
Client-side Web Application Slicing
Josip Maras

Department for Modelling and Intelligent Systems
University of Split

Split, Croatia
josip.maras@fesb.hr

Jan Carlson, Ivica Crnković
Mälardalen Real-Time Research Center

Mälardalen University
Västerås, Sweden

{jan.carlson, ivica.crnkovic}@mdh.se

Abstract—Highly interactive web applications that offer user
experience and responsiveness of standard desktop applications
are becoming prevalent in the web application domain. How-
ever, with these benefits come certain drawbacks. For example,
the event-based architectural style, and poor support for code
organization, often lead to a situation where code responsible
for a certain behavior is intermixed with irrelevant code. This
makes development, debugging and reuse difficult. One way
of locating code implementing a certain behavior is program
slicing, a method that, given a subset of a program’s behavior,
reduces the program to a minimal form that still produces
that behavior. In this paper we present a semi-automatic client-
side web application slicing method, describe the web page
dependency graph, and show how it can be used to extract only
the code implementing a certain behavior.

Index Terms—JavaScript, code reuse, dynamic program slic-
ing, web application

I. INTRODUCTION

The web application domain is one of the fastest growing
and most wide-spread application domains. Web developers
now routinely use sophisticated scripting languages and other
client-side technologies to provide users with rich experiences
that approximate the performance of desktop applications. In
terms of its structure, a web page is defined by HTML code,
presentation by CSS code, and behavior by JavaScript (JS)
code. Alongside code, a web page usually contains resources
such as images, videos, or fonts. The interplay of these basic
elements produces the end result that is displayed in the
user’s web browser. Visually and functionally, a web page
can be viewed as a collection of distinctive user-interface (UI)
elements that encapsulate a certain behavior. Unfortunately,
this behavioral and visual distinctiveness is not mapped to
neatly packed code units, since there is no predefined way
of organizing related code and resources into some sort of
components. This often leads to a situation where the web
application code is hard to understand: there is no trivial
mapping between the source code and the page displayed in
the browser; code is usually scattered between several files and
code responsible for one functionality is often intermixed with
irrelevant code. This makes code maintenance, debugging, and
reuse difficult.

Program slicing [7] is a method that, starting from a subset
of a program’s behavior, reduces that program to a minimal
form that still produces that behavior. The technique has found
many applications in the areas of program differencing and

integration [3], maintenance [2], and simple code reuse [4].
Even though this is a well researched topic in many domains, it
has not yet been applied to client-side web development. Until
recently, these applications were considered trivial, and there
was no need for advanced software engineering methods. This
is no longer the case because modern web applications such as
Gmail, Facebook, Gdocs, etc. even surpass the complexity of
standard applications. Also, most of the research on program
slicing has addressed strongly typed compiled languages such
as C or Java, and the same techniques cannot easily be applied
to a weakly typed, dynamic scripting language such as JS.

In this paper we present a technique, and the accompa-
nying tool, for client-side web application slicing. Our main
contribution is a dynamic program slicing method based on
the analysis of recorded execution traces. We present a client-
side web application dependency graph, describe how it is
constructed, and show how it can be used to slice a web
application across different languages (HTML and JS) based
on a given slicing criterion.

II. BACKGROUND AND RELATED WORK

JS is a weakly typed, imperative, object-oriented script
language with prototype based delegation inheritance. It has
no type declarations and has only run-time checking of calls
and field accesses. Functions are first-class objects, and can
be manipulated and passed around like other objects. JS is
extremely dynamic: everything can be modified, from fields
and methods of an object to its prototype. As many other
script languages, it offers the eval function which can execute
an arbitrary string of JS code.

Client-side web applications are mostly event-driven UI
applications, and most of the code is executed as a response
to user-generated events. The life-cycle of the application can
be divided into two phases: i) page initialization and ii) event-
handling phase. The main purpose of the page initialization
phase is to build the UI of the web page. The browser achieves
this by parsing the HTML code and building an object-oriented
representation of the HTML document – the Document Object
Model (DOM). When parsing the HTML code the DOM is
filled one HTML node at a time. If the browser reaches an
HTML node that contains JS code, it suspends the DOM
building process and enters the JS interpretation process. In
this phase this means sequentially executing the given JS

978-1-4577-1639-3/11/$26.00 c© 2011 IEEE ASE 2011, Lawrence, KS, USA

504

code. One important purpose of this code is to register event-
handlers, which define how events are handled later during the
second phase of the execution. Once the JS code in that node is
executed, the process again resumes the DOM building phase.
After the last HTML node is parsed and the whole UI is built,
the application enters the event-handling phase, where code is
executed as a response to some event. All updates to the UI
are done by JS modifications of the DOM, which can go as
far as completely reshaping the DOM, or even modifying the
code of the application.

Weiser [7] defines program slicing as a method that starting
from a subset of a program’s behavior, reduces that program
to a minimal form which still produces that behavior. In the
web engineering domain Tonella and Ricca [6] define web
application slicing as a process which results in a portion of
a web application which still exhibits the same behavior as
the initial application in terms of information of interest to the
user. They also present a technique for web application slicing
in the presence of dynamic code generation where they show
how to build a system dependency graph for server-side web
applications. Our work differs from their approach in that we
target the client-side application, which even though is related
to server-side application, is based on a different development
paradigm, and cannot be treated equally.

There also exists a tool – FireCrystal [5], an extension to
the Firefox web browser that facilitates the understanding of
dynamic web page behavior. It performs this functionality by
recording interactions and logging information about DOM
changes, user input events, and JS executions. After the
recording is over the user can use an execution time-line to
see the code that is of interest for the particular behavior. In
its current version, it does not provide a way to study which
statement influence, either directly or indirectly, the statement
that has caused the UI modification, and instead shows all
statements that were executed up to a current UI modification.

III. THE CLIENT-SIDE WEB APPLICATION SLICING
PROCESS

Most of the current slicing techniques have been developed
for handling sequential programs implemented in static lan-
guages such as Java or C, where the control-flow and data
dependencies can be statically determined. Because of the
extreme dynamicity of JS and the accompanying event-driven
application model these methods cannot also be used in client-
side web application development. Therefore, we have taken
a more dynamic approach, basing the analysis on application
execution traces.

In order to be able to slice the web application we have
to determine the control flow and data-dependencies between
code constructs. The main idea is that we record the flow of
application execution, while the desired application behavior
is being executed. In that way we establish the control-
flow through the application. Identifying data-dependencies
between code construct requires total knowledge about the
state of the application at every execution point. Unfortunately,
it is extremely impractical to gather and store this much

detailed information during the recording phase for any but
the most trivial programs. For this reason we have developed
a custom JS interpreter which in the analysis phase interprets
JS code based on recorded application execution traces. In
this way the state of the simulated execution completely
matches the state of the application at recording time. Unlike
standard interpreters, this interpreter not only evaluates code
expressions, but also keeps track of code constructs that are
responsible for current values of all identifiers – information
of vital importance for identifying data dependencies between
code constructs.

Once the dependencies between code constructs have been
established during the execution trace guided interpretation,
the application code is sliced based on a slicing criterion
specified by the user. The choice of the slicing criterion
depends on the slicing usage. For example, the slicing process
can be used for extracting library code, UI control reuse and
debugging.

A. Extracting Library Code

In many application domains the overall code size does
not have a significant impact on the performance of the
application. However, this is not the case in client-side web
application development, where all code is transfered and
executed on the client and where larger code bases lead to
slower web pages. So, when using JS libraries, we only want
to transfer the part of the library used by the application. By
creating a suite of through unit tests and making function
return values as slicing criteria, we can record a representative
execution trace which can be used to extract the desired
functionality from the library.

B. Extracting UI Controls

The web application UI is composed of visually distinctive
UI elements that encapsulate a certain behavior – the so called
UI controls. Similar controls are often used in a large number
of web applications and facilitating their reuse could lead to
faster web development. Each UI control is primarily defined
with an HTML node that defines its structure and JS code
that defines its behavior. Its main method of communicating
with the user is by modifying the DOM of the associated
HTML node. This means that in order to extract the UI control
we have to slice the web application with DOM modifying
expressions as slicing criteria. In order to be able to that, the
process starts with the user selecting the HTML node that
defines the UI control and executing the behavior of the UI
control that he/she wants to reuse. In the recording phase, all
DOM mutation events are logged (triggered when DOM of
the UI control is modified) and executions that cause them are
set as slicing criteria.

C. Debugging

One of the problems when debugging applications is
determining which code statements have influenced the
erroneous value of some variable. This is even harder in
web application development because of the event-based

505

execution paradigm, specifics of the JS language, and the
close integration of the DOM and JS code. By selecting
the execution that contains the erroneous value as a slicing
criterion, we can generate a program slice which will contain
only the statements that lead to the bug.

In the end, after the slicing process is finished, only
the code influencing the slicing criterion will be extracted
from the whole application code.

IV. THE DEPENDENCE GRAPH

A basis for any slicing algorithm is a dependence graph
which explicitly represents all dependencies between pro-
gram’s code constructs. The client-side web application code
is composed of three parts: HTML code, JS code, and CSS
code. CSS code is used by the browser to specify rendering
parameters of HTML nodes, and can be safely ignored from
the perspective of application behavior. The remaining two
code types: HTML and JS code are important. The HTML
code is used as a basis for building the DOM, while all
functionality is realized by JS interactions with the web page’s
DOM. The JS code and the DOM are intertwined and must
be studied as parts of the same whole.

A. Graph Description

In our approach, the web application dependence graph is
composed of two types of nodes: HTML nodes and JS nodes,
and three types of edges: control flow edges denoting the flow
of application control from one node to another, data flow
edges denoting a data dependency between two nodes, and
structural dependency edges denoting a structural dependency
between two nodes.

Because of the inherent hierarchical organization of HTML
documents the HTML layout translates very naturally to a
graph representation. Except for the top one, each element has
exactly one parent element, and can have zero or more child
elements. The parent-child relation is the basis for forming
dependency edges between HTML nodes. A directed structural
dependency edge between two HTML nodes represents a
parent-child relationship from a child to the parent. A de-
pendency graph subgraph composed only of HTML nodes
matches the DOM of the web page.

JS nodes represent code construct that occur in the program.
All JS code is contained either directly or indirectly in an
HTML node, so each JS node has a structural dependency
towards the parent HTML node. Two JS nodes can also have
structural dependencies between themselves denoting that one
code construct is contained within the other (e.g. a relationship
between a function and a statement contained in its body).
Data-flow edges can exist either between two JS nodes, or
between a JS node and a HTML node. A data dependency
from one JS node to another denotes that the former is using
the values that were set in the latter. A data dependency edge
from a JS node to an HTML node means that the JS node is
reading data from the HTML node, while a data dependency

from the HTML node to the JS node means that the JS node
is writing data to the HTML node.

B. Building the Dependence Graph

As input, the dependency graph construction algorithm
receives the HTML code of the web page, the code of all
included JS files, and a recorded execution trace. The graph
construction algorithm mimics the way a browsers builds a
web page. For each encountered HTML node it creates a
matching HTML graph node. When it reaches a HTML node
that contains JS code (the script node), it switches to the
creation of JS nodes – the process enters the execution-trace
guided interpretation mode where code nodes are created as
each code construct is evaluated. Once the whole code file
has been traversed, and all contained JS code executed in a
sequential fashion, the graph construction enters the event-
handling mimicking phase. Information about each event is
read from the execution trace, and the dependency from the
event handling function code node to the HTML node causing
the event created. JS nodes are also created for each code
construct executed as a part of the event-handler code.

C. Slicing the Dependence Graph

Program slicing is always performed with respect to a
slicing criterion. In Weiser’s original form a slicing criterion is
a pair 〈i, v〉 , where i is the code line number, and v is the set
of variables to observe. In dynamic slicing [1], the definition
is defined with respect to execution history as a triple 〈i, k, v〉
where i is the code line number and k is the ordinal number
marking after how many executions of the i-th code line we
want to observe a set of variables v.

The basic idea is that in the recorded execution traces, some
of the execution steps are marked as slicing criteria. When the
interpreter reaches one of them, it halts the code interpretation
and enters the code marking mode. By starting from the set
of code nodes that match the observing variable identifiers, it
traverses the dependence graph by following data-dependency
edges. The code construct belonging to each traversed node is
marked as important and will be included in the final slice. The
structural dependencies of each traversed node are studied, and
all structural ascendants of the traversed node are also marked
as important. In the end, when all slicing criteria have been
processed, and all relevant nodes have been marked, the final
program slice is generated by traversing the whole code model
and including only the marked code constructs.

V. TOOL

In order to further investigate the proposed approach, we
have developed two applications: i) Firecrow, a plugin to
the Firefox web browser, built on top of the Firebug1 web
debugger, which records application execution traces, and ii) a
Web code slicer. Firecrow enables the recording of application
traces and is responsible for gathering of all information that
is necessary in the process of slicing. It supports two modes:
extraction of UI controls mode and code extraction/debugging

1http://getfirebug.com

506

mode. In the extraction of UI controls, it enables the user
to visually select the HTML node that represents the UI
control, and in addition it gathers information responsible for
the visuals of the UI control (used images, CSS styles, etc.). In
the code extraction/debugging phase it shows an overview of
the recorded application execution trace, and enables the user
to select executions which will be used as slicing criteria.

Web code slicer is a standard Java application composed of
several modules: JS, CSS, and HTML parsers, JS interpreter,
and the slicer itself. All are custom made, except for the
HTML parser, which is an open source program.

The tool suite can be downloaded from the web page:
http://www.fesb.hr/˜jomaras/?id=app-Firecrow

VI. EVALUATION

We have evaluated our approach by extracting functional-
ities from an open-source vector and matrix math library –
Sylvester2, which includes functions for working with vectors,
matrices, lines and planes. As with any other library, if we only
want to use a small subset of its functionality then a lot of
library code will be irrelevant from our application’s point of
view. Based on the public API given on the homepage we
have developed use-cases for a subset of the public methods.
We have recorded the execution of those use-cases, with the
following results: From the total of 130 methods spread over
2000 lines of code we have extracted 20 methods in a way
that only the code essential for the stand-alone functioning of
the method is extracted. In all cases the method extraction was
successful, and the use-case could be repeated for the extracted
code.

Table I presents the experimental data. For each tested
method it provides information about the total number of
uniquely executed code lines during the execution of a use
case (second column), the number of lines that were included
in the final slice (third column) and the ratio between the
number of executed and extracted code lines (fourth column).
As can be seen, each use case executes around 10% of the total
library code, and out of that executed code the slicing process
extracts on average around 23%, which constitutes the parts
of the code required to implement the wanted behavior.

The set of use cases and the accompanying code can be
downloaded from the Firecrow homepage.

VII. CONCLUSION AND FUTURE WORK

In this paper we have presented a novel approach and
the accompanying tool suite for slicing of client-side web
applications. The process starts with the developer recording
the execution of a set of use-cases that represent a behavior
that is in accordance with some slicing goal. Based on the
recorded execution-trace guided code interpretation, we have
shown how a dynamic code dependency graph can be built,
and how that same graph can be used to extract only the code
relevant for a particular slicing criterion. Program slicing has
many applications, and in this paper we have gave outlines on

2http://sylvester.jcoglan.com/

TABLE I
EXPERIMENTAL RESULTS ON EXTRACTING API FUNCTIONS FROM THE

SYLVESTER MATH LIBRARY

Method name Executed LOC Extracted LOC Ratio
Vector.cross 219 35 15%
Vector.dot 210 35 16%
Vector.random 216 35 16%
Vector.zero 211 35 16%
Vector.add 231 58 25%
Vector.dimensions 212 29 13%
Vector.distanceFrom 230 51 22%
Vector.isAntiparallel 245 66 26%
Vector.isParallelTo 247 69 27%
Vector.max 221 42 19%
Vector.modulus 211 42 19%
Vector.multiply 228 55 24%
Vector.rotate 253 93 36%
Matrix.diagonal 263 86 32%
Matrix.identitiy 254 72 28%
Matrix.rotation 239 55 23%
Matrix.zero 252 70 27%
Matrix.add 264 83 31%
Matrix.augment 258 80 31%
Matrix.isSquare 238 55 23%

how it can be used in the areas of code extraction, UI control
reuse, and debugging. The approach has been evaluated by
extracting functionality from an open-source JS library. The
evaluation has shown how instead of using full libraries, this
process could be used only to extract the parts of the library
that are actually used in the application. We consider this an
interesting fact, and in the future we plan to investigate how
much library code is generally used in web applications by
performing an empirical study. We also plan to extend the
slicing process to cover whole web applications, by expanding
it to include server-side slicing.

ACKNOWLEDGMENT

This work was supported by the Swedish Foundation
for Strategic Research via the strategic research center
PROGRESS.

REFERENCES

[1] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In
Proceedings of the ACM SIGPLAN 1990 conference on Programming
language design and implementation, PLDI ’90, pages 246–256, New
York, NY, USA, 1990. ACM.

[2] K. B. Gallagher and J. R. Lyle. Using program slicing in software
maintenance. IEEE Transactions on Software Engineering, 17:751–761,
1991.

[3] Susan Horwitz. Identifying the semantic and textual differences between
two versions of a program. In Proceedings of the ACM SIGPLAN 1990
conference on Programming language design and implementation, PLDI
’90, pages 234–245, New York, NY, USA, 1990. ACM.

[4] F. Lanubile and G. Visaggio. Extracting reusable functions by flow graph
based program slicing. Software Engineering, IEEE Transactions on,
23(4):246 –259, apr 1997.

[5] Stephen Oney and Brad Myers. FireCrystal: Understanding interactive
behaviors in dynamic web pages. In VLHCC ’09: Proceedings of the 2009
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 105–108. IEEE Computer Society, 2009.

[6] Paolo Tonella and Filippo Ricca. Web Application Slicing in Presence of
Dynamic Code Generation. Automated Software Engg., 12(2):259–288,
2005.

[7] Mark Weiser. Program slicing. In ICSE ’81: 5th International Conference
on Software engineering, pages 439–449. IEEE Press, 1981.

507

