
Verifying functional behaviors of automotive products in
EAST-ADL2 using UPPAAL-PORT

Eun-Young Kang1 2, Pierre-Yves Schobbens1, and Paul Pettersson2

1 Computer Science Faculty, University of Namur, Belgium
2 MDH PROGRESS Research Centre, Västers , Sweden

{eun-young.kang,pierre-yves.schobbens}@fundp.ac.be

paul.pettersson@mdh.se

Abstract. We study the use of formal modeling and verification techniques at an
early stage in the development of safety-critical automotive products which are
originally described in the domain specific architectural language EAST-ADL2.
This architectural language only focuses on the structural definition of functional
blocks. However, the behavior inside each functional block is not specified and
that limits formal modeling and analysis of systems behaviors as well as efficient
verification of safety properties. In this paper, we tackle this problem by propos-
ing one modeling approach, which formally captures the behavioral execution
inside each functional block and their interactions, and helps to improve thefor-
mal modeling and verification capability of EAST-ADL2: the behavior of each
elementary function of EAST-ADL2 is specified in UPPAAL Timed Automata.
The formal syntax and semantics are defined in order to specify the behavior
model inside EAST-ADL2 and their interactions. A composition of the functional
behaviors is considered a network of Timed Automata that enables us to verify
behaviors of the entire system using the UPPAAL model checker. The method has
been demonstrated by verifying the safety of the Brake-by-wire systemdesign.

1 Introduction and Main Themes

EAST-ADL2 is an architecture description language for the development of automotive
embedded systems [1]. Advanced automotive functions [15, 6] are increasingly depen-
dent on software and electronics. These automotive embedded systems are becoming
progressively complex and critical for the entire vehicle.Model-based development
(MBD) is a means to manage this complexity and develop embedded systems in a way
that increases safety and quality. The EAST-ADL2 modeling approach addresses this
topic and provides means to integrate the engineering information from documents,
spreadsheets and legacy tools into one systematic structure, an EAST-ADL2 system
model.

Our aim is to use formal modeling techniques at an early stagein the development
life cycle of automotive embedded systems, and to use symbolic simulators and model
checkers as debugging and verification tools to ensure that the predicted function be-
haviors of the modeled system in EAST-ADL2 satisfy certain requirements under given
assumptions on the environment where the system is supposedto operate.

EAST-ADL2 expresses the structure and interconnection of the system. System be-
havior is defined based on the definition of a set of elementaryfunctional blocks and

their triggers and interfaces. However, the behavioral definition inside each elementary
functional block is not specified, which limits the automatic translation from EAST-
ADL2 models to other formal models for efficient verification. Instead, the execution
of each function is described with external behavioral annexes and legacy tools includ-
ing general UML tool and domain-specific tools, e.g., Simulink or UML [13]. This
restricts the construction of a complete system behavior model and verification of the
behavior of the entire system model with verification tools.

To achieve our goal by improving the aforementioned restriction, we propose a for-
mal approach which facilitates the verification of system function behaviors in EAST-
ADL2 by using UPPAAL-PORT model-checker [8]: this approachspecifies a behavior
inside of each elementary function (block) in Timed Automata (TA) and constructs a
complete system behavior model by the parallel compositionof local behaviors. In par-
ticular, we specify the execution of each function behaviorin the UPPAAL-PORT TA
model and consider a composition of the function behaviors as a network of TA so that
the behaviors of the entire system in EAST-ADL2 can be formally defined. Then this
network TA can be analyzed and verified by UPPAAL-PORT model checker.

This work is organized as follows. Section 2 introduces technology and background,
EAST-ALD2 and UPPAAL-PORT toolkit as used in our approach. Section 3 presents
our approach for verifying system behaviors in EAST-ADL2 byusing UPPAAL-PORT
model checker: this approach formally captures the behavior inside each functional
block and their parallel compositional interactions. Furthermore, the formal definition
enables transformation of the given model to models of UPPAAL-PORT tool for model
checking. In section 4, our method is demonstrated in verifying the safety of the Brake-
by-wire system design. We discuss further work and concludein Section 5.

2 Background

2.1 EAST-ADL2

The goals of modeling with EAST-ADL2 are to deal with complexity control and
improve safety, reliability, cost, and development efficiency through MBD. For this,
EAST-ADL2 structures a system model into multiple abstraction levels in terms of the
development life cycle of automotive embedded systems.

EAST-ADL2 is an information model, connecting different views of the system.
The views are influenced by the different engineering traditions and backgrounds. This
concept allows EAST-ADL2 to handle various types of information including require-
ments, vehicle features, system environment, applicationfunctions, deployment of soft-
ware and hardware resources, behaviors, non-functionality properties such as variabil-
ity, timing constraint, dependability, and V&V related information. Abstract solution,
design, and implementation details are found in different abstraction levels in the model:
the highest abstraction level,Vehicle(Feature) level, characterizes a vehicle by means
of features and defines implementation-independent information such as features and
requirements. Fig. 1 depicts an overview of the system modeland the abstraction levels
of EAST-ADL2.

At Analysis level, functionality is realized based on the features and requirements.
These features and requirements are refined by the decision of logical design with the
definition of logical abstract functions of features and their interactions, and require-

Fig. 1.The structure of an EAST-ADL2 System Model

ments. The model at this level is used for the analysis of control requirements, tim-
ing constraints, data consistency between interfaces, hazard identification, etc.Design
levelcontains concrete functional definition according to the realized logical design. In
particular, functional definition of application software, functional abstraction of hard-
ware and middleware are presented, as well as hardware architecture being captured
and function-to-hardware allocation being defined.Implementation level, i.e. the soft-
ware architecture, is represented using the AUTOSAR standard and allocates software
modules to a network of Electronic Control Units (ECUs) according to the AUTOSAR
standard [2]. As in Fig. 1, EAST-ADL2 extensions are constructs for requirements, vari-
ability, behaviors, dependability, and V&V activities, etc. EAST-ADL2 is intended to be
an integration framework for functionality defined in different notations and tools. The
behavioral definition therefore relies on the definition of aset of elementary functions
that are executed based on the assumption of run-to-completion execution (read inputs
from ports, compute, and write outputs on ports). This is chosen to enable analysis and
behavioral composition and make the function execution independent of behavioral no-
tations. Details of those issues are explained in Section 3.

2.2 UPPAAL-PORT

UPPAAL-PORT is a model checking tool for component based modeling, simulation,
and verification of real-time and embedded systems modeled as real-time components.
It can be used as an Eclipse plugin together with the SAVE integrated development envi-
ronment (IDE)[16, 17] in order to support graphical modeling of internal component be-
haviors as an UPPAAL-PORT TA and composition of components.The model checker
of UPPAAL-PORT verifies properties expressed in a subset of timed computational
tree logic (TCTL). The current input file format for UPPAAL-PORT is a component
modeling language, SAVE-CCM [3], which describes the architectural framework for
modeling real time embedded applications with particular emphasis on automotive do-

C2

C1

(b) SAVECCM Components Model(a) Function Blocks in EAST−ADL2

F1

F2

A2A

(d) Target Model

FC1

FC2

assigned (c) UPPAAL−PORT TAs

MODEL CHECKING

formalized

aligned

verified

Counter Example

Counter Example

Counter Example

NoSAT

NoSAT

NoSAT
verified

System Textual Descriptions

Functional Requirements

Behavioral Constraints
Timing Constraints

Refines Models

Refines Models

Modifies/Refines Requirements

SAT

Quality Requirements

Fig. 2.Methodology Roadmap

main and safety concerns. In particular, SAVE-CCM is used tocreate components and
interconnections among them, and supports run-to-completion semantics. We use this
architectural framework of SAVE-CCM for mapping from functional blocks and their
interconnectors in EAST-ADL2 to components and their interconnections in SAVE-
CCM respectively.

For analysis purpose, an UPPAAL-PORT TA model is assigned toeach of the
SAVE-CCM components in order to describe timing and functional behaviors of the
component. Since EAST-ADL2 is intended for use with different behavioral notations,
UPPAAL-PORT TA is perfectly appropriate to use. This UPPAAL-PORT TA commu-
nicates with other ones through ports and the values of the ports defined by binding TA
variables to the ports of components, and supports synchronous execution with other
regular UPPAAL TA models. Thus, by defining local behaviors of each EAST-ADL2
function block with UPPAAL-PORT TAs, their synchronous run-to-completion execu-
tion semantics should make it possible to integrate the contained TA into a model rep-
resenting the complete system. Since EAST-ADL2 also supports requirements, the in-
variants and other logical criteria used for modeling function behaviors with UPPAAL-
PORT TAs refer to requirements in EAST-ADL2. The SAVE-CCM/UPPAAL-PORT is
not an intermediate step. It is the target model we want to build as a long term goal. So
the behaviors of a given system (functions and their interactions) will be more effec-
tively analyzed.

3 Approach and Proposed Solution

To achieve our aforementioned goal in section 1, we propose aformal approach which
facilitates the verification of system behaviors in EAST-ADL2 by using UPPAAL-
PORT model-checker independently of any hardware constraints and topology map-
ping. It mainly focuses on the higher level of functional behavior of applications at
Analysis levelin terms of itsFeature levelwith three distinct phases – architectural and

behavioral mapping, behavior specification, and verification (model checking). We will
discuss those phases in more detail in following sections.

3.1 Architecture and Behavioral Semantics Mapping

This architectural mapping step, called A2A, is an architecture-to-architecture repre-
sentation from (a) to (b) in our methodology roadmap Fig.2. The EAST-ADL2 model
architecture frame atAnalysis levelin the Papyrus UML (Fig.2-(a)) is mapped to SAVE-
CCM architecture frame (Fig.2-(b)). However, this stage isnot concerned with the ac-
tual representation of the data.

This stage performs a semantic anchoring between the domains of EAST-ADL2 and
that of SAVE-CCM. The purpose of the semantic anchoring is tomap concepts from
EAST-ADL2 to SAVE-CCM in a way that preserves the semantics of the original model
without changing the structure of the model heavily. Each elementaryAnalysisFunction
(AF) has its own logical execution and no internal concurrency, therefore it maps well
to a SAVE-CCM component. In this case, there is a convenient and obvious mapping
possibility: we design a system model in SAVE-CCM from the given system atAnal-
ysis levelin EAST-ADL2. We assign one SAVE-CCM component per AF element in
the EAST-ADL2 system (i.e. BreakController, ABS, etc). Theoriginal interconnectors
and associated ports in EAST-ADL2 are mapped to the interconnections between ports
of SAVE-CCM components respectively and that enables communication with other
components according to their original AF element. One or more ports and elements of
EAST-ADL2 models may be realized by one port and one component of SAVE-CCM
models, as these may have several signals or data elements per interface that are sim-
plified (as abstracted design) in one port and one component in our SAVE-CCM design
model.

Inside each AF, the data transformation and its own behaviors are described as TAs
based on the assumption of synchronous run-to-completion execution. There are two
types of function interactions in EAST-ADL2: either aFlowPort interaction whereby
a function performs a computation on provided data, or aClientServerinteraction
whereby the execution of a service is called upon by another function. TheFlow-
Port interactions are matched to the interconnections of SAVE-CCM components. The
ClientServerinteractions are explained by the execution of the TA insidea component
and its synchronization with other TAs.

The triggering of each AF is defined either as time-driven or event-driven on one of
the input ports. There are two types of function entities, time-discrete function and time-
continuous function. Time-discrete function is done aftera computational delay, i.e. ex-
ecution time. Time-continuous function defines the transfer function from input to out-
put, and the computation rate is infinite. Since the semanticof AF is run-to-completion,
there should be no infinite delays in the local UPPAAL-TA model, the time-continuous
function is not concerned in our semantic anchoring and we deal only with time-discrete
function. The time-discrete function is invoked either by time-triggered in which time
alone causes execution to start, or event-triggered, whichis caused by data arrival or
calls on the input ports. Those trigger conditions are matched to those of aclockcom-
ponent, trigger ports and data type ports in SAVE-CCM, respectively.

3.2 Behavior Specification

We have shown a straightforward mapping from the informal semantics of EAST-ADL2
to the formal semantics of SAVE-CCM. Since EAST-ADL2 allowsthe use of different
behavioral notations, we capitalize on this advantage to specify FunctionBehaviorby
assigning an UPPAAL-PORT TA model to each SAVE-CCM component mapped from
its corresponding AF (especiallyADLFunctionPrototype) respecting the triggering def-
inition, and execution time of each AF as well as its requirements. This TA model
encapsulates the ”execution behaviors” of AF and is used forverification in terms of
real-time properties by using UPPAAL-PORT model-checker.Our tooling composes
such local automata in parallel to a composed TA (network TA). The purpose of this
phase is to construct a target model (Fig.2-(d)) by filling the architectural frame model
(Fig.2-(b)) with the corresponding UPPAAL-PORT TAs (Fig.2-(c)). In this case, textual
system description, quality/functional requirements andbehavioral/timing constraints
are referred to specifyFunctionBehaviorin UPPAAL-PORT TAs (Fig.2-(c)).

We define an EAST-ADL2 model below. Essentially, this model is a tuple〈N,CE〉,
whereN is a set ofADLFunctionalPrototypesAFs, andCE ⊆ N×N is the set of in-
terconnectors between AFs. Output variables of one AF may beconnected to input
variables of another AF. The clock component in SAVE-CCM [18] is used to define
time-triggered activations. It periodically generates the triggering event to activate the
component and its connected components in a sequence by sending a trigger signals
through the ports. For detailed semantics of the SAVE-CCM language (the subset of
ProSave), we refer the reader to [18]. These triggering (or data) signals arrive at a port
with a one-place buffer. It is stored in that buffer, and for other ports it is forwarded to
connected ports.

The behaviorB inside an AF, notedJBKAF, is modeled as an UPPAAL-PORT TA
= 〈L, l0, l f ,VC,VD,E, I〉, whereL is a set of locations,l0 ∈ L is the initial location,l f ∈ L
is the final location, such that no edges inE are leading out froml f , and is used to
model the termination of an execution of AF.VC andVD is a set of clock and data
variables respectively.I assigns an invariant to each of the locations.E is a set of edges,
represented asl

g,a,u
−→ l ′, wherel is a source location,l ′ is a destination location,g is a

guard,a is an action,u is an update.
The execution of behavior inside FA is determined, (i.e, a SAVE-CCM component

is triggered) in terms of triggering values, which can be generated from the clock com-
ponent of SAVE-CCM (namedactive). When the triggering value isactive, the com-
ponent is triggered via its input trigger port and its input data ports are mapped to data
variables.VD in TA are updated with those variables byread-input-from-portsaction,
noted READ(Pin), (respectivelywrite-output-to-ports, noted WRITE(Pout)), which are
atomic and urgent (in the sense that time is not allowed to pass when a component reads
or writes). A component is initiallyidle after the read action it switches to its executing
locations until its internal computation is done. After thewrite action, which forwards
data in variables via interconnections from the output ports, the component becomes
idle again and the trigger port is updated toinactive. Formally the behavior of AF is
defined as follows:

Definition 1 (Behavior of AF). The behavior of AnalysisFunction AF is a tupleB =
〈L∪{l⊥}, l⊥, l0, l f ,VD ∪P,VC,E∪{er ,ew}, I⊥〉 where

– l⊥ is the idle location.
– P is the set of ports of the component described as Pin ∪Pout∪Ptrig , where Pin is a

set of input ports, Pout is a set of output ports, Ptrig ⊆ Pin is the set of trigger input
ports.

– er = l⊥
g,r,u
−→ l0, if g is triggered, r is the ”read-input-from-ports” action, READ(Pin),

and u updates VD with input values(Pin\Ptrig).

– ew = l f
g,w,u
−→ l⊥, if g is true, w is the ”write-outputs-on-ports” action, WRITE(Pout),

and u resets Ptrig to ”inactive”
– I⊥(l⊥) = true, I⊥ = I(l) for l , l⊥

The TA of a compositionC, TA(C), is defined as a network of local TA. ForAFi and
its corresponding componentCi ∈ C, the write action in TA(Ci) is extended to update
the input ports (notedPin. j) of a target componentCj ∈C according to interconnections
from the out ports ofCi (notedPout.i). An interconnection connects a source portp ∈
Pout.i to a target portp′ ∈ Pin. j whenever variables inPin of C are enabled in a way that
if p′ is a trigger port thenp′ is activated, otherwisep′ = p. The edgese of TA(Ci) are
explained with extended write actions as follows.

Definition 2 (Extended Write Actions). The behaviorB inside AFi , JBKAFi , is TA(Ci)
= 〈 L, l0, l f , VD, VC, {XWRITEi(e) | e∈ E}, I〉 such that

– XWRITEi (l
g,a,u
−→ l ′) , (l

g,w,u
−→ l ′ ; WRITE(Pout.i)), if a=w and g is triggered (holds).

Note that; is defined as sequential execution
– XWRITEi (l

g,a,u
−→ l ′) , l

g,a,u
−→ l ′ , for a, w

The automata TA(C) is then the network of each TA(Ci) for Ci ∈C.

An environment is modeled asTAEnv in a similar way. The resulting composition
is thus defined as the networkTA(C)×TAEnv, where any edge inTAEnv updating ports
Pin of C, is extended with an updateWRITE(Pout.Env). This is similar to the adaption of
theXWRITEaction that is used to buildTA(Ci) in Definition 2.

3.3 Verification: Model Checking

The execution of eachFunctionBehaviorin EAST-ADL2 is specified by UPPAAL-
PORT TA in SAVE-CCM and its composition is considered as the network TA: the
formal semantics of SAVE-CCM used in this paper was given in section 3.2. For the
semantics of the full SAVE-CCM language, we refer the readerto [7]. The entire sys-
tem (network TA) is considered in terms of a timed transitionsystem [18], then this
entire system is verified by UPPAAL-PORT model-checker. Quality requirements (e.g,
timing, safety, deadlock freedom) in terms of functional requirements (e.g, behavioral
constrains, timing constraints), see Fig.2-Requirementsaspect, are formalized in linear
time logics based on the UPPAAL logic, which can be verified over the target model
(Fig.2-(d)) by UPPAAL-PORT model checker.

In particular, the quality requirements are derived from a given system’s textual de-
scriptions. One may verify certain delay, reaction and synchronization constraints (i.e,
overall behavioral constraints of a system) according to the quality requirements. For
example, a plausible reaction constraint is 250 ms. In contrast, functional requirements

Fig. 3.The BWS architectural model (actual screenshot from the SAVE-CCMmodeling tool)

describe particular constraints of a function such as timing constraints and trigger ele-
ments linked to an AF block. They define the triggering and execution time of the AF.
UPPAAL-PORT model checker verifies those two types of requirements as safety prop-
erties in a way that (a) if a property is satisfied by the targetmodel, then a functional
requirement linked to an AF is updated to a satisfy relation and generic constraints of
the AF are stored as valid invariants in the V&V structure (VVOutcome linked to the
explained requirement, VVCase, etc) of the EAST-ADL2 model. (b) If a property is
violated (depicted as NoSAT arrows in Fig.2) then our UPPAAL-PORT model checker
returns some counterexamples that can help analysts to refine the behavioral constraints
of the system model or modify generic constraints, and identify correct constraints for
the AF that it concerns. Thus, the models in EAST-ADL2 are updated with the timing
assumptions analysts make as well as the analysis results.

4 Current result and Example

Our approach has been applied and demonstrated on a case study, the Break-by-Wire
System (BWS), from our industrial partner VOLVO. It has been first modeled using Pa-
pyrus UML [11] for EAST-ADL2 in the ATESST2 project [1]. First, the BWS Papyrus
UML model atAnalysis levelin EAST-ADL2 domain is translated to a SAVE-CCM
model. This step is depicted in Fig. 2-(a) and the result is shown in Fig. 3.

Fig. 4.BWS DeviceSensor TA

Secondly,FunctionBehaviorsare specified in UPPAAL-PORT TAs and then are as-
signed to components in the SAVE-CCM model in terms of their corresponding func-
tion entities in EAST-ADL2. The functional and quality requirements of the system
were given as either informal description in ATESST2 project case study reports or as
timing/trigger constraints requirement entities linked to AFs in EAST-ADL2. The archi-
tecture of the system is represented by SAVE-CCM componentsfilled with UPPAAL-
PORT TAs. One of the TAs in this step is shown in Fig.4.

Finally, the requirements formalized in UPPAAL logics overthe result from the
second step are verified by model-checking with some assumptions we make regarding
timing: there is a data flow from a pedal to a brake actuator. The functions are periodic
and mutually unsynchronized. A perfect clock is assumed in the sense that it generates
periodic triggering in order to activate (run) the components with a periodicity of one
time unit. Each function has its execution time which is modeled with a delay location in
its TA. Based on those assumptions, properties of safety, deadlock freedom and liveness
are verified successfully.

Data flows through ports between function blocks of BWS are simulated by using
the UPPAAL-PORT plug-in for the Eclipse IDE in Fig.5. The direction of data flow is
indicated by the arrow. We use this simulator in order to trace or detect fault flow paths.
This is facilitated by its intuitive graphical interface that allows analysts to step forward
and backward along the simulation. Apart from the simulation, we have so far verified
28 properties of the system. A list of selected properties isgiven below and their verifi-

cation results are established as valid:

\∗ De f inition o f each component
C1= Environment
C2= DeviceSensor
C3= BCC: Brake calculator and controller
C4=WheelSpeed
C5=VehicleSpeed
C6= ABS: Anti lock Braking System
C7= Actuator∗\

– Deadlock freedom: A[] 1 not deadlock
– Leads-to propertybased on the internal variables of function components: every

time the system is invoked by its environment it will eventually execute ABS which
calculates the brake force according to the brake pedal position, wheel speed, vehi-
cle speed:
• (C1.WheelDynamic∨ C1.BrakePedal∨ C1.VehicleDynamic)

→ (C6.mode== ABS∧ C6.ForceCtr)
– Leads-to propertybased on the values of ports: if the BrakePedal function device

sends out a value of its position then the value should be received by the BrakeCon-
troller function:
• (C1.BrakePedal∧ C1.EBPP== 1) → (C3.BrakeCtr∧ C3.BCCin== 1)

– State correspondence check: one internal state of a component corresponds to what
is happening in the states of other environment components.The following three
properties describe that while one of the function components, BCC, WheelSensor,
VehicleSensor is executing, the other two function components are not executing:
• A[] C5.VSensormode=⇒ (¬ C4.WSensormode∧ ¬ C3.BrakeCal)
• A[] C4.WSensormode=⇒ (¬ C3.BrakeCal∧ ¬ C5.VSensormode)
• A[] C3.BrakeCal =⇒ (¬ C5.VSensormode∧ ¬ C4.WSensormode)

– Execution time property: each function component should execute within its given
local execution time (t = 2), 0≤ clock≤ 2. In other words, it should not exceed its
given local execution time:
• A[] C7.exec=⇒ (C7.clock≤ 2∧ C7.clock≥ 0)

Since the current version of UPPAAL tool only provides reachability analysis, we
first verified a certain delay in an AF component, such as its local execution time, as
an invariant property. In order to verifybounded response time propertiesformula of
the form f 1 →≤T f 2, meaningif a request (f1) becomes true at a certain time point,
a response (f2) must be guaranteed to be true within a time bound (T), we apply the
early experiments in [9], which showed how to check such properties with a certain
syntactical manipulation on the system model, to our work either by (1) adding ob-
server components syntactically to the system model or (2) making observer automata
and synchronizing them with the actual system automata. Then we verify if both ob-
servers success states can be reached in parallel with the main actual system under the
synchronization constraints.

1 A[] P: ”P holds for any reachable configuration” is writtenA[] in UPPAAL format

Fig. 5.BWS data flow simulation trace using UPPAAL-PORT

We construct one observer TA, illustrated in Fig 6, which contains an observer clock
constraint (obsClock) as an invariant. This observer restricts the time bound of response
time (MAX TIME). By applying this observer TA in our experiment, we successfully
evaluate bounded response time properties in a way that the error location, which vio-
lates the bounded time condition, is never reached from any location of the main actual
system model. The verification result is given below:

– When the brake pedal mode is activated, the actuator reacts timely under its given
time bound (MAXTIME) as a failsafe against serious accident. i.e.,

• A[] C1.BrakePedal =⇒ (¬ ObsTA.error ∧ C7.Actuator). The property is
valid. In other words, if the BrakePedal function componentis invoked, it
should not reach the error location of the observer TA, whichviolates the
MAX TIME bounded time condition, while the Actuator component is exe-
cuting.

Search order is breadth first and uses conservative space optimization. The state
space representation uses difference bound matrices (DBM). Verifying properties takes
an average of around 2 seconds per verified property on an Intel T9600 2.80 GHz pro-

error

run
obsClock<=MAX_TIME

waitForAction

obsClock>MAX_TIME

_urgent!

obsClock=0 active1
_urgent!

obsClock=0

Fig. 6.Observer TA of bounded response time properties

cessor. The verification tool only needs to explore a maximumof 3584 states to verify
properties such as deadlock freedom.

5 Related Work

For safety-driven system development in the automotive domain, feature based analy-
sis is prescribed by ISO standard as the state-of-the art approach to functional safety.
However at early stage it is difficult to see function dependencies that would result in
updated function requirements. Therefore, A. Sandberg et al. [14] provide one approach
that performs iterative analysis to manage changes in the safety architecture at analysis
level and still meet function specific safety goals derived at vehicle level. In Compari-
son to our work, their main concern is to define the semantics for requirement selection
in order to ensure correct inclusion of requirements for a function definition. There is
no formal modeling approach to the behavioral definition of the language.

L. Feng et al. [5] bring modeling formalisms to the existing behavioral principle of
the system by transforming EAST-ADL2 behavior model to the SPIN model. Thus the
requirements on the system design can be verified by model checking. In contrast to
our work, there is no notion for the timing constraints in thebehavior model. Indeed,
formal analysis on the real-time properties of the behaviormodel is not considered at
all.

6 Conclusion and Future work

In this paper, we studied the use of formal modeling and verification techniques at an
early stage in the development of safety-critical automotive products which are origi-
nally described in the EAST-ADL2 architectural language. While EAST-ADL2 focuses
on the structural definition of functional block, we proposea method to formally spec-
ify behaviors inside each functional block in TAs mainly atAnalysis levelin terms of
Feature levelin EAST-ADL2, and verify them by using the UPPAAL-PORT model
checker. The formal syntax and semantics of functional behaviors are defined. A com-
position of those behaviors is considered as a network of TA that allows us to verify the
entire system using the UPPAAL-PORT model checker. Moreover, this paper presents

a technique to verifybounded response time propertiesby adding observer components
or TA syntactically to the system model and synchronize themin parallel with the ac-
tual system automata. The contribution improves behavior modeling, verification and
analysis capability of EAST-ADL2, and the result shows the applicability of model
checking in safety-critical automotive products. We started from the informal descrip-
tion of quality and functional requirements in order to model the execution behaviors
of ADLFunctionsand manually specified them in TAs. A possible further work would
be to define a formal, real-time semantics of UML diagrams so that engineers can use
this familiar language. They can then be translated automatically to TAs.

In future works, we plan to extend our work: (1) From tooling perspective, in Pa-
pyrus (an Eclipse based tool platform for EAST-ADL2), UML modeling tools and
domain-specific tools, e.g. Simulink, are used as external tools. They describe the data
transformation inside each AF and exchange information viaPlugins. Thus, an UPPAAL-
PORT, which is in fact also an Eclipse based Plugin tool, would be developed as an
EAST-ADL2 Plugin and be integrated with other EAST-ADL2 tools for analysis. The
analysis invariants and outcome should be recorded in the EAST-ADL2 structure as
valid constraints for requirements and V&V. Ideally this process should be done fully
automatically. (2) Another future work encludes more elaborated verification of non-
functional properties, and more refined configurations of the generated model. For ex-
ample, minimizing the use of certain resources, such as CPU,energy, memory, etc,
while preserving functional correctness, timing requirements and other resource con-
straints. The results presented here are promising steps towards these goals. (3) Since
the current UPPAAL tool only provides reachability analysis, observer TAs were used
to verify bounded response time propertiesin this work. In order to extend this restric-
tion, Memory Event Clocks Temporal Logic (MECTL) formula, created in our early
work [12, 10], will be adapted to improve fully decidable real-time expressiveness, us-
ing a tool chain that employs the UPPAAL model checker to verify properties on a
system.

Furthermore, we plan to study a new design interface theory for timed-component
systems [4], considered as Timed I/O automata with game semantic, that would support
compositional design and verification of timed component-based embedded systems.
We will employ an extended UPPAAL-TIGA, which is an engine for solving timed
games in order to manipulate this design methodology.

7 Acknowledgement

This work was funded by PROGRESS Research Centre at MDH in Sweden, FUNDP
PRECISE Research Center in Information Systems Engineering (CERUNA project)
Namur University, and Belgian Science Policy (MoVES project). We also wish to ac-
knowledge the participation of collaborator Volvo Technology Corporation from Swe-
den. Special thanks to Henrik Lönn and Lei Feng (Volvo Technology Corporation,
Gothenburg, Sweden) for their valuable feedback.

References

1. Advancing Traffic Efficiency and Safety through Software Technology Phase 2 (European
project), 2010. http://www.atesst.org.

2. AUTomotive Open System Architecture, 2010. http://www.autosar.org.

3. Jan Carlson, John Hkansson, and Paul Pettersson. SaveCCM: Ananalysable component
model for real-time systems. In Z. Liu and L. Barbosa, editors,Proceedings of the 2nd
Workshop on Formal Aspects of Components Software (FACS 2005), volume 160 ofElec-
tronic Notes in Theoretical Computer Science, pages 127–140. Elsevier, 2006.

4. Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wasowski. Timed
i/o automata: a complete specification theory for real-time systems. InHybrid Systems, pages
91–100, 2010.

5. Lei Feng, DeJiu Chen, H. Lönn, and M. T̈orngren. Verifying system behaviors in east-
adl2 with the SPIN model checker. InIEEE International Conference on Mechatronics and
Automation, Xi’an China, August 2011.

6. Klaus Grimm. Software technology in an automotive company - major challenges.Software
Engineering, International Conference on, 0:498, 2003.

7. John Hkansson.Design and verification of component based real-time systems. PhD thesis,
Uppsala University, 2009.

8. John Hkansson, Jan Carlson, Aurelien Monot, and Paul Pettersson. Component-based design
and analysis of embedded systems with uppaal port. In Sungdeok Cha,Jin-Young Choi,
Moonzoo Kim, Insup Lee, and Mahesh Viswanathan, editors,6th International Symposium
on Automated Technology for Verification and Analysis, pages 252–257. Springer-Verlag,
October 2008.

9. Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal design and analysis of a gear con-
troller. In Proceedings of 4th International Workshop on Tools and Algorithms for The Con-
struction and Analaysis of Systems, volume 1384 ofElectronic Notes in Theoretical Com-
puter Science, pages 281–297. Springer Verlag, 1998.

10. James Jerson Ortiz, Axel Legay, and Pierre-Yves Schobbens.Memory event clocks. In
Proceedings of the 8th international conference on Formal modeling andanalysis of timed
systems, FORMATS’10, pages 198–212, Berlin, Heidelberg, 2010. Springer-Verlag.

11. Open Source Tool for Graphical UML2 Modeling, 2010. http://www.papyrusuml.org.
12. Jean-François Raskin and Pierre-Yves Schobbens. State clocklogic: A decidable real-time

logic. In Proceedings of the International Workshop on Hybrid and Real-Time Systems,
pages 33–47, London, UK, 1997. Springer-Verlag.

13. James Rumbaugh and Ivar Jacobson.United Modeling Language User Guide. Addison-
Wesley, 2nd edition, 1998.

14. Anders Sandberg, DeJiu Chen, Henrik Lönn, Rolf Johansson, Lei Feng, Martin Törngren,
Sandra Torchiaro, Ramin Tavakoli-Kolagari, and Andreas Abele. Model-based safety engi-
neering of interdependent functions in automotive vehicles using east-adl2. In Proceedings
of the 29th international conference on Computer safety, reliability, and security, SAFE-
COMP’10, pages 332–346, Berlin, Heidelberg, 2010. Springer-Verlag.

15. Alberto Sangiovanni-Vincentelli and Marco Di Natale. Embedded system design for auto-
motive applications.Computer, 40(10):42–51, 2007.

16. SAVE-IDE project at source net. http://sourceforge.net/projects/save-ide/.
17. Severine Sentilles, John Hkansson, Paul Pettersson, and Ivica Crnkovic. SAVE-IDE, an

integrated development environment for building predictable component-based embedded
systems. InProceedings of the 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE 2008), September 2008.

18. Jagadish Suryadevara, Eun-Young Kang, Cristina Seceleanu, and Paul Pettersson. Bridging
the semantic gap between abstract models of embedded systems. In Lars Grunske and Ralf
Reussner, editors,13th International Symposium on Component Based Software Engineering
(CBSE). Springer LNCS, vol 6092, June 2010.

