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Abstract. As system failure of mission-critical embedded systems may
result in serious consequences, the development process should include
verification techniques already at the architectural design stage, in order
to provide evidence that the architecture fulfils its requirements. The
Architecture Analysis and Design Language (AADL) is a language de-
signed for modeling embedded systems, and its Behavior Annex defines
the behavior of the system. However, even though it is an internationally
used industry standard, AADL still lacks a formal semantics and is not
executable, which limits the possibility to perform formal verification.
In this paper, we introduce a formal analysis framework for a subset of
AADL and its Behavior Annex, which includes the following: a denota-
tional semantics, its implementation in Standard ML, and a graphical
Eclipse-based tool encapsulating the implementation. We also show how
to perform model checking of AADL properties defined in the Compu-
tation Tree Logic (CTL).

1 Introduction

Mission-critical embedded systems play a vital role in many applications, like air
traffic control and aerospace applications. As system failures may result in serious
consequences, the development process should include verification techniques, in
order to provide evidence that the system’s architecture fulfills its requirements.
The architectural design phase is of high practical interest, since architectural
mistakes that cause a system to fail certain requirements are hard and expensive
to correct in later development phases.

The Architecture Analysis and Design Language (AADL) [1] is a standard
of the Society of Automotive Engineers (SAE3), and is based on MetaH [2] and
UML [1]. AADL is designed for modeling both the hardware and the software
of embedded systems. The standard includes several annexes, out of which the
Behavior Annex [3] provides means of describing the behavior of the model.

3 SEA is presented at http://www.sae.org.



Even if appealing and already adopted by industry, AADL still lacks a formal
semantics, which is particularly important for the design of mission-critical em-
bedded systems, since failures may cause serious damage to people or valuable
assets. Such systems are often required to pass certification processes in order
to provide sufficient evidence about their safety. Moreover, AADL models are
not executable, which limits the possibility to formally analyze their safety and
liveness properties.

Consequently, it is highly desirable to overcome such limitations of AADL.
To do so, one has to define AADL formally, as any attempt to achieve formal
verification requires a precise mathematical method. It is also beneficial that
the analysis techniques based on the semantics are supported by tools that are
integrated into an AADL tool chain; this would make it easier for an user with
limited knowledge of the underlying formalism, to perform, e.g., model checking
of AADL models.

In this paper, we introduce a formalization of the meanings of a subset of
AADL and its Behavior Annex, in denotational style. Our choice of a denota-
tional style for AADL structures is justified by the simplicity of the semantic
models, which is known to improve generality and ease of reasoning [4].

To complete our analysis framework, we also describe the Standard ML im-
plementation that forms the basis of our AADL verification tool, called the ABV
tool [5]. The semantics as well as its implementation and CTL verification are
illustrated through a small example.

The results of this contribution, together with the recently developed verifi-
cation tool ABV, define our AADL formal analysis framework, which contains
the following:

– A denotational semantics of a subset of AADL and its Behavior Annex,
which also includes model checking of properties defined in CTL.

– The semantics implemented in Standard ML, and a parser translating the
model defined in AADL and its Behavior Annex, as well as a subset of
the CTL property specification, into a format (in Standard ML) suitable as
input.

– The ABV model checker [5] that encapsulates the semantic implementation
and the parser in a graphical user interface based on the Eclipse Framework.
With the help of the tool, the user is able to verify a subset of CTL properties
of the model without knowledge of the underlying formalism. The tool has
been recently introduced and is out of the scope of this paper.

The rest of this paper is organized as follows. Section 2 overviews prelimi-
naries, describing, among other things, the syntax of the subset of AADL and
its Behavior Annex that we focus our work on. Section 3 defines the information
gathering part of the denotational semantics. In Section 4, the AADL verification
by model checking is described, at a high-level. Finally, in Section 5 we discuss
related work, before concluding the paper in Section 6.



Listing 1 The AADL syntactic rules.
+ one or more, * zero or more, ? zero or one
Model ::= System+ SystemImpl
System ::= system Identifier Features? Annex? end ;
Features ::= features Feature+

Feature ::= Identifier : in event port ;
| Identifier : out event port ;

SystemImpl ::= system implementation Identifier .
Identifier Subcomponents? Connections?
end ;

Subcomponents ::= subcomponents Subcomponent+
Subcomponent ::= Identifier : system Identifier ;
Connections ::= connections Connection

Connection ::= event port Identifier . Identifier ->
Identifier . Identifier ;

2 Preliminaries

In AADL, there are two kinds of systems: the system that defines the port in-
terface and an optional behavior annex, and the system implementation that
defines the subcomponents and the port connections between them. In this pa-
per, we have chosen a subset of the AADL model that includes at least one
system and exactly one system implementation, which occurs at the end of the
definition. The subcomponents of the system implementation are instances of
earlier defined systems (equivalent to objects and classes in object-oriented lan-
guages), and the connections are made between the input and output ports of
the subcomponents, not the systems. The syntax of our AADL subset is given
in List. 1.

In order to increase the expressiveness of AADL, it is possible to add annexes.
One of them is the Behavior Annex [6,7], which basically models an abstract state
machine [8]. Each component of the model describes its logic, by defining a be-
havior state machine, which consists of the parts State Variables, Initializations,
States, and Transitions. The corresponding syntax is given in List. 2.

CTL is a branching-time temporal logic, that is, a language in which time
is modeled as a tree structure with a non-determined future. There are several
different paths; any one of them may be realized. There are several quantifiers
and operators available in CTL; out of them, we will use the universal, all, and
existential, exists, quantifiers over paths, together with the global and eventually
path-specific operators.

In an AADL model, identifiers are bound to values that need to be stored
for further use. Therefore, we need to utilize the data types list, table, set, and
tree to store the values (see Björnander et al. [9] for their complete semantic
definitions).



Listing 2 The Behavior Annex syntactic rules.
Annex ::= annex Identifier {** StateVariables?

Initializations? States? Transitions? **} ;

StateVariables ::= state variables StateVariable+
StateVariable ::= Identifier : integer ;
States ::= states State+

State ::= Identifier : initial state ;
| Identifier : state ;

Initializations ::= initializations Action+
Transitions ::= transitions Transition+

Transition ::= Identifier -[ Expression ]-> Identifier ;
| Identifier -[ Expression ]-> Identifier
{ Action+ }

Action ::= Identifier := Expression ;
| Identifier ! ;

Expression ::= Identifier
| Expression ArithmeticOperator Expression

ArithmeticOperator ::= + | − | ∗ | / |

3 The Semantics of AADL Structural Elements

In this section, we define the semantics of the subset of AADL and its Behavior
Annex described in Section 2. We formalize the meaning of the latter, by con-
structing mathematical objects, called denotations (see functions in List.s 4 and
5). The denotational semantics consists of the mathematical models of meanings
(model JS SI K in List. 4 and system JS1 S2K and system Jsystem I SB end ;K in
List. 5), and the corresponding semantics functions, respectively (model : Model
→ Table in List. 4 and system : System → Table in List. 5).

In our approach, the semantics can be divided into three phases: information
gathering, state space generation, and state space tree evaluation. This section
describes the information gathering phase briefly, since it is a rather straightfor-
ward process. The other phases are described in more detail in Section 4.

Formally, an AADL system is a tuple 〈S, s0, I, V ar, Pin, Pout, T 〉, where S is
a non-empty finite set of states and s0 ∈ S is a compulsory initial state. V ar is a,
possibly empty, finite set of state variables. Pin and Pout are the possibly empty
finite sets of input and output ports, respectively. I ⊆ (V ar×Expr) ∪ Pout is a
possibly empty set of initializations. T ⊆ S ×Expr× S ×A is a possibly empty
set of transitions, where A ⊆ (V ar×Expr)∪Pout is a possibly empty action set,
and Expr can be a state variable, a constant value, or an arithmetic expression.
The input port expression is of Boolean type.

The values of a system are formally defined in List. 3. As there can only be
one system implementation, its subcomponents are stored in the subcomponent
list.

In an AADL model, identifiers are bound to values that need to be stored for
further use. In order to store these values, several tables and lists are needed:



Listing 3 The Values of a System
Connection = Integer × Identifier ×

Integer × Identifier
Expression = value Value + identifier Identifier +

eq (Expression × Expression) +
add (Expression × Expression) +

Action = assign (Identifier × Expression) +
send Identifier

Transition = Identifier × Expression ×
Identifier × List

System = Integer × Table × List × List
Value = state Integer + boolean Boolean +

integer Integer + action Action +
transition Transition + system System

– The system table holds the systems of the model. The information of each
system is stored in the tuple 〈state, symbol table, init list, trans list〉, where
state is the current state of the annex (initialized to zero, representing the
initial state), symbol table holds the input and output ports of the system,
as well as states and state variables of the annex, init list holds the list of
initializations, and trans list holds the list of transitions. For each system,
its tuple is associated with the name of the system in the system table.

– The subcomponent table and subcomponent list hold the subcompo-
nents of the system implementation. They hold the same subcomponents -
the table is used to look up states and state variables in the CTL property
specification (see Section 2), and the list is used to keep track of connections
between the subcomponents.

– The connection list holds the connections between the subcomponents. In
order to identify the sending and receiving subcomponents, it uses the index
in the subcomponent list above.

– The local system table - each system has a symbol table, holding the input
and output ports as well as the states and state variables of the behavior
annex. Each system also holds a local initialization list and transition
list. This information is originally stored for each system and copied to the
subcomponents instantiating the systems.

For each syntactic rule of Section 2, one corresponding semantic rule is defined.
The semantic rules of this section work in a way similar to a traditional compiler;
they gather information that is stored in the structures listed above. Due to
space limitation, we confine ourselves to showing the model (List. 4), and system
(List. 5) rules, here (see Björnander et al. [9] for the complete definitions of the
rules).

All observably distinct elements have distinct denotations in form of semantic
functions, which ensures the soundness of the set of semantic rules. The semantic
functions are structure-preserving functions, such that each morphism of the



Listing 4 The model semantic function.
model : Model → Table
model JS SI K =

let system table = system S in
system impl SI system table

Listing 5 The system semantic function.
system : System → Table
system JS1 S2K =

let system table1 = system S1 in
let system table2 = system S2 in

table merge system table1 system table2

system Jsystem I SB end ;K =
table set I (system body SB) table empty

semantic model is a denotation of an architectural element, which ensures the
completeness of the same rule set.

4 Verification by Model Checking

In this section, we describe the verification of CTL properties of AADL models.
The main difference between this section and Section 3 is that in Section 3, the
semantic rules have been used to gather information about the model, while we,
in this section, utilize that information to perform model checking.

The main idea is to generate a state space tree (a state space is the sum
of the states of all the annexes of the system, technically, a subcomponent list)
that becomes traversed with regard to the CTL property specification.

4.1 Tree Generation

In this section, we generate the state space tree that is initially made of one single
node holding the initial state space, that is, the subcomponent list in its initial
state. The traverse subcomponent list (List. 7) traverses the subcomponents, and
for each subcomponent traverse transition list (List. 8) traverses the transitions.
For each transition that can be taken, execute transition (List. 9) updates the
state space so that the transition is taken, and creates a new sub-tree with the
new state space as root value. Then, it attaches the sub-tree as a child tree to
the main tree. Finally, it calls generate tree (List. 6), which recursively continues
to create sub-trees until no more transitions can be taken. However, in order to
prevent infinite tree generation, the generation process is aborted if a previous
state space reoccurs.



Listing 6 The generate tree semantic function.
generate tree : List × List × Set × Tree → Tree
generate tree subcomp list conn list set1 main tree =

if not (set exists subcomp list set1) then
let set2 = set add subcomp list set1 in
let sub tree1 = tree create subcomp list in
let subcomp list2 = traverse connection list

conn list subcomp list in
let sub tree2 = traverse subcomponent list

subcomp list2 conn list set2 sub tree1 in
tree add child sub tree2 main tree

else main tree

Listing 7 The traverse subcomponent list semantic function.
traverse subcomponent list : Integer × List ×

List × Set × Tree → Tree
traverse subcomponent list inst index subcomp list

conn list set tree1 =
if inst index < (list size subcomp list) then
let system (state, symbol table, init list,

trans list) = list get inst index subcomp list in
let tree2 = traverse transition list trans list

inst index subcomp list conn list set tree1

in traverse subcomponent list (inst index + 1)
subcomp list conn list set tree2

else tree1

4.2 Tree Evaluation

When the state space tree of Section 4.1 has been generated, it becomes eval-
uated against the CTL property specification. The evaluate children (List. 10),
and evaluate tree (List. 11) semantic functions call each other alternately. Ini-
tially, evaluate tree is called with the root node; it calls evaluate children for its
children, which in turn call evaluate tree for each of the children. These alter-
nated calls continue until the property specification has been satisfied, or a leaf
in the tree has been reached.

The evaluate children traverses the children of the root node of a tree. If there
are no children, we have reached a leaf of the tree. Different values are returned,
depending on the depth operator. In case of the global operator, the property
has to hold for each node on the path from the root node to the leaf. Therefore,
the and operator is applied to the node property values, and true is returned
at the end of the path. In case of the eventually operator, it is enough that one
property holds for the path from the root node to the leaf node. Therefore, the
or operator is applied to the node property values, and false is returned at the
end of the path.



Listing 8 The traverse transition list semantic function.
traverse transition list : List × Integer × List × List ×

Set × Tree → Tree
traverse transition list trans list inst index subcomp list

conn list set tree1 =
if (list size trans list) > 0 then
let (head, tail) = list split trans list in
let tree2 = execute transition head inst index

subcomp list conn list set tree1 in
traverse transition list tail inst index

subcomp list conn list set tree2

else tree1

If the root node of the tree has one child, we simply evaluate it by calling
evaluate tree. However, if it has more than one child, we need to examine the
quantifier. In case of the all quantifier, the property has to hold for all child
nodes, so we apply the and operator between the property value of the first
child node and the evaluation of the rest of the children. In case of the exists
quantifier, the property has to hold for only one of the children, meaning that
we instead apply the or operator.

The evaluate tree semantic rule evaluates the property of the root node of
the tree, and compares it with the children. If we assume the global operator,
the property has to hold for the root node, and all the nodes on the path to the
leaf nodes. In case of the eventually operator, it is enough if the property holds
for one of them.

The evaluate node semantic rule calls evaluate node, which is relatively sim-
ple, and therefore has been omitted due to space limitations.

Example 1 Let us investigate the AADL model of List. 12 and 13 (originally
introduced in [5]). There are two subcomponents: subsystem1 and subsystem2.
For each subcomponent, traverse transition list traverses the transactions and,
for each transition that is ready to be taken, it calls execute transition. Finally,
execute transition calls generate tree recursively, with the new child node as pa-
rameter, in order to attach child nodes recursively. That is, each taken transition
represents a new state space that is dealt with by generate tree, as it has been
the initial state space. This call chain continues until no more transitions are
ready to be taken, or until a previous state space reoccurs (see Fig. 1 for an
illustration of the process. ut

5 Related Work

The approach that we feel is closest to ours is of Ölveczky et al. [10]. The
authors have defined a translational semantics from AADL into their object-
oriented language Maude, which includes components, port connections, and



Listing 9 The execute transition semantic function.
execute transition : Value × Integer × List × List ×

Set × Tree → Tree
execute transition trans value inst index subcomp list1

conn list set main tree =
let transition (source state, guard expr,

target state, action list) = trans value in
let record1 = table get inst index subcomp list in
let system (state, symbol table1, init list,

trans list) = record1 in
let (boolean is guard, symbol table2) =

evaluate guard expr symbol table1 in
if (state = sourceState) and is guard then
let symbol table3 = traverse action list

init list symbol table2 in
let record2 = system (target state,

symbol table3, init list, trans list)
let subcomp list2 = list set inst index

record2 subcomp list1 in
generate tree subcomp list2 conn list

set main tree
else main tree
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Fig. 1: The Main System States

the Behavior Annex. The AADL components and their subcomponent instances
are translated into Maude classes and objects. Maude is capable of simulations,
and model checking of Linear Temporal Logic (LTL) [11] for embedded system
models. However, the authors have chosen an AADL subset that differs from the
subset of this paper.

An approach that is also close to ours is the formal semantics defined by Boz-
zano et al. [12]. It is centered on the concept of components. For each component,
its type, interface, and implementation are given. The component interaction is
described by a finite state automaton [8]. Their work includes model checking.
However, it is centered around detection of errors, as opposed to the semantics
of this paper that focuses on system behavior.

Another interesting approach is proposed by Yang et al. [13]. The authors in-
troduce a formal semantics for the AADL Behavior Annex using Timed Abstract
State Machine (TASM) [14]. The authors give the semantics of the AADL de-
fault execution model, and formally define some aspects of the Behavior Annex.
In their translation, each behavior annex is mapped into a TASM main machine.



Listing 10 The evaluate children semantic function.
evaluate children : TreeProp × List × WidthOp ×

DepthOp → Boolean
evaluate children TP child list quantifier operator =

case (list size child list) of
0 ⇒ case operator of

global ⇒ true
| eventually ⇒ false

| 1 ⇒ evaluate tree TP (list get 0 child list)
quantifier operator

| default ⇒ let (head, tail) = list split
child list in

case quantifier of
all ⇒ (evaluate tree TP head

quantifier operator) and
(evaluate children TP tail
quantifier operator)

| exists ⇒ (evaluate tree TP head
quantifier operator) or

(evaluate children TP tail
quantifier operator)

However, even though TASM is a user-friendly and powerful simulation tool, it
does not support model checking. Instead, they propose further mapping of the
TASM state machine into UPPAAL [15].

We finally mention Abdoul et al. [16], who present an AADL model transfor-
mation, and provide a formal model for model checking activities, covering the
three main aspects: structure, behavior description, and execution semantics.
The authors extend the AADL meta-model in order to improve the system be-
havior, and they define a translation semantics into the IF language [17], which
is a language for simulation of systems and processes. However, the system be-
havior is not defined in the Behavior Annex, but rather in the IF internal format.

6 Conclusions and Further Work

In this paper, we have presented a formal analysis framework, consisting of a
denotational semantics for a subset of AADL and its Behavior Annex, and an
implementation of the semantics in Standard ML. The framework is completed
by our recently developed graphical Eclipse-based tool, ABV, [5], in which one
can model-check AADL descriptions, against CTL properties, in a user-friendly
way.

Here, we have given a precise meaning, in denotational style, to a subset of
AADL and its Behavior Annex, with a straightforward implementation in Stan-
dard ML. This contribution provides an expressive enough formal framework for
the formalization of the AADL constructs that we have looked at. An advantage



Listing 11 The evaluate tree semantic function.
evaluate tree : TreeProp × Tree × WidthOp ×

DepthOp → Boolean
evaluate tree PS tree quantifier operator =

case operator of
global ⇒ let (single subProp) = PS in

(is true (evaluate prop spec subProp tree))
and (evaluate children PS
(tree get children tree) quantifier operator)

| eventually ⇒ let (single subProp) = PS in
(is true (evaluate prop spec subProp tree))
or (evaluate children PS
(tree get children tree) quantifier operator)

Listing 12 The Main System.

system implementation MainSystem . impl
subcomponents

subsystem1 : system Subsystem1 ;
subsystem2 : system Subsystem2 ;

connections
event port subsystem1 . Cr i t i c a lLeave −>

subsystem2 . C r i t i c a lEn t e r ;
event port subsystem2 . Cr i t i c a lLeave −>

subsystem1 . C r i t i c a lEn t e r ;
end MainSystem . impl ;

of our approach is the fact that the implementation in Standard ML maps the
elements of the semantic model straightforwardly.

There are several ways to continue the work of this paper. One obvious
approach is to optimize the algorithms behind the semantics when it comes to
state space generation and property specification evaluation. It is possible to
evaluate the state space ”on the fly”, that is, the evaluation should take place
during the state space generation. Such a technique has already proven efficient
in other model-checking tools, including SPIN and UPPAAL.

Another interesting extension of the semantics is adding time annotations to
the transitions, in order to perform real-time model checking.
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