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Abstract

Network-on-Chip (NoC) is the interconnection platform
that answers the requirements of the modern on-Chip de-
sign. Small optimizations in NoC router architecture can
show a significant improvement in the overall performance
of NoC based systems. Power consumption, area overhead
and the entire NoC performance is influenced by the router
buffers. Resource sharing for on-chip network is critical to
reduce the chip area and power consumption. Virtual chan-
nel buffer sharing by other router ports has been proposed
to enhance the performance of on-chip communication. We
approach the router architecture optimization by utilizing
the idle buffers instead of increasing the number and size of
buffers for desired throughput.

1 Introduction

Ever-increasing requirements on electronic systems are
one of the key factors for evolution of the integrated cir-
cuit technology. Multiprocessing is the solution to meet
the requirements of upcoming applications. Multiprocess-
ing over heterogeneous functional units require efficient on-
chip communication [11]. Network-on-Chip (NoC) is a
general purpose on-chip communication concept that offers
high throughput, which is the basic requirement to deal with
complexity of modern systems. All links in NoC can be si-
multaneously used for data transmission, which provides a
high level of parallelism and makes it attractive to replace
the typical communication architectures like shared buses
or point-to-point dedicated wires. Apart from throughput,
NoC platform is scalable and has the potential to to keep
up with the pace of technology advances [2]. But all these
enhancements come at the expense of area and power. In
the RAW multiprocessor system, interconnection network
consumes 36% of the total chip power [20].

A typical NoC system consists of processing ele-

ments(PEs), network interfaces (NIs), routers and channels.
The router further contains switch and buffers. Buffers
consume the 64% of the total node (router + link) leak-
age power for all process technologies, which makes it the
largest power consumer in any NoC system [22]. Moreover,
buffers are dominant for dynamic energy consumption [15].
It is better to transmit packets instead of storing them be-
cause more power consumption is expected in storing them
as compared to the transmission [17]. Thus, reduction in
number and size of buffers with increase in utilization af-
fect the system performance and impact area and power ef-
ficiency.
Related work. Buffer management is not a recent issue
but still needs attention. This comes as a performance im-
provement to utilize the unused buffers at some time instant.
Lately, buffer sharing has been analyzed and compared to
the existing router architectures.

Lan et. al [23] addresses the buffer utilization by making
the channels bidirectional and shows significant improve-
ment in system performance. But in this case, each channel
controller will have two additional tasks: dynamically con-
figuring the channel direction and to allocate the channel
to one of the routers, sharing the channel. Also, there is a
40% area overhead over the typical NoC router architecture
due to double crossbar design and control logic. We ap-
proach the problem with very simple control logic. There is
only one output crossbar and a set of 2×1 input multiplex-
ers to share the buffer between two input ports (distributed
approach).

Soteriou et. al [19] introduced distributed shared buffer
(DSB) NoC router. The proposed architecture shows a sig-
nificant improvement in throughput at the expense of area
and power due to extra crossbar and complex arbitration
scheme. Our approach delivers the same performance with-
out any extra crossbar and memory bank.

Coenen et. al [13] developed an algorithm to optimize
size of decoupling buffers in network interfaces. The buffer
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size is proportional to the maximum difference between the
number of words produced and the number of words con-
sumed at any point in time. This approach showed signif-
icant improvement in power dissipation and silicon area.
The buffer size can be further optimized by considering the
idle time of buffer. If some buffer is idle at some time
instant, it can share the load of neighboring input channel
and thus increase the utilization of existing resources with a
small control logic.

Kodi et. al [3] illustrates the impact of repeater insertion
on inter-router links with adaptive control and eliminating
some of the buffers in the router. The approach saves appre-
ciable amount of power and area without significant degra-
dation in the throughput and latency. But there is still some
scope to increase the buffer utilization inside the router by
using the architecture which we propose here.

Neishabouri et. al [14] propose the router architecture
with Reliability Aware Virtual Channel (RAVC). In this ap-
proach, more memory is allocated to the busy channels and
less to the idle channels. This dynamic allocation of stor-
age shows 7.1% and 3.1% latency decrease under uniform
and transpose traffic patterns respectively at the expense of
complex memory control logic. Though this solution is la-
tency efficient but not area and power efficient, which was
not discussed by the authors.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the motivation and requirements for pro-
posed router architecture. Section 3 explains our proposed
architecture and how it can contribute to reduce the area and
power consumption without affecting throughput. It also
explains, how the proposed architecture was implemented.
Finally experimental results and conclusions are drawn.

2 Motivation

This section presents the requirements for improvement
in currently available router architecture, degree of utiliza-
tion for available resources in current NoC router architec-
tures and previous research for resource utilization to en-
hance the NoC system performance regarding area, power
and latency.

Different on-chip communication platforms have been
purposed to deal with system complexity, like NoC and seg-
mented bus architectures. But each has its own advantages,
disadvantages and limitations. NoC uses distributed con-
trol but on other hand segmented busses are controlled by
hierarchy of arbiters. In certain situation, If a dedicated
link between two processing units is needed, NoC plat-
form will require two routers and a physical communication
channel. This increases design complexity, communication
overhead and synchronization issues. Thus NoC provides
higher throughput at the expense of extra power consump-
tion and silicon area. On other hand, segmented busses such
as the SegBus [4] provides an optimized solution for such

cases by placing both processing elements in same segment
during place tool step [6, 24]. The Segbus is an optimal
solution for applications, where more point-to-point com-
munication is needed.

As the NoC design complexity rises, more communica-
tion mechanism issues are raised as well. Wormhole flow
control have been proposed to reduce the buffer requirement
and enhance the system throughput. But on other hand,
one packet may occupy several intermediate switches at the
same time. In typical NoC architectures, when a packet oc-
cupies a buffer for a channel, the physical channel cannot
be used by other channels, even when the original message
is blocked [11]. This introduces the problem of deadlock
and livelock in wormhole scheme.

Virtual Channels (VCs) are used to avoid deadlock and
livelock. Fig.1 shows a typical virtual channel router archi-
tecture [16]. Virtual channel flow control exploits an array
of buffers at each input port. By allocating different packets
to each of these buffers, flits from multiple packets may be
sent in an interleaved manner over a single physical chan-
nel. This improves both throughput and latency by allowing
blocked packets to be bypassed.

The drawback of using VCs stands in a more complex
control protocol, as data corresponding to different mes-
sages which is multiplexed on the physical channel must
be eventually separated [11]. Another important issue that
needs attention is the utilization tradeoff. VCs are proposed
to increase the utilization of physical channels. By inserting
the VC buffers, we increase the physical channel utilization
but utilization of inserted VC buffers is not considered. It
can be observed that if there is no communication on some
channel at some time instant and at the same time, neigh-
boring channel is overloaded, free buffers of one channel
cannot contribute for congestion control by sharing the load
of neighboring channel. Adaptive routing technique pro-
vides a solution to these issues but introduces some other
problems like packet reordering.

A well designed network exploits available resources to
improve performance [8]. So, a tradeoff between system
performance and resource utilization is needed. Our mo-
tivation and innovation is to propose a router architecture
with enhanced utilization of VC buffers without affecting
the utilization of physical channel to reduce system latency,
power consumption and silicon area.

3 The Proposed Router Architecture

The proposed architecture utilizes the unused channel
buffers instead of increasing the number and size of buffers.
Sharing of all the input buffers among all the input ports
can provide the best utilization of buffers but this increase
the size of input crossbar and thus the complexity of con-
trol logic. However, this is not an area, power consumption
and latency efficient solution. We approach the problem by
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Figure 1. Typical Virtual Channel Router Ar-
chitecture.

sharing VC buffers between two ports only. In this case,
crossbar size is not so big and control logic is very simple.
We provide, thus, a good compromise between control logic
complexity, silicon area and the utilization figures.

We adopt here a hybrid control logic approach, which
uses distributed control logic implemented by hierarchy of
arbiters. Input and output control logics are completely in-
dependent of each other and work according to the status
of channel buffers. It is a well known fact that routers in
NoC system, specifically buffers inside routers consume a
big fraction of power and area as discussed in section 1.

The proposed architecture, sharing of buffers between
neighboring input ports, is shown in Fig.2. The router ar-
chitecture can be divided into two parts, the Input and the
Output. The Input part is responsible for buffer allocation
and receiving the packets from neighboring routers. The
Output part computes the route and transmits the packets
accordingly. Within the router, the Input and the Output
parts do not communicate at all. Both parts simply write
and read from the buffers. Fig.3 shows the signals of both
parts to write and read from buffers and also the external
interface of router.

As the level of system integration in Systems on Chip
(SoCs) began to rise, system designers faced the need
to reuse pre-designed and pre-verified computation units
across different platforms and with different communica-
tion architectures. Therefore, the need for effective plug-
and-play design styles pushed the development of standard
interface sockets, allowing to decouple the development of
computational units from that of communication architec-
tures [9].

A wrapper provides the abstraction between PE and the
interconnection platform. The wrapper architecture can be
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Figure 2. System Level specification of
Router Architecture.
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Figure 3. System Level Input and Output Con-
trollers Signalling Specifications of Router
Architecture.

divided into two parts: the Network Interface (NI) and the
PE Interface (PI) as shown in Fig. 4. NI is a generic in-
terface, which needs to be standardized. Main tasks of the
NI are packetization and de-packetization of data. Differ-
ent services can be introduced in NI architecture, such as
multicasting and error monitoring. The queuing buffer for
the PE can be considered as the part of NI on input port
of the switch. Thus each PE has its own dedicated buffer,
which simplifies the control logic and enhance the through-
put without any area overhead. PI is the core specific inter-
face, which acts as a clock synchronizer. Different services
can be introduced in the PI architecture, such as thermal
monitoring and power safe mode, while the core is not in
use. Due to this abstraction and synchronization, the NoC
platform can be seen as a plug and play platform. This helps
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to reduce the design time, and heterogenous PEs can be in-
tegrated to the system.

3.1 Packet Format

Data is packetized by the NI and it is injected into
the network according to the format shown in Fig. 5.
De-packetization is also the job of NI as explained above.
Header flit contains the source address (SA), the opera-
tional code (OP), the priority level (PR) and the destination
address (DA), as briefly described below:

SA. This field contains the address of the packet source (or
request initiator for control signal communication). Devices
on the platform are identified by unique numbers, which are
used for addressing as well.
OP. The OP signal is used to identify the Operation to be
done on the packet, if destination node PE offers multiple
operations.
PR. The PR field is used for buffer allocation, when only
one buffer is available and both neighboring routers are re-
questing the buffer allocation or in similar situation for out-
put port allocation, the router with packet of higher Priority
level wins the allocation.
DA. This field contains the address of the targeted device.
BOP. Beginning of Packet (BOP) identifies the header flit.
Buffer allocation unit works on this signal and allocates the
appropriate buffer. Output port allocator also works on BOP
signal and computes the path according to routing policy to
allocate the output port.
EOP. End of Packet (EOP) signal is used to mark the allo-
cated buffer as free and available for next allocation. Simi-
larly, Output port controller knows that packet transmission
has been completed. EOP is also a mark for tail flit.
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Figure 5. Packet Format.

3.2 The Input Controller and Buffer Allo-
cation

The main contribution of our suggested architecture
stands on the input side, where VC buffers are shared be-
tween neighboring input ports. Each VC buffer is shared
among two input ports except the buffer dedicated to the
local PE. In this section, two input ports are used to ex-
plain the complete operation. The control of two ports
which share the VC buffers is completely independent from
the other input control logic. Internal architecture of input
side for two neighboring ports, sharing the VCs is shown in
Fig.6. Distributed control logic is used to reduce the latency
and power consumption.
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Figure 6. Architecture of Input part of Router.

The Input control operation can be divided into several
phases, as follows.
Buffer Allocation: The Buffer allocator receives the re-
quests from neighboring routers for new buffer allocation
in the form of BOP signal. The Buffer allocator ”knows”
the status of all the buffers and allots the unallocated buffer
to the requesting router. If only one buffer is available and
both routers are requesting for the buffer, the router with
higher priority value (PR) in header flit is allowed to use the
buffer for packet transmission as mentioned in section 3.1.
Local Signalling: After the allocation, the corresponding
Buffer write controller is informed by raising the Allocated
signal from buffer allocator to the buffer write controller.
In response, the Buffer write controller raises the Busy sig-
nal. At the same time, the Buffer allocator signals the cor-
responding multiplexer by Allocated To signal, to which in-
put, corresponding buffer has been alloted.
Packet Receive: After local control signalling, the Buffer
write controller signals the Grant to the corresponding
neighbor router. The latter uses the Grant signal as VC
identifier for requested packet and always raises the equiva-
lent NewFlit signal, while transmitting flits for that packet.
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Buffer De-Allocation: The Busy signal from the Buffer
write controller goes down upon arrival of tail flit marked
by EOP signal as explained in section 3.1. After receiving
Not Busy signal from the Buffer write controller, the Buffer
allocator marks the corresponding buffer as free. If not al-
ready raised, the Status Flag is raised.
Status Flag: The Status Flag signal is the logical AND op-
eration of all the Busy signals from buffer write controllers.
When all buffers have been allocated, the Status Flag is
raised to inform the neighboring routers that no buffer is
available for transmission of new packets. If at least one
buffer is available for allocation, the Status Flag is in down
state.

The Buffer allocation unit works only when the BOP sig-
nal is received. Once the buffer has been tied to the request-
ing router, the Buffer allocator goes into the sleep mode
to save power. It does not consume power until the next
BOP signal is received. Similarly, the Buffer write con-
troller works only after receiving the Allocated signal from
buffer allocator and goes in sleep mode at the EOP signal.

3.3 The Output Controller and Routing
Algorithm

The Output part is modeled by a typical N×5 crossbar,
where N is the total number of buffers in the router includ-
ing the buffer dedicated to local PE. The internal architec-
ture of the output crossbar is shown in Fig. 7. The crossbar
size can be customized according to the topology require-
ments. Here we consider a mesh topology, for deciding the
number of I/O ports for the router. Distributed control logic
was used here as well. There is one central controller which
is the key part of the router. The central output controller
decides the routing policy and computes the route for the
packet. The port controller controls the packet transmission
and the communicates with the destination router, without
involving the central controller. It also decides the flow con-
trol as well. A worm-hole flow control was used, which
makes efficient use of buffer space as small number of flit
buffers per VC are required [21].

The Output controller operation can be divided into sev-
eral steps, as follows.
Route Computation: The central controller senses the
buffers and, on BOP signal, computes the route for the
packet by using DA field as explained in Section 3.1.
Local Signalling: After computing the route, the corre-
sponding output port is assigned to the packet. Then cen-
tral controller informs the corresponding port controller by
the signal New Buffer Allocation which means that the new
packet has been allocated on this port for transmission. In
parallel, the central controller sends the buffer ID contain-
ing the packet to the port controller and FIFO read logic
block. After that, the central controller marks that buffer ID
as allocated internally. It does not read the BOP signal for

a buffer which is marked allocated.
Data Read and Transmission on Output Ports: The Port
controller generates the read signal for that buffer. If the
FIFO empty signal is high, the port controller does not gen-
erate the read signal for that buffer. The FIFO read logic is
required to avoid multiple drivers problem for buffer read-
ing. The FIFO read controller keeps track of allocation and
allows only the appropriate port to read the buffer.
De-Allocation: When the EOP bit is high, the port con-
troller marks that buffer as free and sends the corresponding
buffer ID back to the central controller, to mark it as unallo-
cated. After that, the central controller starts checking the
BOP bit for route computation and portal allocation.
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Communication Between Port Controller and Central
Controller: Communication signaling between the central
controller (routing element) and the port controller is shown
in Fig.8. The FIFO read logic is a combinational logic mod-
ule intended to avoid multiple driver error. The central con-
troller computes the route for the incoming header flit and
sends the corresponding output port ID to the port controller
by the signal Buffer Allocation ID N. In parallel, the cen-
tral controller raises the signal New Buffer Allocation N to
inform the port controller that a new buffer has been al-
located to it for transmission. After transmitting the tail
flit, the port controller sends back the Buffer ID for deallo-
cation by the signal Buffer Deallocation ID N. After that,
central controller is waiting for next BOP signal from that
buffer for next output port assignment to incoming pack-
ets. Port Status N is raised, when corresponding port can-
not make more assignments.

135



Architecture⇒ Typical Normal Reduced Distribute Shared Shared Virtual
Resource⇓ NoC BiNoC BiNoC Buffer NoC (DSB-160) Channel NoC

Total Number of Buffers 5 10 5 10 5
Buffers/ Direction 1 2 1 1∗ 1

Total Channels 5-in 5-out 10-inout 5-inout 5-in 5-out∗ 5-in 5-out
Channels/ Direction 1-in 1-out 2-inout 1-inout 1-in 1-out∗ 2-in 2-out

Each Buffer Size 32 flits 16 flits 32 flits 16 flits 32 flits
Total Buffer Size 160 flits 160 flits 160 flits 160 flits 160 flits

Crossbar 5X5 10X10 5X5 2 (5X5) 5X5
* 5 memory banks are not considered while making the comparison as only one flit can be written into and read from a middle memory.

Table 1. Comparison with existing NoC router architectures
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Figure 8. Output Control Architecture.

3.4 Comparison with Existing Architec-
tures

Tthe table. 1. shows a comparison of proposed archi-
tecture with existing router architectures. The typical NoC
represents a conventional NoC router, which use unidirec-
tional channels to communicate with neighboring routers.
Thus two channels are required between two neighboring
routers for two way communication. Normal BiNoC has
two bidirectional channels, which can be used according
to the requirements to communicate in any direction [23].
Reduced BiNoC has only one bidirectional communication
channel. This channel can be used for communication in
any direction but two way communication is not possible at
the single time instant as explained by [23]. In shared VC
architecture, all channels are unidirectional but idle buffers
can be used by the neighboring port to control conges-
tion. As compared to the BiNoC architecture with 10-in-
out channels, the shared VC approach provides 5-input and
5-output channels. Practically, when the BiNoC system is
fully loaded, the router will be configured as 5-input and 5-
output channel router, which is the same as with the shared
NoC architecture. On the other hand, shared VC router
can provide 2-input and 2-output channels per direction (if
needed), which is double than with the BiNoC architecture.

The DSB-175 and DSB-300 router architectures have al-

ready been explained by [19]. To make the exact compar-
ison, we define DSB-160 architecture in accordance with
[19]. The DSB-160 is the router with 160-flits of aggre-
gate buffering. The buffers are divided between 5 middle
memory banks with 16-flit buffers per bank and aggregate
80-flit input buffers comprising one 16-flit buffer at each
input port. As for other architectures, only one buffer per
input port or 5 input buffers have been used, VCs are not
considered for DSB-160 router.

Another issue to be addressed here is scalability. The
number of VC buffers can be selected according to the ap-
plication and topology requirements for the proposed archi-
tecture. To insert a new VC, the buffer and a controller are
needed without any modification in existing logic. To in-
sert a new buffer in BiNoC architecture, a separate buffer
allocator is required.

3.5 Implementation

The suggested prototype was implemented on Altera
Stratix-II FPGA board containing the device EP2S180 [1].
EP2S180 device contains 143,520 ALUTs, 938,3040 bits
on chip memory and 12 PLLs. This device was selected for
synthesis to make the exact comparison with results pro-
vided by [5]. Similarly, 256-flit FIFO depth with 34 bit
data width including BOP and EOP bits were used for com-
parison purposes, otherwise FIFO depth and width are pa-
rameterized and values according to the requirement can be
selected. A 32-flit buffer size was used for comparison pur-
poses in section 3.4. We used two buffers shared between
two ports whereas one buffer was dedicated for each port by
[5]. Otherwise, any number of buffers can be shared among
neighboring two ports as virtual channels.

4 Experimental results

The proposed architecture showed a significant reduction
in silicon area and power consumption, as compared to the
architecture described in [5]. The area results are depicted
in Table.2. As the buffers can be shared by a couple of input
ports in our architecture, significant improvement in buffer
utilization was also achieved with limited resources.
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Total Logic Elements Dedicated Logic Registers Block Memory Bits
Router Type Shared Virtual NoC Prototype Shared Virtual NoC Prototype Shared Virtual NoC Prototype

Channel NoC by [5] Channel NoC by [5] Channel NoC by [5]
5-Ports 519 920 182 230 43520 43520
4-Ports 498 574 138 176 34816 34816
3-Ports 270 286 107 126 26112 26112

Table 2. Resource utilization in Altera FPGA Stratix-II (EP2S180).

The power consumption for the proposed architecture is
1.73W as measured by Altera’s Power Play tool with typical
12.5% toggle rate for four port architecture. In [19], 1.86W
power consumption has been reported for their DSB-300 ar-
chitecture by using the power models in Orion 2.0. Our four
port architecture, used for simulation with 256-flit buffers
with each flit of 34 bits is equivalent to DSB-1024, which is
almost 3.5 times bigger than DSB-300. Thus, compared to
[19], the proposed architecture is power efficient.

5 Discussion

The level of complexity is raising day by day for upcom-
ing applications, which increases the design time propor-
tionally. MPSoC is the solution to deal with this complex-
ity. For MPSoC solutions, the biggest challenge is to deal
with increasing gap between technological possibilities and
design methodologies. NoC comes as a solution for the on-
chip communication challenges of the future MPSoC archi-
tectures [25]. Many automated design flows for MPSoC and
NoC platforms have been proposed with variety of features
and solutions which can significantly reduce the design time
as well [6, 7, 10]. But it is common thinking that when
automated design methodology is used, the design time is
reduced at the cost of performance.

In typical NoC mesh, processing nodes can be divided
into three different categories according to the position :
corner, edge and central nodes. Routers on the basis of these
categories require three, four and five I/O ports respectively.
Because of the distributed and independent control logic,
router can be configured to fulfil these requirements with-
out any extra effort by simply removing the extra hardware.
Thus the architecture is fully optimized for any number of
I/O ports. The number of I/O ports can be increased to any
number by simply duplicating the hardware on input side
and increasing the crossbar size on output side. At the same
time, the buffer utilization is increased which significantly
reduces the new buffer requirements.

The proposed architecture can be integrated into the ex-
isting automated NoC design flow without requiring extra
effort. An automated design flow can utilize the adopt-
ability feature of this architecture to generate an optimized
router module according to the application and design re-
quirements. Therefore, the proposed architecture can play
a significant role in maintaining the performance of NoC
based systems regardless of the topology.

6 Conclusions

In the current silicon era, NoC is not power and area
efficient although it has higher throughput. Enhancement
in the utilization of idle resources instead of inserting new
ones can make the NoC an ideal solution for current appli-
cations. The designed prototype is based on parameterized
and synthesized components which include FIFO’s, input
and output controllers, buffer allocator, output crossbar and
route computation element. Due to the distributed nature of
proposed architecture, increasing the number of ports is not
an issue and hence it can be used in the implementation of
a 3D NoC or long-range link insertions [18].
Future work. A real time application can be used to make
the throughput analysis using different available routing
techniques and can be compared with existing router archi-
tectures. Apart from that, different services like multicast
and network monitoring can be introduced for performance
improvement. A domain specific language for another dis-
tributed architecture has recently been introduced in [12].
We foresee that a similar approach can be taken for the fur-
ther development of NoC systems, in order to raise the level
of abstraction towards application layers. The router archi-
tectural features introduced here will be considered for an
extended version of the mentioned DSL.
Acknowledgements. The present work is supported by the
DOMES project funded by the Academy of Finland, project
number 123518/2008.

References

[1] Stratix II Device Handbook 2007, Vol. 1 and 2, Altera.

[2] A. Jantsch and H. Tenhunen (Eds.). Networks on Chip,
Kluwer Academic Publishers, 2003.

[3] A. Kodi, A. Louri, J. Wang. Design of energy-efficient
channel buffers with router bypassing for network-on-
chips (NoCs). Proceedings of International Symposium
on Quality of Electronic Design (ISQED), pp.826-832,
March 2009.

[4] T. Seceleanu. The SegBus Platform - Architecture and
Communication Mechanisms. Journal of Systems Ar-
chitecture (2006), doi:10.1016/j.sysarc.2006.07.002

137



[5] G. Luo-Feng et. all. Design and performance evaluation
of a 2D-mesh Network on Chip prototype using FPGA.
Proceedings of IEEE Asia Pacific Conference on Cir-
cuits and Systems (APCCAS), pp.1264-1267, 2008.

[6] D. Truscan et. all. A Model-Based Design Process for
the SegBus Distributed Architecture. Proceedings of
15th Annual IEEE International Conference and Work-
shop on the Engineering of Computer Based Systems
(ECBS), pp. 307-316, 2008.

[7] D. Cozzi et. all. Reconfigurable NoC design flow for
multiple applications run-time mapping on FPGA de-
vices. Proceedings of the 19th ACM Great Lakes sym-
posium on VLSI (GLSVLSI), pp.421-424, 2009.

[8] James Balfour and William J. Dally. Design tradeoffs
for tiled CMP on-chip networks. Proceedings of the
20th annual international conference on Supercomput-
ing (ICS), pp.187-198, 2006.

[9] K. Keutzer, A. R. Newton, J. M. Rabaey and A.
Sangiovanni-Vincentelli. System-Level Design: Or-
thogonalization of Concerns and Platform-Based De-
sign. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 19, No. 12,De-
cember 2000, pp. 1523-1543.

[10] Khalid Latif, Moazzam Niazi, Hannu Tenhunen,
Tiberiu Seceleanu, Sakir Sezer. Application de-
velopment flow for on-chip distributed architectures.
Proceedings of IEEE International SoC Conference
(SOCC), Sept. 2008, pp. 163-168.

[11] Luca Benini and Giovanni De Micheli, Networks on
Chips., Morgan Kaufmann Publishers, 2006.

[12] Moazzam Niazi, Khalid Latif, Tiberiu Seceleanu,
Hannu Tenhunen. A DSL for the SegBus Platform.
Proceedings of IEEE International SoC Conference
(SOCC), Sept. 2009, pp. 393-398.

[13] M. Coenen et. all. A buffer-sizing algorithm for net-
works on chip using TDMA and credit-based end-to-
end flow control. Proceedings of the 4th international
conference on Hardware/software codesign and system
synthesis (CODES+ISSS), pp.130-135, October 2006.

[14] M. H. Neishabouri, Zeljko Zilic. Reliability aware
NoC router architecture using input channel buffer shar-
ing. Proceedings of the 19th ACM Great Lakes sympo-
sium on VLSI (GLSVLSI), pp.511-516, 2009.

[15] N. Banerjee, P. Vellanki and K.S. Chatha. A Power
and Performance Model for Network-on-Chip Archi-
tectures. Proceedings of the conference on Design,
automation and test in Europe (DATE), pp.1250-1255,
Vol.2, 2004.

[16] Robert Mullins, Andrew West and Simon Moore.
Low-Latency Virtual-Channel Routers for On-Chip
Networks. Proceedings of the 31st Annual IEEE
International Symposium on Computer Architecture
(ISCA), pp.188-197, 2004.

[17] T. T. Ye, L. Benini, G. De Micheli. Analysis of power
consumption on switch fabrics in network routers. Pro-
ceedings of the 39th Design Automation Conference
(DAC), pp. 524-529, 2002.

[18] Umit Y. Ogras, Radu Marculescu. ”It’s a small world
after all”: NoC performance optimization via long-
range link insertion. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, July 2006, pp. 693-
706.

[19] V.Soteriou, R.S. Ramanujam, B. Lin, Li-Shiuan Peh.
A High-Throughput Distributed Shared-Buffer NoC
Router. IEEE Computer Architecture Letters, vol.
8, no. 1, pp. 21-24, Jan.-June 2009, doi:10.1109/L-
CA.2009.5.

[20] W. Hangsheng, L. S. Peh, and S. Malik. Power-
driven design of router microarchitectures in on-chip
networks. Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture (MI-
CRO), pp. 105-116, 2003.

[21] William James Dally, Brian Patrick Towles Principles
and Practices of Interconnection Networks . The Mor-
gan Kaufmann Series in Computer Architecture and
Design, 2004.

[22] Xuning Chen and Li-Shiuan Peh. Leakage power
modeling and optimization of interconnection net-
works. Proceedings of International Symposium on
Low Power Electronics and Design, pp. 9095, 2003.

[23] Ying-Cherng Lan, Shih-Hsin Lo, Yueh-Chi Lin, Yu-
Hen Hu, Sao-Jie Chen. BiNoC: A bidirectional NoC
architecture with dynamic self-reconfigurable channel.
Proceedings of 3rd ACM/IEEE International Sympo-
sium on Networks-on-Chip (NoCS), pp.266-275, May
2009.

[24] Tiberiu Seceleanu, Ville Leppänen, Olli S.
Nevalainen. Device allocation on the SegBus
platform based on communication scheduling cost
minimization. Proceedings of the IEEE International
SOC Conference (SOCC), Sept. 2007, pp. 191-196.

[25] Yassine Aydi, Samy Meftali, Mohamed Abid, Jean-
Luc Dekeyser. Dynamicity Analysis of Delta MINs for
MPSOC Architectures. In Conference internationale
des sciences et = technique de l’automatique (ICM’07),
Sousse, Tunisie, November 2007.

138




