) are illustrated in Figure 39, Figure 40 respectively Fig-
ure 41 below. Task τ1 has higher priority than τ2 and both tasks belong to server S1.

Figure 39: Task wakeup during another servers budget

53

Figure 40: Task wakeup during it's servers budget

Figure 41: Semaphore blocking

Testcases (1), (2) and (3) was monitored with the Tracealyzer tool, screenshots from all three
tests with the Tracealyzer tool can be found in Appendix C.

54

5 Conclusion & Future work

5.1 Conclusion

In this thesis we have presented the design and implementation of a hierarchical scheduling frame-
work.

We have concluded that, in VxWorks, the best way to implement a custom scheduler is to use
interrupt handlers connected to some hardware timer. The reason for this is that the VxWorks
scheduling framework is well suited for this kind of solution and the implementation will be e�cient
and easy to implement. The most time e�cient implementation is to program directly against
memory mapped hardware timer registers. In this way we will not get any interrupt overhead
between interrupt expirations, which would be the case with system library solutions.
Another bene�t with direct hardware access is that timestamping can be done by just reading the
timer register. Libraries do not support any kind of high resolution timing in interrupt routines.
Timestamping is a crucial and important function in the HSF. Firstly, the scheduler execution
time must be measured and subtracted from server budgets in order to keep the drift down at a
low level. Secondly, server preemptions will force the preempted server to calculate the executed
budget so far. This is done by reading the current time and subtracting it with the timestamp
that the server got when it started to execute. In all, direct access to a hardware timer instead of
using VxWorks interrupt libraries is a requirement for the HSF to function e�ciently.

System calls to set tasks priorities or to manipulate task status (ready, suspend, etc.) was shown
to be ine�cient. We experienced interrupt crashes when running many servers or tasks using
system calls. Switching to low level routines instead worked �ne. Most probably, the system calls
were too time consuming to be called from an interrupt handler.
The downside with using low level routines and directly manipulate VxWorks task TCB's in order
to change task properties is that it may not be system independent. Newer versions of VxWorks
will most likely have the same system call routines but may change low level primitives such as
those we used and the task TCB structure.

The single most important part of this thesis, considering having a time e�cient implementa-
tion, is the time event queue TEQ. Every subsystem has two TEQ's (task periods and deadlines),
each server has one budget TEQ and all servers share one TEQ for their periods. The most time
consuming part of every HSF interrupt execution, wether it is a task event or server event, is
updating the TEQ. The TEQ is used often and by many entities and should thereby be extremely
e�cient. This was not thought of in the beginning of this project. Looking back now, more work
should have been allocated to the design and construction of the TEQ. Our implementation is
neither the best or worst. There is no single implementation that is best, the e�ciency of the
TEQ is dependant on the time properties of servers and tasks.

Finally, we have shown that it is possible to implement a hierarchical scheduling framework on
top of VxWorks. The system may at this stage not be optimal considering overhead. However,
we know which parts that can be improved. With continued work on these known bottlenecks,
the system can be very useful.

55

5.2 Future work

The work in this thesis can be improved and extended in many ways. Here are a few suggestions
for improvements.

As we have shown, interrupt handling and timestamping is most e�cient if libraries are not
used. These VxWorks libraries are useless for the HSF. The downside is that our system will not
be as platform independent. Implementing a new library for interrupts and timestamping for the
most used CPU's to go with the HSF may be a good solution. The HSF will be more hardware
independent and more time e�cient as well.

As we have discussed so far, the TEQ is the single most important module of the HSF because it is
the overhead bottleneck. Some research should be done considering alternative e�cient solutions
for administrating software timers. Also, a notation is that no single implementation is better
than all others. Investigations should be done on matching solutions against di�erent types of
task and server time properties (periods and deadlines).

We have implemented EDF at both the local and global levels but we have not derived any
scheduling overhead formulas for these schedulers. The reason for this was that the original EDF
scheduling analysis does not express the number of preemptions as the RTA does. Solving this
problem and deriving a scheduling overhead formula for EDF would make this work more com-
plete. Also, it might make our EDF schedulers more attractive to use.

Considering the overhead included in the hierarchical scheduling analysis, we added scheduling
overhead caused by preempting servers on the preempted server. The downside is that the de-
velopment phase of each subsystem will be dependant on other subsystem parameters. A new
approach, considering overhead in the hierarchical scheduling analysis, should be derived in order
to keep scheduling analysis of each subsystem apart from eachother.

The work so far has not considered shared logical resources. Most, if not all, real-time systems
use resource sharing in some way. The system, at this stage, can not by any means guarantee that
applications that share logical resources will work correctly. We do not support synchronization
protocols such as PCP, SRP, PIP etc. An extension to the HSF could be to look in to how to
adapt our system to resource sharing.

56

References

[1] G. Buttazzo Hard Real-Time Computing Systems, University of Pavia, Italy, 2005.

[2] B. Sprunt Aperiodic Task Scheduling for Real-Time Systems, Department of Electrical and
Computer Engineering, Carnegie Mellon University, 1990.

[3] M. González Harbour J.C. Palencia Response Time Analysis for Tasks Scheduled under
EDF within Fixed Priorities, Departamento de Electrónica y Computadores, Universidad
de Cantabria, Spain, 2003.

[4] L. Almeida Response-time analysis and server design for hierarchical scheduling, DE-
T/IEETA, Universidade de Aveiro, Portugal, 2003.

[5] {G. Lipari, S. Baruah} A hierarchical extension to the constant bandwidth server framework,
{Scuola Superiore S. Anna, The University of North Carolina}, {Italy, USA}, 2001.

[6] {M. Takashi H. Kei, S. Shigero} On the Schedulability Conditions on Partial Time Slots,
{Department of Information Science The University of Tokyo, PRESTO Japan Science and
Technology Corporation}, Japan, 1999.

[7] {A. Mok X. Feng, D. Chen} Resource Partition for Real-Time Systems, {Department of
Computer Sciences University of Texas at Austin, Fisher-Rosemount Systems Inc.}, Austin,
2001.

[8] Z. Deng J. Liu J. Sun A Scheme for Scheduling Hard Real-Time Applications in Open System
Environment, Department of Computer Science, University of Illinois at Urbana-Champaign,
USA, 1997.

[9] T. Kuo C. Li A Fixed-Priority-Driven Open Environment for Real-Time Applications, Real-
Time and Embedded System Laboratory, Department of Computer Science and Information
Engineering, National Chung Cheng University, Chiayi, Taiwan, 1999.

[10] Kernel Programmer's Guide, Part #: DOC-16075-ND-00, 14 nov 2007.

[11] J. Gordon VxWorks Cookbook,
http://www.bluedonkey.org/cgi-bin/twiki/bin/view/Books/VxWorksCookBook,
15 apr 2003.

[12] Application api reference 6.6, Part #: DOC-16103-ND-00, 16 nov 2007.

[13] J. Kraft Tracealyzer,
http://www.tracealyzer.se

[14] I. Shin I. Lee Periodic Resource Model for Compositional Real-Time Guarantees, Department
of Computer and Information Science, University of Pennsylvania, Philadelphia, USA, 2003.

[15] Y. Wang K. Lin The Implementation of Hierarchical Schedulers in the RED-Linux Scheduling
Framework, Department of Electric aland Computer Engineering, University of California,
Irvine, USA, 2000.

[16] VxWorks 653 � DO-178B Certi�ed ARINC 653 Real-Time Operating System,
http://www.windriver.com/products/run-time_technologies/Real-
Time_Operating_Systems/VxWorks_653

[17] L. Papalau P. Samalik Design of an E�cient Resource Kernel for Consumer Devices, Stan
Ackermans Institute, Eindhoven University of Technology, Eindhoven, Holland, 13 dec 2000.

[18] {Y. Lee D. Kim, M. Younis J. Zhou} Partition Scheduling In APEX Runtime Environment
for Embedded Avionics Software, {Real Time Systems Research Laboratory CISE Depart-
ment University of Florida, Advanced System Technology Group AlliedSignal}, {Gainesville,
Columbia}, {USA}, 1998.

[19] G. Lipari E. Bini Resource Partitioning among Real-Time Applications, Scuola Superiore S.
Anna Pisa, Italy, 2003.

[20] N. Audsley A. Burns M. Richardson A. Wellings Applying new scheduling theory to static
priority pre-emptive scheudling Software Engineering Journal, 1993.

[21] G. Buttazzo P. Gai E�cient Implementation of an Edf Scheduler for small Embedded Systems
In Proceedings of the 2nd International Workshop Operating System Platforms for Embedded
Real-Time Applications (OSPERT'06) in conjunction with the 18th Euromicro International
Conference on Real-Time Systems (ECRTS'08), Dresden, Germany, July 2006.

[22] S. Saewong R. Rajkumar Hierarchical Reservation Support in Resource Kernels Real-time
and Multimedia Systems Laboratory, Carnegie Mellon University, Pittsburgh, 2001.

[23] R. Davis A. Burns Hierarchical Fixed Priority Pre-emptive Scheduling Real-Time Systems
Research Group, Department of Computer Science, University of York, UK, 2005.

[24] {M. Behnam T. Nolte I. Shin M. Åsberg, R. Bril} Towards Hierarchical Scheduling on top
of VxWorks {MRTC Mälardalen University, Technische Universiteit Eindhoven}, {Västerås,
Eindhoven}, {Sweden, Holland}, 2008.

6 Appendix A

6.1 A.1 Mean time measurement graphs of local scheduler interrupt
routines with non optimized TEQ

Figure 42: CTint for FPS
(Regression curve: f(x) = 90, 47 ∗ 1, 287x/10)

Figure 43: CTint for EDF
(Regression curve: f(x) = 94, 76 ∗ 1, 291x/10)

Figure 44: CDint for FPS
(Regression curve: f(x) = 85, 16 ∗ 1, 29x/10)

Figure 45: CDint for EDF
(Regression curve: f(x) = 83, 31 ∗ 1, 292x/10)

6.2 A.2 Mean time measurement graphs of local scheduler interrupt
routines with optimized TEQ

Figure 46: CTint for FPS
(Regression curve: f(x) = 49, 91x + 8, 499)

Figure 47: CTint for EDF
(Regression curve: f(x) = 57, 43x + 1, 239)

Figure 48: CDint for FPS
(Regression curve: f(x) = 42, 48x + 14, 46)

Figure 49: CDint for EDF
(Regression curve: f(x) = 42, 51x + 14, 63)

6.3 A.3 Mean time measurement graphs of global scheduler interrupt
routines with optimized TEQ

Figure 50: CΠint for FPS
(Regression curve: f(x) = 64, 98x + 13, 93)

Figure 51: CΠint for EDF
(Regression curve: f(x) = 92, 18x− 4, 446)

7 Appendix B

7.1 B.1 Pseudocode for algorithm Count_Double_Hit

FUNCTION Count_Doubel_Hit(Interval)

FOR i = 1 i < NumberOfTasks

Global := Global UNION Temp

FOR k = (i + 1) k < (NumberOfTasks + 1)

IF Ti = Di AND Tk != Dk

lcm = temp = LCM(Ti, Tk)

FOR lcm <= Interval

IF lcm NOT_BELONG Global

Temp := Temp UNION lcm

Hit = Hit + 1

ENDIF

lcm = lcm + temp

ENDFOR

lcm = temp = LCM(Ti, Dk)

FOR lcm <= Interval

IF lcm NOT_BELONG Global

Temp := Temp UNION lcm

Hit = Hit + 1

ENDIF

lcm = lcm + temp

ENDFOR

ENDIF

IF Ti = Di AND Tk = Dk

lcm = temp = LCM(Ti, Tk)

FOR lcm <= Interval

IF lcm NOT_BELONG Global

Temp := Temp UNION lcm

Hit = Hit + 1

ENDIF

lcm = lcm + temp

ENDFOR

ENDIF

IF Ti != Di AND Tk != Dk

lcm = temp = LCM(Ti, Tk)

FOR lcm <= Interval

IF lcm NOT_BELONG Global

Temp := Temp UNION lcm

Hit = Hit + 1

ENDIF

lcm = lcm + temp

ENDFOR

lcm = temp = LCM(Ti, Dk)

FOR lcm <= Interval

IF lcm NOT_BELONG Global

Temp := Temp UNION lcm

Hit = Hit + 1

ENDIF

lcm = lcm + temp

ENDFOR

lcm = temp = LCM(Di, Tk)

FOR lcm <= Interval

IF lcm NOT_BELONG Global

Temp := Temp UNION lcm

Hit = Hit + 1

ENDIF

lcm = lcm + temp

ENDFOR

lcm = temp = LCM(Di, Dk)

FOR lcm <= Interval

IF lcm NOT_BELONG Global

Temp := Temp UNION lcm

Hit = Hit + 1

ENDIF

lcm = lcm + temp

ENDFOR

ENDIF

IF Ti != Di AND Tk = Dk

lcm = temp = LCM(Ti, Tk)

FOR lcm <= Interval

IF lcm NOT_BELONG Global

Temp := Temp UNION lcm

Hit = Hit + 1

ENDIF

lcm = lcm + temp

ENDFOR

lcm = temp = LCM(Di, Tk)

FOR lcm <= Interval

IF lcm NOT_BELONG Global

Temp := Temp UNION lcm

Hit = Hit + 1

ENDIF

lcm = lcm + temp

ENDFOR

ENDIF

ENDFOR

ENDFOR

RETURN Hit

ENDFUNCTION

8 Appendix C

8.1 C.1 Screenshot from Tracealyzer test of the local FPS scheduler

Figure 52: FPS test

8.2 C.2 Screenshot from Tracealyzer test of task executing in a server

Figure 53: Task3 (server 3) execution trace

8.3 C.3 Screenshot from Tracealyzer test of task in delayed and pended
state

Figure 54: Task sleeps in 40 ticks

Figure 55: Task sleeps in 81 ticks

Figure 56: Task gets blocked waiting for a semaphore

