
Response-Time Analysis for Transactions with Execution-Time Dependencies

Jukka Mäki-Turja
Mälardalen Real-Time research Centre

& Arcticus Systems AB
jukka.maki-turja@mdh.se

Mikael Sjödin
Mälardalen Real-Time research Centre

mikael.sjodin@mdh.se

Abstract

Mature scientific research results in the area of schedu-
lability analysis have had a very limited impact on real
industrial applications. This, we believe, is that current
models are not able to accurately capture the complex
temporal behavior of actual systems. In this paper we ad-
dress a common assumption made in schedulability analy-
sis methods that tasks can experience their worst case ex-
ecution time independently from each other. This assump-
tion is not very realistic for real systems since tasks col-
laboratively often perform certain functionality and thus
depend on each other.

Our aim, in this paper, is to capture execution time de-
pendencies between tasks and to take advantage of this
information when performing response time analysis. We
introduce the concept of execution modes to the task model
with offsets (transactional task model). The execution
modes are used as a generic way to specify temporal de-
pendencies between tasks that execute within a transac-
tion. We then present extensions to the Response-Time
Analysis (RTA) theory to analyze transactions with exe-
cution modes.

1. Introduction

Our aim with this paper is to address one aspect leading
to a discrepancy between academic results and industrial
needs within the area of schedulability analysis of real-
time systems.

The importance of schedulability analysis of real-time
systems is quickly increasing. Today, almost all electri-
cal products of some complexity are controlled by an em-
bedded computing system. Often, these products need to
interact with an environment in a timely manner, i.e. the
computer system is a real-time system. Furthermore, a
large class of embedded real-time systems are also safety
critical, meaning that a system failure can have potentially
catastrophic consequences. These safety-critical real-time
systems are found, for instance, in vehicles, robotics,
medical appliances, and production facilities.

For safety-critical computer systems, the society is in-
creasing the pressure on system providers to provide ev-

idence that the system if safe. This paper will not dwell
into the many important issues of demonstrating safety of
a computer controlled systems, e.g. as mandated by the
safety standard IEC 61508 [4]. However, one important
activity in order to establish the safety of a real-time sys-
tem is to provide evidence that actions will be provided
in a timely manner (e.g. each actions will be taken at
a time that is appropriate to the environment of the sys-
tem). For systems consisting of multiple concurrent/semi-
concurrent operating-system tasks the number of possible
execution scenarios for each actions is daunting [23], and
effectively prohibits testing as a means for verifying the
correct timing of actions.

To complement testing, and to provide stronger evi-
dence for correct timing, academia has developed tech-
niques to make a priori analysis to verify that each action
in a system will be performed before its deadline. These,
so called, schedulability analysis techniques have been
continuously developed over almost four decades [20].
So, from an academic point of view, schedulability anal-
ysis can be considered as a mature technology. However,
studying the industrial penetration of schedulability gives
a very disappointing image. It is very difficult to find re-
ports of successful use of schedulability analysis in real
industrial systems. In fact, it is probably easier to find doc-
uments of negative results of trying to use schedulability
analysis in industrial systems [13, 27]. This disappointing
picture, we believe, is because traditional real-time analy-
sis models are not applicable for large and complex real-
time systems [27].

The core problem is that the scientific community uses
too simplistic or research oriented timing models. The
models stemming from academia do not fit well with the
structure of real systems. Thus, extracting a timing model
that is amenable for analysis may prove prohibitively diffi-
cult. And even if a model can be extracted, it may not cap-
ture real system scenarios well. Thus, results from analyz-
ing these models do not reflect real system behavior, lead-
ing to unnecessary pessimistic timing predictions [17].

In this paper we address the common assumption that
every task in the system experiences its worst case execu-
tion time simultaneously at the critical instant. We try to
capture and express execution time dependencies between
tasks and use this information when performing response



time analysis in order to get more accurate schedulability
analysis results. We do this by extending the task model
with offsets, also known as the transactional task model,
with the concept of execution modes. A mode defines a
tasks execution context, i.e., a task can execute different
parts of its code depending of its context. Such a context
can for example be dependant on input data produced by
a preceding task.

Paper Outline: We continue the paper by presenting a
background to schedulability and Response Time Analy-
sis (RTA) theory in section 2. In section 3 we introduce
and discuss execution-time dependencies. In section 4 we
extend the transactional task model to express execution-
time dependencies and present the resulting RTA formu-
lae. Finally, in section 5 we conclude the paper and dis-
cuss some future work.

2. RTA background

Response-Time Analysis (RTA) [1, 20] is a powerful
and well established schedulability analysis technique.
RTA is a method to calculate upper bounds on response-
times for tasks in real-time systems. In essence RTA
is used to perform a schedulability test, i.e., checking
whether or not tasks in the system will satisfy their dead-
lines. RTA is applicable for, e.g., systems where tasks
are scheduled in priority order which is the predominant
scheduling technique used in industrial systems today.
Furthermore, RTA is not only used as a schedulability
analysis tool, but it is also used in a wider context. For
example, schedulability analysis is performed in the in-
ner loop of optimization or search techniques such as task
attribute assignment and task allocation [7]. These meth-
ods require that RTA methods provide tight response times
and that implementations are efficient in order to be use-
ful in engineering tools for resource constrained real-time
systems.

To be able to calculate less pessimistic response times
in systems where tasks may have dependencies in their
release times, Tindell introduced RTA for a task model
with offsets, the transactional task model, [24]. Palencia
Gutiérrez and González Harbour formalized and extended
the work of Tindell in [18].

Liu and Layland [14] provided the theoretical foun-
dation for analysis of fixed priority scheduled systems.
Joseph and Pandya presented the first RTA [10] for the
simple Liu and Layland task model which assumes inde-
pendent periodic tasks. Since then RTA has been applied
and extended in a numerous ways, e.g., [2, 3]. Extensions
include lifting the independent task assumption [21, 22],
analyzing communication networks [5, 26], fault tolerant
systems [19], distributed systems [25], modeling OS over-
head [11], etc. So from a scientific perspective RTA has
become a well established and mature technology. A more
detailed discussion of some of these improvements can be
found in "A Practitioners Handbook for Real-Time Anal-
ysis" [6]. This book is focused on a practitioner’s point

of view and thus aims at applying RTA in an engineering
context. A historical perspective of real-time scheduling
research, where RTA is a big part, can be found in [20].

3. Execution-time dependencies

A prerequisite for schedulability analysis techniques
for hard real-time systems is that the worst case execution
time (WCET) is identified for every task in the system.
Furthermore, it is assumed that the execution time of each
task is independent of other tasks in the system, i.e. that
there exist a scenario where all tasks exhibit their WCET
at the same time. However, this assumption is not very
realistic since many tasks collaborate to achieve a specific
functionality and/or may have data dependencies among
them. This will result in overestimated response times.

For example, it is common that the WCET represents
an execution path that contains error recovery code. In
well-engineered systems, the errors should not propagate
longer than necessary; e.g. one would strive to contain
the errors within a single task. In such systems, is likely
that only one error-handler is executed in a sequence of
tasks. If this is the case, using the WCET for all tasks in
that sequence would greatly reduce schedulability of the
system. Another example is when systems are engineered
to have distinct functional modes. Within each mode only
a subset of the system’s functionality is active. However,
rather than reconfiguring the set of active tasks and the
signal-paths between them it is quite common to keep the
task-set and signal-paths unchanged over different modes,
and instead activate or deactivate different execution-paths
within the tasks.

In this paper we consider the transactional task-model
(a.k.a. the model for tasks with offsets) introduced by Tin-
dell [24]. In this model tasks are grouped into transac-
tions and assigned given a release-time within the trans-
action. A transaction is activated by an outside event (or
clock) and the last task in the transaction typically pro-
duces some output. Throughout the paper we will use an
example transaction with two tasks shown in Fig. 1. In
this example the two tasks has two distinct internal func-
tions (A and B in Task 1, and C and D in Task 2), each task
will only execute one of its functions per activation (e.g.
depending on the value of some global mode-variable).
Furthermore, we assume in this example that when Task 1
executes A, Task 2 will execute C, and when Task 1 exe-
cutes B, Task 2 will execute D. Thus, the transaction has
two distinct execution behaviors: A followed by C, and B
followed by D. We call each such execution behavior for
a mode.

A

B

C

D

Task 1 Task 2
Input output

Figure 1. Example Transaction



4. RTA with execution-time dependencies

In this section we outline the existing transactional
task-model and its response-time analysis; and present
our extension to the model and analysis needed to capture
execution-time dependencies in transaction modes.

4.1. System model
The transactional task model was introduced to model

tasks which have dependencies in their release times. Tin-
dell introduced the notions of transactions and timed off-
sets for tasks within the transactions [24]. Palencia Gutiér-
rez and González Harbour [18] showed how to use this
model to also model precedence relations within a trans-
action. These papers both present exact (exponential
time-complexity) and approximate (polynomial complex-
ity) analysis. Later we revealed hidden pessimism in the
approximate analysis [15]. In this paper we extend our
previous analysis.

4.1.1 Original model

The transactional task model is defined as follows: The
system, Γ, consists of a set of k transactions Γ1, . . . , Γk.
Each transaction Γi is activated by a periodic sequence of
events with period Ti (for non-periodic events Ti denotes
the minimum inter-arrival time between two consecutive
events). The activating events are mutually independent,
i.e., phasing between them is arbitrary. A transaction,
Γi, contains |Γi| number of tasks, and each task may not
be activated (released for execution) until a time, offset,
elapses after the arrival of the external event.

We use τij to denote a task. The first subscript denotes
which transaction the task belongs to, and the second sub-
script denotes the number of the task within the transac-
tion. A task, τij , is defined by a worst case execution time
(Cij), an offset (Oij), a deadline (Dij), maximum jitter
(Jij), maximum blocking from lower priority tasks (Bij),
and a priority (Pij). The system model is formally ex-
pressed as follows:

Γ :={Γ1, . . . , Γk}
Γi :=〈{τi1, . . . , τi|Γi|}, Ti〉
τij :=〈Cij , Oij , Dij , Jij , Bij , Pij〉

There are no restrictions placed on offset, deadline or jit-
ter, i.e., they can each be either smaller or greater than the
period.

Event arrives

time

Earliest possible release Latest possible release

O ij Jij

Figure 2. Relation between an event arrival,
offset, jitter and task release

The relation between event arrival, offset, jitter and
task release is graphically visualized in Fig. 2. After the
event arrival, task τij is not released for execution until its
offset (Oij) has elapsed. The task release may be further
delayed by jitter (maximally until Oij + Jij) making its
exact release uncertain. For a more extensive explanation
of task parameters see [18].

The parameters for our example transaction from Fig. 1
is graphically presented in Fig. 3. To simplify the example
we have zero jitter (Jij = 0) and blocking (Bij = 0) for
each task. (In this section we ignore our assumed depen-
dency between the function A-C and B-D.)

Figure 3. An example transaction Γi

4.1.2 Task model with modes

In order to express execution time dependencies we
introduce the concept of modes. A set of modes,
{µi1, µi2, . . . , µim}, are expressed for each Γi. Further-
more, it is no longer sufficient to express the worst case
execution time with a single number, Cij . Instead each
task has an execution time corresponding to a mode µ,
Cµ

ij . Formally, the model is expressed by:

Γi :=〈{τi1, . . . , τi|Γi|}, Ti, {µ1, µ2, . . . , µs}〉
τij :=〈{C1

ij , . . . , C
s
ij}, Oij , Dij , Jij , Bij , Pij〉

For Cµ
ij the first subscript, i, denotes which transac-

tion the task belongs to, the second subscript, j, denotes
the number of the task within the transaction, and the su-
perscript denotes the mode where this execution time is
applicable.

An execution time must be specified for every mode.
However, if no execution time information is available for
a mode it is always safe to assume the traditional worst
case execution time for that mode. In this model any num-
ber of dependencies between tasks within a transaction
can be modeled.

In section 3 we presented an example transaction that
has two modes. For the rest of this paper we will assume
the timing-parameters presented in Fig. 4 for our example
transaction. Thus, the transaction Γi is formalized as:

Γi :=〈{τi1, τi2}, 20, {µ1, µ2}〉
τi1 :=〈{8, 5}, Oi1 = 1, Di1, Ji1 = 0, Bi1 = 0, Pi1〉
τi2 :=〈{3, 7}, Oi2 = 10, Di2, Ji2 = 0, Bi2 = 0, Pi2〉

Where C1
i1 is the WCET of A, C2

i1 the WCET of B, C1
i2

the WCET of C, and C2
i2 the WCET of D. Note that these



execution-times are consistent with the WCETs presented
in Fig. 3; where we ignored the dependencies A-C, and
B-D.

Figure 4. the transaction Γi with modes

4.2. RTA formulae
The goal of RTA is to facilitate a schedulability test for

each task in the system by calculating an upper bound on
its worst case response-time. We use τua (task a, belong-
ing to transaction Γu) to denote the task under analysis,
i.e., the task which response time we are currently calcu-
lating.

In the classical RTA (without offsets) the critical in-
stant for τua occurs when it is released at the same time
as all higher priority tasks [10, 14]. In a task model with
offsets this assumption yields pessimistic response-times
since some tasks cannot be released simultaneously due to
offset relations. Therefore, Tindell [24] relaxed the notion
of critical instant to be:

At least one task out of every transaction is to be
released at the critical instant. (Only tasks with
priority higher than τua are considered.)

Since it is not known which task coincides with (is re-
leased at) the critical instant, every task in a transaction
must be treated as a candidate to coincide with the critical
instant.

Tindell’s exact RTA evaluates the response-time for ev-
ery possible combination of candidates among all transac-
tions in the system. This, however, becomes computa-
tionally intractable for anything but small task sets (the
number of possible combinations of candidates is mn for
a system with n transactions and with m tasks per trans-
action). Therefore Tindell provided an approximate RTA
that still gives good results but uses one single approxima-
tion function for each transaction.

4.2.1 Interference function

Central to RTA is to capture the worst case interference
a higher priority task (τij) causes the task under analysis
(τua) during an interval of time t. Since a task can inter-
fere with τua multiple times during t, we have to consider
interference from possibly several instances. The interfer-
ing instances of τij can be classified into two sets:
Set1 Activations that occur before or at the critical in-

stant and that can be delayed by jitter so that they
coincide with the critical instant.

Set2 Activations that occur after the critical instant

When studying the interference from an entire transac-
tion Γi, we will consider each task, τic ∈ Γi, as a can-
didate for coinciding with the critical instant.

RTA for tasks with offsets is based on two fundamental
theorems [18]:

1. The worst case interference a task τij causes upon
τua is when Set1 activations are delayed by an
amount of jitter such that they all occur at the critical
instant and the activations in Set2 have zero jitter.

2. The task of Γi that coincides with the critical instant
(denoted τic), will do so after experiencing its worst
case jitter delay.

In order to determine the amount of Set2 interference for
a task, τij , we need to know when the first activation of
τij occurs after the critical instant. This phasing between
a task, τij , and the critical instant, which according to the-
orem 2 occurs at Oic + Jic, becomes:

Φijc = (Oij − (Oic + Jic)) mod Ti (1)

For our example transaction we have:

Φi11 = 0, Φi21 = 9
Φi22 = 0, Φi12 = 11

That is, if task τi1 is the task coinciding with the critical
instant task τi2 will be released 9 time units after the criti-
cal instant. If, on the other hand, τi2 is the one coinciding
with the critical instant task τi1 will be released 11 time
units after the critical instant.

For each mode µ and each critical instant candidate c,
the interference from task τij is captured by two parts:

1. The part caused by instances in Set1 (which is inde-
pendent of the time interval t), ISet1

ijc (µ), and

2. the part caused by instances in Set2 (which is a func-
tion of the time interval t during which interference
can occur), ISet2

ijc (t, µ).

These are defined as follows:

ISet1
ijc (µ) =

⌊
Jij + Φijc

Ti

⌋
Cµ

ij

ISet2
ijc (t, µ) =

⌈
t− Φijc

Ti

⌉
Cµ

ij − x

x =





0 t∗ ≤ 0
0 t∗ mod Ti = 0
0 t∗ mod Ti ≥ Cµ

ij

Cµ
ij − (t∗ mod Ti) otherwise

t∗ =t− Φijc

(2)



The x in the definition of ISet2
ijc (t, µ) was introduced

in [15] where it was recognized that the last task instance
may not interfere with its full execution time. This has
an impact on the approximate RTA which will result in
tighter analysis results.

The worst case interference, in mode µ, transaction Γi

poses on τua, during a time interval t, when candidate τic

coincides with the critical instant, is:

Wic(τua, t, µ) =
∑

∀j∈hpi(τua)

(
ISet1
ijc (µ) + ISet2

ijc (t, µ)
)

(3)
Where hpi(τua) denotes tasks belonging to transaction Γi,
with priority higher to that of the priority of τua.

In our example transaction we have two tasks (thus two
critical instant candidates), and two modes. This gives us
a total for four interference functions, these are visualized
in Fig. 5(a) to 5(d). In general, for a transaction with |Γi|
tasks and s modes we get |Γi|s number of interference
functions to consider.

4.2.2 Approximation function

In order to obtain the response time of task τua we need
to apply Wic(τua, t, µ) for all transactions in the system,
including the transaction of τua. However, in order to do
this we need to determine which task in each transaction
coincides with the critical instant. Since we cannot know
this beforehand we need to examine all possible varia-
tions (permutations) of one task out of every transaction,
and choose the variation that leads to the worst case re-
sponse time for τua. This is computationally intractable
(exponential growth in relation to the number of tasks) for
anything but small task sets. Furthermore, the concept of
modes adds an extra dimension of complexity since we
also need to examine all possible combination of modes.

Therefore we focus our attention on extending the ap-
proximate analysis that grows polynomially in relation to
the number of tasks and modes.

The approximate analysis defines one single, upward
approximated, function for the interference caused by
transaction Γi:

W ∗
i (τua, t) = max

∀µ∈Γi

[
max

∀c∈hpi(τua)

[
Wic(τua, t, µ)

]]
(4)

That is, W ∗
i (τua, t) simply takes the maximum of each in-

terference function (for each candidate τic and each possi-
ble mode µ). This is, for our example transaction, graphi-
cally visualized in Fig. 5(e) and 5(f).

4.2.3 Obtaining the response time

Given the interference (W ∗
i ) each transaction causes, dur-

ing a time interval of length t, the response time of τua for
a given mode µ, can be calculated.

Since several task instances (jobs) can be active at the
same time (deadlines can be larger than periods) we need

to determine how many number of jobs of τua are acti-
vated, and thus need to be considered within the busy pe-
riod [12]. The length of a busy period, for τua, assuming
τuc is the candidate critical instant, is defined as (Note
that the approximation function is not used for interfer-
ence from tasks within Γu, instead the exact interference
function Wuc() is used):

Luac(µ) =Bua + (pL,uac(µ)− p0,uac + 1)Cµ
ua+

Wuc

(
τua, Luac(µ), µ

)
+

∑

∀i 6=u

W ∗
i

(
τua, Luac(µ)

) (5)

where p0,uac denotes the first, and pL,uac(µ) the last,
task instance, of τua, activated within the busy period.
They are defined as:

p0,uac = −
⌊

Jua + Φuac

Tu

⌋
+ 1 (6)

and

pL,uac(µ) =
⌈

Luac(µ)− Φuac

Tu

⌉
(7)

In order to get the worst case response time for τua,
we need to check the response time for every instance,
p ∈ p0,uac . . . pL,uac(µ), in the busy period. Completion
time of the p’th instance is given by:

wuac(p, µ) =Bua + (p− p0,uac + 1)Cµ
ua

+ Wuc

(
τua, wuac(p, µ), µ

)
+

∑

∀i 6=u

W ∗
i

(
τua, wuac(p, µ)

) (8)

The corresponding response time (for instance p) is
then obtained by subtracting its activation time:

Ruac(p, µ) = wuac(p, µ)− Φuac − (p− 1)Tu + Oua

(9)

To obtain the worst case response time, Rua,(µ), as-
suming mode µ, we need to consider every candidate crit-
ical instant, including τua itself, and for each such candi-
date every possible task instance, p, of τua:

Rua(µ) = max
∀c∈hpu(τua)∪a

[
max

p=p0,uac,...,pL,uac(µ)

[
Ruac(p, µ)

]]

(10)

As a last step we have to consider the response time
for every possible mode, µ, in order to get the worst case
response time, Rua, for τua in all possible circumstances:

Rua = max
∀µ∈Γu

[
Rua(µ)

]
(11)



Figure 5. Wic(τua, t, µ) and W ∗
i (τua, t) functions

4.3. Discussion
If we calculate the response-time for a lower-priority

task τua with Cua = 6 (which is the single tasks of a
transaction Γu which only has one mode, a very large
Tu, Jua = 0 and Bua = 0) using equation 11 we get
Rua = 18. Whereas, if we would use the original analysis
(with the WCETs from Fig. 1) we would get Rua = 36.
The main reason for the decreased response-times is the
decreased system-load that results from using the modes.
In our example transaction the utilization decreases from
75% (15/20) to 60% (12/20) when the modes are intro-
duced.

The introduction of modes increases the complexity of
the analysis since we have to consider |Γi|s, recall that s
is the number of modes, approximation functions for each
transaction instead only |Γi| approximation functions in
the original analysis. These approximations are evaluated
many times during evaluation of equations 5 and 8 (which
are evaluated by fix-point iteration). However, this in-
crease in complexity can be removed using the techniques
presented in [16], which allow an arbitrary number of ap-
proximation functions to be represented using a single ta-
ble.

The analysis presented in this paper utilizes the strong
expressiveness of the original analysis. The main changes
to the original analysis are in equations 3 and 4 and the
introduction of equations 11. Equations 5 to 10 remain
essentially unchanged from the original analysis.

5. Conclusion and future work

We have introduced the concept of modes for the
transactional task model in order to capture execution
time dependencies among tasks. By being able to ex-
press execution time dependencies between tasks, previ-

ously assumed independent, one can obtain more accu-
rate (tighter) response times for task and thus increase the
schedulability of the system. We have shown how RTA
for the transactional task model can be extended to utilize
the notion of modes.

Being able to express more complex task interdepen-
dencies we hope that schedulability analysis techniques
will be a more viable option for complex industrial appli-
cations since the overestimation of too simplified assump-
tions is reduced.

As a future work we plan to implement the analysis
in the Rubus ICE [8] development environment. We will
also implement support to identify execution-time depen-
dencies using the build-in monitoring capabilities of the
Rubus OS. Using these implementations we will investi-
gate real systems, to quantify how much resources can be
freed using our new analysis technique. Many current sys-
tems built with the Rubus tool-chain has utilization close
to 100% during scheduling analysis; which to some extent
depend on overestimations in the analysis [9].

Acknowledgement

This work is supported by Swedish Knowledge Foun-
dation (KKS) within the project EEMDEF, the Swedish
Research Council (VR) within project TiPCES, and the
Strategic Research Foundation (SSF) with the centre
PROGRESS.

References

[1] N. Audsley, A. Burns, R. Davis, K. Tindell, and
A. Wellings. Fixed Priority Pre-Emptive Scheduling: An
Historical Perspective. Real-Time Systems, 8(2/3):173–
198, 1995.



[2] N. Audsley, A. Burns, K. Tindell, M. Richardson, and
A. Wellings. Applying New Scheduling Theory to Static
Priority Pre-emptive Scheduling. Software Engineering
Journal, 8(5):284–292, 1993.

[3] A. Burns, K. Tindell, and A. Wellings. Effective Analy-
sis for Engineering Real-Time Fixed Priority Schedulers.
IEEE Transactions on Software Engineering, 22(5):475–
480, May 1995.

[4] I. E. Commission. IEC 61508 - Functional safety
of electrical/electronic/programmable electronic safety-
related systems.

[5] A. Ermedahl, H. Hansson, and M. Sjödin. Response-Time
Guarantees in ATM Networks. In Proc. 18th IEEE Real-
Time Systems Symposium (RTSS), pages 274–284. IEEE
Computer Society Press, December 1997.

[6] M. K. et al. A Practitioners Handbook for RMA.
[7] J. Fredriksson, K. Sandström, and M. Åkerholm. Opti-

mizing Resource Usage in Component-Based Real-Time
Systems. In 8th International Symposium on Component-
based Software Engineering (CBSE8), May 2005.

[8] K. Hänninen, J. Mäki-Turja, S. Sandberg, J. Lundbäck,
M. Lindberg, M. Nolin, and K.-L. Lundbäck. Framework
for Real-Time Analysis in Rubus-ICE. In 13th IEEE Inter-
national Conference on Emerging Technologies and Fac-
tory Automation, September 2008.

[9] K. Hänninen and T. Riutta. Optimal Design. Master’s
thesis, Mälardalens Högskola, Dept of Computer Science
and Engineering, 2003.

[10] M. Joseph and P. Pandya. Finding Response Times in a
Real-Time System. The Computer Journal, 29(5):390–
395, 1986.

[11] D. Katcher, H. Arakawa, and J. Strosnider. Engineering
and analysis of fixed priority schedulers. IEEE Transac-
tions on Software Engineering, 19(9):920–934, September
1993.

[12] J. Lehoczky. Fixed priority scheduling of periodic task
sets with arbitrary deadlines. In Proc. 11th IEEE Real-
Time Systems Symposium (RTSS), pages 201–212, Decem-
ber 1990.

[13] R. Lencevicius and A. Ran. Can Fixed Priority Scheduling
Work in Practice? In Proc. 24th IEEE Real-Time Systems
Symposium (RTSS), page 358, December 2003.

[14] C. Liu and J. Layland. Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment. Journal
of the ACM, 20(1):46–61, 1973.

[15] J. Mäki-Turja and M. Nolin. Tighter Response-Times for
Tasks with Offsets. In Proc. of the 10th International
conference on Real-Time Computing Systems and Appli-
cations (RTCSA’04), August 2004.

[16] J. Mäki-Turja and M. Nolin. Efficient Implementation of
Tight Response-Times for Tasks with Offsets. Real-Time
Systems Journal, February 2008.

[17] M. Nolin and J. Mäki-Turja. Achieving industrial strength
timing predictions of embedded system behavior. In The
2008 International Conference on Embedded Systems and
Applications, July 2008.

[18] J. Palencia Gutiérrez and M. Gonzáles Harbour. Schedu-
lability Analysis for Tasks with Static and Dynamic Off-
sets. In Proc. 19th IEEE Real-Time Systems Symposium
(RTSS), December 1998.

[19] S. Punnekkat. Schedulability Analysis for Fault Tolerant
Real-time Systems. PhD thesis, University of York, June
1997.

[20] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker,
A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, and
A. K. Mok. Real Time Scheduling Theory: A Historical
Perspective. Real-Time Systems, 28(2/3):101–155, 2004.

[21] L. Sha, R. Rajkumar, and J. Lehoczky. Task scheduling
in distributed real-time systems. In IEEE Industrial Elec-
tronics Conference, 1987.

[22] L. Sha, R. Rajkumar, and J. Lehoczky. Priority Inheri-
tance Protocols: an Approach to Real Time Synchroniza-
tion . IEEE Transactions on Computers, 39(9):1175–1185,
September 1990.

[23] H. Thane and H. Hansson. Towards systematic testing of
distributed real-time systems. In Proc. 20th IEEE Real-
Time Systems Symposium (RTSS), pages 360–369, Decem-
ber 1999.

[24] K. Tindell. Using Offset Information to Analyse Static
Priority Pre-emptively Scheduled Task Sets. Technical Re-
port YCS-182, Dept. of Computer Science, University of
York, England, 1992.

[25] K. Tindell and J. Clark. Holistic Schedulability Anal-
ysis For Distributed Hard Real-Time Systems. Tech-
nical Report YCS197, Real-Time Systems Research
Group, Department of Computer Science, University of
York, November 1994. URL ftp://ftp.cs.york.ac.uk/pub/-
realtime/papers/YCS197.ps.Z.

[26] K. Tindell, H. Hansson, and A. Wellings. Analysing
Real-Time Communications: Controller Area Network
(CAN). In Proc. 15th IEEE Real-Time Systems Sympo-
sium (RTSS), pages 259–263. IEEE, IEEE Computer So-
ciety Press, December 1994.

[27] A. Wall, J. Andersson, and C. Norström. Probabilis-
tic Simulation-based Analysis of Complex Real-Times
Systems. In 6th IEEE International Symposium on
Object-oriented Real-time distributed Computing, Hako-
date, Hokkaido, Japan, May 2003.


