
Reusing Web Application User-Interface
Controls

Josip Maras1, Maja Štula1 and Jan Carlson2

1 University of Split, Croatia
2 Mälardalen Real-Time Research Center, Mälardalen University, Väster̊as, Sweden

{josip.maras, maja.stula}@fesb.hr, jan.carlson@mdh.se

Abstract. Highly interactive web applications that offer user experi-
ence and responsiveness of desktop applications are becoming increas-
ingly popular. They are often composed out of visually distinctive user-
interface (UI) elements that encapsulate a certain behavior – the so called
UI controls. Similar controls are often used in a large number of web
pages, and facilitating their reuse could offer considerable benefits. Un-
fortunately, because of a very short time-to-market, and a fast pace of
technology development, preparing controls for reuse is usually not a pri-
mary concern. In this paper we present a semi-automatic method, and
the accompanying tool, for extracting and reusing web controls. The
developer selects the control and performs a series of interactions that
represent the behavior he/she wishes to reuse. In the background, the
execution is analyzed and all code and resources necessary for the stand-
alone functioning of the control are extracted. Optionally, the user can
immediately reuse the extracted control by automatically embedding it
in an already existing page.

1 Introduction

In the last two decades web applications have made a tremendous leap forward:
from simple static web pages developed only in HTML to complex dynamic web
applications developed using server-side technologies that extensively use web
services, databases and client-side technologies. Initially the term “dynamic web
application” was mostly used to describe that web page content was dynamically
generated on the server side. More recently (2005 and onwards) with the wide
spread adoption of AJAX and faster web browsers, web applications are also
increasingly dynamic on the client side (e.g. applications such as Gmail, Face-
book, etc.). Web developers now routinely use sophisticated scripting languages
and other active client-side technologies to provide users with rich experiences
that approximate the performance of desktop applications [23].

Web application user-interface (UI) is often composed of distinctive UI ele-
ments, the so called UI controls. Similar controls are often used in different web
applications and facilitating their reuse could lead to faster development. Unfor-
tunately, the web application development domain is exposed to a very fast pace

of technology development and short time-to-market. This means that prepar-
ing code for reuse is often not a primary concern. So, when developers encounter
problems that have already been solved in the past, rather then re-inventing the
wheel, or spending time componentizing the already available solution (which is
sometimes not preferable [8]) they perform reuse tasks [2]. Reusing source code
that was not designed in a reusable fashion is known by different synonyms: copy-
and-paste reuse [10], code scavenging [9] and, more recently, pragmatic-reuse [5].
Pragmatic reuse treats the system in a white-box fashion and involves extracting
functionality from an existing system and reusing it within another system. The
client-side web development domain is particularly pervious to white-box reuse,
since code is transfered and executed in the browser. White-box reuse tasks are
complex and error-prone, partly because the goal is to extract the minimum
amount of code necessary for the desired functionality [5].

Reuse of client-side web UI controls is particularly difficult since there is
no trivial mapping between source code and the page displayed in the browser;
code is usually scattered between several files and code responsible for the desired
functionality is often intermixed with code irrelevant for the reuse task. In order
to reuse the chosen control, the developer has to locate the code and the resources
defining the UI control. Next, the developer has to download the selected files,
remove the unnecessary code and resources, and adjust for the now changed
location. This is a time-consuming process.

The structure of a web page is defined by HTML code, the presentation by
CSS (Cascading Style Sheets) code, and the behavior by JavaScript code. In
addition, a web page usually contains various resources such as images or fonts.
The interplay of these four basic elements produces the end result displayed in
the user’s web browser. Visually and behaviorally a web page can be viewed
as a collection of UI controls, where each control is defined by a combination
of HTML, CSS, JavaScript and resources (images, videos, fonts, etc.) that are
intermixed with code and resources defining other parts of the web page.

In this paper we present a novel approach to semi-automatic extraction of
reusable client-side controls. The developer selects the desired UI control on the
web page and interacts with it, demonstrating the behavior that he/she wishes to
reuse. In the background, the tool that we have developed – Firecrow [12] tracks
all executed code, applied CSS styles and used resources, in order to locate the
code and resources that are vital for the stand-alone functioning of the chosen UI
control. In the end, all essential code and resources are extracted, all necessary
adjustments are made and the control is packed as a reuse-friendly web page.
Optionally, the developer can choose to embed the extracted UI control directly
into a specific place of an already existing web page.

2 Extracting and reusing UI controls

In order to reuse a web UI control, we have to extract all that is necessary for the
control to be visually and functionally autonomous. This means extracting all

HTML, CSS, JavaScript and resources that are used in the visual presentation
and the desired behavior of the control.

The process can be separated into three phases: 1) Interaction recording,
2) Resource extraction, and 3) UI control reuse (Figure 1).

Fig. 1: Extracting and reusing UI controls in Web applications

The first step of the Interaction recording phase is to select the HTML node
that defines the chosen UI control. Next, the user performs a series of interactions
that represent the behavior of the control. The purpose of this phase is to gather
a log of all resources required for replicating visual and behavioral aspects of the
control.

The life-time of the web application client-side can be divided into two steps:
i) page initialization – where the browser parses the web page code and builds
the DOM (Document Object Model) [19] of the page, and ii) event-handling. All
user interactions are handled in the event-handling phase by modifying the DOM
built in the initialization phase. This means that in the beginning of the recording
phase, before the user has started interacting with the UI control, a “snapshot”
of the initial state of the control has to be made. This is done by logging all
executed initialization code, all CSS styles and all resources used to initially
define the control. Later, all code executed during the recorded interaction is
also logged, together with all dynamically applied CSS styles and images.

When the user chooses to end the recording, the process enters the Re-
source extraction phase, where code models for all code files (HTML, CSS,
and JavaScript) are build. Based on those models and logs gathered during the

recording phase, the code necessary for replicating the visuals and the demon-
strated behavior is extracted.

After the extraction phase is finished, the user can choose to enter the Reuse
phase and automatically embed the extracted control in an existing web page,
either by replacing, or by embedding it inside an already existing node. In this
way a full cycle is completed: from seeing the potential for reuse, through ex-
tracting the desired control, all the way to actually reusing it and gaining new
functionalities in the target web page. Each step of the process is described in
more detail in the following sections.

The approach will be illustrated with an example of extracting and reusing a
UI control from a web page. Figure 2 shows a web page developed in a previous
project, and the control (marked with a dashed frame) that was selected for
reuse. The control displays different images (marked with 1 in Figure 2) and
captions (mark 2). Currently displayed items can be changed by clicking on
bullets (mark 3), and the control replaces items with a fade-out, fade-in effect.

3 Interaction recording

The purpose of the interaction recording phase is to locate all code and resources
necessary for stand-alone functioning of the target UI control. In order to do that,
the user has to first select the chosen control. However, the control does not exist
as a separate entity in the web page. So, in our approach the control is selected
through the corresponding HTML node defining the UI control. This is done
with Firebug’s DOM (Document Object Model) explorer in which the user can
go through the DOM of the page.

Fig. 2: The web page of the UI control chosen for extraction

When the user initiates the recording phase, the page is reloaded, subscrip-
tions to the DOM mutation events [20] are registered, and the initial state of
the UI control is logged. The initial state is composed of code executed while
initializing the control, and styles and resources that initially define the control.
Generally, all executed code is logged by communicating with the JavaScript de-
bugger service, which provides hooks (or events) that activate on each execution
and give information about the currently executed source code lines. In order to
obtain the styles and resources that initially define the UI control, the DOM of
the control is traversed and all CSS styles and resources applied and used in the
control are logged. With this, a log of resources that initially define the control
is obtained.

After the UI control is fully loaded, the modifications of the control are caused
by user interactions and/or timing events. The executed code is again logged
by communicating with the JavaScript debugger service, while any dynamic
changes in styles and resources are logged by handling DOM mutation events.
Using this approach we are able to locate all code and resources that define
the control: i) HTML code, because the user directly selects the HTML node
defining the control; ii) JavaScript code, because by communicating with the
JavaScript debugger service we are able to log all executed lines; iii) CSS code;
and iv) resources, because styles and resources applied to the control during the
the whole course of the execution are logged.

4 Extraction

Once the recording of interactions is complete, the process goes into the extrac-
tion phase. As input, the extraction process receives all data gathered during the
recording phase: the HTML code of the whole page; the xPath [21] expression
uniquely defining the node designated for extraction; a collection of used CSS
styles and resources; and for each JavaScript code file a list of executed lines.
Based on this data, JavaScript files, CSS files, and resources are separately an-
alyzed and cleansed of unnecessary elements. Since HTML documents can have
JavaScript and CSS code embedded directly in them, these parts of the file are
handled in the same way as the rest of the JavaScript and CSS code.

4.1 Extracting JavaScript code

The goal of JavaScript code extraction is to produce a minimal code that is
syntactically correct, and semantically consistent with the recorded execution.
A naive implementation, where one would simply split the file into lines, and
then filter out the non-executed ones can only function in rare cases of specially
formated code, but since real-world code can be arbitrarily formated this is not
an option. Consider the example given in Listing 1.1.

/*1*/var a = getNum ();

/*2*/if(a%2==0) {doEven ();} else

/*3*/{

/*4*/ doOdd ();

/*5*/}

/*6*/ doOtherStuff ();

Listing 1.1: Why naive line removal does not work

In this example, if the getNum function returns an even number, lines 1, 2
and 6 will be executed. If we do simple line removal, we would end up with
code presented in Listing 1.2 which is not semantically equivalent to the original
program. The doOtherStuff function would only be called if a is odd. And in
the original code (Listing 1.1) it is called regardless if a is even or odd.

/*1*/var a = getNum ();

/*2*/if(a%2==0) {doEven ();} else

/*3*/ doOtherStuff ();

Listing 1.2: Naive line removal result

In order to tackle this problem, we build a model of the JavaScript source
code. This model is produced by a JavaScript parser that we have developed. The
parser is developed with ANTLR [7] according to the specification given in [6].
Listing 1.3 gives a code example and Listing 1.4 gives the model generated from
the code example.

/*1*/ function double(x)

/*2*/{

/*3*/ return 2*x;

/*4*/}

Listing 1.3: JavaScript code example

As can be seen in Listing 1.4, the model represents a simplified abstract
syntax tree of the given source code. Although it is a lot more verbose then the
source code from which it is derived from, the model provides all information
about the position and type of used constructs.

{"srcElems":[{

"type":"funcDecl", "strtLn":1, "strtCh":0,

"name":"double", "params": ["x"],

"body": { "type":"funcBody",

"strtLn":2, "strtCh":0, "srcElems":[{

"type":"rtrnStatemnt", "strtLn":3,"strtCh":1,

"expr": {"type":"mulExpr", "strtLn":3,

"strtCh":8, "exprs":[

{"type":"numLit", "strtLn":3,

"strtCh":8,"value":2,

"endLn":3,"endCh":8},

{"type":"mulExprItem", "strtLn":3,

"strtCh":9, "operator":"*", "item":{

"type":"ident", "strtLn":3,"strtCh":10,

"id":"x","endLn":3,"endCh":10},

"endLn":3,"endCh":10

}], "endLn":3, "endCh":10

}, "endLn":3,"endChar":11

}], "endLn":"4","endCh":"0"

}, "endLn":4,"endCh":0

}]}

Listing 1.4: JavaScript model example

By traversing a source code model (e.g. Listing 1.4) we can remove all code
constructs contained in the not-executed lines, while keeping the semantical
correctness.

4.2 Extracting CSS code

Part of the data gathered during the recording phase are styles that get applied
to the chosen HTML node. Similarly to the process of building the JavaScript
code model, we have also developed a CSS parser that builds a model of the
code. Listing 1.5 gives a code example, while Listing 1.6 presents the model of
the code given in the example.

@import url(’/css/style.css’);

body { font -family: tahome; background: white; }

Listing 1.5: CSS code example

Based on the used CSS styles that were gathered during the recording phase,
the code model of the whole web application CSS code is traversed and only
code comprised of used styles is generated.

{ "imports": [{ "url": "/css/style.css" }],

"body": { "items": [{

"type": "ruleSet",

"selectors": ["#mainContainer"],

"declarations": [

{"prop": "font -family", "val": "tahoma"},

{"prop": "background","val": "white"}

]}]}}

Listing 1.6: CSS model example

The CSS code model is especially useful in the reuse phase, where the CSS
code of the control is merged with the CSS code of the host web page. There we
use both the CSS model of the control and the CSS model of the host page to
detect naming conflicts, and in the case of conflicting styles offer the possibility
of merging.

4.3 Extracting HTML code

In order to extract the HTML code of the chosen UI control, we have to be able
to locate the code responsible for defining the control. In this case we build a
standard model of the given web page – DOM [19] – with an open source HTML
parser [14].

The visual layout of a certain HTML node is not only influenced by the
HTML code of that node, but also by the type and presentation of its ancestors.
For this reason, when traversing the DOM tree, the ancestors of the UI control
are kept, but all siblings (both from the chosen HTML node, and from each of
its ancestors) are removed. The resulting HTML DOM tree can contain image
nodes and references to styles and scripts. Since the location of the HTML node
will change (the code will be transfered from a web server to the user chosen
location), the in-code references to those files also have to be changed. This is a
time-consuming task, so it is handled automatically.

4.4 Extracting resources

During the recording phase, all resources that were at some point used by the
UI control are tracked. In the final step of the extraction phase all resources are
automatically downloaded to the target location.

Fig. 3: Extracted UI control from the web page shown in Figure 2

The result of the extraction process is an HTML document that contains the
HTML code defining the selected node, and includes all necessary style sheets,
scripts, and resources that were identified as necessary in the extraction phase.
Figure 3 shows the results of extracting the UI control from the web page shown
in Figure 2.

5 Reuse

Once the UI control has been extracted it can be embedded into an existing
“host” web page. The user selects the host web page, a referent node in the host
page, and the insertion type. The control can be inserted so that it replaces the
referent node; or it can be inserted into, before, or after the referent node. In

order to enable reuse, resources defining the extracted UI control and resources
defining the host web page have to be merged. Naturally, this can lead to conflicts
such as CSS style overriding, duplicate JavaScript libraries, name clashes, etc.,
that have to be tackled.

5.1 Detecting conflicts

Currently, the best reuse results are achieved if the extracted UI control is reused
at an early stage of the new web page development – in a state where the host
web page is not complex and does not include large CSS or JavaScript code
bases. Even in that case, conflicts when merging HTML, CSS, JavaScript can
occur.

Detecting HTML conflicts – When merging the HTML code of the control
with the HTML code of the host web page the following conflicts can occur:
inclusion of duplicate JavaScript libraries, occurrence of HTML nodes with the
same id, and clashing HTML node classes. Before the merging is done, the control
DOM and the host page DOM are analyzed, and if any conflicts are detected
the user is notified.

Detecting CSS conflicts – In CSS, conflicts can arise from clashes based on
HTML node IDs, node classes and node types. The first two cases (IDs and
classes) are handled by detecting HTML conflicts, but the third case has to be
handled separately. If there are CSS rules clashing because of node types, then
we notify the user and offer the possibility to either accept one of the rules, or
to merge them into one CSS rule.

Detecting JavaScript conflicts – Web applications often use JavaScript li-
braries (e.g. jQuery, Prototype, Mootools, etc.), and a situation might happen
in which the host page uses a full library, and the control uses a subset of the
code from the same library, or vice versa. In that case we handle the conflict
by including the full library. Since JavaScript is a dynamic language, more ad-
vanced analysis (that is beyond the scope of this paper) is needed in order to
detect conflicts on variable or function level.

5.2 Example

We will demonstrate the process by reusing the UI control, described in Sec-
tion II, in a test web page shown in Figure 4. When extracting the control we
provide the path to the test host web page, and the xPath expression of the
placeholder node which we want to replace. Then, when the control is extracted
all control resources are merged with the already existing resources of the host
page.

The result is shown in Figure 5. A video showing the whole process of reuse,
can be found at the Firecrow web page3.

In order to complete the reuse and adapt the extracted UI control to the new
context, the developer has to manually replace some of the extracted resources.

3 http://www.fesb.hr/̃ jomaras/Firecrow

Fig. 4: The host web page with a placeholder for the extracted control

Fig. 5: The result of reusing UI control in the host web page

For example, in this case we have replaced background images, changed text
captions, and added another option (the result is shown in Figure 6).

6 Tool

The whole process is currently supported by the Firecrow tool [12], which is an
extension for the Firebug4 web debugger. Currently, the tool can be used from
the Firefox web browser, but it can be ported to any other web browser that
provides communication with a JavaScript debugger, and a DOM explorer (e.g.
IE, Chrome, Opera). Only the interaction recording phase is browser dependent;

4 http://getfirebug.com

Fig. 6: The result of adapting the extracted UI control

building source models, extracting code, downloading resources, merging code
and resources are functionalities that are all encapsulated in a Java library that
can be called from any browser on any operating system. The whole source of the
program can be downloaded from http://www.fesb.hr/̃ jomaras/?id=Firecrow.

The Firecrow UI is shown in Figure 7. Mark 1 shows the web page chosen for
extraction, mark 2 Firebug’s HTML panel used for selecting controls, and mark
3 Firecrow’s extraction and reuse wizard.

7 Evaluation and lessons learned

We have evaluated our approach by extracting UI controls from thirty-five web
pages: twenty have been selected from the top 200 most visited web pages in
the world [1] (including Google, Facebook, Twitter, and Apple), ten have been
selected because they have visually interesting controls, and five from projects in
which we have been involved earlier. The full list of tested web pages is available
on the Firecrow web page and is updated regularly as more web pages are tested.
Since the notion of what would be considered a user control can vary, each web
page is accompanied with a screen-shot marking the extracted user controls.

In this evaluation we have learned more about the advantages and short-
comings of the approach and the accompanying tool Firecrow. From thirty-five
web pages we were able to successfully extract 133 user controls. However, the
extraction of eleven user controls failed. Mostly, the problems were with HTML
parsing, heavily modified DOM, and JavaScript trying to access elements that
were deleted in the extraction process. Problems with parsing HTML arise from
the fact that browsers fix invalid HTML code, and since there is no standard way
of handling HTML errors, each browser handles this problem in a specific way.
We use an open source HTML parser, and the DOM produced by this parser
does not always match the DOM built by a browser. Since we are identifying

Fig. 7: Firecrow user interface

nodes by xPath expressions which define the nodes’ position in the DOM, in
some rare cases, there can be a mismatch between the position of the node in
the browser DOM and in the DOM built by the parser. Because of this, the
extraction process can not locate the node, and the extraction fails. Also, a node
can not be located if the chosen node was dynamically created and does not
exist in the original HTML defining the web page.

In the current approach, we extract all code executed while loading the page
and while executing control-specific behavior. This means that we will usually
end up with more code than is actually needed for the user-control behavior
(e.g. initialization code for other controls can be executed). Some of that code
can try to access web page elements that are deleted in the extraction process,
which in turn can cause JavaScript errors in the extracted web page. Detecting
these errors with the Firebug web debugger, is however fairly straightforward.

8 Related work

There exist a number of approaches, environments and tools designed to support
reuse. In the web application domain these include HunterGatherer [15], Internet
Scrapbook [16], HTMLviewPad [17], and ReWeb [18]; while in the more general
domain of reusing Java code there is G&P (Gilligan and Procrustes) [4].

HunterGatherer [15] and Internet Scrapbook [16] allow users to collect com-
ponents from within Web pages, and to collect components from different Web

pages into a newly created page. But since these approaches were developed in
1990’s and early 2000, when web page development was not so dynamic on the
client side, with the term “component” they refer to information components
– most usually text paragraphs. These approaches are mostly used to create
scrapbooks of data gathered from different web pages, and not to reuse certain
functionality and visual elements of web pages.

Tanaka et al. [17] describe an interesting approach to clipping and reusing
fragments of Web pages in order to compose new applications. They only target
HTML elements, specifically HTML forms (no attention to CSS or JavaScript
is given in their examples), and how to reroute data entered in the form to
orginal servers that process the request. The applications created in this way
are not deployable as standard web pages, but are executed within their tool –
HTMLviewPad. This fact, along with not explicitly targeting the whole technol-
ogy chain (HTML, CSS, and JavaScript) is the biggest difference between our
approaches.

Our work is also related to program slicing [22], where by starting from
a subset of a program’s behavior, the program is reduced to a minimal form
which still produces that behavior. In a sense our approach can be viewed as
web page slicing with the goal of reducing the whole page (along with its code
and resources) to a form in which only the visuals and the behavior of the
selected user control are maintained. In the web engineering domain Tonella
and Ricca [18] define web application slicing as a process which results in a
portion of the web application which exhibits the same behavior as the initial
web application in terms of information of interest displayed to the user. In the
same work they present a technique for web application slicing in the presence
of dynamic code generation where they show how to build a system dependency
graph for web applications. This work is mostly dealing with reusing HTML and
server-side code.

In the more general domain of Java applications, G&P [4] is a reuse environ-
ment composed of two tools: Gilligan and Procrustes, that facilitates pragmatic
reuse tasks. Gilligan allows the developer to investigate dependencies from a de-
sired functionality and to construct a plan about their reuse, while Procrustes
automatically extracts the relevant code from the originating system, transforms
it to minimize the compilation errors and inserts it into the developer’s system.
This work was further expanded [3] with the possibility to automatically recom-
mend elements to be reused based on their structural relevance and cost-of-reuse.

There are also two tools that facilitate the understanding of dynamic web
page behavior: Script InSight [11] and FireCrystal [13]. Script InSight helps to
relate the elements in the browser with the lower-level JavaScript syntax. It
uses the information gathered during the script’s execution to build a dynamic,
context-sensitive, control-flow model that provides feedback to the developers as
a summary of tracing information. FireCrystal [13] is a standalone Firefox plug-in
that facilitates the understanding of interactive behaviors in dynamic web pages.
FireCrystal performs this functionality by recording interactions and logging
information about DOM changes, user input events, and JavaScript executions.

After the recording phase is over, the user can use an execution time-line to
see the code that is of interest for the particular behavior. Compared to our
approach they make no attempts to extract the analyzed code.

9 Conclusion and future work

In this paper we have presented a novel approach and the accompanying tool for
extracting and reusing client-side user interface controls in web applications. The
process starts with the developer selecting the user control and demonstrating
the behavior that he/she wishes to reuse. In the background, the executed code
and used resources are analyzed. We have shown how, based on that analysis, a
subset of the whole application code and resources necessary for the independent
functioning of the control can be determined. We have evaluated the approach
on thirty-five web applications and found that in a majority of cases the process
is able to extract stand-alone UI controls.

During the evaluation we have noticed that some pages make extensive mod-
ifications of the original web page DOM, up to the point that the node defining
the UI control does not exist in the original HTML code. Also, even though
some statements get executed while interacting with the control, they are not
necessarily required for the functioning of the web control. So, for future work,
we plan to develop a method for tracking DOM changes, which should enable
us to locate nodes in the original HTML code required for the creation of the
node defining the UI control. We also plan to extend the analysis of executed
code, so that only code statements that influence the behavior of the control are
extracted.

The web page displayed in the browser is usually the result of server-side
program execution, so we plan to extend the approach with server-side code
analysis in order to facilitate code reuse on the server-side.

Acknowledgment

This work was supported by the Swedish Foundation for Strategic Research via
the strategic research center PROGRESS.

References

1. Alexa. Alexa top sites, October 2010. ”http://www.alexa.com/topsites/”.
2. Joel Brandt, Philip J. Guo, Joel Lewenstein, and Scott R. Klemmer. Opportunistic

programming: How rapid ideation and prototyping occur in practice. In WEUSE
’08: Workshop on End-user software engineering, pages 1–5. ACM, 2008.

3. R. Holmes, T. Ratchford, M.P Robillard, and R. J. Walker. Automatically Rec-
ommending Triage Decisions for Pragmatic Reuse Tasks. In ASE ’09: Proceedings
of the 2009 24th IEEE/ACM International Conference on Automated Software
Engineering. IEEE Computer Society, 2009.

4. R. Holmes and R. J. Walker. Semi-Automating Pragmatic Reuse Tasks. In ASE
’08: Proceedings of the 2008 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering, pages 481–482. IEEE Computer Society, 2008.

5. Reid Holmes. Pragmatic Software Reuse. PhD thesis, University of Calgary,
Canada, 2008.

6. ECMA international. ECMAScript language specification. ”http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-262.pdf”.

7. Jean Bovet. Antlr web site, February 2011. ”http://www.antlr.org/”.
8. Cory Kapser and Michael W. Godfrey. “Cloning Considered Harmful” Considered

Harmful. In WCRE ’06: Proceedings of the 13th Working Conference on Reverse
Engineering, pages 19–28. IEEE Computer Society, 2006.

9. Charles W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183, 1992.
10. B. M. Lange and T. G. Moher. Some strategies of reuse in an object-oriented

programming environment. SIGCHI Bull., 20(SI):69–73.
11. Peng Li and Eric Wohlstadter. Script Insight: Using Models to Explore JavaScript

Code from the Browser View. In Web Engineering, ICWE 2009, pages 260–274,
2009.

12. Josip Maras, Maja Štula, and Jan Carlson. Extracting Client-side Web User In-
terface Controls. In ICWE 2010, International Conference on Web Engineering,
pages 502–505, 2010.

13. Stephen Oney and Brad Myers. FireCrystal: Understanding interactive behaviors
in dynamic web pages. In VLHCC ’09: Proceedings of the 2009 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC), pages 105–108.
IEEE Computer Society, 2009.

14. Open source Tagsoup. Tagsoup, Sept 2010. ”http://home.ccil.org/ cowan/XML/-
tagsoup/”.

15. M.C. Schraefel, Yuxiang Zhu, David Modjeska, Daniel Wigdor, and Shengdong
Zhao. Hunter Gatherer: Interaction Support for the Creation and Management of
Within-Web-Page Collections. In 11th international conference on World Wide
Web, pages 172–181, 2002.

16. Atsushi Sugiura and Yoshiyuki Koseki. Internet scrapbook: creating personalized
world wide web pages. In CHI ’97: Extended abstracts on Human factors in com-
puting systems, pages 343–344. ACM, 1997.

17. Yuzuru Tanaka, Kimihito Ito, and Jun Fujima. Meme Media for Clipping and
Combining Web Resources. World Wide Web, 9:117–142, 2006.

18. Paolo Tonella and Filippo Ricca. Web Application Slicing in Presence of Dynamic
Code Generation. Automated Software Engg., 12(2):259–288, 2005.

19. World Wide Web Consortium (W3C). Document Object Model (DOM), Sept 2010.
”http://www.w3.org/DOM/”.

20. World Wide Web Consortium (W3C). Document Object Model Events, Sept 2010.
”http://www.w3.org/TR/DOM-Level-2-Events/events.html”.

21. World Wide Web Consortium (W3C). Xml path language (xpath), Sept 2010.
”http://www.w3.org/TR/xpath/”.

22. Mark Weiser. Program slicing. In ICSE ’81: 5th International Conference on
Software engineering, pages 439–449. IEEE Press, 1981.

23. Alex Wright. Ready for a Web OS? Commun. ACM, 52(12):16–17, 2009.

