
Resource Augmentation for Fault-Tolerance Feasibility of
Real-time Tasks under Error Bursts∗

Abhilash Thekkilakattil, Radu Dobrin, Sasikumar Punnekkat and Huseyin Aysan
Mälardalen Real-Time Research Center, Mälardalen University, Sweden

{abhilash.thekkilakattil, radu.dobrin, sasikumar.punnekkat, huseyin.aysan}@mdh.se

ABSTRACT
Dependability is a vital system requirement, particularly in
safety critical and mission critical real-time systems, due
to the potentially catastrophic consequences of failures. In
most critical applications different fault tolerance mecha-
nisms using redundancy are employed to prevent possible
failures. In the case of real-time systems the system de-
signer must ensure that the task set is feasible even under
faults, which we refer to as ’fault tolerance feasibility’. Due
to cost considerations, often temporal redundancy has been
prevalently used to meet this objective.

In this paper we focus on guaranteeing fault-tolerance fea-
sibility under error bursts on uni-processor systems by the
usage of resource augmentation, specifically through proces-
sor speed-up. Firstly, we derive a processor demand bound
based sufficient condition for a set of real-time tasks to be
fault tolerance feasible under an assumption that no more
than one error burst occurs during the hyper-period of the
task set. Subsequently, we derive the necessary resource
augmentation bounds (i.e., the processor speed-up), that
guarantees the fault tolerance feasibility, if the sufficient test
fails. Finally, we prove that, if the error burst length is no
more than half the shortest relative deadline of the task set,
the minimum processor speed-up required to guarantee fault
tolerance feasibility is upper-bounded by 6.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special -Purpose
and Application -Based Systems—Real-time and embedded
systems; C.4 [Computer Systems Organization]: Per-
formance of Systems— Fault-tolerance, Reliability, Avail-
ability, and Serviceability

General Terms
Theory, Reliability

∗This work was partially supported by the Swedish Research
Council project Contesse (2010-4276).

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
RTNS’12 , November 08 - 09 2012, Pont a Mousson, France
Copyright 2012 ACM 978-1-4503-1409-1/12/11 ...$15.00.

Keywords
Real-time Scheduling, Fault Tolerance Feasibility, Resource
Augmentation, Error Bursts

1. INTRODUCTION
Mission and safety critical real-time systems typically have

to perform a number of functionalities of mixed criticality
levels, ranging from ultra-critical to non-critical. In addition
to the temporal correctness, these systems need to provide
for a high degree of reliability, due to the catastrophic conse-
quences a failure may lead to. The reliability of the system is
typically achieved by the use of fault tolerance mechanisms
that aim to prevent potential system failures while guaran-
teeing the real-time constraints. Consequently, any reason-
ing about the correctness of the system needs to take into
account an appropriate fault model, as well as the overheads
associated with the employed fault-tolerance mechanisms.

In a real-time system, the events occurring in the sys-
tem are typically mapped to a set of real-time tasks, with
the requirement that the task executions must complete
by their respective deadlines. Additionally, reliability con-
straints require the use of an appropriate fault tolerance
strategy, most commonly in the form of temporal redun-
dancy, which involves the re-execution of the original task
or the execution of an alternate task, before its predefined
deadline [2][3][5][22]. In this context, the original task ex-
ecution is typically referred to as the primary and the re-
executions upon faults are referred to as alternates. If the
fault occurrence persists during the execution of the recovery
attempts, alternates are executed until one successful execu-
tion is achieved. In order to reason about the temporal cor-
rectness of the system, safe upper-bounds on the task execu-
tion times, i.e., the Worst Case Execution Times (WCET),
derived using suitable techniques [20], are required. Ad-
ditionally, the use of temporal redundancy requires that
the schedulability analysis techniques consider the transient
overloads generated by the execution of alternates in order
to guarantee the overall system schedulability under fault
occurrences.

Many safety critical and mission critical real-time systems
employ a preemptive Fixed Priority Scheduler (FPS) due to
its simple scheduling mechanism that enables an easy imple-
mentation, even on operating systems that do not provide
explicit support for timing constraints [10]. However, in the
general case, preemptive FPS may not be able to guarantee
schedulability of the task sets if the total task utilization is
greater than 69% [21]. Dynamic priority schemes, on the
other hand, e.g., Earliest Deadline First scheduling [13] [21],

have the ability to utilize the processor more effectively, and
are being promoted in the academia [10], as well as in many
commercial operating systems [11]. Hence a real-time sys-
tems designer can choose from a wide variety of scheduling
schemes while designing the system. During the design stage
of the system, the choice of a scheduler is influenced by the
task attributes. In most cases, the task attributes are de-
rived from the physical characteristics of the environment
that the real-time system is controlling and are thus un-
changeable. Hence an important question is which schedul-
ing scheme will yield a feasible schedule that can tolerate
faults under a specified fault hypothesis. However, even be-
fore answering this question it is more appropriate to ask
whether it is possible to determine if there exists a schedul-
ing scheme that can tolerate faults under the specified fault
hypothesis for the given task set.

A real-time fault tolerant scheduler that employs the tem-
poral redundancy approach needs to ensure the execution of
either a primary or an alternate, of all critical tasks, before
their respective deadlines under the specified fault hypoth-
esis. The existence of a real-time scheduling algorithm that
can tolerate faults can be demonstrated by showing that, in
any time interval, the total processor demand requested by
the task primaries and the alternates that results in a worst
case scenario is no greater than the size of the interval [8] [3].
Hence, for a real-time scheduling scheme to be fault tolerant,
there must exist sufficient slack in the schedule for the execu-
tion of the task primaries and the alternates. EDF is known
to be an optimal uniprocessor scheduling algorithm, i.e., if it
is possible to schedule the original task executions together
with the required alternates without causing a deadline miss,
then EDF will also schedule them.

A real-time task set is said to be Fault Tolerance feasi-
ble (FT-feasible) if there exists a schedule that is capable
of tolerating worst case fault occurrences under a specified
fault hypothesis [3]. If the task set is not FT-feasible then
there exists no sufficient slack in the schedule which can be
utilized by the fault tolerance scheduling algorithm in order
to recover from faults. In this case, the use of a faster pro-
cessor can compensate for the slack deficit, thus enabling
feasible recovery from faults. Thus the system designer can
select a faster processor that guarantees the fault tolerance
feasibility, but at the same time may be interested in choos-
ing the one with the lowest speed among those eligible due
to cost factors. However, the system designer has to first
know if FT-feasibility can be achieved by speeding up the
processor by a practicable and a reasonably low factor. Con-
sequently it demands the knowledge of an upper-bound on
the minimum processor speed-up required that can guaran-
tee FT-feasibility. This information is interesting because 1)
it provides the system designer with a quick test to check
whether a processor of appropriate speed is available in his
inventory and 2) it can also provide significant insights into
developing a simple utilization based test for FT-feasibility.

In this paper, we examine the FT-feasibility of real-time
tasks under at most a single error burst of known length oc-
curring during the hyper-period of the task set-which is the
least common multiple of the task periods. We first derive a
sufficient condition for the fault tolerance feasibility, lever-
aging on the optimality of EDF under uni-processor schedul-
ing. We then derive the resource augmentation bounds,
specifically the processor speed-up, required to make a real-
time task set which is not fault tolerant feasible to be fea-

sible under the error burst. We also show that, if the error
burst length is no longer than half the shortest deadline of
the task set, the upper-bound on the minimum processor
speed-up that guarantees FT-feasibility is 6.

The rest of the section is organized as follows: section 2
discusses the related works and section 3 details the system
model. In section 4 we formally define the problem, followed
by the fault tolerance feasibility analysis in section 5. We
present an example in section 7 followed by our conclusions
in 8.

2. RELATED WORK
Avizienis et. al. [2] defines dependability as the ability

of a system to deliver a justifiably trusted service. They
proposed the use of fault tolerance mechanisms as one of
the means to achieve dependability to tackle the threat of
faults, that compromise the dependability of the system.
The fault tolerance strategy typically involves two stages:
error detection and recovery. The recovery process can be
classified as error handling and fault handling depending on
the process involved in the recovery. The commonly used
error handling schemes are rollback, roll forward and com-
pensation using redundancy. The most commonly adopted
redundancy technique is the temporal redundancy which in-
volves either the re-execution of the failed software compo-
nent or the execution of an alternate. In [16], the authors
proposed a fault tolerant multi-processor scheduling algo-
rithm for aperiodic tasks. A global optimization method
called simulated Annealing [19] was derived from the slow
cooling of molten metal to form regular crystalline structure.
Attiya and Hamam [1] used Simulated Annealing to allocate
tasks in a heterogenous real-time system, maximizing the re-
liability of the system. Bannister and Trivedi [7] proposed a
simple heuristic algorithm that evenly distributes the com-
putational load of the tasks over the nodes. More recently,
Islam et.al.[17] proposed a heuristic approach to perform
allocation by considering dependability and real-time con-
straints as well as communication efficiency.

Baruah et. al. [8] derived a sufficient and necessary con-
dition for a set of real-time tasks to be feasible on a uni-
processor. They used the optimality of EDF to derive these
conditions i.e., if the task set if EDF schedulable, then it
is feasible. Here the feasibility refers to the existence of a
real-time scheduling algorithm that can schedule the task set
without any deadline misses. In [9], the authors presented
an exact schedulability test for fault tolerant real-time task
sets for the Fixed Priority Scheduling (FPS) scheme. They
considered time redundancy as the fault tolerance strategy
while deriving these tests. Aydin [3] considered the uni-
processor fault tolerance feasibility of a real-time task set
under a k-fault scenario. They presented an exact feasibil-
ity analysis for the real-time task set to be fault tolerant,
leveraging on the optimality of EDF. The paper also pro-
posed a dynamic programming technique to calculate the
worst case recovery overhead for task sets scheduled using
EDF. The k-fault scenario may not be a realistic model; a
more realistic model might be to consider fault/error bursts
e.g., single event upsets caused due to radiation when an au-
tomobile passes through the vicinity of a radiation source,
rather than considering a maximum of k faults [4]. Pathan
et. al [23] extended this [3] analysis to FPS and derived
a necessary and sufficient condition for the fault tolerance
feasibility of real-time tasks scheduled using FPS. They as-

sumed no more than k faults every largest relative deadline
in the task set. However, as mentioned earlier, the k fault
model may not be realistic as the faults normally may occur
for a duration. Zhu et. al [26] studied the effects of power
management on the reliability of the system and showed
that energy management techniques detrimentally affect the
reliability of the system. Later, they [25] proposed reliabil-
ity aware energy management techniques. The technique
involves, scheduling a recovery at the maximum processor
frequency before executing any task at a lower frequency.
Many et. al. [22] considered the FPS schedulability of a
set of real-time tasks under a fault burst and derived an
equation to find the response times of tasks scheduled under
the burst. Additionally they also presented a fault resilience
evaluation method. Aysan et.al. [5] derived a sufficient con-
dition to guarantee the schedulability of a task set using FPS
under an error burst. They presented a probabilistic burst
error model and derived probabilistic schedulability guaran-
tees for the task set. Earlier, they [14] presented a method
to maximize the schedulability of mixed criticality real-time
tasks using FPS. This was achieved by exploiting the ability
of EDF to achieve 100% utilization to embed primary and
alternates in the schedule. They achieved this by deriving
feasibility windows and then deriving fixed priorities for the
tasks and their alternates [15] which was later extended to
schedule mixed criticality messages on the Controller Area
Network (CAN) [6], as well as to schedule tasks on a dis-
tributed real-time system under safety constraints [24].

Resource augmentation [18], is a technique used to under-
stand how much extra resources a scheduler requires such
that it can provide a specific guarantee with respect to some
constraints. Here, the scheduler under study is given extra
resources such as more number of processors or faster pro-
cessors, such that a certain goal is achieved. Kalyanasun-
daram et. al [18] first introduced resource augmentation, in
which they studied the effectiveness of online scheduling of
real-time tasks showing that augmenting the processor with
more speed can achieve the same effect as clairvoyance while
scheduling tasks online. Davis et. al. [12] used resource aug-
mentation to study the effectiveness of fixed priority sched-
ulers in scheduling all the feasible task sets. They derived
resource augmentation bounds on the processor speed-up re-
quired for a fixed priority scheduler to schedule all the task
sets scheduled by an optimal scheduling algorithm leverag-
ing on the optimality of the Earliest Deadline First (EDF)
algorithm.

We leverage on the optimality of EDF to derive a sufficient
condition for the FT-feasibility of the real-time tasks under
an error burst. Our fault tolerance feasibility analysis is very
much similar to [3], with the exception that we consider error
bursts affecting the task executions, rather than a bounded
number of task execution failures. We then examine the use
of processor speed-up to guarantee the FT-feasibility of a
task set under the error burst using which we derive resource
augmentation bounds for FT-feasibility.

3. SYSTEM MODEL
In this section, we describe the system model and the

notations used in this paper.

3.1 Task model
We consider a set of sporadic real-time tasks Γ= {τ1, τ2, ...τn},

where each τi has a minimum inter-arrival time, Ti, a worst

case execution time, CSi at speed S, and a relative dead-
line, Di. We assume that the tasks are ordered according
to their increasing deadlines. Each of these tasks generate
a potentially infinite sequence of jobs, where the jth job of
the ith task is denoted by τi,j . A job τi,j is released at time
(j − 1)Ti and has to complete its execution no later than
(j − 1)Ti + Di in order to meet its deadline. Additionally,
let {d1, d2, ..., dm} denote the set of absolute deadlines of
the task set in the LCM, ordered in the increasing order
i.e,. ∀τi ∈ Γ, di < di+1, where LCM represents the Least
Common Multiple of the time periods of the tasks.

The utilization Ui of a task τi executing on a processor

at speed S is defined as USi =
CS

i
Ti

, and the utilization of

the entire task set is given by US =
∑n
i=1 U

S
i . The demand

bound function [8] of a task τi, on a processor of speed 1,
during an interval t is given by:

DBFi(t) = max

(
0, 1 +

⌊
t−Di
Ti

⌋)
C1
i

3.2 Scheduling Model and
Fault Tolerance Strategy

It is known that EDF is optimal under a work conserving
uniprocessor scheduling scheme, i.e., a work conserving EDF
can schedule all task sets which are schedulable by any other
work conserving scheduler [13]. Thus, if a valid schedule ex-
ists for a particular task set, then EDF can feasibly schedule
it. We leverage the optimality of EDF to study the fault tol-
erance feasibility of real-time tasks on a uni-processor.

Most of the previous works treat an error as a singleton
event. In this paper, we consider an error burst which is
a series of errors occurring within a specific time interval
that makes it impossible to perform any meaningful task
executions during that interval. We assume a known upper-
bound on the length of the error burst during the LCM
denoted by Tlength. We assume that all the task executions
during the error burst fails, and the failure detection hap-
pens at the end of the task execution, before its completion.
The employed fault tolerance strategy is the re-execution of
the failed task or the execution of an alternate task before
the original deadline. The fault tolerance strategy assumes
that the alternates have the same deadline as the original
task (the primary) and they are executed along with the
rest of the tasks according to EDF. Consequently, the alter-
nates can also be hit by the error burst, and the alternates
are scheduled until one successful execution of the task is
achieved. The WCET of the alternates is assumed to be no
greater than the WCET of the original task.

3.3 Execution Time Model
In our approach we assume a linear relationship between

execution time and processor speed [12] [18]. To ease the
readability, and without loss of generality, we assume that
the task set is initially executing on a processor of speed
S = 1. Hence, if C1

i is the execution time at speed S = 1,
for any S > 1:

CSi =
C1
i

S

Thus the speed required to obtain an execution time of CSi
is given by:

S =
C1
i

CSi

This model also allows the use of processor speed-up factors
and processor speeds interchangeably. Changing the proces-
sor speed from S = 1 to S = a, is equivalent to speeding
up the processor by a factor of ’a’. We also assume that the
number of clock ticks required to execute a task τi is equal
to the execution time of τi at speed S = 1. Hence, DBFi(t)
denotes the number of clock ticks requested in the time in-
terval t on a processor of speed S = 1. Consequently, when
a processor of speed ’a’ is used, the total time requested by

the tasks during the time interval t becomes DBFi(t)
a

.

4. PROBLEM DESCRIPTION
In this paper, we address the following questions:

1 How to determine the FT-feasibility of a given set of
temporally redundant real-time tasks under an error
burst of known upper-bounded length during LCM?

A followup question is:

2 If the real-time task set is not found to be FT-feasible,
what is the lowest processor speed-up that guarantees
its FT-feasibility under the error burst?

5. FAULT TOLERANCE
FEASIBILITY ANALYSIS

In this section, we present the proposed fault tolerance fea-
sibility analysis and derive the processor speed-up required
to guarantee the FT-feasibility of a real-time task set, under
an error burst.

Due to the error detection mechanism assumed to be per-
formed at the end of the tasks’ executions, in the analysis we
account for the WCET of the primary and alternate tasks
under the error burst. If the error burst starts just before
any job of τi finishes its execution, the rest of the execution
of τi is outside the influence of the error burst. We define
the execution of τi that occurs outside the error burst as the
maximum wasted execution time of τi.

Definition 1. The Maximum Wasted Execution Time
(MWET) of a task τi hit by an error burst, is defined as the
execution time of the primary or an alternate of τi which
lies outside the error burst, that leads to the largest wastage
of the processor utilization.

An example of the maximum wasted execution time of a
task is shown in figure 1. In any time interval t, the er-

primary alternate

t (relative deadline)

maximum
wasted execution time

maximum
wasted execution time Tlength

worst case error overhead (Et)

ε ε

Figure 1: The worst case error overhead due to error
bursts on a single task

ror burst can hit multiple tasks (τ ′is) leading to many such

maximum wasted execution times (MWET) that wastes the
processor time. The worst case sum of all the possible max-
imum wasted execution times of all the tasks until t gives
the worst case temporal wastage (WCTW) in the interval
t, that leads to the largest overhead outside the error burst.
This is formally defined in the following definition.

Definition 2. The Worst Case Temporal Wastage (WCTW)
during a time interval t, denoted by Werr(t), is defined as
the largest possible temporal overhead which lies outside the
error burst, that occurs due to the execution of the MWETs
of all the failed primaries and alternates in the interval t,
that have their releases and deadlines within t.

primary

t (relative deadline)

alternate

WCET WCET Tlength ε

Figure 2: The maximum length of the burst error.

We now identify a necessary condition for FT-feasibility of
the set of real-time tasks.

Lemma 5.1. A necessary condition for the FT-feasibility
of a task set Γ is,

Tlength ≤ min
∀τi∈Γ

(Di − 2Ci) + ε

Proof. The proof for this lemma can be easily seen from
figure 2. If the burst length is greater than min(Di − 2Ci +
ε) where ∀τi ∈ Γ, for any task τj with a deadline t, it is
impossible to guarantee a successful execution τj before the
deadline t.

Some assumptions : In the rest of the section, we con-
sider any time instant t′ when a job τi,j is executing on the
processor. Unless stated otherwise, we assume that the job
τi,j is the first job to be hit by the error burst and the error
burst starts at the time instant t′. We also consider a time
instant t which is the absolute deadline of τi,j , t > t′. The
worst case temporal wastage occur when all the jobs arrive
in a strictly periodic manner. Our strategy of finding the
FT-feasibility is as follows- we assume that even under the
error burst, there are no deadline misses in the schedule, and
then we derive the sufficient condition for this to be true.

Lemma 5.2. If no task is released at or after time t′, that
has an absolute deadline less than or equal to t, the worst
case temporal wastage Werr(t) at t is given by:

Werr(t) = 2(Ci − ε)

Proof. According to our assumption, every job of a task
released between time t′ and t has an absolute deadline
greater than the deadline of τi,j . The job τi,j has to fin-
ish its execution for any other job to start its execution.
Thus, τi,j is the only job that is hit by the error burst. This
is because, every job present in the ready queue and ev-
ery job released after time t′, has an absolute deadline later

than the absolute deadline of τi,j , and will execute only after
τi,j completes its execution successfully, since we assume an
EDF scheduler. Thus Werr(t) is given in the scenario when
the error burst starts just before the primary of τi,j com-
pletes its execution and just after the last failed alternate of
τi,j starts its execution (see figure 1). Hence, in this case:

Werr(t) = 2(Ci − ε)

The WCTW at time t is thus equal to twice the MWET of
τi.

Observation 5.1. Every task that is released at or after
time t′, having an absolute deadline less than or equal to t,
will have a relative deadline less than or equal to Di.

This is quite straight forward as τi,j has been released at a
time instant less than or equal to t′. Thus every task that
is released after t′ having an absolute deadline less than or
equal to t must have a relative deadline less than the relative
deadline of τi.

All the jobs that are released in the interval [t′, t], having
a later deadline than t will not be hit by the error burst.
This is proved in the following lemma.

Lemma 5.3. No job τa,b released in the interval [t′, t], hav-
ing an absolute deadline bTa+Da > t, can be hit by the error
burst.

Proof. The job τa,b will be scheduled only after τi,j has
completed one successful execution since τi,j has the ear-
liest deadline. According to our assumption, the task set
is schedulable even under the error burst. Thus, the error
burst would have ended before τa,b started its execution,
since τi,j completed one successful execution.

We now show that the WCTW at the absolute deadlines of
jobs released in the interval [t,′ t], having a later deadline
than t, is equal to the WCTW at time instant t.

Lemma 5.4. The Werr(dl) for any job τa,b that is released
in the interval [t′, t], having an absolute deadline denoted by
dl = bTa +Da > t, is given by:

Werr(dl) = Werr(dl−1)

Proof. When τa,b starts its execution, the value ofWerr(dl)
is equal to the value of Werr(t), since no job with a dead-
line greater than t is hit by the error burst (consequently no
’new’ alternates are executed). Thus, in general we can say
that Werr(dl) = Werr(dl−1) for such a job τa,b, as the same
argument holds for every such job having an earlier absolute
deadline than dl.

In the next lemma, we bound the contribution of τi,j to the
WCTW at t when more than one task is hit by the error
burst in the interval [t′, t].

Lemma 5.5. If the error burst hits more than one task in
the interval [t′, t], the contribution of τi,j to Werr(t) at time
t is 2(Ci − ε).

Proof. In this case, the primary of τi,j is hit ε units
before it completes its execution, and one of its failed al-
ternates is preempted immediately (ε time units) after it
starts its execution. Assume that τa,b is the task preempt-
ing τi,j , which means that τa,b has an earlier absolute dead-
line than τi,j . Using the similar argument from lemma 5.3,

D

A A

C C C C

B B B

!"#$%&'(

A A

!

!

!

!

Figure 3: Error burst hitting multiple jobs

the error burst will end before τa,b completes one successful
execution. When τi,j resumes its execution, its remaining
execution, i.e., Ci − ε is wasted as it was hit by the error
burst just before it was preempted. The alternate of job
τi,j then executes successfully as the error burst has already
ended. Thus the contribution of τi,j to to Werr(t) at time t
is 2(Ci − ε).

Only either the primary or one of the alternates of the jobs
hit by the error burst in the interval [t′, t] contributes to the
WCTW at time t. While a proof of it under FPS has been
presented in [4], in this paper, we extend it to EDF in the
following lemma since the assumptions under FPS are no
longer valid under EDF.

Lemma 5.6. If the error burst hits more than one task in
the interval [t′, t], only either the primary, or exactly one
alternate of each task, other than τi, that is hit by the error
burst will contribute to Werr(t) at time t.

Proof. We consider only the jobs that are executing in
the interval [t′, t]. This is because only these jobs have to fin-
ish their execution before their corresponding absolute dead-
lines, so that τi,j can finish its execution no later than time
instant t. Any job having an absolute deadline greater than
t will not affect the execution of τi,j .

According to our assumption, τi,j is the first job to be hit
by the error burst. Let the job τa,b that has a release time
and deadline in the interval [t′, t], be the next task to be hit
by the error burst. For the task set to be schedulable, τa,b
needs to recover before its absolute deadline i.e., it must
have one successful execution before its absolute deadline.
Additionally, there should not be any deadline misses in the
rest of the schedule until the LCM. The execution of the job
τa,b is under the error burst and its contribution to Werr(t)
is maximum when either:

1. The primary or one of the failed alternates of job τa,b
is immediately preempted by a higher priority job τe,f
as soon as it starts execution.

In this case, the error burst will end before the job
τe,f completes one successful execution, after which the
remaining executions of the failed primary or alternate
of τa,b, which was preempted, execute to completion.
Thus the maximum processor time wasted by τa,b is

(Ca − ε), before it can successfully execute, according
to the definition 1.

2. The error burst ends just before the last failed alter-
nate of τa,b starts executing.

This is the case when τa,b is the only job other than
τi,j that is hit by the error burst. In this case, the con-
tribution of τa,b to Werr(t) is maximum when the error
burst ends just after the start of an alternate of τa,b.
Hence, according to definition 1, the maximum pro-
cessor time wasted is (Ca − ε), before τa,b successfully
executes.

In both cases, maximum execution of τa,b that can lie outside
the region of the error burst is (Ca−ε). The above argument
can be repeated for all higher priority jobs τe,f that are
released between the release time of τa,b and its absolute
deadline.

Thus we can see that, if the error burst hits more than
one job, either only the primary or exactly one alternate of
each task other than τi,j , that is hit by the error burst, will
contribute to Werr(t) at time t.

We have thus bounded the contributions of the jobs sched-
uled in the interval [t′, t] to the Werr(t) at t, when the error
burst hits more than one job. An example, when the error
burst hits multiple jobs, is given in figure 3. We now derive
the Werr(t) when the error burst hits more than one job in
the interval [t′, t], in the general case.

Lemma 5.7. If the error burst hits more than one job in
the interval [t′, t], the worst case temporal wastage Werr(t)
is given by:

Werr(t) = 2(Ci − ε) +
∑

∀τk∈Γ:Dk≤Di

(Ck − ε)

Proof. We know from lemma 5.6 that only either the
primary or one of the alternate of the failed tasks that have
release times and deadlines in [t′, t] will contribute to the
worst case temporal wastage at t. Thus the total contribu-
tion to Werr(t) is the maximum when every job τa,b released
in the interval [t′, t], that has a deadline no later than t, is
hit by an error burst and leaves Ca − ε time units of exe-
cution outside the error burst. This scenario occurs when
the tasks released in the interval [t′, t] preempt each other in
a nested manner, with every preemption occurring ε units
after the start of the execution of the preempted task.

The tasks that may be potentially released in the interval
[t′, t] are the tasks that have relative deadlines less than or
equal to Di (observation 5.1). Thus following the reason-
ing in lemma 5.6, only either the primary or exactly one
alternate of each of the failed tasks other than τi,j will con-
tribute to the worst case temporal wastage. The worst case
contribution of τi,j is 2(Ci − ε) according to lemma 5.5.

Thus, the worst case temporal wastage at time t is equal
to,

Werr(t) = 2(Ci − ε) +
∑

∀τk∈Γ:Dk≤Di

(Ck − ε)

We thus obtain the WCTW at t, when the error burst hits
multiple jobs.

Let us now consider the case when the error burst hits only
a single job and τi,j is not necessarily the job to be hit. This

means that any task in the interval [t′, t] could be hit by the
error burst and the WCTW at t is given by the following
lemma.

Lemma 5.8. If the error burst hits only a single job, not
necessarily τi,j, in the time interval [t′, t], the worst case
temporal wastage at time t is given by:

Werr(t) = max
∀τk∈Γ:Dk≤Di

{2(Ck − ε), 2(Ci − ε)}

Proof. According to the observation 5.1, all the jobs
that are completely scheduled in the interval [t′, t] are the
jobs of the tasks with a relative deadline less than or equal
to the relative deadline of τi. Thus, if only one job is hit by
the error burst in the interval [t′, t], the maximum contri-
bution to the worst case temporal wastage at t is twice the
maximum of the worst case execution time wastage (wk) of
τk, if a job of τk is scheduled in the interval [t′, t]. This is the
case when the error burst starts just before the primary of
the task hit by the burst finishes its execution and ends just
after the last failed alternate has started its execution, as
shown in lemma 5.2. Here, τk can be either τi or, according
to observation 5.1 and using lemma 5.3, any τk such that
Dk ≤ Di. Hence,

Werr(t) = max
∀τk∈Γ:Dk≤Di

{2(Ck − ε), 2(Ci − ε)}

We have thus derived the worst case temporal wastage for
the final scenario.

We now propose one of our main theorems which bounds
the WCTW at t, which we later use to reason about the
FT-feasibility.

Theorem 5.1. The worst case temporal wastage Werr(t)
at any time instant t, where t = dl = jTi + Di for any job
τi,j, is given by:

Werr(t) = max (x, y,Werr(dl−1))

Here,

x = max
∀τk∈Γ:Dk≤Di

{2(Ck − ε)}

y = 2(Ci − ε) +
∑

∀τk∈Γ:Dk≤Di

(Ck − ε)

Proof. The proof follows from lemma 5.4, 5.7, 5.8. At
deadline dl, according to lemma 5.7, if the error burst hits
more tasks in addition to τi,j ,

Werr(t) = 2(Ci − ε) +
∑

∀τk∈Γ:Dk≤Di

(Ck − ε)

According to lemma 5.8, at deadline dl, if the error burst
hits only one task, the Werr(t) is given by the maximum of
the MWETs of the tasks scheduled until dl, thus,

Werr(t) = max
∀τk∈Γ:Dk≤Di

{2(Ck − ε), 2(Ci − ε)}

Finally, according to lemma 5.4, if τi,j is a job that has an
absolute deadline greater than the deadline of the job first
hit by the error burst, then,

Werr(dl) = Werr(dl−1)

Hence, Werr(t), where t = jTi + Di for any τi,j is given
by the maximum of the Werr(t) given by lemmas 5.4, 5.7,
5.8.

We now define the worst case error overhead at any time
t which is the worst case overhead involved in tolerating
faults.

Definition 3. The worst case error overhead Et, in any
time interval t, is defined as the sum of the error burst length
Tlength and the worst case temporal overhead in the time
interval t.

Et = Tlength +Werr(t)

An example of the worst case error overhead at a time in-
stant t i.e., Et is shown in figure 1. We now build on the
demand bound analysis proposed by Baruah et. al [8] and
define the sufficient condition for FT-feasibility under an er-
ror burst.

Theorem 5.2. A real-time task set Γ is FT-feasible under
an error burst of length Tlength if, ∀t = kTj + Dj ,∀τj ∈ Γ
and t ≤ LCM ,

Et +

n∑
i=1

DBFi(t) ≤ t

Proof Sketch. When the above condition is satisfied,
there is sufficient slack in the schedule, during any time in-
terval t, for the execution of the real-time tasks and the
alternates of the failed tasks, outside the region of the error
burst.

Suppose that the above condition is not satisfied for some
t, i.e.,

Werr(t) +

n∑
i=1

DBFi(t) > t− Tlength

This means that during some time interval, the total exe-
cution demanded by the task set exceeds the size of that
interval and hence the task set is not feasible. The formal
proof is similar to the proof presented in [3].

However, depending on the real-time schedule, the actual
maximum temporal wastage at t may or may not be equal
to the worst case. Hence if the lemma is not satisfied, no
guarantees can be given about the FT-feasibility using the
above feasibility test. Thus the above theorem is only a
sufficient test for FT-feasibility.

6. RESOURCE AUGMENTATION FOR
FT-FEASIBILITY

In this section, we examine the resource augmentation
bounds that guarantees the FT-feasibility of a set of real-
time tasks under a known error burst length. We first, in
the following theorem, derive the exact processor speed-up
that guarantees the FT-feasibility of the real-time task set.

Theorem 6.1. The minimum processor speed-up required
to guarantee the FT-feasibility of a real-time task set Γ under
a burst error of length Tlength is given by:

S = max
∀t

{
Werr(t) +

∑n
i=1 DBFi(t)

t− Tlength

}
Proof. If any given task set Γ is not FT-feasible on a

processor of speed S = 1, there exists a time instant t such
that,

Tlength +Werr(t) +
n∑
i=1

DBFi(t) > t

Suppose that speeding up the processor by a factor of S will
ensure its FT-feasibility. We get,

Tlength +
Werr(t)

S
+

∑n
i=1 DBFi(t)

S
≤ t

Thus, ∀t,

Werr(t) +
∑n
i=1 DBFi(t)

S
≤ t− Tlength

Solving for S we get ∀t,

S ≥
Werr(t) +

∑n
i=1 DBFi(t)

t− Tlength
Hence,

S = max
∀t∈aTj+Dj ,t≤LCM

{
Werr(t) +

∑n
i=1 DBFi(t)

t− Tlength

}
We thus obtain the minimum processor speed-up required
to guarantee FT-feasibility.

In order to derive upper-bounds on the processor speed-up
that guarantees FT-feasibility, we bound the Werr(t) at any
time instant t.

Lemma 6.1. The worst case temporal wastage Werr(t),
t ∈ {d1, d2, ..., dm}, is upper-bounded by:

Werr(t) ≤ 2

n∑
i=1

DBFi(t)

Proof. At deadline d1, which is the shortest relative
deadline D1, the worst case temporal wastage Werr(t), ac-
cording to theorem 5.1, is given by:

Werr(t) = max(x, y)

x = max
∀τk∈Γ:Dk≤D1

{2(Ck − ε)}

y = 2(C1 − ε) +
∑

∀τk∈Γ:Dk≤D1

(Ck − ε) = 2(C1 − ε)

Here, clearly x or y can be upper-bounded by:

x ≤ 2

n∑
i=1

DBFi(D1) and y ≤ 2

n∑
i=1

DBFi(D1)

Consider any absolute deadline dl of any task τi, dl =
jTi +Di. The Werr(t) is given by:

Werr(t) ≤ max(x, y, dl−1)

Here again, we can see that x and y can be bounded by:

x ≤ 2

n∑
i=1

DBFi(dl) and y ≤ 2

n∑
i=1

DBFi(dl)

Hence for any t,

Werr(t) ≤ 2

n∑
i=1

DBFi(t)

This gives an upper-bound on the worst case temporal wastage
in any time interval t.

Using the above bounds on the Werr(t), we derive an
upper-bound on the processor speed-up that guarantees FT-
feasibility in the following theorem.

Theorem 6.2. The minimum processor speed-up Sb that
guarantees the FT-feasibility of a set of real-time tasks Γ
under an error burst of length Tlength is upper-bounded by:

Sb ≤
3y

y − 1

where y = t
Tlength

, t ∈ {d1, d2, ..., dm}.

Proof. According to lemma 6.1, the upper-bound on the
Werr(t), t ∈ {d1, d2, ..., dm} is given by:

Werr(t) ≤ 2

n∑
i=1

DBFi(t)

According to theorem 6.1,

S = max
∀t

{
Werr(t) +

∑n
i=1 DBFi(t)

t− Tlength

}
Substituting the upper-bounds on Werr(t), we get, ∀t ∈
{d1, d2, ..., dm},

S ≤
3
∑n
i=1 DBFi(t)

t− Tlength
Since we assume that the original task set is schedulable,
∀t ∈ {d1, d2, ..., dm},

n∑
i=1

DBFi(t) ≤ t

Substituting for
∑n
i=1 DBFi(t), ∀t ∈ {d1, d2, ..., dm}, we get

the upper-bound on the required speed-up denoted by Sb,

Sb ≤
3t

t− Tlength
Thus,

Sb ≤
3y

y − 1

where y = t
Tlength

, t ∈ {d1, d2, ..., dm}.
The largest value of Sb is obtained at d1 = D1, the shortest

relative deadline of the task set.

We now derive the resource augmentation bounds for the
case when the error burst length is no longer than half the
shortest deadline.

Theorem 6.3. The upper-bound on the minimum proces-
sor speed-up Sb that guarantees the FT-feasibility of a set
of real-time tasks Γ under an error burst of length Tlength
such that for any time interval t ∈ {d1, d2, ..., dm}, y ≥ 2,
y = t

Tlength
, is given by:

Sb ≤ 6

Proof. This is straight away obtained from theorem 6.2,
by evaluating the limits at y = 2 and y =∞.

We have thus presented a sufficient condition for the fault
tolerance feasibility of a task set under an error burst, and
derived upper-bounds on the processor speed-up required
to guarantee the fault tolerance feasibility, if the sufficient
condition fails for some task set. We have proved that if
the error burst length is no longer than half the shortest
deadline of the task set, the resource augmentation bound
that guarantees the FT-feasibility is 6.

Task Ci Di Ti
A 1 5 6
B 1 9 9
C 2 18 18

Table 1: Example task set

0 6 12 18

0 9 18

0 18
A B C

Figure 4: EDF schedule

7. EXAMPLE
We illustrate our feasibility analysis and resource augmen-

tation bounds using a simple example. Consider a real-time
task set as shown in table 1 with 3 tasks. To illustrate
the use of processor speed-up to enable FT-feasibility, let us
assume that the error burst length Tlength = 4. The demand
bound until the first absolute deadline 5 (demanded by task
A) is equal to:

C∑
i=A

DBFi(5) = 1

Suppose the primary of task A is hit by the error burst, the
maximum time is wasted when the burst hits the primary
just before it finishes its execution. At time instant t = 1,
the alternate of task A starts its execution and this is again
hit by the burst. At t = 2, the alternate is again executed,
which is again hit by the error burst. Alternates continue
to execute and at time instant t = 4.9, during the execution
of one of the alternates, the error burst ends. It can be
easily seen that task A does not have sufficient slack outside
the error burst to complete one successful execution since it
has a deadline at t = 5. One of the fault scenarios where
Tlength = 4 is illustrated in figure 5, and there is a deadline
miss on task A. Formally,

0 6 12 18

0 9 18

0 18
A B C

deadline miss	

Tlength=4	

Figure 5: EDF schedule under faults with Tlength = 4

0 6 12 18

0 9 18

0 18
A B C

Tlength=4	

Figure 6: EDF schedule under faults after a speed-
up of 2.8

E5 +

C∑
i=A

DBFi(5) = 5.8 + 1 = 6.8 > 5

Similarly at deadline t = 9, the demand bound = 2. Here
the worst possible overheads due to the error burst can be
bounded by E9 = 6.7. The worst case temporal wastage
(WCTW) occurs when the primary of task B is hit leading
to a scenario as in the previous deadline. Additionally, we
add one failed alternate from the higher priority task to
account for the cases where higher priority tasks preempt
the primary or one of the alternates of the task B under
consideration. Hence,

E9 +

C∑
i=A

DBFi(9) = 6.7 + 2 = 8.7 < 9

Similarly, we calculate the processor demand bounds at all
the absolute deadlines.

E11 +

C∑
i=A

DBFi(11) = 6.7 + 3 = 9.7 < 12

E17 +

C∑
i=A

DBFi(17) = 6.7 + 4 = 10.7 < 17

E18 +

C∑
i=A

DBFi(18) = 9.6 + 6 = 15.6 < 18

Thus, the only possibility of a deadline miss due to the error
burst is at time t = 5. The speed-up required to guarantee
FT-feasibility is,

S = max

(
2.8

1
,

4.7

5
,

5.7

8
,

6.7

13
,

11.7

14

)
=

2.8

1
= 2.8

When we increase the processor speed to 2.8, during the time
interval [0, 5], the total value of Werr(t)+

∑n
i=1 DBF

C
A (t) =

1.8+1
2.8

= 1. Hence,

E5 +

n∑
i=1

DBFi(5) = 1 + 4 = 5

The same scenario in figure 5 on a processor that is 2.8 times
faster is given in figure 6. Observe that there is no deadline
miss on task A in the schedule in figure 6 under the error
burst, after the speed-up. Thus, we can prevent a deadline
miss at t = 5 by using a processor that is 2.8 times faster.

8. CONCLUSIONS
In this paper, we have examined the use of resource aug-

mentation to guarantee the fault tolerance feasibility of a
set of real-time tasks under an error burst. In this con-
text, we derive a sufficient condition under the assumption
of no more than a single error burst occurrence during the
hyper-period of the tasks. For the cases where the sufficient
condition fails, we also derive the necessary speed-up that
guarantees the fault tolerance feasibility under the burst.
We show that, if the length of the error burst is no more
than half the shortest deadline of the task set, the mini-
mum processor speed-up that guarantees the fault tolerance
feasibility is upper-bounded by 6.

The proposed method adds a new capability in the sys-
tem designer’s repertoire for analyzing the fault tolerance
feasibility of a given set of real-time tasks under an error
burst and derive essential resource augmentation require-
ments. We intend to extend the proposed approach to more
severe error scenarios as well as to distributed systems in
future.

9. REFERENCES
[1] G. Attiya and Y. Hamam. Task allocation for

maximizing reliability of distributed systems: A
simulated annealing approach. Journal of Parallel and
Distributed Computing, October 2006.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and
C. Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Transactions
on Dependable Secure Computing, January 2004.

[3] H. Aydin. Exact fault-sensitive feasibility analysis of
real-time tasks. IEEE Transactions on Computers,
October 2007.

[4] H. Aysan. Fault-tolerance strategies and probabilistic
guarantees for real-time systems. In PhD thesis,
Malardalen University, June 2012.

[5] H. Aysan, R. Dobrin, S. Punnekkat, and
R. Johansson. Probabilistic schedulability guarantees
for dependable real-time systems under error bursts.
In The 8th IEEE International Conference on
Embedded Software and Systems, November 2011.

[6] H. Aysan, A. Thekkilakattil, R. Dobrin, and
S. Punnekkat. Efficient fault tolerant scheduling on
controller area network (CAN). In 15th International
Conference on Emerging Technologies and Factory
Automation, September 2010.

[7] J. A. Bannister and K. S. Trivedi. Task Allocation in
Fault-Tolerant Distributed Systems. Acta Informatica,
Springer-Verlag, 1983.

[8] S. K. Baruah, L. E. Rosier, and R. R. Howell.
Algorithms and complexity concerning the preemptive
scheduling of periodic, real-time tasks on one
processor. Real-Time Systems, October 1990.

[9] A. Burns, R. Davis, and S. Punnekkat. Feasibility
analysis of fault-tolerant real-time task sets. In The
8th Euromicro Workshop on Real-Time Systems, June
1996.

[10] G. C. Buttazzo. Rate monotonic vs. EDF: judgment
day. Real-Time Systems Journal, January 2005.

[11] M. Cirinei, A. Mancina, D. Cantini, P. Gai, and
L. Palopoli. An educational open source real-time
kernel for small embedded control systems. In

Computer and Information Sciences. Springer Berlin /
Heidelberg, 2004.

[12] R. Davis, T. RothvoSS, S. Baruah, and A. Burns.
Exact quantification of the sub-optimality of
uniprocessor fixed priority pre-emptive scheduling.
Real-Time Systems, July 2009.

[13] M. L. Dertouzos. Control robotics: The procedural
control of physical processes. In IFIP Congress, 1974.

[14] R. Dobrin, H. Aysan, and S. Punnekkat. Maximizing
the fault tolerance capability of fixed priority
schedules. In The 14th IEEE Internationl Conference
on Embedded and Real-Time Computing Systems and
Applications, August 2008.

[15] R. Dobrin, G. Fohler, and P. Puschner. Translating
off-line schedules into task attributes for fixed priority
scheduling. In Real-Time Systems Symposium,
December 2001.

[16] S. Ghosh, R. Melhem, and D. Mosse. Fault-tolerance
through scheduling of aperiodic tasks in hard real-time
multiprocessor systems. IEEE Transactions on
Prarallel and Distributed Systems, March 1997.

[17] S. Islam, R. Lindstrom, and N. Suri. Dependability
driven integration of mixed criticality SW
components. Ninth IEEE International Symposium on
Object and Component-Oriented Real-Time
Distributed Computing, April 2006.

[18] B. Kalyanasundaram and K. Pruhs. Speed is as
powerful as clairvoyance. Journal of ACM, July 2000.

[19] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science, May
1983.

[20] B. Lisper. Trends in timing analysis. In From
Model-Driven Design to Resource Management for
Distributed Embedded Systems. Springer Boston, 2006.

[21] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time
environment. The Journal of ACM, January 1973.

[22] F. Many and D. Doose. Scheduling analysis under
fault bursts. In The 17th IEEE Real-Time and
Embedded Technology and Applications Symposium,
April 2011.

[23] R. Pathan and J. Jonsson. Exact fault-tolerant
feasibility analysis of fixed-priority real-time tasks. In
The16th International Conference on Embedded and
Real-Time Computing Systems and Applications, April
2010.

[24] A. Thekkilakattil, H. Aysan, and S. Punnekkat.
Towards a contract-based fault-tolerant scheduling
framework for distributed real-time systems. In The
1st International Workshop on Dependable and Secure
Industrial and Embedded Systems, June 2011.

[25] D. Zhu. Reliability-aware dynamic energy
management in dependable embedded real-time
systems. In In Proceedings of the 12th IEEE
Real-Time and Embedded Technology and Applications
Symposium, April 2006.

[26] D. Zhu, R. Melhem, and D. Mosse. The effects of
energy management on reliability in real-time
embedded systems. In Proceedings of the 2004
IEEE/ACM International conference on
Computer-aided design, November 2004.

