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Abstract
The current trend within computer, and even real-time, systems is to incorporate parallel

hardware, e.g., multicore processors, and parallel software. Thus, the ability to safely analyse
such parallel systems, e.g., regarding the timing behaviour, becomes necessary. Static timing
analysis is an approach to mathematically derive safe bounds on the execution time of a program,
when executed on a given hardware platform. This paper presents an algorithm that statically
analyses the timing of parallel software, with threads communicating through shared memory,
using abstract interpretation. It also gives an extensive example to clarify how the algorithm
works.

Note that the contents of this report might be updated and/or completed without public
notification.
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1 Introduction

Many safety-critical embedded systems have hard real-time requirements. For these, safe
bounds on the Best- and Worst-Case Execution Times (BCET/WCET) of the tasks in
the system are key measures. Together, they define an interval in time within which the
execution of the task is guaranteed to finish. In particular WCET bounds are needed by,
e.g., schedulability analyses.

For reasons of energy consumption and performance, development in hardware today
strives toward massively parallel architectures, like many-core, GPU and even special purpose,
heterogeneous platforms. Thus, it is very likely that software tasks in future real-time systems
will be parallel in order to utilise the provided computing power. Therefore, efforts must be
made in providing WCET analyses for such systems.

This paper focuses on analysing the timing behaviour of parallel software with dependent
sub-tasks, using a programming model with threads, shared memory, and locks. This kind
of programming model is commonly used in parallel software today. It is assumed that an
arbitrary underlying timing model, which can safely predict safe bounds on the BCET and
WCET of individual instructions given a certain system state, is provided. An algorithm to
statically derive the BCET and WCET of parallel software using abstract interpretation is
presented.

The rest of this paper is organised as follows. Section 2 presents related work on
static timing analysis for parallel systems. Section 3 gives a short introduction to abstract

∗ This work was partly funded by the Swedish Research Council (VR) through project 2008-4650,
“Worst-Case Execution Time Analysis of Parallel Systems”.

© Andreas Gustavsson, Jan Gustafsson and Björn Lisper;
licensed under Creative Commons License NC-ND

Technical Report number 2796, published at http://www.mrtc.mdh.se/index.php?choice=publications&id=2796.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.mrtc.mdh.se/index.php?choice=publications&id=2796


2 Toward Static Timing Analysis of Parallel Software – Technical Report

interpretation. Section 4 introduces a small model parallel language, with threads, thread-
local and global memory, and locks. We also give a formal semantics for the language,
including time, and we then present the analysis. Section 5 clarifies how the analysis works
by instantiating it for a given example program. Section 6 concludes the presentation with
some discussion and directions for the future.

2 Related Work

As far as we know, there have not been many attempts to statically analyse the execution
time of explicitly parallel software. The MERASA project provides a timing analysable
multicore CPU with a system level software (c.f., operating system). In [11], a case study is
performed, in which the WCET of a parallel 3D multigrid solver, executing on the MERASA
platform, is derived. In [8], model-checking (not a static approach) is used to derive the
WCET of a minimal parallel program. It is shown that, since model-checking is based on
exhaustive exploration of concrete states, it is difficult to achieve scalability using only the
presented approach. In [9], abstract interpretation is combined with model-checking to avoid
the scalability problems found in, e.g., [8]. This work does not focus on explicitly parallel
software, though.

In [3], an approach to directly calculate the BCET and WCET for sequential programs
using abstract execution [7] is presented. Our work takes basically the same approach, but
for explicitly parallel programs.

There is also some research on static low-level analysis of parallel systems. In [1] and [12],
static methods for analysing multicores with a shared L2 instruction cache are presented. In
[1], effects from timing anomaly influenced pipelines are also taken into account.

3 Background Theory

In general, basing a timing analysis on the concrete semantic of a program is infeasible due to
the enormous number of states that must be explored. Abstract interpretation [2, 5, 10] is a
method for safely approximating the concrete program semantics and can be used to obtain
a set of possible abstract states for each point in a program. An abstract state collects, and
most often over-approximates, the information given by a set of concrete semantic states.
This means that an analysis based on abstractly interpreting the semantics of a program can
become less complex and more efficient, but might suffer from imprecision, compared to an
analysis based on the concrete semantics.

3.1 Galois Connections
The concrete semantics of a programming language can be abstracted in many different ways.
The choice of abstraction is done by defining an abstract domain. An abstract domain is
essentially the set of all possible abstract states that fit the definition of the domain. It is
often shown that the abstract domain is a safe over-approximation of the concrete domain
by deriving a Galois connection between the two domains [10]. A Galois connection between
two domains (complete lattices1), D and D̃, is described by an abstraction function, α, and
a concretisation function, γ, which must fulfil the criterion in Definition 3.1.

1 An introduction to the theory on complete lattices can be found in many textbooks, e.g., [10].
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I Definition 3.1 (Galois connection). 〈α, γ〉 is a Galois connection iff α and γ are monotone
functions that fulfil

α ◦ γ v λd̃.d̃
γ ◦ α w λd.d

for all d ∈ D and d̃ ∈ D̃, where D is the concrete domain and D̃ is the abstract domain. J

An often useful special case of a Galois connection is called a Galois insertion [10].

I Definition 3.2 (Galois insertion). 〈α, γ〉 is a Galois insertion iff α and γ are monotone
functions that fulfil

α ◦ γ = λd̃.d̃

γ ◦ α w λd.d

for all d ∈ D and d̃ ∈ D̃, where D is the concrete domain and D̃ is the abstract domain. J

A function in the concrete domain, f : D → D, can be safely approximated by a function
in the abstract domain, f̃ : D̃ → D̃, iff ∀d̃ ∈ D̃ : f(γ(d̃)) v γ(f̃(d̃)). The best approximation
is achieved by inducing f along α [10].

I Definition 3.3 (Induced function). Assuming that 〈α, γ〉 is a Galois connection, the best
approximation of f : D → D in D̃ → D̃ is given by:

α ◦ f ◦ γ J

Sometimes, it is more convenient to work with adjunctions instead of Galois connections.

I Definition 3.4 (Adjunction). 〈α : V → D, γ : D → V 〉 is said to be an adjunction between
the complete lattices V = 〈V,vV ,

⊔
V , ⊔V ,⊥V ,>V 〉 and D = 〈D,vD,

⊔
D, ⊔D,⊥D,>D〉 iff

α and γ are total functions that satisfy

α(v) vD d⇐⇒ v vV γ(d)

for all v ∈ V and d ∈ D. J

In fact, adjunctions are Galois connections.

I Theorem 3.5 (Adjunctions and Galois connections). 〈α : V → D, γ : D → V 〉 is an
adjunction iff it is a Galois connection. J

Proof. First assume that 〈α : V → D, γ : D → V 〉 is an adjunction. It will be proven
that it also is a Galois connection by showing that γ ◦ α wV λv.v and α ◦ γ vD λd.d.
For any v ∈ V , trivially α(v) vD α(v). Using that α(v) vD d ⇒ v vV γ(d), it can
be established that v vV γ(α(v)). Similarly, for any d ∈ D, trivially γ(d) vV γ(d).
Using that v vV γ(d) ⇒ α(v) vD d, it can be established that α(γ(d)) vD d. Thus,
〈α : V → D, γ : D → V 〉 is a Galois connection.

Next assume that 〈α : V → D, γ : D → V 〉 is a Galois connection. It will be proven that it
also is an adjunction by showing that α(v) vD d⇒ v vV γ(d) and v vV γ(d)⇒ α(v) vD d.
So, first assume that α(v) vD d. Then, since γ is monotone, γ(α(v)) vV γ(d). Using that
γ ◦ α wV λv.v, it can be established that v vV γ(α(v)) vV γ(d) as required. For the second
part of the proof, assume that v vV γ(d). Then, since α is monotone, α(v) vD α(γ(d)).
Using that α ◦ γ vD λd.d, it can be established that α(v) vD α(γ(d)) vD d as required. J

A Galois connection can be constructed, or its correctness can be verified, using the
following theorems.
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I Theorem 3.6 (Galois connection – independent attribute method). If 〈α : V → D, γ : D →
V 〉 and 〈α′ : V ′ → D′, γ′ : D′ → V ′〉 are Galois connections, then so is 〈α′′ : (V × V ′) →
(D ×D′), γ′′ : (D ×D′)→ (V × V ′)〉, where{

α′′((v, v′)) = (α(v), α′(v′))
γ′′((d, d′)) = (γ(d), γ′(d′))

and (v, v′) ∈ V × V ′ and (d, d′) ∈ D ×D′. J

Proof. First calculate the following.

α′′((v, v′)) v (d, d′) def . α′′

⇐⇒ (α(v), α′(v′)) v (d, d′)
calc.⇐⇒ α(v) v d ∧ α′(v′) v d′
th. 3.5⇐⇒ v v γ(d) ∧ v′ v γ′(d′)
calc.⇐⇒ (v, v′) v (γ(d), γ′(d′))

def . γ′′

⇐⇒ (v, v′) v γ′′((d, d′))

Then, using Theorem 3.5, the result follows. J

I Theorem 3.7 (Galois connection – lifted independent attribute method). If 〈α1 : P(V1)→
D1, γ1 : D1 → P(V1)〉 and 〈α2 : P(V2)→ D2, γ2 : D2 → P(V2)〉 are Galois connections, then
so is 〈α : P(V1 × V2)→ (D1 ×D2), γ : (D1 ×D2)→ P(V1 × V2)〉, where{

α(V ) = (α1({v1 | ∃v2 ∈ V2 : (v1, v2) ∈ V }), α2({v2 | ∃v1 ∈ V1 : (v1, v2) ∈ V }))
γ((d1, d2)) = γ1(d1)× γ2(d2)

and V ⊆ V1 × V2 and (d1, d2) ∈ D1 ×D2. J

Proof. First, calculate

α(V ) v (d1, d2) def α⇐⇒ (α1(V ′1), α2(V ′2)) v (d1, d2)
calc.⇐⇒ α1(V ′1) v1 d1 ∧ α2(V ′2) v2 d2
th. 3.5⇐⇒ V ′1 ⊆ γ1(d1) ∧ V ′2 ⊆ γ2(d2)
calc.⇐⇒ V ′1 × V ′2 ⊆ γ1(d1)× γ2(d2)
def γ⇐⇒ V ′1 × V ′2 ⊆ γ((d1, d2))

V⊆V ′
1×V

′
2⇐⇒ V ⊆ γ((d1, d2))

where V ′1 = {v1 | ∃v2 ∈ V2 : (v1, v2) ∈ V } and V ′2 = {v2 | ∃v1 ∈ V1 : (v1, v2) ∈ V }. Then,
using Theorem 3.5, the result follows. J

I Theorem 3.8 (Galois connection – double lifting). If 〈α : V → D, γ : D → V 〉 is a Galois
connection, then so is 〈αP : P(V )→ P(D), γP : P(D)→ P(V )〉, where{

αP(V ′) = {α(v) | v ∈ V ′}
γP(D′) = {γ(d) | d ∈ D′}

and V ′ ⊆ V and D′ ⊆ D. J
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Proof. First, note that γP is monotone since γ is. Then calculate the following.

αP(V ′) ⊆ D′ def . αP⇐⇒ {α(v) | v ∈ V ′} ⊆ D′
calc.⇐⇒ ∀v ∈ V ′ : {α(v)} ⊆ D′

γP mon.⇐⇒ ∀v ∈ V ′ : γP({α(v)}) ⊆ γP(D′)
def . γP⇐⇒ ∀v ∈ V ′ : {γ(α(v))} ⊆ γP(D′)
λv.vvγ◦α⇐⇒ ∀v ∈ V ′ : {v} ⊆ γP(D′)
calc.⇐⇒ V ′ ⊆ γP(D′)

Then, using Theorem 3.5, the result follows. J

I Theorem 3.9 (Galois connection – total function space). If 〈α : V → D, γ : D → V 〉 is a
Galois connection, then so is 〈α′ : (S → V )→ (S → D), γ′ : (S → D)→ (S → V )〉 for some
set S, where: {

α′(f) = α ◦ f
γ′(g) = γ ◦ g J

Proof. First note that α′ and γ′ are monotone since α and γ are. Furthermore, since 〈α, γ〉
is a Galois connection,

γ′(α′(f)) = γ ◦ α ◦ f w f
α′(γ′(g)) = α ◦ γ ◦ g v g

and, thus, the theorem holds. J

I Theorem 3.10 (Galois connection – lifted total function space). If 〈α : P(V )→ D, γ : D →
P(V )〉 is a Galois connection, then so is 〈αs : P(S → V ) → (S → D), γs : (S → D) →
P(S → V )〉, for some set S, where{

αs(V ′) = λs ∈ S.α({v′ s | v′ ∈ V ′})
γs(d) = {λs ∈ S.v | v ∈ γ(d s)}

and V ′ ⊆ S → V and d ∈ S → D. J

Proof. First note that γs is monotone because γ is. Then calculate the following.

αs(V ′) v d
def . αs⇐⇒ λs ∈ S.α({v′ s | v′ ∈ V ′}) v d
γs mon.⇐⇒ γs(λs ∈ S.α({v′ s | v′ ∈ V ′})) ⊆ γs(d)
def . γs⇐⇒ {λs ∈ S.v | v ∈ γ((λs′ ∈ S.α({v′ s′ | v′ ∈ V ′})) s)} ⊆ γs(d)
calc.⇐⇒ {λs ∈ S.v | v ∈ γ(α({v′ s | v′ ∈ V ′}))} ⊆ γs(d)

λv.vvγ◦α⇐⇒ {λs ∈ S.v | v ∈ {v′ s | v′ ∈ V ′}} ⊆
{λs ∈ S.v | v ∈ γ(α({v′ s | v′ ∈ V ′}))} ⊆ γs(d)

calc.⇐⇒ {λs ∈ S.v | v ∈ {v′ s | v′ ∈ V ′}} ⊆ γs(d)
calc.⇐⇒ {λs ∈ S.(v′ s) | v′ ∈ V ′} ⊆ γs(d)
calc.⇐⇒ {v′ | v′ ∈ V ′} ⊆ γs(d)
calc.⇐⇒ V ′ ⊆ γs(d)

Then, using Theorem 3.5, the result follows. J
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I Theorem 3.11 (Galois connection – indexing). If 〈α : V → D, γ : D → V 〉 is a Galois
connection, then so is 〈α′ : (S × V )→ (S ×D), γ′ : (S ×D)→ (S × V )〉, for some partially
ordered set S 3 s, with the partial order defined as s v s′ ⇐⇒ s = s′, where{

α′((s, v)) = (s, α(v))
γ′((s′, d)) = (s′, γ(d))

and (s, v) ∈ S × V and (s′, d) ∈ S ×D. J

Proof. First calculate the following.

α′((s, v)) v (s′, d) def . α′

⇐⇒ (s, α(v)) v (s′, d)
calc.⇐⇒ s = s′ ∧ α(v) v d
th. 3.5⇐⇒ s = s′ ∧ v v γ(d)
calc.⇐⇒ (s, v) v (s′, γ(d))

def . γ′

⇐⇒ (s, v) v γ′((s′, d))

Then, using Theorem 3.5, the result follows. J

3.2 Constructing a Galois Insertion
A Galois insertion 〈α, γ〉 between two domains, D and D̃, can be constructed by following
steps 1-5 below [5].
1. A domain D with a partial order v, a least (bottom) element ⊥, a greatest (top) element
>, a greatest lower bound ⊔and a least upper bound

⊔
, so that 〈D,v,

⊔
, ⊔,⊥,>〉 is a

complete lattice must be given.
2. Define a domain D̃ and a monotone concretisation function γ : D̃ → D.
3. Define the partial order ṽ for D̃.
4. The greatest lower bound ˜⊔and the least upper bound

⊔̃
must exist for all subsets of D̃.

Then, by definition, 〈D̃, ṽ,
⊔̃
, ˜⊔, ⊥̃, >̃〉 is a complete lattice.

5. Define the abstraction function α : D → D̃, which must be monotone.
Assuming that the domains D and D̃ and the monotone concretisation function γ are defined,
the partial ordering ṽ can easily be defined as [5]:

I Definition 3.12 (Partial order). ṽ is a partial order for the domain D̃ iff ∀d̃1, d̃2 ∈ D̃ :
(d̃1 ṽ d̃2 ⇐⇒ γ(d̃1) v γ(d̃2)). J

Based on this definition of the partial order, the greatest lower bound and least upper
bound can be defined [5].

I Definition 3.13 (Greatest lower bound). The element d̃ ∈ D̃ is a lower bound of D̃′ ⊆ D̃
iff ∀d̃′ ∈ D̃′ : d̃ ṽ d̃′. The element d̃ ∈ D̃ is the greatest lower bound of D̃′ ⊆ D̃ (d̃ = ˜⊔D̃′)
iff d̃ is a lower bound of D̃′ and for all other lower bounds d̃′ of D̃′ we have d̃′ ṽ d̃. J

I Definition 3.14 (Least upper bound). The element d̃ ∈ D̃ is an upper bound of D̃′ ⊆ D̃ iff
∀d̃′ ∈ D̃′ : d̃′ ṽ d̃. The element d̃ ∈ D̃ is the least upper bound of D̃′ ⊆ D̃ (d̃ =

⊔̃
D̃′) iff d̃ is

an upper bound of D̃′ and for all other upper bounds d̃′ of D̃′ we have d̃ ṽ d̃′. J

The abstraction function α can be defined based on the definition of the greatest lower
bound operator [5].
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I Definition 3.15 (Abstraction function, α). Given two domains D and D̃ and a monotone
concretisation function γ : D̃ → D, the abstraction function α : D → D̃ is defined by:

α(d) = ˜⊔{d̃ | d v γ(d̃)}

where d ∈ D and d̃ ∈ D̃. J

Alternatively, assuming that we have defined two domains and a monotone abstraction
function, the concretisation function γ can be defined based on the least upper bound
operator.

I Definition 3.16 (Alternative definition – Concretisation function, γ). Given two domains
D and D̃ and a monotone abstraction function α : D → D̃, the concretisation function
γ : D̃ → D is defined by:

γ(d̃) =
⊔
{d | α(d) ṽ d̃}

where d ∈ D and d̃ ∈ D̃. J

3.3 The Interval Domain
One example of an abstract domain for values is the interval domain [4, 5, 10]. The definition
of an interval is given in Definition 3.17.

I Definition 3.17 (Interval). An interval is defined as [n1, n2], where n1, n2 ∈ Val = Z ∪
{−∞,∞} are the lower and upper bounds of the interval, respectively, and n1 ≤ n2. Formally,
the set of all intervals is defined as Intv = {⊥int} ∪ {[n1, n2] | n1 ≤ n2 ∧ n1, n2 ∈ Val},
where ⊥int denotes an invalid interval and >int = [−∞,∞]. J

A Galois insertion will now be created between P(Val) and Intv, using the steps of
Section 3.2. The concretisation function γint : Intv→ P(Val) is defined as:

I Definition 3.18 (Concretisation of intervals).

γint(i) =
{
∅ if i = ⊥int
{n ∈ Val | n1 ≤ n ≤ n2} if i = [n1, n2] J

The partial order relation for intervals, vint , is defined as (using Definition 3.12):

I Definition 3.19 (Partial order for intervals).
i vint >int
⊥int vint i

[n1, n2] vint [n′1, n′2]⇐⇒ n′1 ≤ n1 ∧ n2 ≤ n′2 J

The greatest lower bound operator for intervals ⊔int is defined as (using Definition 3.13):

I Definition 3.20 (Greatest lower bound for intervals).
iuint >int = >int uint i = i

iuint ⊥int = ⊥int uint i = ⊥int
[n1, n2]uint [n′1, n′2] ={

[max({n1, n
′
1}),min({n2, n

′
2})] if max({n1, n

′
1}) ≤ min({n2, n

′
2})

⊥int otherwise J

The least upper bound operator for intervals
⊔

int is defined as (using Definition 3.14):
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I Definition 3.21 (Least upper bound for intervals).
itint >int = >int tint i = >int
itint ⊥int = ⊥int tint i = i

[n1, n2]tint [n′1, n′2] = [min({n1, n
′
1}),max({n2, n

′
2})] J

The abstraction function αint : P(Val)→ Intv is defined as (using Definition 3.15):

I Definition 3.22 (Abstraction to interval).

αint(V ) =
{
⊥int if V = ∅
[min(V ),max(V )] otherwise J

To show that 〈αint , γint〉 is a Galois insertion, it would suffice to show that γint is
monotone, since the steps of Section 3.2 have been used. However, for clarity, the entire
proof will be provided.

I Lemma 3.23 (Monotonicity of γint). The function γint : Intv→ P(Val) is monotone. J

Proof. It should be shown that ∀i, i′ ∈ Intv : (i vint i
′ ⇒ γint(i) ⊆ γint(i′)).

For the case that i = ⊥int, the proof is trivial. Assume that i = [n1, n2] ∈ Intv and
i′ = [n′1, n′2] ∈ Intv, such that i vint i

′. Further assume that n ∈ γint(i). Then it must
be the case that n1 ≤ n ≤ n2 (Definition 3.18). Since i vint i

′, it must be the case that
n′1 ≤ n1 ≤ n ≤ n2 ≤ n′2 (Definition 3.19). But, then it must be that n ∈ γint(i′) (Definition
3.18), and thus, γint(i) ⊆ γint(i′). J

I Lemma 3.24 (Monotonicity of αint). The function αint : P(Val)→ Intv is monotone. J

Proof. It should be shown that ∀V, V ′ ∈ P(Val) : (V ⊆ V ′ ⇒ αint(V ) vint αint(V ′)).
For the case that V = ∅, the proof is trivial. Assume that V, V ′ ∈ P(Val), such

that V ⊆ V ′. Further assume that αint(V ) = [n1, n2] and αint(V ′) = [n′1, n′2]. Since
V ⊆ V ′, it must be that ∀v ∈ V : {v} ⊆ V ′, and hence, {n1, n2} ⊆ V ′. But then, it
must be that min(V ′) = n′1 ≤ n1 = min(V ) and max(V ) = n2 ≤ n′2 = max(V ′), and thus,
[n1, n2] vint [n′1, n′2] (Definition 3.19), which means that αint(V ) vint αint(V ′). J

I Theorem 3.25 (Galois insertion). 〈αint : P(Val) → Intv, γint : Intv → P(Val)〉 is a
Galois insertion. J

Proof. The proof amounts to showing that Definition 3.2 is fulfilled by 〈αint , γint〉. Note
that P(Val) and Intv are complete lattices [10].

According to Lemmas 3.23 and 3.24, γint and αint are monotone. To show that
αint(γint(i)) = i, assume that i ∈ Intv.

If i = ⊥int , then γint(i) = ∅. Thus, αint(γint(i)) = αint(∅) = ⊥int = i.
If i = [n1, n2], then γint(i) = {n ∈ Val | n1 ≤ n ≤ n2}. Thus, αint(γint(i)) = αint({n ∈
Val | n1 ≤ n ≤ n2}) = [n1, n2] = i.

To show that γint(αint(V )) ⊇ V , assume that V ∈ P(Val).
If V = ∅, then αint(V ) = ⊥int . Thus, γint(αint(V )) = γint(⊥int) = ∅ ⊇ ∅ = V .
If V 6= ∅, then αint(V ) = [min(V ),max(V )]. Thus, γint(αint(V )) = γint([min(V ),
max(V )]) = {n ∈ Val | min(V ) ≤ n ≤ max(V )} ⊇ V . J
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P ::= T
∣∣P ‖ T

T ::= (N, s)

s ::= [halt]l
∣∣[skip]l

∣∣[r := a]l
∣∣[if b goto l′]l

∣∣ s1;s2
∣∣

[load r from x]l
∣∣[store r to x]l

∣∣[lock lck]l
∣∣[unlock lck]l

a ::= n
∣∣ r ∣∣ a1 + a2

∣∣ a1 - a2
∣∣ a1 * a2

∣∣ a1 / a2

b ::= true
∣∣ false

∣∣!b ∣∣ b1 && b2
∣∣ a1 == a2

∣∣ a1 <= a2

Figure 1 The parallel programming language.

stm(T , pc) 〈pc′, r′,x′, l′〉 Condition
[halt]pc 〈pc, r,x, l〉 −
[skip]pc 〈pc + 1, r,x, l〉 −
[r := a]pc 〈pc + 1, r[r 7→ A[[a]]r],x, l〉 −

[load r from x]pc 〈pc + 1,R(r, r, x,x),x, l〉 −
[store r to x]pc 〈pc + 1, r,x[x 7→ (x x)[T 7→ {(r r, t)}]], l〉 −
[if b goto l]pc 〈pc + 1, r,x, l〉 ¬B[[b]]r
[if b goto l]pc 〈l, r,x, l〉 B[[b]]r
[lock lck]pc 〈pc, r,x, l〉 own(l lck) 6= T
[lock lck]pc 〈pc + 1, r,x, l[lck 7→ (locked,T)]〉 own(l lck) = T

[unlock lck]pc 〈pc + 1, r,x, l[lck 7→ (unlocked,⊥thrd)]〉 −
where R(r, r, x,x) = r[r 7→ v] and for some t′ ∈ Time, {(v, t′)} =

⋃
T′∈Thrd((x x) T ′)

Figure 2 Semantics of concrete axiom transitions: 〈T , pc, r,x, l, t〉−−→
ax
〈pc′, r′,x′, l′〉

4 Timing Analysis

In this section, an algorithm for timing analysis of programs containing dependent parallel
threads will be defined. It is assumed that the underlying architecture consists of both
thread-private and global memory, referred to as registers, r ∈ Reg, and variables, x ∈ Var,
respectively, and that arithmetical operations etc. can be performed using values of registers.
It will also be assumed that shared resources that can be acquired in a mutually exclusive
manner by the threads are provided, and that the operations provided by the instruction
set (statements) may have variable execution times. (C.f., multicore CPU:s, where you have
local and global memory, a shared memory bus and mutual exclusion operations.)

4.1 A Parallel Programming Language
The analysis will be based on the parallel programming language defined in Figure 1, which
is a set of operations using the discussed architectural features. P ∈ Prg denotes a program,
which simply is a number of threads, denoted by T ∈ Thrd. A thread is a pair of a
statement, s ∈ Stm, and a unique identifier, N ∈ ThrdID. This makes every thread unique
and distinguishable from other threads, even if several threads contain the same statement.
To increase the readability of the semantics, it will be assumed that the axiom-statements (all
statements except the sequentially composed statement, s1;s2) of each thread are uniquely
labelled with consecutive labels, l ∈ Lbl, and stored in an array-like fashion in ascending order
of their labels. a ∈ Aexp and b ∈ Bexp denote an arithmetic and a boolean expression,
respectively, n ∈ Val is an integer value, and lck ∈ Lck denotes a lock. Locks can be
acquired in a mutually exclusive manner using lock and released using unlock. Values can
be transferred between variables and registers using load and store. Conditional branching
is performed using if, a register is assigned a value using :=, a no-operation is performed
using skip, and halt stops the execution of the issuing thread. The arithmetical, boolean
and relational operators are self-explanatory and will not be discussed further.

The semantics of the language is formally defined in Figures 2 (individual axiom state-
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stm((N, s), pc) =

s if s = [skip]pc ∨
s = [r := a]pc ∨
s = [if b goto l′]pc ∨
s = [load r from x]pc ∨
s = [store r to x]pc ∨
s = [lock lck]pc ∨
s = [unlock lck]pc ∨
s = [halt]pc

stm((N, s′), pc) if s = s′;s′′ ∧ pc ∈ labels(s′)
stm((N, s′′), pc) if s = s′;s′′ ∧ pc ∈ labels(s′′)

(a) Definition of stm.

labels(s) =

{l} if s = [skip]l ∨
s = [r := a]l ∨
s = [if b goto l′]l ∨
s = [load r from x]l ∨
s = [store r to x]l ∨
s = [lock lck]l ∨
s = [unlock lck]l ∨
s = [halt]l

labels(s′) ∪
labels(s′′)

if s = s′;s′′

(b) Definition of labels.

Figure 3 Definition of stm and labels.

∀T ∈ Thrdexe : 〈T , pcT , rT ,x, l
′′, ta

T
′〉−−→
ax
〈pc′

T , r
′
T ,x

′
T , l

′
T〉

〈{(T , pcT , rT , tr
T , ta

T ) | T ∈ Thrd},x, l, t〉−−→
prg

〈{(T , pc′
T , r

′
T , tr

T
′, ta

T
′) | T ∈ Thrd},x′, l′, t′〉

where

tr
T

′ =
{

finTime(〈{(T , pcT , rT , tr
T , ta

T ) | T ∈ Thrd},x, l, t〉,T) if t = ta
T

tr
T otherwise

t′ = min({ta
T + tr

T
′ | T ∈ Thrd})

ta
T

′ =
{

ta
T + tr

T
′ if t′ = ta

T + tr
T

′

ta
T otherwise

Thrdexe = {T ∈ Thrd | t′ = ta
T

′}

(x′ x) T =


{

(x′
T x) T

∅
for some T ∈ Thrdexe : ∃r ∈ RegT : stm(T , pcT ) = [store r to x]pcT

for T ′ ∈ Thrd \ {T}, if such a T exists
(x x) T otherwise

l
′′ lck =

(unlocked,T) for some T ∈ Thrdexe : stm(T , pcT ) = [lock lck]pcT , if such
T exists, stt(l lck) = unlocked and own(l lck) = ⊥thrd

l lck otherwise

l
′ lck =

l
′
T lck for some T ∈ Thrdexe : (stm(T , pcT ) = [unlock lck]pcT ∨

(own(l′′ lck) = T ∧ stm(T , pcT ) = [lock lck]pcT )), if such T exists
l lck otherwise

Figure 4 Semantics of concrete program transitions: 〈Ts,x, l, t〉−−→
prg
〈Ts′,x′, l′, t′〉
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A[[n]]r = n

A[[r]]r = r r

A[[a1 + a2]]r = A[[a1]]r +A[[a2]]r
A[[a1 - a2]]r = A[[a1]]r−A[[a2]]r

A[[a1 * a2]]r = A[[a1]]r · A[[a2]]r

A[[a1 / a2]]r =
⌊

A[[a1]]r
A[[a2]]r

⌋
Figure 5 Semantics of concrete evaluation of arithmetic expressions.

B[[true]]r⇐⇒ true

B[[false]]r⇐⇒ false

B[[!b]]r⇐⇒ ¬B[[b]]r
B[[b1 && b2]]r⇐⇒ B[[b1]]r ∧ B[[b2]]r

B[[a1 == a2]]r⇐⇒ A[[a1]]r = A[[a2]]r
B[[a1 <= a2]]r⇐⇒ A[[a1]]r ≤ A[[a2]]r

Figure 6 Semantics of concrete evaluation of boolean expressions.

ments) and 4 (system of threads). x ∈ Var → Thrd → P(Val × Time), l ∈ Lck →
(Lckstt×Thrd∪ {⊥thrd}), where Lckstt = {unlocked, locked}, and t ∈ Time are the states
for variables and locks, and the current time. For each thread, T , in the program, there is
also pcT ∈ LblT , rT ∈ RegT → Val, tr

T ∈ Time and ta
T ∈ Time, which are the states of

the program counter and registers of T , the relative execution time of T ’s active statement,
stm(T , pcT) (note that stm is defined in Figure 3a and labels is defined in Figure 3b),
and the accumulated execution time for T , respectively. The tuple collecting all these states
will be referred to as a configuration, c, i.e., c = 〈{(T , pcT , rT , tr

T , ta
T) | T ∈ Thrd},x, l, t〉.

Note that states are updated on transitions, i.e., when pc is updated.
The state for locks keeps track of the state and owner of each lock. The owner is ⊥thrd if

no thread currently has the lock acquired. The state for registers of thread T simply keeps
track of the current value of each register within T . The state for variables is not as intuitive.
To be precise, the abstraction of the state for variables will need to save write history, i.e.,
what abstract writes (a pair of value and time) have been performed by each thread on each
variable (see Section 4.2). Therefore, to derive a Galois connection (and hence implicitly get
a safe approximation [10]), the concrete state for variables has to be defined accordingly. In
the concrete semantics, only one single write is saved for each variable, though. This write
is non-deterministically chosen from one of the threads, if any, writing the variable at any
given point in time (see Figure 4). R is defined to return the value of the saved write (see
Figure 2).
A : Aexp → (Reg → Val) → Val and B : Bexp → (Reg → Val) → Bool evaluate

arithmetic and boolean expressions, respectively, given a particular register state. The
semantics of these functions can be found in Figures 5 and 6, respectively. finTime is
assumed to be provided by a timing-model of the underlying hardware. It should return a
relative execution time for the statement of thread T , i.e., stm(T , pcT ), based on the current
system state. The set of threads to execute, Thrdexe, is determined based on t′, tr ′ and ta.
It simply consists of the threads that will update their pc:s at the nearest point in time, t′.
An illustration of how tr

T
′, ta

T , t, t′ and Thrdexe are related is given in Figure 7. For c1 in
Figure 7a, t′ = ta

T2
+ tr

T2
′ = ta

T3
+ tr

T3
′ = 6. Thus, T2,T3 ∈ Thrdexe and will hence update

their ta. For c2 in Figure 7b, tr
T2
′ and tr

T3
′ are updated using finTime to again determine

T1

T2

T3

4 8 12 timet t′

ta
T3

ta
T2

ta
T1

ta
T3 + tr

T3
′

ta
T2 + tr

T2
′

ta
T1 + tr

T1
′

(a) c1: Thrdexe = {T2,T3}

T1

T2

T3

4 8 12 timet t′

ta
T3

ta
T2

ta
T1

ta
T3 + tr

T3
′

ta
T2 + tr

T2
′

ta
T1 + tr

T1
′

(b) c2: Thrdexe = {T1,T3}

Figure 7 Illustration of how Thrdexe is determined (c1−−→
prg

c2).
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Thrdexe.
The behaviour of locks needs to be explained. Assume that some threads in Thrdexe

execute a lock-statement on some lock, lck, and that lck is unlocked in the given configuration.
In the resulting configuration, stt(l′ lck) = locked and the owner will be one of the threads
that tried to acquire lck. The chosen thread is given by own(l′′ lck); note that l′′ is only used
to control the behaviour of the rules for lock in Figure 2. This thread will have incremented
its pc and thus moved on to executing its next statement. All other threads that tried to
acquire lck will again try to acquire lck since their pc:s are not changed. Note that the latter
would also be the case for all threads in Thrdexe that try to acquire an already locked lock
that is not owned by themselves. Also note that a thread who owns a lock is allowed to
repeatedly acquire this lock any number of times.

4.2 Abstract Interpretation
First, it must be decided what parts of the system state to interpret in an abstract way. To
allow for the hardware timing-model to be approximated as well, Time will be abstracted
using the interval domain, i.e., Tim̃e = Intv. This approach is also taken by Chattopadhyay
et al. [1] to approximate the execution time of pipeline stages in order to deal with timing
anomalies in multicore platforms. Val will also be abstracted using intervals, i.e., Vãl = Intv,
to allow for an efficient handling of data flow. Since Thrd, Lbl, Var, Reg, Lck, Aexp
and Bexp are defined by the software, it does not make any sense to abstract them for the
defined analysis (see Section 4.3). And, since Lckstt is comparable to Bool, an abstraction
of it would not be very beneficial. The states implicitly affected by the abstractions of Time
and Val are r, x, tr , ta, t, and thus c. The abstraction of these will be referred to as r̃, x̃,
t̃r, t̃a, t̃ and c̃, respectively.

Since values are abstracted using the interval domain, the operators of the language must
be extended to act on intervals. This is done in Figure 8. Note that ∞/∞, 0/0, 0 ∗∞ and
∞−∞ need not be defined.

Using Theorems 3.10 and 3.25, it is easy to see that there is indeed a Galois connection,
〈αreg, γreg〉, between the domains P(Reg→ Val) and Reg→ Vãl. The concretisation and
abstraction functions, partial order and least upper and greatest lower bounds are given by
Definitions 4.1, 4.2, 4.3, 4.4 and 4.5. The bottom element ⊥̃reg ∈ Reg→ Vãl corresponds
to an abstract mapping for which some register maps to ⊥int. This does not mean that
there exist several bottom elements. Rather, if some register maps to ⊥int in r̃, then r̃ is
pulled down to become the bottom element, i.e., r̃ = ⊥̃reg. The top element corresponds to
an abstract mapping for which all registers map to >int .

I Definition 4.1 (Concretisation of an abstract register store).

γreg(r̃) =
{
∅ if r̃ = ⊥̃reg
{λr ∈ Reg.v | v ∈ γint(r̃ r)} otherwise J

I Definition 4.2 (Partial order for abstract register stores).{
⊥̃reg ṽreg r̃

r̃ ṽreg r̃
′ ⇐⇒ ∀r ∈ Reg : r̃ r vint r̃

′ r J

I Definition 4.3 (Greatest lower bound of abstract register stores).{
⊥̃reg ũreg r̃ = r̃ ũreg ⊥̃reg = ⊥̃reg
(r̃ ũreg r̃

′) r = (r̃ r)uint(r̃′ r) J
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[n1, n2] +int [n′1, n′2] =



[n1 + n′1, n2 + n′2] if −∞ < n1, n
′
1, n2, n

′
2 <∞

[n1 + n′1,∞] if (n2 =∞∨ n′2 =∞) ∧
¬((n1 = −∞∧ n′1 =∞) ∨

(n1 =∞∧ n′1 = −∞))
[−∞, n2 + n′2] if (n1 = −∞∨ n′1 = −∞) ∧

¬((n2 = −∞∧ n′2 =∞) ∨
(n2 =∞∧ n′2 = −∞))

[−∞,∞] otherwise

[n1, n2]−int [n′1, n′2] =



[n1 − n′2, n2 − n′1] if −∞ < n1, n
′
1, n2, n

′
2 <∞

[n1 − n′2,∞] if (n2 =∞∨ n′1 = −∞) ∧
¬((n1 =∞∧ n′2 =∞) ∨
(n1 = −∞∧ n′2 = −∞))

[−∞, n2 − n′1] if (n1 = −∞∨ n′2 =∞) ∧
¬((n2 =∞∧ n′1 =∞) ∨
(n2 = −∞∧ n′1 = −∞))

[−∞,∞] otherwise

[n1, n2] ∗int [n′1, n′2] =



[min(V ),max(V )] if (n2 < 0 ∧ n′1 > 0) ∨
(n2 < 0 ∧ n′2 < 0) ∨
(n1 > 0 ∧ n′1 > 0) ∨
(n1 > 0 ∧ n′2 < 0) ∨
(−∞ < n1, n

′
1, n2, n

′
2 <∞)

where V = {n1 ∗ n′1, n1 ∗ n′2, n2 ∗ n′1, n2 ∗ n′2}
[−∞,∞] otherwise

[n1, n2] /int [n′1, n′2] =



[bmin(V )c, dmax(V )e] if (−∞ < n′1 ∧ n′2 < 0) ∨
(0 < n′1 ∧ n′2 <∞)

where V = {n1/n
′
1, n1/n

′
2, n2/n

′
1, n2/n

′
2}

[−∞,−n1] if n′1 ≤ 0 ≤ n′2 ∧ n2 < 0
[−n2,∞] if n′1 ≤ 0 ≤ n′2 ∧ 0 < n1
[−∞,∞] otherwise

Figure 8 Language operators defined for interval arguments.
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Ã[[a]] ⊥̃reg = ⊥̃val
Ã[[n]]r̃ = n

Ã[[r]]r̃ = r̃ r

Ã[[a1 + a2]]r̃ = Ã[[a1]]r̃+int Ã[[a2]]r̃
Ã[[a1 - a2]]r̃ = Ã[[a1]]r̃−int Ã[[a2]]r̃
Ã[[a1 * a2]]r̃ = Ã[[a1]]r̃ ∗int Ã[[a2]]r̃
Ã[[a1 / a2]]r̃ = Ã[[a1]]r̃ /int Ã[[a2]]r̃

Figure 9 The abstract function evaluating arithmetic expressions.

I Definition 4.4 (Least upper bound of abstract register stores).{
⊥̃reg t̃reg r̃ = r̃ t̃reg ⊥̃reg = r̃

(r̃ t̃reg r̃
′) r = (r̃ r)tint(r̃′ r) J

I Definition 4.5 (Abstraction of a set of register stores).

αreg(R) =
{
⊥̃reg if R = ∅
λr ∈ Reg.αint({r r | r ∈ R}) otherwise J

The function evaluating arithmetic expressions, A, must be abstracted since values and
register stores are abstracted. The abstraction will be Ã : Aexp→ (Reg → Vãl)→ Vãl
and can be derived using Definition 3.3 to induce A. To do this, A must first be lifted to
sets of concrete register mappings:

AP [[a]]R = {A[[a]]r | r ∈ R}

The abstract evaluation function can then be derived as:

Ã[[a]] = αval ◦ AP [[a]] ◦ γreg

The details of this function can be found in Figure 9.
The function B̃R, defined in Definition 4.6, will be used in the abstract axiom transition

rules (see Figure 11). This function is safely induced from B, using Definition 3.3, so that
the concretisation of B̃R[[b]]r̃ always contains (at least) the concrete stores, derived from r̃,
in which b evaluates to true.

I Definition 4.6 (Boolean restriction).

B̃R[[b]]r̃ = αreg({r ∈ γreg(r̃) | B[[b]]r}) J

Using Theorems 3.7, 3.8, 3.10 and 3.25, it is easy to see that there is indeed a Galois
connection, 〈αvar , γvar〉, between the domains P(Var → Thrd → P(Val × Time)) and
Var → Thrd → P(Vãl × Tim̃e). The concretisation and abstraction functions, partial
order and least upper and greatest lower bounds are given by Definitions 4.9, 4.15, 4.16, 4.17
and 4.10. The bottom element ⊥̃var ∈ Var → Thrd → P(Vãl×Tim̃e) corresponds to a
mapping for which the set of abstract writes for some variable and thread contains (⊥̃val, t̃),
(ṽ, ⊥̃t) or (⊥̃val, ⊥̃t). This does not mean that there exist several bottom elements. Rather,
if the set of writes for some variable and thread in x̃ contains one of these elements, then x̃

is pulled down to become the bottom element, i.e., x̃ = ⊥̃var . The top element corresponds
to a mapping for which the set of writes for all variables and threads contain the element
(>̃val, >̃t). x̃ ∈ Var → Thrd → P(Vãl × Tim̃e) can save any number (i.e., history) of
abstract writes, w̃ ∈ Vãl×Tim̃e, for each thread that occur on some variable. This is done
to increase the precision in the analysis, since then, sequence (within each thread) and timing
information (between threads) can be used to get a tight value when reading a variable.

For convenience in expressing, and readability of, the upcoming algorithms, some relations
for abstract writes will be defined. The partial order for writes, ṽw, follows naturally (c.f.,
Definition 3.12) from the partial orders for values, ṽval, and time, ṽt.
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I Definition 4.7 (Partial order of writes).{
⊥̃w ṽw w̃
(ṽ1, t̃1) ṽw (ṽ2, t̃2)⇐⇒ ṽ1 ṽval ṽ2 ∧ t̃1 ṽt t̃2 J

The precedence relation, <̃t, on abstract times can be useful to determine whether two
writes are performed at disjunct times.

I Definition 4.8 (Time precedence).{
⊥̃t <̃t t̃
t̃1 <̃t t̃2 ⇐⇒ max(γt(t̃1)) < min(γt(t̃2)) J

The concretisation of abstract variable stores is decribed by γvar which is presented in
Definition 4.9.

I Definition 4.9 (Concretization of an abstract variable store).

γvar(x̃) = {λx ∈ Var.f | f ∈ {λT ∈ Thrd.W |W ∈ {γval(ṽ)× γt(t̃) |
(ṽ, t̃) ∈ ((x̃ x) T )}}} J

The abstraction of concrete variable stores is decribed by αvar which is presented in
Definition 4.10.

I Definition 4.10 (Abstraction of a concrete variable store).

αvar(X) = λx ∈ Var.λT ∈ Thrd.{(αval({v | ∃t ∈ Time : (v, t) ∈W}),
αt({t | ∃v ∈ Val : (v, t) ∈W})) |

W ∈ {(x x) T | x ∈ X}} J

Note that the definitions of ṽvar , ˜⊔var and
⊔̃

var could follow naturally from the definition
of the domain (i.e., they could be defined based on ⊆,

⋂
and

⋃
, respectively). However, this

will not be the case. This is due to the fact that the history in the two stores might have
different traces (sequence information) and can thus not simply be, e.g., joined. Instead, the
operations to be used should be defined based on Definition 4.11 to ensure that all threads
see safe values (see Definition 4.12) at all times.

I Definition 4.11 (Safe write history). An abstract variable store, x̃, is safe at time t̃ if it
contains, at least, all the abstract values (not writes) that might be seen by some thread at
time t̃; i.e., it covers at least all the possible concrete writes that might have occurred at
time t ∈ γt(t̃).

Thus, to be safe, x̃ must, for each variable and each thread, contain at least:
1. all writes, (ṽ, t̃′), such that t̃ ũt t̃′ 6= ⊥̃t, and
2. the latest (most recent) write, (ṽ, t̃′), such that t̃ ũt t̃′ = ⊥̃t. The most recent write(s),

(ṽ, t̃′), is defined such that min(γt(t̃)) > max(γt(t̃′)) > max(γt(t̃′′)), for all other writes,
(ṽ′, t̃′′), for which t̃ ũt t̃′′ = ⊥̃t. J

I Definition 4.12 (Safe value of x as seen by thread T ). Assuming that x̃ contains safe write
history for all threads on variable x, according to Definition 4.11, a safe value of x, as seen
by thread T , at time t̃ is the least upper bound,

⊔̃
val, of the values of at least the following

writes.
1. All writes, w̃T ′ = (ṽT ′ , t̃T ′), for all threads T ′ ∈ Thrd \ {T} such that t̃T ′ ũt t̃ 6= ⊥̃t.
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Algorithm 4.1 Write to Variable
1: function write(T , x̃, x, w̃)
2: if x̃ = ⊥̃var ∨ w̃ = ⊥̃w then
3: x̃

′ ← ⊥̃var

4: else
5: (x̃′ x′) T ′ ←

{
((x̃ x) T) ∪ {w̃} if x′ = x ∧ T = T ′

((x̃ x′) T ′) otherwise
6: end if
7: return x̃

′

8: end function

2. The most recent write w̃′T ′ = (ṽ′T ′ , t̃′T ′), for each thread T ′ ∈ Thrd, among the remaining
writes (i.e., w̃′T ′ 6= w̃T ′), if t̃′T ′ ũt t̃mrw 6= ⊥̃t, where t̃mrw <̃t t̃ is the time of the most
recent write of any write, not belonging to 1. J

write(T , x̃, x, w̃), as defined in Algorithm 4.1, safely (Lemma 4.13) adds the write, w̃,
to the set of write-history for thread T , i.e., to ((x̃ x) T ).

I Lemma 4.13 (Safety of write). Assuming that x̃ contains safe write history for thread
T before the write is performed, which occurs at time t̃ (c.f., Definition 4.11), then so will
write(T , x̃, x, (ṽ, t̃)). J

Proof. Since write(T , x̃, x, (ṽ, t̃)) simply adds the write (ṽ, t̃) to the history of thread
T ’s writes on variable x in the store x̃, and x̃ is assumed to contain safe write history,
write(T , x̃, x, (ṽ, t̃)) is trivially safe. J

Algorithm 4.2 Read from Variable
1: function read(x̃, x,T , t̃)
2: for all T ′ ∈ Thrd \ {T} do
3: ((x̃ x) T ′)← {(ṽ, t̃′) ∈ ((x̃ x) T ′) | t̃ 6<̃t t̃′}
4: end for
5: ((x̃ x) T)← {(ṽ, t̃′) ∈ ((x̃ x) T) | min(γt(t̃)) ≥ min(γt(t̃′))}
6: W ← ∅
7: for all T ′ ∈ Thrd \ {T} do
8: WT′ ← {(ṽ′, t̃′) ∈ ((x̃ x) T ′) | t̃′ ũt t̃ 6= ⊥̃t}
9: ((x̃′ x) T ′)← ((x̃ x) T ′) \WT′

10: W ←WT′ ∪W
11: end for
12: ((x̃′ x) T)← ((x̃ x) T)
13: t̃mrw ← mostRecentWriteTime(x̃′, x)
14: if t̃mrw 6= ⊥̃t then
15: for all T ′ ∈ Thrd do
16: t̃mrwT′ ← mostRecentWriteTimeThread((x̃′ x) T)
17: W ←W ∪ {(ṽ′, t̃′) ∈ ((x̃′ x) T ′) | t̃′ = t̃mrwT′ ∧ t̃′ ũt t̃mrw 6= ⊥̃t}
18: end for
19: end if
20: ṽ ←

⊔̃
val
{ṽ′ | ∃t̃′ ∈ Tim̃e : (ṽ′, t̃′) ∈W}

21: return ṽ

22: end function

Using the sequence and timing information provided by Definition 4.11, read(x̃, x,T , t̃),
as defined in Algorithm 4.2, only takes the writes that might be valid at t̃ (the point in
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T1

T2

t̃1 t̃2 time
Figure 10 The time-stamps of the writes considered by read(x̃, x,T1, t̃1) and read(x̃, x,T2, t̃2).

Algorithm 4.3 Time of Most Recent Write
1: function mostRecentWriteTime(x̃, x)
2: t̃mrw ← ⊥̃t

3: for all T ∈ Thrd do
4: t̃mrwT ← mostRecentWriteTimeThread((x̃ x) T)
5: if t̃mrw = ⊥̃t then
6: t̃mrw ← t̃mrwT

7: else if t̃mrwT 6= ⊥̃t then
8: if max(γt(t̃mrwT )) > max(γt(t̃mrw)) then
9: t̃mrw ← t̃mrwT

10: else if max(γt(t̃mrwT )) = max(γt(t̃mrw)) then
11: t̃mrw ← t̃mrwT ũt t̃mrw

12: end if
13: end if
14: end for
15: return t̃mrw

16: end function

Algorithm 4.4 Time of Most Recent Write in Thread
1: function mostRecentWriteTimeThread(set)
2: if set = ∅ then
3: return ⊥̃t

4: end if
5: tmax ← max(

⋃
{γt(t̃) | ∃ṽ ∈ Vãl : (ṽ, t̃) ∈ set})

6: tmin ← min(
⋂
{γt(t̃) | ∃ṽ ∈ Vãl : (ṽ, t̃) ∈ set ∧max(γt(t̃)) = tmax})

7: return αt({tmin, tmax})
8: end function
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time when T issues the read) into consideration for its returned value ṽ ∈ Vãl. These
writes, w̃ = (ṽ′, t̃′), come from two categories. The first category covers the writes on x for
threads T ′ ∈ Thrd \ {T} whose “time-stamps” overlap in time with t̃, i.e., t̃ ũt t̃′ 6= ⊥̃t. The
second category covers the most recent write on x for all threads (including T ) such that its
time-stamp overlaps with the overall most recent write of any write, not belonging to the first
category. Note that any write for thread T with a time-stamp that begins after the beginning
of t̃ is discarded. So is any write for T ′ ∈ Thrd \ {T} such that its time-stamp completely
succeeds t̃. This is because such writes can simply not have occurred at the time of the read
(and will thus usually not be included in x̃ at all). An illustration of the time-stamps of the
writes in T1 and T2 that must be considered by read(x̃, x,T1, t̃1) (lines with arrow heads
pointing left) and read(x̃, x,T2, t̃2) (lines with arrow heads pointing right) is given in Figure
10. The returned value, ṽ, is the least upper bound of the values of the considered writes.
Note that mostRecentWriteTime and mostRecentWriteTimeThread are defined
in Algorithms 4.3 and 4.4, respectively, based on the fact that time progresses between
successive writes within each thread.

I Lemma 4.14 (Safety of read). Assuming that x̃ contains safe write history at t̃ (see
Definition 4.11), read(x̃, x,T , t̃) returns a safe value (see Definition 4.12). J

Proof. The proof amounts to showing that all writes described by Definition 4.12 is included
in the resulting value. This is trivial since read is derived using Definition 4.12. J

The partial order for abstract variable stores, ṽvar , is defined based on partialOrder-
Variables in Algorithm 4.5, taking the safety of write history (Definition 4.11) into account.
Note that earliestWriteThread is defined in Algorithm 4.6. The idea is that the history
for each thread and variable should be the same in both stores for the relation to evaluate to
true. However, the histories are allowed to differ somewhat. The greater store could also
contain newer writes than those in the history of the lesser store. It could also be the case
that the newest write in the greater store is, at least, the least upper bound of the newest
writes in the lesser store that are not part of both histories.

I Definition 4.15 (Partial order of abstract variable stores).{
⊥̃var ṽvar x̃

x̃ ṽvar x̃
′ ⇐⇒ partialOrderVariables(x̃, x̃′) J

Based on the partial order relation, the greatest lower bound and least upper bound
operators, ˜⊔var and

⊔̃
var , respectively, can be defined. meetVariables is defined in

Algorithm 4.7 and joinVariables is defined in Algorithm 4.8.

I Definition 4.16 (Greatest lower bound of abstract variable stores).{
⊥̃var ũvar x̃ = x̃ ũvar ⊥̃var = ⊥̃var
x̃ ũvar x̃

′ = meetVariables(x̃, x̃′) J

I Definition 4.17 (Least upper bound of abstract variable stores).{
⊥̃var t̃var x̃ = x̃ t̃var ⊥̃var = ⊥̃var
x̃ t̃var x̃

′ = joinVariables(x̃, x̃′) J

Note that neither ṽvar , ˜⊔var nor
⊔̃

var is used by the analysis but are just presented for
completeness in the definition of the lattice. However, if merging of configurations [6] is
introduced to lower the complexity of the analysis, at least

⊔̃
var will be needed.
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Algorithm 4.5 Partial Order of Abstract Variable Stores
1: function partialOrderVariables(x̃, x̃′)
2: for all x ∈ Var do
3: for all T ∈ Thrd do
4: ws← ((x̃ x) T )
5: ws′ ← ((x̃′ x) T )
6: while ws 6= ∅ ∧ ws′ 6= ∅ do
7: w̃ ← earliestWriteThread(ws)
8: w̃′ ← earliestWriteThread(ws′)
9: ws← ws \ {w̃}
10: ws′ ← ws′ \ {w̃′}
11: if w̃ 6= w̃′ then
12: if ws′ = ∅ then
13: for all w̃′′ ∈ ws ∪ {w̃} do
14: if w̃′′ 6ṽw w̃′ then
15: return false
16: end if
17: end for
18: else
19: return false
20: end if
21: end if
22: end while
23: if ws 6= ∅ then
24: return false
25: end if
26: end for
27: end for
28: return true
29: end function
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Algorithm 4.6 Earliest Write for a Thread
1: function earliestWriteThread(set)
2: if set = ∅ then
3: return ⊥̃w
4: end if
5: t̃min ← αt({∞})
6: for all (ṽ, t̃) ∈ set do
7: if min(γt(t̃)) < min(γt(t̃min)) then
8: t̃min ← t̃
9: else if min(γt(t̃)) = min(γt(t̃min)) then
10: t̃min ← t̃ ũt t̃min
11: end if
12: end for
13: W ← {(ṽ, t̃) | (ṽ, t̃) ∈ set ∧ t̃ = t̃min}
14: ṽmin ← αval({∞})
15: for all (ṽ, t̃) ∈W do
16: if min(γval(ṽ)) < min(γval(ṽmin)) then
17: ṽmin ← ṽ

18: else if min(γval(ṽ)) = min(γval(ṽmin)) then
19: ṽmin ← ṽ ũval ṽmin
20: end if
21: end for
22: return (ṽmin, t̃min)
23: end function

Algorithm 4.7 Meeting Two Abstract Variable Stores
1: function meetVariables(x̃, x̃′)
2: for all x ∈ Var do
3: for all T ∈ Thrd do
4: common← ∅
5: while ((x̃ x) T ) 6= ∅ ∧ ((x̃′ x) T ) 6= ∅ do
6: w̃ ← earliestWriteThread((x̃ x) T )
7: w̃′ ← earliestWriteThread((x̃′ x) T )
8: if w̃ = w̃′ then
9: common← common ∪ {w̃}
10: ((x̃ x) T )← ((x̃ x) T ) \ {w̃}
11: ((x̃′ x) T )← ((x̃′ x) T ) \ {w̃′}
12: else
13: ((x̃ x) T )← ∅
14: ((x̃′ x) T )← ∅
15: end if
16: end while
17: ((x̃′′ x) T )← common

18: end for
19: end for
20: return x̃

′′

21: end function
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Algorithm 4.8 Joining Two Abstract Variable Stores
1: function joinVariables(x̃, x̃′)
2: for all x ∈ Var do
3: for all T ∈ Thrd do
4: common← ∅
5: merged← ⊥̃w
6: while ((x̃ x) T ) 6= ∅ ∨ ((x̃′ x) T ) 6= ∅ do
7: w̃ ← earliestWriteThread((x̃ x) T )
8: w̃′ ← earliestWriteThread((x̃′ x) T )
9: if w̃ = w̃′ then
10: common← common ∪ {w̃}
11: ((x̃ x) T )← ((x̃ x) T ) \ {w̃}
12: ((x̃′ x) T )← ((x̃′ x) T ) \ {w̃′}
13: else if ((x̃ x) T ) = ∅ then
14: common← common ∪ ((x̃′ x) T )
15: ((x̃′ x) T )← ∅
16: else if ((x̃′ x) T ) = ∅ then
17: common← common ∪ ((x̃ x) T )
18: ((x̃ x) T )← ∅
19: else
20: merged← (

⊔̃
w((x̃ x) T )) t̃w(

⊔̃
w((x̃′ x) T ))

21: ((x̃ x) T )← ∅
22: ((x̃′ x) T )← ∅
23: end if
24: end while
25: if merged = ⊥̃w then
26: ((x̃′′ x) T )← common

27: else
28: ((x̃′′ x) T )← common ∪ {merged}
29: end if
30: end for
31: end for
32: return x̃

′′

33: end function
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The concrete domain for configurations is P(Conf). It is natural to define the partial
ordering as ⊆, the top element as Conf , the bottom element as ∅, and the greatest lower
bound and the least upper bound operators as ∩ and ∪, respectively. Then, by definition,
〈P(Conf),vconf =⊆,tconf = ∪,uconf = ∩,⊥conf = ∅,>conf = Conf〉 is a complete lattice.

The abstract domain for configurations is defined to be P(Cõnf), since parts of the
concrete configuration will not be abstracted; which means that any given set of concrete
configurations cannot be translated into one single abstract configuration. It is thus natural
to use ⊆ as the partial ordering for this domain as well. By definition, 〈P(Cõnf), ṽpconf =⊆,
t̃pconf = ∪, ũpconf = ∩, ⊥̃pconf = ∅, >̃pconf = Cõnf〉 is a complete lattice.

First a connection between the domains Cõnf and P(Conf) will be introduced. Note
that

Cõnf = P(Thrd× Lbl× (Reg→ Vãl)×Tim̃e×Tim̃e)× (Var→ Thrd→
P(Vãl×Tim̃e))× (Lck→ (Lckstt ×Thrd ∪ {⊥thrd}))×Tim̃e

and thus

c̃ ::= 〈{(T , pcT , r̃T , t̃rT , t̃aT) | T ∈ Thrd}, x̃, l, t̃〉

The concretisation function for one single abstract configuration, γconf : Cõnf →
P(Conf), is defined as:

I Definition 4.18 (Concretisation of one abstract configuration).

γconf (>̃conf ) = Conf
γconf (⊥̃conf ) = ∅
γconf (〈{(T , pcT , r̃T , t̃rT , t̃aT) | T ∈ Thrdc̃}, x̃, l, t̃〉) =
{〈{(T , pcT , rT , tr

T , ta
T) |

T ∈ Thrdc̃ ∧ rT ∈ γreg(r̃T) ∧ tr
T ∈ γt(t̃rT) ∧ ta

T ∈ γt(t̃aT)},x, l, t〉
| x ∈ γvar(x̃) ∧ t ∈ γt(t̃)} J

The partial ordering ṽconf of two abstract configurations follows naturally using Definition
3.12.

I Definition 4.19 (Partial ordering of two abstract configurations).

⊥̃conf ṽconf c̃
c̃ ṽconf >̃conf
〈{(T , pcT , r̃T , t̃rT , t̃aT) | T ∈ Thrdc̃}, x̃, l, t̃〉 ṽconf

〈{(T , pc′T , r̃′T , t̃rT ′, t̃aT ′) | T ∈ Thrdc̃′}, x̃′, l′, t̃′〉
⇐⇒

x̃ ṽvar x̃
′ ∧ t̃ ṽt t̃′ ∧ l = l

′ ∧Thrdc̃ = Thrdc̃′ ∧
∀T ∈ Thrdc̃ : (pcT = pc′T ∧ r̃T ṽreg r̃

′
T ∧ t̃rT ṽt t̃rT ′ ∧ t̃aT ṽt t̃aT ′) J

I Lemma 4.20 (Monotonicity of γconf ). The function γconf : Cõnf → P(Conf) is monotone
with respect to ṽconf . I.e., if c̃, c̃′ ∈ Cõnf and c̃ ṽconf c̃′, then γconf (c̃) ⊆ γconf (c̃′). J

Proof. Assume that c̃, c̃′ ∈ Cõnf such that c̃ ṽconf c̃′. If c̃ = ⊥̃conf or c̃′ = >̃conf , the lemma
holds trivially. Otherwise, assume that c̃ = 〈{(T , pcT , r̃T , t̃rT , t̃aT) | T ∈ Thrdc̃}, x̃, l, t̃〉,
c̃′ = 〈{(T , pc′T , r̃′T , t̃rT ′, t̃aT ′) | T ∈ Thrdc̃′}, x̃′, l′, t̃′〉 and that c ∈ γconf (c̃). Since c̃ ṽconf c̃′,
it must be that:

Thrdc̃ = Thrdc̃′ ∧ l = l
′ ∧ x̃ ṽvar x̃

′ ∧ t̃ ṽt t̃′ ∧
∀T ∈ Thrdc̃ : (pcT = pc′T ∧ r̃T ṽreg r̃

′
T ∧ t̃rT ṽt t̃rT ′ ∧ t̃aT ṽt t̃aT ′)
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The monotonicity of γreg, γt and γvar implies that c ∈ γconf (c̃′) as well. Thus, γconf (c̃) ⊆
γconf (c̃′) and the lemma holds. J

Now, the concretisation function handling sets of abstract configurations (the actual
abstract domain for configurations), γpconf : P(Cõnf)→ P(Conf), is defined.

I Definition 4.21 (Concretisation of a set of abstract configurations).

γpconf (C̃) =
⋃
{γconf (c̃) | c̃ ∈ C̃} J

I Lemma 4.22 (Monotonicity of γpconf ). The concretisation function γpconf : P(Cõnf)→
P(Conf) is monotone. J

Proof. Trivial, since γconf is monotone (Lemma 4.20) and ∪ preserves monotonicity. J

The greatest lower bound operator for two abstract configurations ũconf follows naturally
using Definition 3.13.

I Definition 4.23 (Greatest lower bound for two abstract configurations).

c̃ ũconf >̃conf = >̃conf ũconf c̃ = c̃
c̃ ũconf ⊥̃conf = ⊥̃conf ũconf c̃ = ⊥̃conf
〈{(T , pcT , r̃T , t̃rT , t̃aT) | T ∈ Thrdc̃}, x̃, l, t̃〉 ũconf

〈{(T , pc′T , r̃′T , t̃rT ′, t̃aT ′) | T ∈ Thrdc̃′}, x̃′, l′, t̃′〉 =
〈{(T , pcT , r̃T ũreg r̃

′
T , t̃rT ũt t̃rT ′,

t̃aT ũt t̃aT ′ | T ∈ Thrdc̃},
x̃ ũvar x̃

′, l, t̃ ũt t̃′〉

if l = l
′ ∧Thrdc̃ = Thrdc̃′ ∧

∀T ∈ Thrdc̃ : pcT = pc′T

⊥̃conf otherwise J

The least upper bound operator for two abstract configurations t̃conf follows naturally
using Definition 3.14.

I Definition 4.24 (Least upper bound for two abstract configurations).

c̃ t̃conf >̃conf = >̃conf t̃conf c̃ = >̃conf
c̃ t̃conf ⊥̃conf = ⊥̃conf t̃conf c̃ = c̃
〈{(T , pcT , r̃T , t̃rT , t̃aT) | T ∈ Thrdc̃}, x̃, l, t̃〉 t̃conf

〈{(T , pc′T , r̃′T , t̃rT ′, t̃aT ′) | T ∈ Thrdc̃′}, x̃′, l′, t̃′〉 =
〈{(T , pcT , r̃T t̃reg r̃

′
T , t̃rT t̃t t̃rT ′,

t̃aT t̃t t̃aT ′ | T ∈ Thrdc̃},
x̃ t̃var x̃

′, l, t̃ t̃t t̃′〉

if l = l
′ ∧Thrdc̃ = Thrdc̃′ ∧

∀T ∈ Thrdc̃ : pcT = pc′T

>̃conf otherwise J

Creating the abstraction function will require special care. This is due to the fact that
any set of concrete configurations cannot be collected in one single abstract configuration.
This is easy to see, e.g., by noticing that the program counters, pc, are used to determine
unique program points and can thus not be abstracted (several concrete program points
cannot be collected into one single abstract program point).

An abstraction function, αconf : Conf → Cõnf , can be defined as:

I Definition 4.25 (Abstraction of one concrete configuration).

αconf (〈{(T , pcT , rT , tr
T , ta

T) | T ∈ Thrd},x, l, t〉) =
〈{(T , pcT , αreg({rT}), αt({tr

T}), αt({ta
T})) | T ∈ Thrd}, αvar({x}), l, αt({t})〉 J
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stm(T , pc) 〈pc′, r̃′, x̃′, l′〉 Condition

[halt]pc 〈pc, r̃, x̃, l〉 −
[skip]pc 〈pc + 1, r̃, x̃, l〉 −
[r := a]pc 〈pc + 1, r̃[r 7→ Ã[[a]]r̃], x̃, l〉 −

[load r from x]pc 〈pc + 1, r̃[r 7→ read(x̃, x,T , t̃)] x̃, l〉 −
[store r to x]pc 〈pc + 1, r̃,write(T , x̃, x, (r̃ r, t̃)), l〉 −
[if b goto l]pc 〈pc + 1, B̃R[[!b]]r̃, x̃, l〉 B̃R[[!b]]r̃ 6= ⊥̃reg

[if b goto l]pc 〈l, B̃R[[b]]r̃, x̃, l〉 B̃R[[b]]r̃ 6= ⊥̃reg

[lock lck]pc 〈pc, r̃, x̃, l〉 own(l lck) 6= T
[lock lck]pc 〈pc + 1, r̃, x̃, l[lck 7→ (locked,T)]〉 own(l lck) = T

[unlock lck]pc 〈pc + 1, r̃, x̃, l[lck 7→ (unlocked,⊥thrd)]〉 −

Figure 11 Semantics of abstract axiom transitions: 〈T , pc, r̃, x̃, l, t̃〉−̃−→
ax
〈pc′, r̃′, x̃′, l′〉

The abstraction function αpconf : P(Conf)→ P(Cõnf) is defined using Definition 3.15.

I Definition 4.26 (Abstraction of a set of concrete configurations).

αpconf (C) =
⋂
{C̃ | C ⊆ γpconf (C̃)} J

I Theorem 4.27 (Galois connection). 〈αpconf : P(Conf)→ P(Cõnf), γpconf : P(Cõnf)→
P(Conf)〉 is a Galois connection. J

Proof. Using Theorems 3.6, 3.7, 3.8, 3.9, 3.10, 3.11 and 3.25, the result follows. J

The abstract transition rule for axiom statements in Figure 11 is a safe approximation of
the rule in Figure 2, with respect to Definition 4.28.

I Definition 4.28 (Safety of abstract axiom transition relations). The transition relation −̃→
ax

is a safe abstract approximation of −→
ax

, with respect to γaxin and γaxout, iff:

∀c̃ax
in : ∀caxin ∈ γaxin (c̃ax

in ) : ∃c̃ax
out : ∃caxout ∈ γaxout(c̃ax

out) : (caxin−→ax c
ax
out ∧ c̃ax

in −̃→ax c̃ax
out) J

I Theorem 4.29 (Safety of −̃→
ax

). −̃→
ax

is a safe approximation of −→
ax

, with respect to Definition
4.28. J

Proof. This proof will be conducted by showing for each defined transition that it is safe
according to Definition 4.28. Assume that c̃ax

in = 〈T , pc, r̃, x̃, l, t̃〉 and caxin = 〈T , pc, r,x, l, t〉,
such that caxin ∈ γaxin (c̃ax

in ).

1. Assume that stm(T , pc) = [halt]pc. c̃ax
out is chosen so that c̃ax

in −̃→ax c̃ax
out, i.e., c̃ax

out =
〈pc, r̃, x̃, l〉. From the concrete semantics, it must be that caxin−→ax c

ax
out, where caxout =

〈pc, r,x, l〉. Thus, caxout ∈ γaxout(c̃ax
out).

2. Assume that stm(T , pc) = [skip]pc. c̃ax
out is chosen so that c̃ax

in −̃→ax c̃ax
out, i.e., c̃ax

out =
〈pc + 1, r̃, x̃, l〉. From the concrete semantics, we have that caxin−→ax c

ax
out, where caxout =

〈pc + 1, r,x, l〉. Thus, caxout ∈ γaxout(c̃ax
out).

3. Assume that stm(T , pc) = [r := a]pc. Then c̃ax
out is chosen so that c̃ax

in −̃→ax c̃ax
out, i.e.,

c̃ax
out = 〈pc + 1, r̃[r 7→ Ã[[a]]r̃], x̃, l〉. From the concrete semantics, we have that caxin−→ax c

ax
out,

where caxout = 〈pc + 1, r[r 7→A[[a]]r],x, l〉. Since Ã is a safe approximation of A and γreg is
monotone, caxout ∈ γaxout(c̃ax

out).
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∀T ∈ Thrdexe : 〈T , pcT , r̃T , x̃, l
′′, t̃a

T
′〉−̃−→
ax
〈pc′

T , r̃
′
T , x̃

′
T , l

′
T〉

〈{(T , pcT , r̃T , t̃r
T , t̃a

T ) | T ∈ Thrdc̃}, x̃, l, t̃〉 ˜−−→
prg

〈{(T , pc′
T , r̃

′
T , t̃r

T
′, t̃a

T
′) | T ∈ Thrdc̃}, x̃′, l′, t̃′〉

where

t̃r
T

′ =
{

AbsFinTime (〈{(T , pcT , r̃T , t̃r
T , t̃a

T ) | T ∈ Thrdc̃}, x̃, l, t̃〉,T) if t̃ ũt t̃a
T 6= ⊥̃t

t̃r
T otherwise

t̃′ = αt({tmin, tmax}) where tmin = min{min(γt(t̃a
T +t t̃r

T
′)) | T ∈ Thrdc̃}

tmax = min{max(γt(t̃a
T +t t̃r

T
′)) | T ∈ Thrdc̃}

t̃a
T

′ =
{

t̃a
T +t t̃r

T
′ if t̃′ ũt(t̃a

T +t t̃r
T

′) 6= ⊥̃t

t̃a
T otherwise

Thrdexe = {T ∈ Thrdc̃ | t̃′ ũt t̃a
T

′ 6= ⊥̃t}
(x̃′ x) T = (x̃′

T x) T
l

′′ lck = . . . (same as in Figure 4)
l

′ lck = . . . (same as in Figure 4)

Figure 12 Semantics of abstract program transitions: 〈T̃s, x̃, l, t̃〉−−→
prg
〈T̃s′, x̃′, l′, t̃′〉

4. Assume that stm(T , pc) = [load r from x]pc. Then c̃ax
out is chosen so that c̃ax

in −̃→ax c̃ax
out,

i.e., c̃ax
out = 〈pc + 1, r̃[r 7→read(x̃, x,T , t̃)], x̃, l〉. From the concrete semantics, caxin−→ax c

ax
out,

where caxout = 〈pc + 1, r[r 7→ v],x, l〉, for {(v, t′)} =
⋃

T ′∈Thrd((x x) T ′). Since read
returns a safe value (Lemma 4.14), v ∈ γint(read(x̃, x,T , t̃)) and thus caxout ∈ γaxout(c̃ax

out).
5. Assume that stm(T , pc) = [store r to x]pc. Then c̃ax

out is chosen so that c̃ax
in −̃→ax c̃ax

out , i.e.,
c̃ax

out = 〈pc + 1, r̃,write(T , x̃, x, (r̃ r, t̃)), l〉. From the concrete semantics, caxin−→ax c
ax
out,

where caxout = 〈pc+1, r,x[x 7→(x x)[T 7→{(r r, t)}]], l〉. Since write returns a safe abstract
variable store (Lemma 4.13), x[x 7→ (x x)[T 7→ {(r r, t)}]] ∈ γvar(write(T , x̃, x, (r̃ r, t̃))),
and thus caxout ∈ γaxout(c̃ax

out).
6. Assume that stm(T , pc) = [if b goto l]pc. Then two possible cases must be considered.

a. In the first case, B[[b]]r = true. This means that caxin−→ax c
ax
out, where caxout = 〈l, r,x, l〉.

Now, c̃ax
out is chosen so that c̃ax

in −̃→ax c̃ax
out, i.e., c̃ax

out = 〈l, B̃R[[b]]r̃, x̃, l〉. Since B̃R[[b]]r̃ is
safe, γaxout(c̃ax

out) contains, at least, all cases where B[[b]]r = true. Thus, it must be the
case that caxout ∈ γaxout(c̃ax

out).
b. In the second case, B[[b]]r = false. This means that caxin−→ax c

ax
out, where caxout =

〈pc+1, r,x, l〉. Now, c̃ax
out is chosen so that c̃ax

in −̃→ax c̃ax
out , i.e., c̃ax

out = 〈pc+1, B̃R[[!b]]r̃, x̃, l〉.
Since B̃R[[!b]]r̃ is safe, γaxout(c̃ax

out) contains, at least, all cases where B[[b]]r = false.
Thus, it must be the case that caxout ∈ γaxout(c̃ax

out).
7. Assume that stm(T , pc) = [lock lck]pc. Then two possible cases must be considered.

a. In the first case, own(l lck) 6= T . This means that caxin−→ax c
ax
out, where caxout = 〈pc, r,x, l〉.

Now, c̃ax
out is chosen so that c̃ax

in −̃→ax c̃ax
out, i.e., c̃ax

out = 〈pc, r̃, x̃, l〉. Thus, it must be the
case that caxout ∈ γaxout(c̃ax

out).
b. In the second case, own(l lck) = T . This means that caxin−→ax c

ax
out, where caxout =

〈pc + 1, r,x, l[lck 7→ (locked,T )]〉. Now, c̃ax
out is chosen so that c̃ax

in −̃→ax c̃ax
out , i.e., c̃ax

out =
〈pc + 1, r̃, x̃, l[lck 7→ (locked,T )]〉. Thus, it must be the case that caxout ∈ γaxout(c̃ax

out).
8. Assume that stm(T , pc) = [unlock lck]pc. Then c̃ax

out is chosen so that c̃ax
in −̃→ax c̃ax

out, i.e.,
c̃ax

out = 〈pc + 1, r̃, x̃, l[lck 7→ (unlocked,⊥thrd)]〉. From the concrete semantics, we have
that caxin−→ax c

ax
out, where caxout = 〈pc + 1, r,x, l[lck 7→ (unlocked,⊥thrd)]〉. Thus, caxout ∈

γaxout(c̃ax
out). J
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The abstract transition rule for program configurations in Figure 12 is an approximation
of the concrete rule in Figure 4. The abstract rule now defines a window in time, t̃′, that
determines which threads are included in Thrdexe. The window reaches from the earliest
point in time when some thread might update its pc, to the earliest point in time when some
pc must be updated. AbsFinTime is assumed to be a safe approximation of finTime.

The abstract rule in Figure 12 is a safe approximation of the concrete rule in Figure
4 only if some certain conditions are met. It is safe given that |Thrdc̃| = 1, or if a
load-, lock- or unlock-statement is not executed by any thread in Thrdexe. This is easy
to see since if these conditions are met, the threads in Thrdexe execute independently
from each other. If some thread in Thrdexe would execute for example a load-statement,
dependencies are introduced between the threads, and the read function could return a
value for which all possible writes have not been taken into account. Let’s assume that
Thrdexe = {T1,T2}, stm(T1, pcT1) = [load r from x]pcT1 , stm(T2, pcT2) = [skip]pcT2

and stm(T2, pcT2 + 1) = [store r′ to x]pcT2 +1. When a transition occurs, the load- and
skip-statements are considered. However, if the execution time of the store-statement (the
abstract “point” in time when the thread’s pc is updated) overlaps with the execution time
of the load-statement, the resulting value of r in T1 should be affected by the value of r′ in
T2, but this will not be the case. A similar reasoning holds for lock- and unlock-statements.

4.3 Analysis by Abstract Execution
Since the abstract transition rule, ˜−−→

prg
, of Figure 12 is not safe, one cannot simply use

fixpoint-iterations [5, 10] on the abstract semantic rules to find a safe approximation to the
concrete program semantics. Instead, a worklist algorithm will be defined that uses ˜−−→

prg
in

a safe way and handles the unsafe cases explicitly. The function abstractExecution in
Algorithm 4.9 defines such an algorithm; the ‘@’ symbol is used for denoting two ways of
expressing the same thing (c.f., the “read as” operator in Haskell). Given a configuration,
c̃, and a timeout, t̃to, the function explores all the possible abstract transitions, until only
final (all threads are standing on a halt-statement) and timed-out (all threads will update
their pc:s at a point in time succeeding t̃to) configurations remain. The function returns
a set containing all the final and timed-out configurations. If a configuration is not final
or timed-out, a transition will be performed. The threads executing load-statements are
extracted and handled separately. This is done by recursively using abstractExecution
for each such thread to simulate how the rest of the threads in the configuration can affect the
read value. When the effects have been derived, they are merged and put in the target register
for the thread that issues the load-statement. Next, a new configuration, in which the load:s
have been performed, is added to the worklist. trim, defined in Algorithm 4.10, is used to
safely remove parts of the history from x̃ that cannot affect a load-statement in any thread
at time t̃ or in the future. This is to lower the space complexity of abstractExecution.
Note that splitSet, as defined in Algorithm 4.11, is used to split a set of writes into two
parts where the first part contains all writes that overlap in time with the given time, and
the second part contains all other writes.

I Lemma 4.30 (Safety of trim). If x̃ contains safe write history at time t̃ (see Definition
4.11), then so does trim(x̃, t̃). J

Proof. Given that x̃ is safe, it must be shown that, for any variable x and any thread T ,
((trim(x̃, t̃) x) T ) contains at least
1. all writes, (ṽ, t̃′), of ((x̃ x) T ) such that t̃ <̃t t̃′,
2. all the writes, (ṽ, t̃′), of ((x̃ x) T ) such that t̃ ũt t̃′ 6= ⊥̃t, and
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Algorithm 4.9 Abstract Execution
1: function abstractExecution(c̃, t̃to)
2: workset← {c̃}
3: finalset← ∅
4: repeat
5: c̃@〈{(T , pcT , r̃T , t̃r

T , t̃a
T ) | T ∈ Thrdc̃}, x̃, l, t̃〉 ← choose(workset)

6: workset← workset \ {c̃}
7: if isTimeout(c̃, t̃to) ∨ isFinal(c̃) then
8: finalset← finalset ∪ {c̃}
9: else
10: Thrdload ← loadThrd(c̃)
11: if Thrdload 6= ∅ ∧ |Thrdc̃| > 1 then
12: for all T ′ ∈ Thrdload do
13: t̃r

T′
′ ← AbsFinTime(c̃,T ′)

14: x← getVarLoad(stm(T ′, pcT′ ))
15: r ← getRegLoad(stm(T ′, pcT′ ))
16: ṽ ← ⊥̃val

17: c̃′ ← 〈{(T , pcT , r̃T , t̃r
T , t̃a

T ) | T ∈ Thrdc̃ \ {T ′}}, x̃, l, t̃〉
18: C̃f

T′ ← abstractExecution(c̃′, (t̃a
T′ +t t̃r

T′
′) ũt t̃to)

19: for all 〈T̃s, x̃′, l′, t̃′〉 ∈ C̃f
T′ do

20: ṽ ← ṽ t̃val read(x̃′, x,T ′, t̃a
T′ +t t̃r

T′
′)

21: end for
22: pc′

T′ ← pcT′ + 1

23: r̃
′
T′ r′ ←

{
ṽ if r = r′

r̃T′ r′ otherwise
24: end for
25: c̃′ ← 〈{(T , pcT , r̃T , t̃r

T , t̃a
T ) | T ∈ Thrdc̃ \Thrdload} ∪

{(T , pc′
T , r̃

′
T , t̃r

T
′, t̃a

T +t t̃r
T

′) | T ∈ Thrdload}, x̃, l, t̃〉
26: workset← workset ∪ {c̃′}
27: else
28: C̃ ← {c̃′ | c̃ ˜−−→

prg
c̃′}

29: C̃′ ← {〈T̃s,trim(x̃, t̃), l, t̃〉 | 〈T̃s, x̃, l, t̃〉 ∈ C̃}
30: workset← workset ∪ C̃′

31: end if
32: end if
33: until workset = ∅
34: return finalset

35: end function
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Algorithm 4.10 Trim Variable Store
1: function trim(x̃, t̃)
2: for all x ∈ Var do
3: for all T ∈ Thrd do
4: FUTURET ← {(ṽ, t̃′) ∈ (x̃ x) T | t̃ <̃t t̃′}
5: (OLT ,NOLT )← splitSet((x̃ x) T , t̃)
6: ((x̃′ x) T)← NOLT \ FUTURET
7: end for
8: t̃mrw ← mostRecentWriteTime(x̃′ x)
9: for all T ∈ Thrd do
10: t̃mrwT ← mostRecentWriteTimeThread(OL′

T )
11: WT ← {(ṽ, t̃′) ∈ ((x̃′ x) T) | max(γt(t̃′)) = max(γt(t̃mrwT )) ∧ t̃mrw ũt t̃mrwT 6= ⊥̃t}
12: ((x̃′′ x) T)← FUTURET ∪OLT ∪WT
13: end for
14: end for
15: return x̃

′′

16: end function

Algorithm 4.11 Split Set of Writes
1: function splitSet(set, t̃)
2: OL ← {(ṽ, t̃′) | (ṽ, t̃′) ∈ set ∧ t̃ ũt t̃′ 6= ⊥̃t}
3: NOL ← {(ṽ, t̃′) | (ṽ, t̃′) ∈ set ∧ t̃ ũt t̃′ = ⊥̃t}
4: return (OL,NOL)
5: end function

3. the latest (most recent) write, (ṽ, t̃′), such that t̃′ <̃t t̃.

For 1, it is easy to see that, for each variable and each thread, all future writes, i.e.,
writes, (ṽ, t̃′), such that t̃ <̃t t̃′, are included in the resulting abstract variable store. These
writes are included in the set FUTURET .

For 2, it is easy to see that for each variable and each thread, all writes (ṽ, t̃′) such that
t̃ ũt t̃′ 6= ⊥̃t are included in the resulting abstract variable store. These writes are included
in the set OLT .

For 3, it is easy to see that the latest (most recent) write for each thread and variable
among the writes in NOLT \ FUTURET , i.e., the writes not included in OLT or FUTURE ,
also are included in the resulting abstract variable store. These writes are included in the set
WT . J

choose returns one of the elements in the given non-empty set. isFinal, isTimeout,
loadThrd, getVarLoad and getRegLoad are defined in Algorithm 4.12, 4.13, 4.14, 4.16
and 4.17, respectively. Note that exeThrd is defined in Algorithm 4.15. abstractExecu-
tion cannot, yet, safely analyse programs acting on locks. The algorithm will be extended
with this ability (see Section 6).

Algorithm 4.12 Final Configuration
1: function isFinal(〈{(T , pcT , r̃T , t̃r

T , t̃a
T ) | T ∈ Thrdc̃}, x̃, l, t̃〉)

2: return ∀T ∈ Thrdc̃ : stm(T , pcT ) = [halt]pcT

3: end function

To derive the BCET and WCET of a program given an initial system state, analysis,
defined in Algorithm 4.18, can be used. Note that locks, defined in Algorithm 4.19,
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Algorithm 4.13 Timeout
1: function isTimeout(c̃@〈{(T , pcT , r̃T , t̃r

T , t̃a
T ) | T ∈ Thrdc̃}, x̃, l, t̃〉, t̃to)

2: for all T ∈ Thrdc̃ do

3: t̃r
T

′ ←
{

AbsFinTime(c̃,T) if t̃a
T ũt t̃ 6= ⊥̃t

t̃r
T otherwise

4: end for
5: return ∀T ∈ Thrdc̃ : (stm(T , pcT ) 6= [halt]pcT ⇒ t̃to <̃t (t̃a

T +t t̃r
T

′))
6: end function

Algorithm 4.14 Find Threads with Load
1: function loadThrd(c̃@〈{(T , pcT , r̃T , t̃r

T , t̃a
T ) | T ∈ Thrdc̃}, x̃, l, t̃〉)

2: Thrdexe ← exeThrd(c̃)
3: Thrdload ← {T ∈ Thrdexe | ∃r ∈ RegT , x ∈ Var :

stm(T , pcT ) = [load r from x]pcT }
4: return Thrdload

5: end function

Algorithm 4.15 Find Threads to Execute
1: function exeThrd(c̃@〈{(T , pcT , r̃T , t̃r

T , t̃a
T ) | T ∈ Thrdc̃}, x̃, l, t̃〉)

2: for all T ∈ Thrdc̃ do

3: t̃r
T

′ ←
{

AbsFinTime(c̃,T) if t̃ ũt t̃a
T 6= ⊥̃t

t̃r
T otherwise

4: tmin ← min{min(γt(t̃a
T +t t̃r

T
′)) | T ∈ Thrdc̃}

5: tmax ← min{max(γt(t̃a
T +t t̃r

T
′)) | T ∈ Thrdc̃}

6: t̃′ ← αt({tmin, tmax})

7: t̃a
T

′ ←
{

t̃a
T +t t̃r

T
′ if t̃′ ũt(t̃a

T +t t̃r
T

′) 6= ⊥̃t

t̃a
T otherwise

8: end for
9: Thrdexe ← {T ∈ Thrdc̃ | t̃′ ũt t̃a

T
′ 6= ⊥̃t}

10: return Thrdexe

11: end function

Algorithm 4.16 Get Variable in Load
1: function getVarLoad([load r from x]l)
2: return x

3: end function

Algorithm 4.17 Get Register in Load
1: function getRegLoad([load r from x]l)
2: return r

3: end function
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Algorithm 4.18 BCET/WCET Analysis
1: procedure analysis(c̃)
2: if locks(c̃) 6= ∅ then
3: BCET ← 0
4: WCET ←∞
5: else
6: finals← abstractExecution(c̃, αt({0,∞}))
7: BCET ←∞
8: WCET ← −∞
9: while finals 6= ∅ do
10: c̃@〈{(T , pcT , r̃T , t̃r

T , t̃a
T ) | T ∈ Thrd}, x̃, l, t̃〉 ← choose(finals)

11: finals← finals \ {c̃}
12: BCET c̃ ← max({min(γt(t̃a

T )) | T ∈ Thrd})
13: WCET c̃ ← max({max(γt(t̃a

T )) | T ∈ Thrd})
14: if BCET > BCET c̃ then
15: BCET ← BCET c̃

16: end if
17: if WCET < WCET c̃ then
18: WCET ←WCET c̃

19: end if
20: end while
21: end if
22: end procedure

Algorithm 4.19 Get a Set of All Locks Used by the Program
1: function locks(〈{(T , pcT , r̃T , t̃r

T , t̃a
T ) | T ∈ Thrd}, x̃, l, t̃〉)

2: Lck← ∅
3: for all (s, N) ∈ Thrd do
4: for all pc ∈ labels(s) do
5: if stm((s, N), pc) = [lock lck]pc then
6: Lck← Lck ∪ {lck}
7: end if
8: end for
9: end for
10: end function
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returns a set of all locks used by the program and that analysis evaluates the BCET to
0 and WCET to ∞ if this set is non-empty since abstractExecution cannot be used to
analyse programs acting on locks. However, if the program only issues unlock-statements,
abstractExecution can be safely used since this does not imply any synchronisation of
the threads in the program.

Since the algorithms will be extended to handle programs acting on locks, full proofs of
the correctness of the presented algorithms will not be provided. However, sketches for these
proofs follow.

I Lemma 4.31 ( ˜−−→
prg

is used in a safe way). ˜−−→
prg

is used by abstractExecution in a safe
way. J

Proof sketch. The structure of the algorithm is such that whenever |Thrdc̃| > 1 and a load-
statement is encountered, it is handled explicitly by the algorithm. Only when |Thrdc̃| = 1,

˜−−→
prg

is used to handle the load-statement. Thus, the use of ˜−−→
prg

is safe. J

I Lemma 4.32 (Safety of load-statements). A load-statement in some thread will see (at
least) all the possible values of the read variable that are valid at the read-time, t̃a +t t̃r ′,
given that the variable store contains safe write history (Definition 4.11) at t̃a +t t̃r ′. J

Proof sketch. When a load-statement is handled explicitly by the algorithm, the thread
executing the load-statement is “removed” from the configuration and all effects from the
other threads that might occur before t̃a +t t̃r ′ expires are evaluated before reading the
variable. When reading the variable, read is used. Since read is safe (Lemma 4.14) and the
least upper bound of the read values are put in the register, the handling of load-statements
is safe. J

I Theorem 4.33 (Safety of abstractExecution). Assuming that AbsFinTime is a safe
approximation of finTime, abstractExecution can be used to calculate a safe approxi-
mation of the execution-result of a program. J

Proof sketch. The algorithm calculates all the possible resulting abstract configurations given
an initial configuration, using ˜−−→

prg
or explicitly whenever a load-statement is encountered.

The resulting configurations are then added to a “work list” and later evaluated in the same
way. When the work list is empty, i.e., all configurations are in a final or timed-out state,
the algorithm returns. Thus, all possible executions are taken into account and since ˜−−→

prg
is

used in a safe way (Lemma 4.31) and the handling of load-statements is safe (Lemma 4.32),
the result of executing a program is safely approximated. J

I Theorem 4.34 (Safety of analysis). analysis is safe, i.e., the calculated BCET and
WCET are safe bounds on the concrete BCET and WCET, respectively. J

Proof sketch. Since abstractExecution, which is safe (Theorem 4.33), is used to calculate
all the possible resulting configurations from executing a program, and analysis simply
extracts the BCET and WCET from these configurations, analysis is safe. J

5 Example

In this section, the program in Figure 13 is analysed (the results of AbsFinTime are given
after the statements). Initially, let c̃ = 〈{(T1, 1, r̃T1 , [0, 0], [0, 0]), (T2, 1, r̃T2 , [0, 0], [0, 0]),
(T3, 1, r̃T3 , [0, 0], [0, 0])}, x̃, l, [0, 0]〉, where r̃T3 r = [2, 4], ((x̃ x) T2) = ((x̃ x) T3) = ∅ and
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thread T_1: thread T_2: thread T_3:
[load r from x]1;[1 ,5] [load r from y]1;[1 ,6] [if r <=3 goto 3]1;[1 ,3]
[store r to y]2;[1 ,3] [store r to z]2;[2 ,3] [store r to x]2;[2 ,3]
[halt ]3 [halt ]3 [halt ]3

Figure 13 Example program.

((x̃ x) T1) = {([1, 1], [0, 0])}, ((x̃ y) T1) = ((x̃ y) T2) = ∅ and ((x̃ y) T3) = {([5, 5], [0, 0])},
and ((x̃ z) T2) = ∅, is analysed. abstractExecution(c̃, [0,∞]) is summarised in Figure
14.

The tuples in the chart represent program points, defined as 〈pcT1 , pcT2 , pcT3〉. As can
be seen, for 〈1, 1, 1〉, T1 and T2 both execute a load-statement. This means that two new
instances of abstractExecution are created, one for each thread in Thrdload. Within
each of these instances, a new instance is created since one other thread also executes a
load-statement. A ‘_’ within the tuple indicates that the corresponding thread is removed
from the configuration to evaluate the effects it might see. Next to each tuple and transition
arrow, there is a comment stating what happens at the corresponding step. The found
bounds on the BCET and WCET are 3 and 9, respectively. Note that AbsFinTime is
assumed to be defined somewhere outside the scope of this paper.

6 Discussion & Future Work

The algorithm in Algorithm 4.9 is based on synchronously advancing the threads of a program
between their respective program points. This, together with the defined abstract domain for
variables, has the advantage that the analysis result will be the same as for the sequential case
[7], when P = T . Another advantage is that the complexity of the algorithm becomes more
dependent on the number of program points than on the timing behaviour of the program.
To further reduce the time complexity of the algorithm, merging of configurations could be
performed. Using the control flow graph (CFG) of the program, suitable merge-points within
each thread can be found [6]. Typically, such points have multiple incoming edges.

A drawback for the algorithm in Algorithm 4.9 is that termination is not guaranteed if a
program consists of infinite loops. This could be resolved by adjusting the initial timeout,
though.

Our current focus is to extend the algorithm to support programs using locks and then to
implement and evaluate it. Allowing the use of locks introduces a risk for deadlocks (both in
the analysed program and thus the algorithm). However, deadlocks could easily be detected
and handled by the algorithm, because all threads, not standing on a halt-statement, would
be waiting to acquire a lock that is locked and not owned by themselves. Thus, this detection
allows termination of the analysis (with a resulting WCET of ∞) even if deadlocks occur.
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abstractExecution(c̃, [0,∞])
〈1, 1, 1〉 Thrdload = {T1,T2}, t̃r

T1 = [1, 5], t̃r
T2 = [1, 6], t̃r

T3 = [1, 3]

abstractExecution(c̃1, [1, 5])
〈_, 1, 1〉 Thrdload = {T2}, t̃r

T2 = [1, 6], t̃r
T3 = [1, 3]

abstractExecution(c̃1.2, [1, 5])
〈_,_, 1〉 Thrdload = ∅
↙ ↓ r̃T3 r← [2, 3] (B̃R[[r <= 3]]r̃T3 6= ⊥̃reg)
↓ 〈_,_, 3〉 final (t̃a

T3 = [1, 3]), no effects
↘ r̃T3 r← [4, 4], t̃a

T3 ← [1, 3] (B̃R[[!(r <= 3)]]r̃T3 6= ⊥̃reg)
〈_,_, 2〉 Thrdload = ∅, t̃r

T3 = [2, 3]
↓ ((x̃ x) T3)← {([4, 4], [3, 6])}

〈_,_, 3〉 final (t̃a
T3 = [3, 6]), x affected

↓ r̃T2 r← [5, 5] (no effects on y from T3), t̃a
T2 ← [1, 6]

〈_, 2, 1〉 Thrdload = ∅, t̃r
T2 = [2, 3], t̃r

T3 = [1, 3]
↙ ↓ r̃T3 r← [2, 3], ((x̃ z) T2)← {([5, 5], [3, 9])},
↓ 〈_, 3, 3〉 final (t̃a

T2 = [3, 9], t̃a
T3 = [1, 3]), z affected

↘ r̃T3 r← [4, 4], ((x̃ z) T2)← {([5, 5], [3, 9])}, t̃a
T2 ← [3, 9], t̃a

T3 ← [1, 3]
〈_, 3, 2〉 Thrdload = ∅, t̃r

T3 = [2, 3]
↓ ((x̃ x) T3)← {([4, 4], [3, 6])}

〈_, 3, 3〉 final (t̃a
T2 = [3, 9], t̃a

T3 = [3, 6]), x and z affected

abstractExecution(c̃2, [1, 6])
〈1,_, 1〉 Thrdload = {T1}, t̃r

T1 = [1, 5], t̃r
T3 = [1, 3]

abstractExecution(c̃2.1, [1, 5])
〈_,_, 1〉 Thrdload = ∅
↙ ↓ r̃T3 r← [2, 3]
↓ 〈_,_, 3〉 final (t̃a

T3 = [1, 3]), no effects
↘ r̃T3 r← [4, 4], t̃a

T3 ← [1, 3]
〈_,_, 2〉 Thrdload = ∅, t̃r

T3 = [2, 3]
↓ ((x̃ x) T3) = {([4, 4], [3, 6])}

〈_,_, 3〉 final (t̃a
T3 = [3, 6]), x affected

↓ r̃T1 r← [1, 4] (effects on x from T3), t̃a
T1 ← [1, 5]

〈2,_, 1〉 Thrdload = ∅, t̃r
T1 = [1, 3], t̃r

T3 = [1, 3]
↙ ↓ r̃T3 r← [2, 3], ((x̃ y) T1)← {([1, 4], [2, 8])},
↓ 〈3,_, 3〉 final (t̃a

T1 = [2, 8], t̃a
T3 = [1, 3]), y affected

↘ r̃T3 r← [4, 4], ((x̃ y) T1)← {([1, 4], [2, 8])}, t̃a
T1 ← [2, 8], t̃a

T3 ← [1, 3]
〈3,_, 2〉 Thrdload = ∅, t̃r

T3 = [2, 3]
↓ ((x̃ x) T3)← {([4, 4], [3, 6])}

〈3,_, 3〉 final (t̃a
T1 = [2, 8], t̃a

T3 = [3, 6]), x and y affected
↓ (T1 sees effects on x and z, and T2 sees effects on x and y.)
↓ r̃T1 r← [1, 4], r̃T2 r← [1, 5], t̃a

T1 ← [1, 5], t̃a
T2 ← [1, 6]

〈2, 2, 1〉 Thrdload = ∅, t̃r
T1 = [1, 3], t̃r

T2 = [2, 3], t̃r
T3 = [1, 3]

↙ ↓ r̃T3 r← [2, 3], ((x̃ y) T1)← {([1, 4], [2, 8])}, ((x̃ z) T2)← {([1, 5], [3, 9])}
↓ 〈3, 3, 3〉 final (t̃a

T1 = [2, 8], t̃a
T2 = [3, 9], t̃a

T3 = [1, 3]), y and z affected
↘ r̃T3 r← [4, 4], ((x̃ y) T1)← {([1, 4], [2, 8])}, ((x̃ z) T2)← {([1, 5], [3, 9])}
〈3, 3, 2〉 Thrdload = ∅, t̃r

T3 = [2, 3]
↓ ((x̃ x) T3)← {([4, 4], [3, 6])}

〈3, 3, 3〉 final (t̃a
T1 = [2, 8], t̃a

T2 = [3, 9], t̃a
T3 = [3, 6]), x, y and z affected

Figure 14 The steps taken by abstractExecution when analysing the program in Figure 13.
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