
 1

Different Approaches used in Software Product

Families

Rafia Inam

Mälardalens University.

Rafia.inam@mdh.se

Abstract

The use of software in consumer products is growing tremendously in current era. Further the complexity

of software in products is growing, diversity increasing, and the lead time is decreasing. To meet all these

challenges software reuse in consumer products is the solution. This evolves the concepts of software

product family, product population, and product lines. Three different approaches are used to integrate all

software within hardware. These three approaches are Integration-Oriented platform, Hierarchal and

Composition-Oriented. The integration-oriented approach is a classical approach used for many years in

industry but unable to meet the challenges of todays increased usage. Hierarchical and Composition-

Oriented approaches are popular now-a-days to meet the challenges of industry.

1 Introduction

Now-a-days software is used a lot in consumer products. These consumer products have a lot of

similarities in their interface and usage among product families. For example, take mobile phone

as a product family; all mobile phones have the menus for making calls, storing contacts

information, typing, sending, receiving and storing messages, etc. It will be very expensive if

different software is developed for each kind of mobile phone.

Further the software for the products is becoming more and more complex, and diversity of the

products is increasing rapidly. On the other hand, the lead time to develop the new products is

decreasing. It means that the new products are more complex and diverse than previous ones and

should be developed in less time. All this is only possible if software is reused in these products

of same family (product families) and also in products of different families (product

populations). This gives the idea of the reuse of software in product families, product lines and

product populations.

At the start I describe the terms software product families, software product populations and

software product lines in section 2. Section 3 gives the main challenges in the software

development. Section 5 describes different approaches used to develop software product families

in details with their advantages and disadvantages. A detailed comparison among these

approaches is also illustrated in this section.

2 Background

This section describes the terms software product families, software product populations and

software product lines.

 2

2.1 Software Product Families

Software product families have gained much important from the increased usage of software in

consumer products. “A software product family is commonly defined to consist of a common

architecture, a set of reusable assets used in systematically producing individual products, and

the set of products thus produced” [1]. One software product family normally has a very large

number of products. The definition indicates that software components are reused on a common

architecture because the products belonging to one family have a lot of common features and

build upon a common architecture.

On one hand products in one particular family have lots of common features, but on the other

hand they also have some differences too. Different methods are used to manage this variability

in product families. These are described in second chapter of this survey.

An example given by R. van Ommering in [2] is of the families in Philips televisions. Following

are different families:

• low-end televisions (e.g., for the bed room or camping),

• mid-range televisions,

• high-end televisions with a CRT as display,

• high-end projection televisions,

• high-end flat televisions (initially based on plasma displays), and

• Institutional televisions (for hotels, etc.).

All the above mentioned types are different from each other but when it comes to reuse of

software, all are merged into a single family except the first one.

2.2 Software Product Populations

From the last decade, many different technologies are combined into a single product. For

example; TV and VCR or TV and DVDs are combined, mobile phones are also providing

features like photography, music, internet and GPS receiver, and radio and TV and much more.

This convergence of different technologies presents the idea of product population.

R. van Ommering in [3] defines the term product population” for such a portfolio of product

families, where products within a family have many commonalities and few differences, and

where products between these families will have commonalities but also differences”.

2.3 Software Product Lines

P. Clements and L. Northrop in [4] define the product line as “a software product line is a

proactive and systematic approach for the development of software to create a variety of

products”. Hence it is a way to develop variability software for product families, which have not

only numerous common features but also a great convergence of different technologies.

The three different approaches used for software product lines are Integration-Oriented

approach, Hierarchical approach and Compositional approach. J. Bosch has discussed these

approaches in details in [5, 6].

3 Challenges in Software Development

The enormous increase of use of software features in the consumer products from the last decade

has put a big demand on industry to increase development of embedded software for product

 3

populations. Many researchers have worked to find the main trends behind this rapid growth.

Some are discussed in this survey.

3.1 Complexity or End-to-End Solution

According to Van Ommering in [2] the software usage in consumer products is growing

exponentially and it scales the Moore’s Law. Fig. 1 from [2] shows the increasing trend of

software during last decade. J. Bosch discusses more or less the same trend as end-to-end

solution in [6].

Fig. 1. Size of embedded software in high-end televisions. [2]

With the increase in software, its complexity also increases. Initially functionality was mainly

embedded within the hardware for products. But now with the availability of fast processors and

big memory storages, it is more feasible to implement it in software. Further many features that

are attractive to the user and that give products more sophisticated and professional look can also

be implemented in software.

3.2 Convergence or Diversity

According to Bosch [5, 6], from the last decade convergence of electronic product is

continuously taking place with the IT and telecommunications fields. For example mobile phone

is also using photography technology; TVs are connected to Internet via TCP/IP; and PDAs are

coming with GSM and GPS receivers. This convergence results in the growing diversity of the

consumer products. Fig. 2 illustrates the divergence aspect in Philips TVs by Van Ommering in

[2].

 4

Fig. 2. Axes of diversity [2].

3.3 Lead-Time

Lead time shows the time in which a new product should come into the market. This is very

important for companies to get a good business in market. Traditionally companies deploy new

products on annual events like Christmas or on big sports events. But now this lead time is

decreased to 6 months [2].

3.4 Software Engineering Capability

Hence to meet this lead time, the company must have good capabilities to develop complex

software in this short time [5]. Further this software must also implement the divergence

required for that product.

3.5 Summary

Summarizing all these above point, we conclude that the companies are facing the challenges to

build complex software with all diversity implemented into products and to develop these

products in less lead time. But at the same time, to get a good profit from the market, companies

should also maintain the cost of the products within the customer range.

If the software is developed from the scratch for each product then clearly the company cannot

meet the lead time and the cost of product will also become out of range of the customer. Hence

product families, product lines and product populations have become an integral part of the

industry now-a-days. According to Bosch [5] due to all these trends “the organizations are

stretching the scope of their product families far beyond the initial design”.

4 Different Approaches used in Software Product Families and their

Comparison

The companies that are using software product family approach are very successful in market

and in their business. As a consequence of this success these companies are now “stretching

 5

their product families significantly beyond their initial scope” [5, 6]. Companies are not only

including more and more new products into the families but also adding their previous products

into the family. Ommering gives an example in [2] of Philips Company where mid-range

televisions are added into the product family that was not initially into that family. Bosch says

that “this easily causes a situation where the software product family becomes a victim of its

own success” [5, 6].

Broadening the scope of the software product family, with increased complexity and diversity,

and to deliver the product family in due time is a real challenge. The traditionally used

Integration-Oriented platform approach to develop software product families is becoming

insufficient to adopt increasing scope, complexity, and diversity of the product families. Hence

some alternative approaches are required to overcome this intricacy. Bosch has given two

alternative approaches in [5, 6] that are Hierarchical Software Product Family and Composition-

Oriented approach. Before discussing those two approaches, we are describing the Integration-

Oriented Platform approach and some of its deficiencies in expansion of the scope of families.

4.1 Integration-Oriented Platform Approach

Integration-Oriented Platform approach is a traditional approach used by many companies to

develop software product families. In past companies has been very successful in business and

market by using this approach [5, 6]. The famous Hewlett-Packard (HP) company used this

approach for many years in their printers and all-in-one devices [7]. This approach is very well-

suited in situations where the family has a small scope and all the products have related features.

The problem in this approach begins when the scope of the family has to expand. The company

may want to add previous unrelated products into the family or to add additional features into its

products.

Here we describe the basic procedure of Integration-Oriented Platform and problems in this

approach. This approach works in two cycles: Platform organization cycle and product

organization cycle.

Fig. 3. Two cycles of Integration-Oriented Platform Approach

4.1.1 Platform organization cycle

All the common functionality, features of a product family and the architecture are implemented

in a platform. It provides the basis for the development of product-specific features in the next

cycle. Normally there are many teams working on platform organization development. Each

team is responsible for a particular component (or a set of related components) development. All

 6

these components are then integrated regularly into the platform and tested and validated. It is a

periodic release cycle and the cycle duration is quite large.

4.1.2 Product organization cycle

This cycle takes the platform as its basis in which all the common features and functionality has

been added, integrated, and tested and verified for correctness. Product organization teams then

implement the product-specific features and finalize their products. Cycle duration is less than

the Platform organization cycle.

4.1.3 Problems in Broadening the Scope of Product Families

This Integration-Oriented Platform approach has been very successful in past when product

families were relatively small but now-a-days the scope of the product families is growing a lot

and this approach has become insufficient to add a lot of new products into the family in an

efficient way.

This approach is too much centralized and a lot of communication and good understanding is

required between the platform and product development teams. As a large number of features

are incorporated in the platform, the platform development cycle is bigger than the product

organization cycle. Therefore, platform development team has the pressure to complete platform

and they can use shortcuts to develop that effects quality. And sometimes the integration, testing

and validations are shifted to integration team that cannot understand the exact origin of

problems. Some major problems described by Bosch [5, 6] are given below:

1. Decreasing complete commonality

2. Increasing partial commonality

3. Over-engineered architecture

4. Cross-cutting features

5. Maturity of product categories

6. Unresponsiveness of platform

4.2 Hierarchical Approach

When the software product family evolves, a large number of reusable components are

developed. One way to organize these reusable components is to arrange them in a hierarchical

fashion. These software reusable components and the architecture of the product family are

organized in three different layers. All the basic and common functions and features of the

software product family are implemented in Basic Platform Layer. Second layer above it is

Reusable Business Unit Layer that is developed over basic platform layer. It consists of some

extensions to the architecture and a set of reusable components that are common to a particular

family. The top layer is reusable product family and developed over the business layer. The

development of new products takes place here and using this hierarchical approach it is very fast

and easy.

 7

Fig. 4. Three Layers of Hierarchical Approach

4.3 Composition-Oriented Approach

This approach is entirely different from the first two approaches as it has no common platform

with common and basic functions and features implemented in it. Instead all the basic and

advances features are developed into the reusable components of a software product family. To

develop products these reusable components are combined with each other through well-defined

interfaces. Hence the architecture of the product family is implemented within the reusable

components. An example is given in Fig. 5. Van Ommering comments it as “this approach lies

between classical decomposition approach and opportunistic use of commercially available

components COTS, thus forms the bridge between the software product line and the COTS

community” [2].

4.3.1 The Koala Component Model

Koala is an example of Composition-Oriented Approach given by Van Ommering [2]. It is used

to develop software product families in Philips TVs.

Fig. 5. Example of Koala components [2].

 8

“Koala is an architectural description language (ADL), and one of the few designed to handle

diversity” [8]. It is widely used is industry. The components in Koala are integrated with each

other using interfaces. These components can have two different types of interfaces. First is

Provides interface. Functionality is provided to the environment by this interface. When

functionality is required from the environment then Requires interface is used. These interfaces

can be connected with each other either directly or sometimes they are connected through some

code in the middle. This code is called the glue code, code used to connect two interfaces. In fig.

5 the “document shaped objects” represent glue code. Sometimes this glue code is already

defined; it is called a switch in this situation. In fig. 5 a “short pair of trousers” represents a

switch.

4.4 Comparison of three software product family approaches

Jan Bosch discusses the comparison among the three software product family approaches in

details in [5, 6]. The factors on which this discussion is made are applicability, business strategy,

architecture used, components, product creation, evolution, and use outside the applicability

area.

1. First of all the applicability area of each approach is given. Integration-Oriented approach can

only be used in a small scoped family in which all the products are highly related. Using

Hierarchical approach the scope of family can be broadens, but only a number of focused

products can be added. In Composition-Oriented approach, the scope can be broadens and the

products with unique functions and features can be added very successfully.

Fig. 6. Comparison of three software product family approaches [5, 6].

2. Second point discusses the business strategy used in these approaches. Using Integration-

Oriented platform approach R&D cost is greatly reduced become software is shared among a

number of products. This approach also meets the Time-to-market or lead-time because of

sharing/reuse of software. This approach however does not help in broadening the scope of

the family. While Hierarchical and Composition-Oriented approaches not only support time-

 9

to-market and R&D cost reduction, they also work well when maximizing the scope of

family.

3. Third point is the architecture used by these three approaches. Integration-Oriented approach

uses a fixed structural architecture which provides a complete basis for product family with a

little variation points. Hence it is very difficult to enhance the scope of family as the

complete architecture has to be altered in this case. Hierarchical approach uses Micro-kernel

architecture that consists of micro-kernels and some optional elements. These optional

elements can be changed, new elements can be included or some elements can be deleted. In

this way this approach gives more freedom to add or change the product family.

Composition-Oriented approach uses architectural principles guaranteeing compositionality

which has no separate layer for architecture. Instead all architectural principles are added into

the components. Thus architecture can be changed very easily in this approach as compared

to other two approaches.

4. Although architecture provides the basis, the actual functionality and requirements are added

into components. Integration-Oriented and Hierarchical approaches use internal integration-

oriented components in which components have variation points but still they are very much

dependent on other components. Composition-Oriented approach uses Internal compositional

components in which components are based on well-defined architectural principles. These

components are relatively independent and can be freely composed with each other.

5. Product creation defines how the products are developed. Integration-Oriented and

Hierarchical approaches both use product-specific code based on pre-integrated platform in

which all the basic generic functionality has been implemented into pre-integration platform.

Products are developed at top of the platform. Composition-oriented approach composing

components in product specific configurations in which components are interconnected with

each other.

6. Companies can take advantage of reusable components if all products are created and then

continuously evolved over time. Integration-Oriented and Hierarchal approaches use platform

organization as basis. For evaluation, all the new features and requirements should be pre-

integrated into the platform. It is more time consuming and costly. In Composition-Oriented

approach evolution takes place using extending the components. New components can be

added or old can be deleted easily. Thus evolution is relatively easy in Composition-Oriented

approach.

5 Summary

Software product families, product lines are the solution to meet the challenges in software

development. Different approaches have been used to develop software for consumer products

like Integration-Oriented platform approach, Hierarchal approach and Composition-Oriented

approach. Observing all the advantages and disadvantages of these approaches, I can conclude

that the Composition-Oriented approach can meet all the requirements and challenges in a better

way than the other two approaches.

 10

6 References

[1] J. Bosch,” Design and Use of Software Architectures: Adapting and Evolving a Product-

Line Approach”, Addison-Wesley, Boston, MA, 2000.

[2] R. V. Ommering, "Software reuse in product populations", IEEE Transactions on

Software Engineering, Volume: 31 Issue: 7, July. 2005, Page(s): 537- 550.

[3] R. V. Ommering, “Building Product Populations with Software Components,” In

Proceedings of Int’l Conference on Software Engineering, pp. 255-265, May 2002.

[4] P. Clements, L. Northrop, “Software Product Lines, Practices and Patterns”. Addison-

Wesley, 2002.

[5] J. Bosch, “The Challenges Of Broadening The Scope Of Software Product Families”,

Communications of ACM, Dec 2006, Vol. 49, No. 12.

[6] J. Bosch, “Invited Talk: Expanding Software Product Families: From Integration to

Composition”, ARCS 2007, LNCS 4415.

[7] P. Toft, D. Coleman, J.Ohta, HP product generation consulting, a cooperative model for

cross-divisional product development for a software product line. In P. Donohoe, Ed.,

Proceedings of the First Software Product Lines Converence (SPLC1), Kluwer

Academic Publishers, 2000, 111–132.

[8] N. Medidovic, R.N. Tayler, “A Classification and Comparison Framework for Software

Architecture Description Languages,” IEEE Trans. Software Eng., vol. 26, no. 1, pp. 70-

93, Jan. 2000.

[9] Ivica Crnkovic, Magnus Larsson, “Building Reliable Component-Based systems”,

Artech House Boston. London. 2002.

