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Abstract. We study the use of formal modeling and verification techniques at an
early stage in the development of safety-critical automotive producishvare
originally described in the domain specific architectural language EASI2A
This architectural language only focuses on the structural definitioimnatibnal
blocks. However, the behavior inside each functional block is notifspeé@nd
that limits formal modeling and analysis of systems behaviors as welfieiept
verification of safety properties. In this paper, we tackle this problenrbygs-
ing one modeling approach, which formally captures the behavioraluére
inside each functional block and their interactions, and helps to improvietthe
mal modeling and verification capability of EAST-ADL2: the behavior offea
elementary function of EAST-ADL2 is specified in UPPAAL Timed Automata.
The formal syntax and semantics are defined in order to specify thevioeh
model inside EAST-ADL2 and their interactions. A composition of the fumetio
behaviors is considered a network of Timed Automata that enables usifyp ve
behaviors of the entire system using the UPPAAL model checker. Theoahbas
been demonstrated by verifying the safety of the Brake-by-wire sydésign.

1 Introduction and Main Themes

EAST-ADL?2 is an architecture description language for theadopment of automotive
embedded systems [1]. Advanced automotive functions [l&resincreasingly depen-
dent on software and electronics. These automotive embesidtems are becoming
progressively complex and critical for the entire vehidéodel-based development
(MBD) is a means to manage this complexity and develop endzbdgstems in a way
that increases safety and quality. The EAST-ADL2 modelipgraach addresses this
topic and provides means to integrate the engineeringrrdton from documents,
spreadsheets and legacy tools into one systematic steu@nrEAST-ADL2 system
model.

Our aim is to use formal modeling techniques at an early stagee development
life cycle of automotive embedded systems, and to use syoiatulators and model
checkers as debugging and verification tools to ensure lieapriedicted function be-
haviors of the modeled system in EAST-ADL2 satisfy certaiquirements under given
assumptions on the environment where the system is suppospérate.

EAST-ADL2 expresses the structure and interconnectiohetystem. System be-
havior is defined based on the definition of a set of elemeritargtional blocks and



their triggers and interfaces. However, the behaviorahit&fn inside each elementary
functional block is not specified, which limits the autorodtianslation from EAST-
ADL2 models to other formal models for efficient verificatidnstead, the execution
of each function is described with external behavioral aeeend legacy tools includ-
ing general UML tool and domain-specific tools, e.g., Simkilor UML [13]. This
restricts the construction of a complete system behaviataihand verification of the
behavior of the entire system model with verification tools.

To achieve our goal by improving the aforementioned ret#bric we propose a for-
mal approach which facilitates the verification of systemction behaviors in EAST-
ADL2 by using UPPAAL-PORT model-checker [8]: this approagecifies a behavior
inside of each elementary function (block) in Timed Autoan@fA) and constructs a
complete system behavior model by the parallel compositfdocal behaviors. In par-
ticular, we specify the execution of each function behaiidhe UPPAAL-PORT TA
model and consider a composition of the function behavisis metwork of TA so that
the behaviors of the entire system in EAST-ADL2 can be folyndéfined. Then this
network TA can be analyzed and verified by UPPAAL-PORT motiec&er.

This work is organized as follows. Section 2 introducesmedbgy and background,
EAST-ALD2 and UPPAAL-PORT toolkit as used in our approacéctin 3 presents
our approach for verifying system behaviors in EAST-ADL2using UPPAAL-PORT
model checker: this approach formally captures the beham&de each functional
block and their parallel compositional interactions. Rartmore, the formal definition
enables transformation of the given model to models of UPBRORT tool for model
checking. In section 4, our method is demonstrated in viegfthe safety of the Brake-
by-wire system design. We discuss further work and condiu@ction 5.

2 Background
2.1 EAST-ADL2

The goals of modeling with EAST-ADL2 are to deal with comptexcontrol and
improve safety, reliability, cost, and development efficig through MBD. For this,
EAST-ADL2 structures a system model into multiple abstoactevels in terms of the
development life cycle of automotive embedded systems.

EAST-ADL2 is an information model, connecting differenewis of the system.
The views are influenced by the different engineering tiaiolt and backgrounds. This
concept allows EAST-ADL?2 to handle various types of infotima including require-
ments, vehicle features, system environment, applicétioctions, deployment of soft-
ware and hardware resources, behaviors, non-functigrmtiperties such as variabil-
ity, timing constraint, dependability, and V&V related anfnation. Abstract solution,
design, and implementation details are found in differéstraction levels in the model:
the highest abstraction levalehicle(Feature) levelcharacterizes a vehicle by means
of features and defines implementation-independent irdtiom such as features and
requirements. Fig. 1 depicts an overview of the system manathe abstraction levels
of EAST-ADL2.

At Analysis levelfunctionality is realized based on the features and requants.
These features and requirements are refined by the deciklogical design with the
definition of logical abstract functions of features andirtfir@eractions, and require-
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ments. The model at this level is used for the analysis ofrobn¢quirements, tim-
ing constraints, data consistency between interfacesrtiadentification, etcDesign
levelcontains concrete functional definition according to tredired logical design. In
particular, functional definition of application softwafanctional abstraction of hard-
ware and middleware are presented, as well as hardwardeanttine being captured
and function-to-hardware allocation being definedplementation levei.e. the soft-
ware architecture, is represented using the AUTOSAR stdratad allocates software
modules to a network of Electronic Control Units (ECUs) adang to the AUTOSAR
standard [2]. Asin Fig. 1, EAST-ADL2 extensions are cordstior requirements, vari-
ability, behaviors, dependability, and V&V activitiesceEAST-ADL2 is intended to be
an integration framework for functionality defined in diéat notations and tools. The
behavioral definition therefore relies on the definition afed of elementary functions
that are executed based on the assumption of run-to-campkstecution (read inputs
from ports, compute, and write outputs on ports). This isseimao enable analysis and
behavioral composition and make the function executioeprethdent of behavioral no-
tations. Details of those issues are explained in Section 3.

2.2 UPPAAL-PORT

UPPAAL-PORT is a model checking tool for component basedeting, simulation,
and verification of real-time and embedded systems modsleead-time components.
It can be used as an Eclipse plugin together with the SAVEmted development envi-
ronment (IDE)[16, 17] in order to support graphical modglaf internal component be-
haviors as an UPPAAL-PORT TA and composition of componértis.model checker
of UPPAAL-PORT verifies properties expressed in a subseintéd computational
tree logic(TCTL). The current input file format for UPPAAL-PORT is a cponent
modeling language, SAVE-CCM [3], which describes the dectural framework for
modeling real time embedded applications with particuhaplkasis on automotive do-
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main and safety concerns. In particular, SAVE-CCM is usectéate components and
interconnections among them, and supports run-to-coipleemantics. We use this
architectural framework of SAVE-CCM for mapping from fuimetal blocks and their
interconnectors in EAST-ADL2 to components and their icd@nections in SAVE-
CCM respectively.

For analysis purpose, an UPPAAL-PORT TA model is assignedaith of the
SAVE-CCM components in order to describe timing and funwidbehaviors of the
component. Since EAST-ADL?2 is intended for use with diffeéreehavioral notations,
UPPAAL-PORT TA is perfectly appropriate to use. This UPPARDRT TA commu-
nicates with other ones through ports and the values of thts defined by binding TA
variables to the ports of components, and supports synoheoexecution with other
regular UPPAAL TA models. Thus, by defining local behaviofgach EAST-ADL?2
function block with UPPAAL-PORT TAs, their synchronous ftorcompletion execu-
tion semantics should make it possible to integrate theatoedl TA into a model rep-
resenting the complete system. Since EAST-ADL?2 also suppequirements, the in-
variants and other logical criteria used for modeling fiorcbehaviors with UPPAAL-
PORT TAs refer to requirements in EAST-ADL2. The SAVE-CCNPRAAL-PORT is
not an intermediate step. It is the target model we want tllas a long term goal. So
the behaviors of a given system (functions and their interas) will be more effec-
tively analyzed.

3 Approach and Proposed Solution

To achieve our aforementioned goal in section 1, we propdsaraal approach which
facilitates the verification of system behaviors in EASTI&Dby using UPPAAL-
PORT model-checker independently of any hardware conssraind topology map-
ping. It mainly focuses on the higher level of functional &eiler of applications at
Analysis levein terms of itsFeature levelvith three distinct phases — architectural and



behavioral mapping, behavior specification, and verifica{model checking). We will
discuss those phases in more detail in following sections.

3.1 Architecture and Behavioral Semantics Mapping

This architectural mapping step, called A2A, is an architexto-architecture repre-
sentation from (a) to (b) in our methodology roadmap Figl2e EAST-ADL2 model
architecture frame analysis levein the Papyrus UML (Fig.2-(a)) is mapped to SAVE-
CCM architecture frame (Fig.2-(b)). However, this stagedsconcerned with the ac-
tual representation of the data.

This stage performs a semantic anchoring between the derBlfAST-ADL2 and
that of SAVE-CCM. The purpose of the semantic anchoring is1ép concepts from
EAST-ADL2 to SAVE-CCM in away that preserves the semantf¢h@original model
without changing the structure of the model heavily. EaelmantaryAnalysisFunction
(AF) has its own logical execution and no internal concuryetherefore it maps well
to a SAVE-CCM component. In this case, there is a conveniedtadovious mapping
possibility: we design a system model in SAVE-CCM from theegi system afAnal-
ysis levelin EAST-ADL2. We assigh one SAVE-CCM component per AF eletrian
the EAST-ADL2 system (i.e. BreakController, ABS, etc). Tdreginal interconnectors
and associated ports in EAST-ADL2 are mapped to the inteiections between ports
of SAVE-CCM components respectively and that enables conization with other
components according to their original AF element. One orenports and elements of
EAST-ADL2 models may be realized by one port and one companfeBAVE-CCM
models, as these may have several signals or data elemeritgeptace that are sim-
plified (as abstracted design) in one port and one componeniriSAVE-CCM design
model.

Inside each AF, the data transformation and its own behswai@ described as TAs
based on the assumption of synchronous run-to-complekeaution. There are two
types of function interactions in EAST-ADL2: eitherbowPort interaction whereby
a function performs a computation on provided data, dCli@ntServerinteraction
whereby the execution of a service is called upon by anotiection. TheFlow-
Port interactions are matched to the interconnections of SAVEAZomponents. The
ClientServeiinteractions are explained by the execution of the TA insid@mponent
and its synchronization with other TAs.

The triggering of each AF is defined either as time-drivervené-driven on one of
the input ports. There are two types of function entitiesgtidiscrete function and time-
continuous function. Time-discrete function is done afteomputational delay, i.e. ex-
ecution time. Time-continuous function defines the tranfsfiection from input to out-
put, and the computation rate is infinite. Since the semai#id- is run-to-completion,
there should be no infinite delays in the local UPPAAL-TA miotiee time-continuous
function is not concerned in our semantic anchoring and vakatdy with time-discrete
function. The time-discrete function is invoked either bye-triggered in which time
alone causes execution to start, or event-triggered, whichused by data arrival or
calls on the input ports. Those trigger conditions are neddb those of @lockcom-
ponent, trigger ports and data type ports in SAVE-CCM, retypaly.



3.2 Behavior Specification

We have shown a straightforward mapping from the informadasgtics of EAST-ADL2
to the formal semantics of SAVE-CCM. Since EAST-ADL?2 allothie use of different
behavioral notations, we capitalize on this advantage ézi§pFunctionBehavioiby
assigning an UPPAAL-PORT TA model to each SAVE-CCM compadmeagpped from
its corresponding AF (especialjDLFunctionPrototypgrespecting the triggering def-
inition, and execution time of each AF as well as its requeata. This TA model
encapsulates the "execution behaviors” of AF and is usedddfication in terms of
real-time properties by using UPPAAL-PORT model-checkair tooling composes
such local automata in parallel to a composed TA (network TAEe purpose of this
phase is to construct a target model (Fig.2-(d)) by filling &éinchitectural frame model
(Fig.2-(b)) with the corresponding UPPAAL-PORT TAs (Fig®). In this case, textual
system description, quality/functional requirements Betavioral/timing constraints
are referred to specififunctionBehavioin UPPAAL-PORT TAs (Fig.2-(c)).

We define an EAST-ADL2 model below. Essentially, this mode tuple(N,CE),
whereN is a set ofADLFunctionalPrototype#\Fs, andCE C N x N is the set of in-
terconnectors between AFs. Output variables of one AF magobpaected to input
variables of another AF. The clock component in SAVE-CCM][it8used to define
time-triggered activations. It periodically generates thiggering event to activate the
component and its connected components in a sequence bipgenttigger signals
through the ports. For detailed semantics of the SAVE-CCiWjlege (the subset of
ProSave), we refer the reader to [18]. These triggering &ta)dsignals arrive at a port
with a one-place buffer. It is stored in that buffer, and fthrey ports it is forwarded to
connected ports.

The behaviorZ inside an AF, notedB] ¢, is modeled as an UPPAAL-PORT TA
= (L,lo,l,Vc, Vb, E,I), whereL is a set of locationdg € L is the initial location]; € L
is the final location, such that no edgesHrare leading out fronls, and is used to
model the termination of an execution of A% andVp is a set of clock and data
variables respectively.assigns an invariant to each of the locatidb$s a set of edges,
represented as>®5 I, wherel is a source locatiorl’ is a destination locatiorg is a
guard,ais an actionu is an update.

The execution of behavior inside FA is determined, (i.e, ¥ 5ACM component
is triggered) in terms of triggering values, which can beggated from the clock com-
ponent of SAVE-CCM (namedctive. When the triggering value iactive the com-
ponent is triggered via its input trigger port and its inpatadports are mapped to data
variablesVp in TA are updated with those variables tBad-input-from-portsaction,
noted READRB,,), (respectivelywrite-output-to-portsnoted WRITER,)), which are
atomic and urgent (in the sense that time is not allowed te wagn a component reads
or writes). A component is initiallydle after the read action it switches to its executing
locations until its internal computation is done. After tlidte action, which forwards
data in variables via interconnections from the output$dtie component becomes
idle again and the trigger port is updateditactive Formally the behavior of AF is
defined as follows:

Definition 1 (Behavior of AF). The behavior of AnalysisFunction AF is a tupie=
(LU{I 300, 00,18 Vo UP Ve, EU{er, 80}, 11 ) where



— |, is the idle location.

— P is the set of ports of the component described;@s Poy: U Ryig, where R, is a
set of input ports, &t is a set of output portsky C Ry is the set of trigger input
ports.

-—e=I ory lo, if g is triggered, r is the "read-input-from-ports” actiqrREAD(R,),
and u updatesywith input valuegPn\Rrig).

—ew=I¢ Rkl |, ifgistrue, wis the "write-outputs-on-ports” action, WRE(R,t),
and u resetsfy to "inactive”

— 1 (1) =true, I, =1(I)forl 1,

The TA of a compositiol, TA(C), is defined as a network of local TA. FAF and
its corresponding compone@t € C, the write action in TAC)) is extended to update
the input ports (noteé, ) of a target componen@; € C according to interconnections
from the out ports oC; (notedP,,:j). An interconnection connects a source por
Pouti to a target porp’ € Ry j whenever variables iRy, of C are enabled in a way that
if p’ is a trigger port therp' is activated, otherwisg’ = p. The edge® of TA(G) are
explained with extended write actions as follows.

Definition 2 (Extended Write Actions). The behaviotZ inside AF, [B]ar, is TA(G)
= (L, lo, I, Vb, Ve, {XWRITE(e) | ec E}, ) such that

— XWRITE( 2251 2 1 2% ; WRITE(Ru)), if a=w and g iis triggered (holds).
Note that; is defined as sequential execution
— XWRITE (I 225 1) 21 2251/ forazw

The automata TA(C) is then the network of each T2 C; € C.

An environment is modeled a8Ag, in a similar way. The resulting composition
is thus defined as the netwofA(C) x T A, Where any edge ifi Aey updating ports
Pn of C, is extended with an updat® RIT B Poyt £ny). This is similar to the adaption of
the XWRIT Eaction that is used to buildA(C;) in Definition 2.

3.3 \Verification: Model Checking

The execution of eackunctionBehaviorin EAST-ADL?2 is specified by UPPAAL-
PORT TA in SAVE-CCM and its composition is considered as teavork TA: the
formal semantics of SAVE-CCM used in this paper was givereictisn 3.2. For the
semantics of the full SAVE-CCM language, we refer the readgv]. The entire sys-
tem (network TA) is considered in terms of a timed transitdgystem [18], then this
entire system is verified by UPPAAL-PORT model-checker. lipusequirements (e.qg,
timing, safety, deadlock freedom) in terms of functionajuigements (e.g, behavioral
constrains, timing constraints), see Fig.2-Requiremaspect, are formalized in linear
time logics based on the UPPAAL logic, which can be verifiedrahe target model
(Fig.2-(d)) by UPPAAL-PORT model checker.

In particular, the quality requirements are derived froniveiy system’s textual de-
scriptions. One may verify certain delay, reaction and Bymization constraints (i.e,
overall behavioral constraints of a system) according ¢odhality requirements. For
example, a plausible reaction constraint is 250 ms. In eshtfunctional requirements
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describe particular constraints of a function such as gnaionstraints and trigger ele-
ments linked to an AF block. They define the triggering anccetien time of the AF.
UPPAAL-PORT model checker verifies those two types of resjugnts as safety prop-
erties in a way that (a) if a property is satisfied by the targetlel, then a functional
requirement linked to an AF is updated to a satisfy relatioth generic constraints of
the AF are stored as valid invariants in the V&V structure ®ducome linked to the
explained requirement, VVCase, etc) of the EAST-ADL2 mode) If a property is
violated (depicted as NOoSAT arrows in Fig.2) then our UPPAAQRT model checker
returns some counterexamples that can help analysts te th@rbehavioral constraints
of the system model or modify generic constraints, and iflecbrrect constraints for
the AF that it concerns. Thus, the models in EAST-ADL2 areated with the timing
assumptions analysts make as well as the analysis results.

4 Current result and Example

Our approach has been applied and demonstrated on a cagetstuBreak-by-Wire
System (BWS), from our industrial partner VOLVO. It has beest finodeled using Pa-
pyrus UML [11] for EAST-ADL?2 in the ATESST?2 project [1]. Firsthe BWS Papyrus
UML model atAnalysis levein EAST-ADL2 domain is translated to a SAVE-CCM
model. This step is depicted in Fig. 2-(a) and the resultaswhin Fig. 3.
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SecondlyFunctionBehaviorare specified in UPPAAL-PORT TAs and then are as-
signed to components in the SAVE-CCM model in terms of theiresponding func-
tion entities in EAST-ADL2. The functional and quality recements of the system
were given as either informal description in ATESST2 profsse study reports or as
timing/trigger constraints requirement entities linkedfs in EAST-ADL2. The archi-
tecture of the system is represented by SAVE-CCM comporiilets with UPPAAL-
PORT TAs. One of the TAs in this step is shown in Fig.4.

Finally, the requirements formalized in UPPAAL logics otkhe result from the
second step are verified by model-checking with some assomspize make regarding
timing: there is a data flow from a pedal to a brake actuatoe. fihctions are periodic
and mutually unsynchronized. A perfect clock is assumetiérsense that it generates
periodic triggering in order to activate (run) the compdsesith a periodicity of one
time unit. Each function has its execution time which is medevith a delay location in
its TA. Based on those assumptions, properties of safetglldek freedom and liveness
are verified successfully.

Data flows through ports between function blocks of BWS arauktad by using
the UPPAAL-PORT plug-in for the Eclipse IDE in Fig.5. Theefition of data flow is
indicated by the arrow. We use this simulator in order todracdetect fault flow paths.
This is facilitated by its intuitive graphical interfaceattellows analysts to step forward
and backward along the simulation. Apart from the simutatise have so far verified
28 properties of the system. A list of selected propertiggvisn below and their verifi-



cation results are established as valid:

\* Definition of each component
C1 = Environment
C2 = DeviceSensor
C3 = BCC: Brake calculator and controller
C4 =WheelSpeed
C5=VehicleSpeed
C6 = ABS: Anti lock Braking System
C7 = Actuatorsx\

— Deadlock freedomA[ ] 1 not deadlock

— Leads-to propertypased on the internal variables of function componentsyeve
time the system is invoked by its environment it will everiiyiexecute ABS which
calculates the brake force according to the brake peddiposivheel speed, vehi-
cle speed:

e (C1.WheelDynamics/ C1.BrakePedalv C1.VehicleDynamig
— (C6.mode== ABSA C6.ForceCtr)

— Leads-to propertypased on the values of ports: if the BrakePedal functioncaevi
sends out a value of its position then the value should béevextby the BrakeCon-
troller function:

e (Cl.BrakePedal\ C1.EBPP==1) — (C3.BrakeCtrA C3.BCCin==1)

— State correspondence check: one internal state of a compooreesponds to what
is happening in the states of other environment componé&hts following three
properties describe that while one of the function compts)&8CC, WheelSensor,
VehicleSensor is executing, the other two function comptsare not executing:

e A[]C5VSensormode=- (- C4.W Sensormodea — C3.BrakeCal
o A[]C4WSensormode=- (— C3.BrakeCalA — C5.V Sensormode
e A[]C3.BrakeCal = (- C5.VSensormode — C4W Sensormode

— Execution time property: each function component shouétate within its given
local execution timet(= 2), 0< clock < 2. In other words, it should not exceed its
given local execution time:

e A[]C7.exec= (C7.clock< 2 A C7.clock> 0)

Since the current version of UPPAAL tool only provides resality analysis, we
first verified a certain delay in an AF component, such as itallexecution time, as
an invariant property. In order to verityounded response time properti@smula of
the form f1 — 1 2, meaningf a request (f1) becomes true at a certain time point,
a response (f2) must be guaranteed to be true within a timeddl), we apply the
early experiments in [9], which showed how to check such erigs with a certain
syntactical manipulation on the system model, to our wotkegiby (1) adding ob-
server components syntactically to the system model or éRimg observer automata
and synchronizing them with the actual system automatan Weverify if both ob-
servers success states can be reached in parallel with theaotaal system under the
synchronization constraints.

1 A[] P: P holds for any reachable configuration” is writt&h] in UPPAAL format
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Fig. 5.BWS data flow simulation trace using UPPAAL-PORT

We construct one observer TA, illustrated in Fig 6, whichteors an observer clock
constraint (obsClock) as an invariant. This observerigstihe time bound of response
time (MAX_TIME). By applying this observer TA in our experiment, we sessfully
evaluate bounded response time properties in a way thatrbel@cation, which vio-
lates the bounded time condition, is never reached fromaasgtion of the main actual
system model. The verification result is given below:

— When the brake pedal mode is activated, the actuator reamwytunder its given
time bound (MAXTIME) as a failsafe against serious accident. i.e.,

e Al ] ClBrakePedal = (— ObsTAerror A C7.Actuatol). The property is
valid. In other words, if the BrakePedal function componininvoked, it
should not reach the error location of the observer TA, whithates the
MAX _TIME bounded time condition, while the Actuator componeneke-
cuting.

Search order is breadth first and uses conservative spaiceizgiton. The state
space representation uses difference bound matrices (D@Jjying properties takes
an average of around 2 seconds per verified property on annes®0 2.80 GHz pro-
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cessor. The verification tool only needs to explore a maxin€iBb84 states to verify
properties such as deadlock freedom.

5 Related Work

For safety-driven system development in the automotivealopfeature based analy-
sis is prescribed by ISO standard as the state-of-the arbapip to functional safety.
However at early stage it is difficult to see function depemiks that would result in

updated function requirements. Therefore, A. Sandberg [@4 provide one approach
that performs iterative analysis to manage changes in feg/sachitecture at analysis
level and still meet function specific safety goals derivededicle level. In Compari-

son to our work, their main concern is to define the semanticeefjuirement selection
in order to ensure correct inclusion of requirements forrection definition. There is

no formal modeling approach to the behavioral definitiorheftanguage.

L. Feng et al. [5] bring modeling formalisms to the existirghavioral principle of
the system by transforming EAST-ADL2 behavior model to tRéNsmodel. Thus the
requirements on the system design can be verified by modekictie In contrast to
our work, there is no notion for the timing constraints in tiehavior model. Indeed,
formal analysis on the real-time properties of the behariodel is not considered at
all.

6 Conclusion and Future work

In this paper, we studied the use of formal modeling and watifin techniques at an
early stage in the development of safety-critical autoweogiroducts which are origi-
nally described in the EAST-ADL?2 architectural language.iVBAST-ADL?2 focuses
on the structural definition of functional block, we prop@smethod to formally spec-
ify behaviors inside each functional block in TAs mainlyfatalysis levein terms of
Feature levelin EAST-ADL2, and verify them by using the UPPAAL-PORT model
checker. The formal syntax and semantics of functional Wehaare defined. A com-
position of those behaviors is considered as a network ohafdllows us to verify the
entire system using the UPPAAL-PORT model checker. Moredkies paper presents



a technique to veriffpounded response time propertlgsadding observer components
or TA syntactically to the system model and synchronize tireparallel with the ac-
tual system automata. The contribution improves behaviadeting, verification and
analysis capability of EAST-ADL2, and the result shows tipplaability of model
checking in safety-critical automotive products. We gdifrom the informal descrip-
tion of quality and functional requirements in order to midthe execution behaviors
of ADLFunctionsand manually specified them in TAs. A possible further worluiglo
be to define a formal, real-time semantics of UML diagramshst ¢éngineers can use
this familiar language. They can then be translated autoailgtto TAs.

In future works, we plan to extend our work: (1) From toolirgrgpective, in Pa-
pyrus (an Eclipse based tool platform for EAST-ADL2), UML dading tools and
domain-specific tools, e.g. Simulink, are used as exteawdst They describe the data
transformation inside each AF and exchange informatiofirgins. Thus, an UPPAAL-
PORT, which is in fact also an Eclipse based Plugin tool, wde developed as an
EAST-ADL2 Plugin and be integrated with other EAST-ADL?2 koéor analysis. The
analysis invariants and outcome should be recorded in thBTERDL2 structure as
valid constraints for requirements and V&V. Ideally thi®pess should be done fully
automatically. (2) Another future work encludes more etabed verification of non-
functional properties, and more refined configurations efganerated model. For ex-
ample, minimizing the use of certain resources, such as @Rergy, memory, etc,
while preserving functional correctness, timing requiees and other resource con-
straints. The results presented here are promising stejasde these goals. (3) Since
the current UPPAAL tool only provides reachability anasysibserver TAs were used
to verify bounded response time propertiaghis work. In order to extend this restric-
tion, Memory Event Clocks Temporal Logic (MECTL) formulagated in our early
work [12, 10], will be adapted to improve fully decidable Iriene expressiveness, us-
ing a tool chain that employs the UPPAAL model checker tofyguroperties on a
system.

Furthermore, we plan to study a new design interface themrtirhed-component
systems [4], considered as Timed I/O automata with gamersntnat would support
compositional design and verification of timed componeagdsl embedded systems.
We will employ an extended UPPAAL-TIGA, which is an engine &wlving timed
games in order to manipulate this design methodology.
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