
Improving the Evolutionary Architecting Process for

Embedded System Product Lines

Jakob Axelsson

School of Innovation, Design and Engineering
Mälardalen University

Västerås, Sweden
jakob.axelsson@mdh.se

Abstract—Many industries developing complex products based

on embedded systems rely on architecting as a key activity.

Furthermore, they use product line approaches to find synergies

between their products. This means that they use a base platform

which is adapted to different products, and the architecture of

the product line thus evolves over time. In previous case studies

we have seen that these companies often lack a defined process

for the evolutionary architecting of these product lines. The

contribution of this paper is to present such a process, which

matches key characteristics of mature architecting practices. It is

also discussed how this process compares to observations in

industry.

Keywords— architecture, evolution, process, embedded systems,

product lines.

I. INTRODUCTION

In many companies developing technical products, such as
the automotive industry, process automation, or tele-
communication, embedded systems and software play an
increasingly important role. The embedded systems have
developed into a large number of computers with distribution
networks and millions of lines of software. This increasing
complexity leads to soaring development costs, and many
companies strive to curb this trend by reusing software and
hardware between products. Often, a product line approach is
applied, where the same platform is used as a basis, with
modifications to fit individual products and customers.

With a multiplicity of products and variants, the
architecture is becoming very important and is a source of
increasing interest for companies developing embedded
systems. The decisions made by architects in the early phases
influence many decisions made later on, and the architecting
decisions are difficult to change further down the process [1].
With a poor architecture, downstream development activities
will thus become much more expensive and time consuming.

We have previously done in-depth studies of the current
architecting practices at a few automotive companies [2][3].
The issues we found were later validated also in other
industrial areas where embedded software and systems play an
essential role. Among the issues, we saw a lack of processes
for architecture development, and the organizations had an

unclear responsibility for architectural issues. Also, there was a
lack of long-term strategy to ensure that legacy does not
negatively impact future decisions, and a lack of methods to
evaluate the business value when choosing the architecture. In
short, the organizations rely on the performance and
knowledge of individuals instead of on processes and methods.

Based on this information collected from industry, we find
it plausible to assume that a mature organization would work
with architecting of embedded systems and software mainly
through stepwise refinement rather than large leaps. We call
this an evolutionary architecting approach, in contrast with the
revolutionary approach focusing on large but rare changes.
Some of these companies state that they never again expect to
start from fresh in their architecting, since it will be too
expensive and complex. Instead, they will continue to refine
their existing products. Some of the companies have tried to
make major revisions of their architecture, but have failed
spectacularly and been forced to revert to evolution of their
existing solution.

The purpose and contribution of this paper is to present our
findings on what such an evolutionary architecting process
would look like. This has a value to industry because we have
seen in our case studies that almost all companies lack a
documented architecting process. Apart from the above case
studies, the results are also based on an in-depth study of the
actual evolutionary practices at an automotive OEM [4], and on
a maturity model for evolutionary architecting that describes
best practices [5].

The paper is structured as follows. In the next section, we
discuss the nature of the evolutionary architecting process and
its desirable characteristics, and also discuss its relation to the
revolutionary process. In Section III, our suggested process for
evolutionary architecting is described in more detail, and in
Section IV, it is compared to the current industrial practice as
observed in case studies. In Section V, related research is
reviewed, and in the final section, the conclusions are
summarized together with suggestions for future work.

II. EVOLUTIONARY ARCHITECTING

In this section, we present the context of evolutionary
architecting as part of the overall product development process,

and also define what constitutes goodness for an evolutionary
process. In other words, we look at the process from the
outside.

A. Process context

The architecting process is closely related to other
development activities, and for embedded systems the overall
product development is often depicted in a V-model, as shown
in Figure 1. The architecting activities are mainly related to the
early design, where customer functions are transformed into
technical systems. In addition, the architects deal with quality
attributes which are non-functional properties of the
architecture, both related to performance of the products and to
things like modifiability over time. They also consider the life-
cycle of the product, including future development, production,
service, and operation.

The interfaces of the architecting process are highlighted in
Figure 2. The triggering input is a change request from product
planning (sometimes called business analysts, or similarly),
usually to add a new function or enhance performance in some
way. Other inputs are from various stakeholders on their needs
and requirements, and the above mentioned quality attributes.
Also, resources (mainly in terms of people) are required. The
principle output is architectural prerequisites to system
developers. These prerequisites are the architectural decisions
that they need to respect in the detailed design, such as
interface definitions, resource constraints, or design rules, and
thus give an engineering context to their development work. In
the figure, stakeholders include not only product planners but
also representatives of all relevant product lifecycle stages as
well as developers, in particular system developers, and testers.

B. Evolution vs. revolution

When a new platform is developed, there is an opportunity
to do a major revision of the architecture. Changes that are
typically introduced only at this time are a new communication
concept, a different structure of the communication networks,
or new basic software in the electronic control units (ECUs).
Between these revolutionary steps, modifications such as the
addition of a new ECU, a reallocation of some application
software between two ECUs, or changing the connection of a
sensor from one ECU to another, often occur.

Customer

function

level

System

level

Component

level

Architecting

Architecture

quality attributes

Figure 1. Development process context.

Architecting

Product

planning

Stakeholders

Resources

System
developers

Change
request

Requirements
Quality attributes

Architectural
prerequisites

People, etc.

Figure 2. Interfaces of the evolutionary architecting process.

Some of the differences between the revolutionary and
evolutionary architecting processes (RAP and EAP) are:

• RAP is done rarely as a defined activity or project,
perhaps once every 5-10 years when a new platform is
introduced and each time with a duration of a few
years. EAP on the other hand is an ongoing process all
the time.

• RAP deals with the architecture as a whole,
considering all the functions and systems together.
EAP usually deals with changes to a singular, or a few,
functions or systems within an existing framework.

• RAP tries to dimension an architecture that can support
many (yet unknown) changes as smoothly as possible
for a long time, whereas EAP tries to implement a
specific and concrete change in a specific architecture
as efficiently as possible (while trying to assure that the
resulting architecture still remains as flexible to future
changes as possible, although this aspect is often less
explicit in practice).

• RAP tries to predict future requirements, which is a
speculative activity dealing with abstract information.
One of the most important parameters is the expected
rate of change which dimensions the flexibility needed.
EAP deals with concrete requirements, functions and
systems. This means that RAP must deal with
uncertainty to a much higher extent than EAP.

With these differences pointed out, it should also be said
that there are situations where some aspects of revolutionary
nature is also conducted within EAP, simply because there is a
need that was not foreseen at the time of the previous
instantiation of RAP.

Many industries are currently heavily influenced by
Japanese practices that are gathered under the label "Lean".
One of the most cited aspects of Lean is kaizen, which stands
for continuous improvement activities. The idea of
evolutionary development is thus not new. However, Lean also
contains the idea of kaikaku, meaning revolutionary change,
and this has not been widely recognized in the western
industry, nor has the interplay between the two been
considered.

Within software development, the relation appears to be the
opposite, with much focus on new development, and less on
continuous improvement.

C. Desired characteristics

When defining the evolutionary architecting process, there
are several characteristics that should be aimed for:

• Efficiency. The process should consume as little
resources as possible, both in the number of architects
needed but also minimizing the involvement of other
stakeholders.

• Effectiveness. The process should deliver results with
maximal value to their users. As can be seen in Figure
2, the main users are system developers, which
indicates that the value created by the architecting
process lies in the architectural prerequisites that has a
large influence on the efficiency of down-stream
development.

• Timeliness. The process should be able to deliver
quality results in due time. To achieve this goal, it is
essential to strive for short end-to-end processing time.
The later architects start their work, the more accurate
information will be available for them to base their
decisions on. Still, they should ensure that they
complete their analysis by the time output is needed by
system developers.

• Balance short-term and long-term. Delivery to system
developers in current projects is important, but a key
role of the architects is also to ensure that the product
line remains a useful asset also for future projects.
Therefore, the architecting process must deal with both
optimizing performance and cost of the system being
developed now, and at the same time strike a balance
with optimizing development efforts of future
instantiations by maximizing modifiability. This means
that strategic planning is an important part of the
process.

• Acceptance. Architecting decisions can sometimes
have a large effect on system development, and
occasionally complicate a certain project to attain long-
term benefits. Therefore, the process must yield results
that are well motivated and understandable, for
developers and projects to accept these decisions. As
pointed out in [6], many architects spend about 50% of
their time communicating with stakeholders.

III. BEST PRACTICE PROCESS

We will now open the box in Figure 2 to look at the
evolutionary architecting process from the inside. An overview
of the process is given in Figure 3. The main activities are:

A. Task planning and prioritization

The evolutionary architecting process is triggered by
change requests originating from product planning, typically
asking for a new customer feature or a performance upgrade.

Task

planning
& prio.

Analyze

req.

Develop

architectural
solutions

Generate
architectural

prereq.

Plan strategic
refactorings

Req.

Task
backlog

Arch.

descr.

Quality

attributes

Stake
holders

System
developers

Product

planning

Architecting

management

Resources

Figure 3. The evolutionary architecting process.

The change requests can arrive at any time, so this activity
is event triggered. As a first step, the architects analyze the
effort needed to deal with the request, and then place the
request in the architectural backlog, which is a queue of
requests waiting to be dealt with. The backlog is in priority
order, and whenever an architect becomes available they pick
the highest priority item in the backlog.

B. Analyze requirements

When an architect picks a change request from the backlog,
the first step is to analyze the different stakeholders’ needs, and
transform these into requirements. In a mature organization,
requirements are stored in a database and are version
controlled, so in this activity architects update the database
with new requirements related to the change request, and
resolve any conflicts with existing requirements that could
affect other products on the product line. Note however that
architects are not concerned with the complete set of product
requirements, but only those that are architecturally significant,
which is a much smaller subsets.

C. Develop architectural solutions

The next activity is to develop an updated architecture that
fulfils the objectives of the change request, while satisfying the
new and old requirements. The main sub-activities are, as
shown in Figure 4:

1) Synthesize architectural alternatives: Given the

architecturally significant requirements, the architects derive

alternative solutions that can be compared for merits. These do

not have to be formally defined and described in all detail, but

could equally be more informal sketches, as long as they

contain the necessary information. The current architectural

description forms a basis for identifying the changes needed in

the evolution.

2) Evaluate architectural alternatives: The alternative

solutions are evaluated based on the requirements, but also on

their effect on the quality attributes.

Synthesize
architectural
alternatives

Evaluate
architectural
alternatives

Verify &
validate;

Risk analysis

Update and
review arch.
description

Req.

Arch.
descr.

Quality

attributes

Figure 4. The actitity to develop architectural solutions.

3) Verification and validation: Verification is performed

to check conformance to requirements, and validation goes

back to stakeholder needs.

4) Risk analysis: Major uncertainties connected to the

architectural decisions are analyzed, together with the

consequences. If these are severe, mitigation actions are

identified. These could be both technical, such as increasing

tolerance in design, or in the form of activities, such as

additional testing.

5) Update and review architectural description: The final

step is to update and review the architecture description with

the new solution. A mature organization uses configuration

management to keep track of different versions of the

architecture description, associated with different products in

the product line, and to allow parallel work by architects

dealing with different change requests simultaneously.
In practice, the development of the architectural solutions

and the previously described activity, analyze requirements,
often overlap in time, and are done iteratively. This is because
what requirements are architecturally significant actually
depends in part on what architectural solution is selected.

D. Generate architectural prerequisites

Whenever there is a need of architectural prerequisites for
system developers on a specific product project, architects
derive those prerequisites from the current architectural
description. This activity is essentially time triggered, based on
the project plans of each product project.

E. Plan strategic refactoring

Refactoring is the process of changing the architecture
without modifying its external behavior in any significant way.
This activity is motivated by the need to make the architecture
optimal over time, so that it can support evolution of the
product line. As an example, after adding a number of features,
parts of the architecture are bound to become bottlenecks that

Task

planning
& prio.

Collect quality

attribute data

Initiate

refactoring
Arch.
descr.

Quality

attributes

Figure 5. The actitity to plan strategic refactoring.

need to be removed by adding more capacity. Refactoring is
planned strategically by monitoring trends in key quality
attributes over time, to predict when they will reach
unacceptable levels. This, together with prognostics of change
request rates, allows identification in due time of refactoring.
This activity is hence mainly time triggered, since strategic
analysis is a recurring activity. It is important to note that
refactoring are here not based on vague wishes of architects,
but founded in facts and measurements which increases the
acceptability of the consequences. Since it deals with
predicting the future, sensitivity analyses are used to assess the
risks associated with wrong estimates.

F. Architecting management

In addition, there is a need of a management process to
coordinate and support architects. This sub-process includes
the following activities:

1) Resource management: Each task dealing with a

change request is assigned an architect who is responsible for

taking it through the process.

2) Progress tracking: Tasks are followed up to ensure that

they follow their plans, but also to gather process performance

data that can be used for further increasing the quality and

performance of the process.

3) Co-ordination: Usually, several change requests are

being processed in parallel by different members of the

architecting team, and this activity synchronizes their work to

ensure that they do not create conflicting solutions. Typically,

a periodic meeting is used for this, and possibly also for the

previous activity.

4) Process development: The management process also is

in charge of the continuous process development efforts to

ensure that the overall evolutionary process remains efficient,

which also entails making process measurements and planning

periodic process reviews.

5) Organizational implications: A final responsibility of

this sub-process is to deal with identifying organizational

implications of architecting decisions. In essence, it is a

consequence of Conway’s law [7], which states that an

organization basically always will produce systems whose

structure is a copy of the organization’s communication

structure. Thus, if the architects identify a need to change the

technical structure, the organization will need to adapt to

remain efficient.

IV. REVIEW OF CURRENT INDUSTRIAL PRACTICES

In this section, we will now relate our proposed process to
what practices we have previously observed about how
evolutionary architecting is done in industry. The empirical
data is somewhat focused on the automotive industry, but also
involves studies from companies in process automation,
telecommunication, defense, and other industries. All in all,
data from 16 companies are used, that were collected in seven
different studies. Five companies occur in several of the
studies, and thus are more influential on our results, where
others only appear once. The data sets and the overlap between
participating companies are shown in Table 1, together with
references to publications describing the studies. In particular,
the first data set is used, since it is the most structured and
detailed set. (It should be noted that the discussion below is
based on the full data from these studies, which is sometimes
more comprehensive than what actually appears in the cited
publications.)

We will now describe our observations for each sub-
process in turn, and also describe what the consequences are of
deviating from our process, in terms of the desired
characteristics indicated in Section II.C above, namely
efficiency, effectiveness, timeliness, balance between short-
term and long-term, and acceptance.

A. Task planning and prioritization

When a new change request arrives, it is necessary to plan
the architecting task. There is evidence that the interface
between the product planning and development organizations
is not always functioning [3], which directly influences the
ability to perform task planning and to prioritize different tasks.
A consequence of this could be reduced efficiency and
timeliness due to long task planning time, but also acceptance
in the results if there is no agreement on what the task actually
is.

B. Analyze requirements

Most of the companies appear to collect stakeholder needs
or requirements in some form. However, in the study reported
in [9], it is noted that almost none of the companies elicited and
documented architecturally significant requirements in an
explicit way, and those requirements were only intuitively
known based on the experience of the architects and
developers. This is also observed in [3], where one of the issues
is the lack of a process for requirements.

In [5], the same pattern is confirmed, where a translation
from stakeholder needs to formal architecture requirements is
almost non-existent, and an analysis of the requirements is
even rarer. Since the requirements are not formalized in the
first place, a natural consequence is that changes are not
managed in a structured way, and we have not seen any
organization that ensures traceability from requirements to
architectural solutions.

TABLE I. DATA SETS AND COMPANIES INVOLVED.

Data

set
Ref

Companies

A B C D E No. of other

1 [5] X X X

2 [2] X

3 [3] X X

4 [8] X X X X X 1

5 [9] X X 8

6 [4] X

7 [10] X X X X 2

In the same study, some of the companies claim that they
make trade-offs between requirements, even though they are
informal. However, a further issue identified in [3] is that the
desired balance between cost, time, and quality is unclear,
which is one of the most fundamental trade-offs of all.

There are severe consequences of these weaknesses in the
requirements process. Even though it can be very efficient to
rely on expert individuals who work informally, one must bear
in mind that the process discussed here is a repetitive one. This
means that the requirements collected in the processing of one
task will be input to other tasks in the near or distant future.
Relying on the memory of individuals in that situation can lead
to huge effectiveness problems where solutions are produced
that do not match the full set of requirements. Also, timeliness
can be poor, or at least very variant, if occasionally architects
need to go back and elicit old requirements that were already
known but forgotten.

C. Develop architectural solutions

We would have expected that the process where
architectural solutions is generated would be fairly strong in
practice since this is in some sense the core activity, but
actually there are several areas where improvements can be
made. We will now look into each area in turn.

1) Synthesize architectural alternatives: It is rare to work

with more than one alternative solution in a structured way

[10]. Instead, organizations appear to develop one solution,

check if it is good enough, and if not generate a new

alternative. If the right solution is actually found, this could be

very efficient, but there is a large effectiveness risk in that the

architects lock their thinking in a sub-optimal solution at an

early stage.

2) Evaluate architectural alternatives: All our studies

agree on the fact that companies do usually not evaluate the

proposed architectural solutions in a structured way [8][9][10].

In fact, it has been observed that methods are lacking for

evaluating the business consequences of architectural

decisions [3] and that decisions are made based on experience

and gut feeling [2]. Also, there is a lack of methods for trade-

offs between short-term cost and long-term flexibility [4].

Many organizations do not even have quality attributes

defined [5], which would be an essential input in an

evaluation.
Producing solutions without structured evaluation is very

much like looking for a lost key under the lamppost. The
solution has probably been produced driven by some concerns,
and the architects’ gut feeling is likely to only confirm that this
is a good solution if other attributes are not considered.

Again, one could argue that it is efficient to save time by
not doing elaborate analyses, but effectiveness is at stake. Also,
acceptance by stakeholders outside the core architecting team
is likely to be low, because they might value other properties
higher. Finally, this is one key activity to balance short-term
and long-term value of the architecture, and if this is not
analyzed properly, it is likely that short-term cost will be
prioritized, leading to costly rework on the architecture, or
missed business opportunities, further along.

3) Verification and validation: Once a solution has been

crafted, it is necessary to check that it fulfills the given

requirements (verification), and also that it meets stakeholder

needs (validation). Given the poor status of formal

requirements, it comes as no surprise that companies seldom

perform verification of the architecture, and that they lack

routines for it. They are however somewhat better at

validation, usually through reviews with stakeholders, but

again routines are missing [5].
We believe it would be very beneficial for these companies

to create routines for their quality assurance activities. When
they are done in an ad-hoc fashion, they do not only reduce
effectiveness but also efficiency, since it is hard to work with
process improvement without a standard way of doing things.
Also, a standard procedure tells everyone involved what their
role and task is, and improves planning. Further, getting
stakeholders routinely involved in validation reviews can build
acceptance in the result at an early stage, or alternatively
provide rapid feedback on needed changes.

4) Risk analysis: We have found no company that has a

defined risk management strategy connected to their

architecting process [5]. Occasionally, risk analysis and

mitigation is performed, but this appears to be based more on

individuals than on standard procedures. The lack of risk

management can have large effects on timeliness, since the

consequence of a risk occuring is often that additional

activities are needed.

5) Update and review architectural description: Most

companies document their architecture [9], and they have

well-defined formats for doing so [5]. However, there is still

room for improvements when it comes to routines for

versioning, quality reviews of the description, and for ensuring

that the documentation actually matches the product as it is

built in the end. It is not uncommon in real-life situations that

late changes are necessary, and in a stressful situation time is

not always spent on going back and updating the architectural

description. The consequence of this could be that later

evolutions of the architecture starts with a faulty view of what

the product looks like.

D. Generate architectural prerequisites

Once the architectural solutions have been generated,
system developers need to be given prerequisites for their
work. We do not have sufficient evidence on how this is done
over a wide range of companies. However, it appears to be
common that system developers are given a rather thick
documentation of the complete architecture, and it is left to
them to figure out what parts are relevant for them. This can be
very inefficient since a lot of people need to digest a lot of
documentation to find a small portion that is of interest. The
practice of releasing a complete architecture also means that
the processing time for the architecting team before they can
deliver is long and this affects timeliness. It is a well known
fact that processing of large batches hampers flow and that
small batches are preferable. We would therefore suggest that
organizations find ways of generating dedicated architectural
prerequisites for each development team when they need it, i.e.
basing the process on “pull” from the developers rather than
“push” from architects.

We have also seen a tendency that architectural decisions
are poorly motivated and that it is difficult to reach consensus
[3] which seems to indicate that acceptance from system
developers is not always satisfactory.

E. Plan strategic refactoring

We have found no companies that do refactoring as a
standard routine, but instead they rely on ad hoc practices [9].
Many organizations try to identify improvement opportunities
and use these to trigger redesign, but it is not an
institutionalized procedure [5]. As noted above, many
companies lack defined quality attributes, but even in
organizations that have defined attributes, they do not follow
how these change over time [4]. Instead of observing trends
and extrapolating when a refactoring is necessary, they base
these changes on the current situation. This leads to a reactive
behavior, where insufficient time is available to plan properly.

A good refactoring process is instrumental in striking a
balance between short-term and long-term value since it
removes bottlenecks that will cause problems in the future.
Basing refactoring decisions on data is also a way of increasing
acceptance in these decisions. It is today often difficult for
architects to gain management buy-in in refactoring activities
which are essentially investments in the future with a fuzzy
customer value. Also, for system developers, refactoring can
cause changes and added work to their systems without any
direct benefit for them, so this group of stakeholders also needs
convincing arguments why it is necessary.

However, it is perhaps also one of the more difficult areas
to improve in since there is a lack of established techniques.
More research is needed to provide good methods for
evaluation, but it is also a question of practitioners to define
good quality attributes that can be linked to actual data. Far too
often, architects use very general attributes that cannot be
measured at all.

F. Architecting management

Architecting management is an area which has not been
given very much attention in research, but we believe it is a key

enabler for improvement. As a starting point, these managers
need to ensure that explicitly defined processes for architecting,
such as the one proposed in this paper, are institutionalized.
There is clear evidence from our studies that such defined
processes are absent in many organizations [3][4][5].

1) Resource management. Almost all companies we have

encountered have a team more or less dedicated to

architecting, and the role of the architects is at least informally

defined. We do not have sufficient evidence on exactly how

resources are allocated to different tasks, but our impression is

that it is not a big issue.

2) Progress tracking. Many organizations have ways to

qualitatively follow up progress of the different architecting

tasks, often through a weekly meeting [4]. This meeting is also

used to take corrective actions when the task is deviating from

its plan. However, the organizations do not have routines for

handling such deviations, and they do not systematically

analyze the root causes and remove these [5]. This affects the

ability to consistently deliver quality, and thus is a threat to

effectiveness.
Lacking are also more quantitative approaches to progress

tracking [5]. This is important as an input to process
improvement which can raise efficiency. It would be good to
also follow up process adherence, but this is difficult since
many organizations do not have a described process to use as a
baseline.

3) Co-ordination. As mentioned previously, a weekly

meeting is often used to co-ordinate parallel activities of

different architects. This is a practice which appears to work

well. However, there could be room for improvement, e.g. by

using configuration management tools more systematically to

discover when architects are working on the same part of the

architecture.

4) Process development. We have seen few examples of

organizations that work systematically to improve their

architecting processes [5]. Again, the lack of a process

description is an explanation for this. To some extent, the

organizations do assess and plan process improvement needs,

usually in an ad hoc fashion through a brainstorming session.

However, we are not aware of any organizations that collect

performance data on their architecting processes, and

consequently they deny themselves of all possibilities to do

statistical analyses for process improvement. This is a pity,

because the rate of change requests flowing through the

evolutionary process is often sufficient to make such an

analysis meaningful. We believe that great benefits in process

efficiency could be gained with a limited effort by improving

these practices.
Many of the organizations have identified the need for

training in their ways of working, and provide education for
both architects and stakeholders. To some extent, this could
reduce the consequences of the missing process descriptions,
and also raise acceptance among stakeholders through a better
understanding of the role of the architecture.

5) Organizational implications. Occasionally, changes in

the architecture should also lead to changes in the organization

to allow efficient development. However, this is an area

where, in our experience, many companies have difficulties,

and the organizational changes lag substantially in time. One

explanation for this could be that the architecting teams are

placed on a fairly low level in the organizations, usually

parallel to the individual system development teams [10].

Having some kind of direct link to upper management for

these issues would be beneficial, instead of having to go

through managers that are likely to be personally affected by

the proposed changes.

V. RELATED WORK

A generic process for creating and maintaining
architectures is presented by Hofmeister et al. [11]. That
process is based on a comparison of five different software
architecture design methods. However, this process and most
other in literature only deal with the core architectural design
work, but the framework showing how to interact with other
processes and how to resolve strategic planning is lacking.

It is also interesting to compare the evolutionary
architecting process with Agile practices for software
development. Although there are similarities, such as the
emphasis on iterative completion of small steps at a time rather
than long-lasting development of large chunks, or the use of a
backlog, there are also differences that are related to the nature
of the deliverable. Since architects produce, in the end,
documentation to be read by other developers, rather than
executable code, things like daily builds or test-driven
development makes less sense. Also, Agile teams work
intensively together, whereas architects tend to work in parallel
on different change requests, making co-operation less
intensive. Instead, architects communicate vividly with other
roles outside the architecting team, often serving as translators.

A different approach is the work of the Software
Engineering Institute (SEI) on a framework for software
product lines [12]. It consists of a large catalogue of practices
and patterns that an organization should follow, according to
the authors, to be successful in software product lines. The role
of the architecture is emphasized, but the scope is much wider
than this, addressing an entire enterprise. Our approach is more
limited in scope, focusing on architecting without any
presumptions about other areas, and this is since we believe
that an effort to improve architecting has a value, even without
reforming an entire company. Also, the SEI approach is relying
on long-term planning and predefined rules to evolve the
product line assets, making it fairly heavy to use and intensive
in secondary documentation. Our view is in this sense more
similar to Agile, being much more lightweight and lean, and
giving the architects freedom to modify the platform when
needs arise. The architects thus act reactively on pull from
product development rather than being pushed by plans.

From SEI come also the evaluation methods ATAM [13]
and CBAM [14]. However, these methods are not so widely
used in practice, and we suspect that they would be too

resource intensive to fit in the rapid evolutionary process that
we envision.

VI. CONCLUSIONS

In this paper, we have outlined an evolutionary process for
architecting embedded system product lines which goes
beyond the scope of previously presented processes. We
believe this process to be well adapted to the needs of many
industries, such as those we have previously observed in
various case studies. In particular, we have seen weaknesses in
areas such as architectural requirements, evaluation of
architectural solutions, risk management, refactoring, and
process improvement.

One of the root causes for these deficiencies in current
practice is the lack of an explicit process description for
evolutionary architecting. Our proposed process can serve as a
starting point for organizations, and once in place, it can be
subjected to systematic process improvement and hence be
adapted to the particular circumstances of the company.
Through the process, industries can integrate architecting into
their natural flow of product development based on product
lines, giving benefits such as faster delivery of architectural
prerequisites to the system developers, and less rework due to
poor modifiability. Ultimately, the revolutionary approach may
never have to be used again.

There are several opportunities for future work within this
area. Above all, we would like to gather more data on the
effects over time of a full implementation in industry of this
process. Also, there is room for identifying new analysis
methods to be used in some of the steps, in particular for
dealing with strategic refactoring. Uncertainty is a fact of life in
architecting, and a deeper understanding of what kinds of
uncertainty occurs and how its effects could be minimized is
valuable. Possibly, this could lead to the introduction of
additional feedback loops in the process. Finally, a deeper
analysis is needed of the cost of making the process
improvements we suggest. We believe many of the changes are
not necessarily costly, but it is always a question of stopping at
the right level, and not to over-engineer the routines. Changes
should be incorporated gradually, and be accompanied by
continuous monitoring and process improvement with focus on
efficiency and removing wastes. In the transition from an ad
hoc to a structured process, the maturity model presented in [5]
can serve as a valuable guide that suggests which step to take
next.

REFERENCES

[1] Smith, P. G. and Reinertsen, D. G. Developing Products in Half the

Time: New Rules, New Tools. John Wiley, 1998.

[2] Wallin, P. and Axelsson, J. A case study of issues related to automotive
E/E system architecture development. In Proc. 15th IEEE Intl. Conf. on
Engineering of Computer Based Systems, pp. 87-95, Belfast, Northern
Ireland, March 2008.

[3] Wallin, P., Johnsson, S., and Axelsson, J. Issues Related to Development
of E/E Product Line Architectures in Heavy Vehicles. In Proc. 42nd
Hawaii International Conference on System Sciences, Hawaii, January
2009.

[4] Axelsson, J. Evolutionary architecting of embedded automotive product
lines: An industrial case study. In Proc. Joint 8th Working IEEE/IFIP
Conference on Software Architecture & 3rd European Conference on
Software Architecture, Cambridge, UK, Sept. 14-17, 2009.

[5] Axelsson, J. Towards a Process Maturity Model for Evolutionary
Architecting of Embedded System Product Lines. In Proc. 4th European
Conference on Software Architecture, Vol. 2, Copenhagen, Denmark,
August, 2010.

[6] Kruchten, P. What do software architects really do? Journal of Systems
and Software, vol. 81, pp. 2413-2416, 2008.

[7] Conway, M. E. How do committees invent? Datamation, April 1968.

[8] Wallin, P., Fröberg, J., Larsson, S., and Axelsson, J. Practitioners’ views
on key issues and their solutions in system and software architecture
development. Unpublished.

[9] Ozkaya, I., Wallin, P., and Axelsson, J. Utilizing Software Architecture
for Managing System Evolution – Observations from Practitioners. In
Proc. 5th Workshop on Sharing and Reusing Architectural Knowledge,
Cape Town, May 2010.

[10] Gustavsson, H. and Axelsson, J. A Comparative Case Study of
Architecting Practices in the Embedded Software Industry. In Proc. 18th
IEEE International Conference on Engineering of Computer-Based
Systems. Las Vegas, April 2011 (in press).

[11] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, and P.
America, Generalizing a Model of Software Architecture Design from
Five Industrial Approaches. In Proc. 5th Working IEEE/IFIP Conference
on Software Architecture, pp. 77-88, 2005.

[12] Northrop, L. M. SEI's Software Product Line Tenets. IEEE Software, p.
32-40, July/August, 2002.

[13] R. Kazman, M. Klein, and P. Clements. ATAM: Method for architecture
evaluation. Technical report, Carnegie Mellon Software Engineering
Institute, CMU/SEI-2000-TR-004.

[14] R. Kazman, J. Asundi, and M. Klein. Making architecture design
decisions: An economic approach. Technical report, Carnegie Mellon
Software Engineering Institute, CMU/SEI-2002-TR-035.

