
Towards Automatic Synthesis of Hardware-Specific Code in Component-based
Embedded Systems

Luka Lednicki, Ivica Crnković
Mälardalen Real-Time Research Centre

Mälardalen University
Västerås, Sweden

Email: {luka.lednicki,ivica.crnkovic}@mdh.se

Mario Žagar
Faculty of Electrical Engineering and Computing

University of Zagreb
Zagreb, Croatia

Email: mario.zagar@fer.hr

Abstract—Most component models currently in use do not
try to provide extensive support for dealing with hardware
devices like sensors and actuator. Lack of such support means
that software components and subsystems often include device-
and platform-specific code, limiting our ability to reuse them
and forcing us to deal with specifics of underlying hardware
in high-level software models. In this paper we propose a
solution that would enable automatic generation of device-
specific code. We remove device- and platform-specific code
outside of software components and specifying it as reusable
units. Based on a system model we then generate glue-code
that binds this reusable units of code to each other and to the
software components, resulting in a system-specific solution.

Keywords-component-based development; code synthesis;
hardware devices; sensors; actuators; embedded systems

I. INTRODUCTION

Component-based development (CBD) is one of the ap-
proaches suggested to alleviate the constant rise in the
complexity of embedded systems (ES) [1], [2]. One of the
aspects that is crucial for use of CBD in embedded systems
is communication with hardware devices such as sensors and
actuators. However, inclusion of hardware device-specific
elements in software components decreases the components’
reusability [3]; If a component includes device-specific code,
or code that is specific to a platform, the component cannot
be efficiently reused in case of changes of the underlying
hardware. Therefore, by making software functionality in-
dependent from a specific hardware configuration, and by
providing means to automatically generate the hardware-
specific code we can make reuse of code in embedded
systems more efficient.

Synthesis of hardware-specific code has been explored
model-driven engineering in general in model-driven ap-
proach [4], and in specific modeling languages such as
AADL [5] or MARTE [6]. However, automatic generation of
glue code for connecting device-specific code has not been
established in component models for embedded systems. In
most component models used in academia hardware-specific
code is externalized – not present in software components
and put outside the scope of component model. One example
of externalized devices is SaveCCM [7]. Component models

targeting industry provide support for hardware devices,
but this support is mostly implicit, which means that the
hardware-specific code is hard-coded in the software compo-
nent code. An example of such support for hardware devices
can be found in Rubus [8]. One of the most extensive support
for hardware devices is given by AUTOSAR [9] in which
interaction with hardware devices is done using specialized
and hardware specific sensor/actuator components.

In this paper we present a novel way to provide code syn-
thesis for component software in embedded system domain,
which allows a transparent use of hardware devices in soft-
ware models. Our goal is to automatically generate system-
specific code for interaction with hardware devices while
reusing predefined device- and platform-specific. We do this
by first separating software component code, device-specific
code and platform-specific code, while strictly defining their
content and interfaces they can use for to communicate with
each other. By this we get system-independent, reusable
units of code. We then use a model that describes software
components, hardware devices and the deployment platform
to automatically generate-glue code that connects the men-
tioned code parts into a deployable system. Our approach is
based on the framework for handling interaction of software
components with hardware devices that we proposed in [10].

The rest of the paper is organized as follows. In section II
we present the framework we use for specification of hard-
ware devices. section III describes our approach to hardware-
specific code synthesis and gives an example of the synthesis
implementation. Finally, section IV concludes the paper.

II. OVERVIEW OF THE HARDWARE DEVICE
SPECIFICATION FRAMEWORK

Purpose of the Hardware Device Specification Framework
which allows explicit inclusion of hardware devices, such as
sensors and actuators, into component models for embedded
systems. In the framework, hardware devices are presented
as software components, while leaving the components free
of device- and platform-specific information. It then enables
specification of device- and platform-specific information,
and provides a way to associate it with software components.

Software layer

Mapping layer

Hardware layer

Device Component

Component
Mapping

Hardware Device

IO Allocation

IOIO Type

Hardware Device
Instance

Device Component
Instance

Instance of

Instance of

Instance of

Target HWD

Target HWD

Target Component

Target IO

1..1

1..1

1..1

1..1

1..1

1..1

Required IO

IO Type 1..1

Required IO 1..*

Target Req. IO

1..1

1..1

Figure 1. Metamodel of the Hardware Devices Specification Framework.

The part of the framework metamodel relevant for this work
is shown in Figure 1. The framework includes three layers:
software layer, hardware layer and mapping layer.

In software layer, interaction of software components
with hardware devices is represented by device components
and their instances (context-specific representatives). Device
components provide same component interface and abide
same execution semantics as all other software components.
Both types of components are treated the same during design
– they can be used equivalently. But opposed to ”pure”
software components, which implement their functionality
by code, device components do not implement any func-
tionality. Their functionality is defined once the component
is mapped to a hardware device.

Hardware layer contains information about hardware
devices, the platform and how the two are connected. Input
and output elements (e.g. pins or ports) of the platform are
represented by IOs. Each IO references an IO type. IO types
are abstract entities which define functionality that IOs must
provide, along with the data types or structures used.

A hardware device model element represents a physical
sensor or actuator. They include all information that is
specific to that sensor or actuator. Each hardware device
entity refers one software components from the software
layer, indicating which functionality it can provide. It also
defines the type of IO it requires from the platform. Similar
to device components in the software layer, hardware devices
also have their context-specific instances.

Hardware devices contain one or more required IO ele-
ments. Required IOs represent platform IOs that the actual
physical sensor or actuator need for communication. Types
of these IOs are specified by referencing IO type elements.

When we want to create an actual system, we need to cre-
ate IO allocations: describe how the devices are connected
to the platform. IO allocations create connections between
IOs, hardware device instances and required IOs.

Mapping layer allows us to create connections (map-
pings) between elements of software and hardware layers.
When we map a device component form the software layer
to hardware device from the hardware layer, we denote that
the hardware device will be used as the realization for the
device.

III. CODE SYNTHESIS

In the framework described above we define a new
approach to code synthesis: We first define a way to specify
system-independent and reusable code elements for device-
and platform-specific functionality. Besides just functional-
ity, reusable code elements also define interfaces for com-
munication between them. Using a system model we then
generate code that utilizes these interfaces to combine the
software component code with device- and platform specific
functionality resulting in a system-specific deployable solu-
tion. An overview of the synthesis process and the result is
given in Figure 2.

Reusable Models and Code

System Model

Generated code

Device Component Hardware Device IO

Mapping IO
Allocation

Platform-
Specific

Code

Device-
Specific

Code

Component
Interface

Code

Mapping
Code

IO
Allocation

Code

IO
Type

IO
Definition

Code

Synthesis result

Mapping
Code

IO
Allocation

Code

Platform-
Specific

Code

Device-
Specific

Code

Component
Interface

Code

IO
Definition

Code

Function calls

References

Code input or output
Legend:

<Name>

<Name>

Model element

Code Element

Figure 2. Overview of the synthesis process and results.

Allocation CodeMapping Code

IO Code

IO Type Code

Hardware Device Code

Device Component Code

Device Component Data

 Device Allocation Storage

 Entry-Function Interface

IO Allocation Data

 IO Interface Instance [1..*]

Entry-Function Implementation

 Variable Definition [1..*]

IO Interface

Device Component Instance

Allocation Mapping

Entry-Function Mapping

IO Interface Implementation

 IO Allocation Assignment [1..*]

IO Allocation Instance

Legend:

Implementation or instantiation

Reference

Value assignment

Data Definition [0..*]

Figure 3. Code elements in our synthesis approach and relations between them. For the elements that can occur multiple times multiplicity is shown in
square brackets.

Our approach consists of two groups of code: (a) input
code elements which will be used as input to the synthesis,
and (b) generated code that connects the input elements.
An overview of all the code elements used in the syntesis
process and relations between them is given in Figure 3.
These code elements are described in details below.

A. Synthesis Input Code Definition

Input code is separate into elements in a way that the
elements are independent as much as possible from each
other, making them fit for reuse. These four elements are:

• device component code – platform, device and system
independent code,

• IO type code – code that describes capabilities for
different IOs,

• IO code – platform-specific code that implements IO
functionality,

• hardware device code – device specific code that im-
plements device functionality.

All these elements are system-independent and loosely cou-
pled, and can be reused in different systems or different
platform configurations. Next, we will give a detailed de-
scription of the input code elements.

1) Device Component Code: As we want to place device-
and platform-specific code out of software components,
device component code does not provide any concrete func-
tionality. Instead, it only provides a way to make calls to
device-specific functions once the system model is defined.
This is done by providing storage for allocation data for an

instance of a device component and storage for a reference
to code implementing communication to the device. We
describe how these two are assigned in subsection III-B.
When device component executes it just delegates execution
call to the implementation code, passing also the allocation
data.

2) IO Type Code: In IO type code we define an interface
that will be used to communicate through an particular IO
type. Functions defined in the interface can be used for
data input and output, but also for configuration of the
communication channel. IO code can also contain definitions
of data structures that will be used as arguments to IO
functions.

3) IO Code: Code defined for IOs provides platform
specific implementation for interfaces defined in the IO type
code. For one platform, we will have to provide separate IO
code for all its inputs and outputs. This code will then be
connected to hardware device code (described in the next
subsection) during allocation code generation (described in
subsubsection III-B1).

4) Hardware Device Code: Main purpose of hardware
device code is to provide implementation of functionality for
a specific sensor or actuator. This includes protocol used to
communicate to the device, possible adaptation of data and
calls to one or more IO functions. Hardware device code
must implement an entry function which will be referenced
by device component and called when device component is
executed. Also, this code will define a data structure that will
be used to store information about allocation of a hardware

device instance to platforms IOs.

B. Generated code

Using a system model, which is based on the previously
described framework, we are able to generate code that im-
plements functionality of the system. The code we generate
creates connection between various elements of input code
elements using the interfaces they define. Code generation
is divided into two phases: generation of IO allocation code
and generation of device mapping code.

1) IO Allocation Code: IO allocation code provides
connections between instances of device components and
platform IOs. It enables devices to make function calls to
platform IO functions, abstracting away platform specifics.
To generate IO allocation code we use hardware device
elements, IO elements and IO allocation elements from the
system model, and their respective input code elements.

First, we traverse the model for each device referenced
by IO allocation and create instances of IO allocation data
structures defined by by the hardware device code. After
that, using IO allocation model elements, we generate code
that will assign appropriate IO functions to these data
structure instances.

2) Mapping Code: Device- and platform-specific func-
tionality is provided to software components by generation
of mapping code. As first phase of mapping code generation
we create instances of device component data structures
which will hold mapping data. In the next phase we generate
allocation mapping code. This code binds IO allocations
generated during IO allocation code generation to device
component instances. Final part mapping code generation
is entry function mapping. Entry function mapping code
connects device software components with device entry
functions which implement device-specific functionality.

IV. CONCLUSION

In this paper we have presented how automatic generation
of hardware specific code can be used in component models
for embedded systems. Our approach is based on (a) giving
strict definitions for how to specify device- and platform-
specific code in a way that will make it reusable, and (b)
automatic generation of glue code (based on the system
model) that will bind the reusable code units into a system-
specific solution.

By utilizing this approach we can increase reusability of
code used for communication with sensors and actuators.
The new level of abstraction over such hardware devices and
the platform allows for separation of development of high-
level software functionality from the low- level hardware-
specific functionality.

ACKNOWLEDGMENT

This work was supported by the Swedish Foundation for
Strategic Research project RALF3 and the Swedish Research
Council project CONTESSE (2010-4276).

REFERENCES

[1] I. Crnkovic and M. Larsson, Building Reliable Component-
Based Software Systems. Norwood, MA, USA: Artech
House, Inc., 2002.

[2] C. Atkinson, C. Bunse, C. Peper, and H.-G. Gross,
“Component-based software development for embedded
systems an introduction,” in Component-Based Software
Development for Embedded Systems, ser. Lecture Notes
in Computer Science, C. Atkinson, C. Bunse, H.-G.
Gross, and C. Peper, Eds. Springer Berlin / Heidelberg,
2005, vol. 3778, pp. 1–7. [Online]. Available: http:
//dx.doi.org/10.1007/11591962 1

[3] L. Lednicki, “Support for hardware devices in component
models for embedded systems,” in International Doctoral
Symposium on Software Engineering and Advanced
Applications, August 2011. [Online]. Available: http:
//www.mrtc.mdh.se/index.php?choice=publications&id=2626

[4] S. Burmester, H. Giese, and W. Schaefer, “Model-driven
architecture for hard real-time systems - from platform
independent models to code,” in Model Driven Architecture
- Foundations and Applications, ser. Lecture Notes in
Computer Science, A. Hartman and D. Kreische, Eds.
Springer Berlin, Heidelberg, 2005, vol. 3748, pp. 25–40.
[Online]. Available: http://dx.doi.org/10.1007/11581741 4

[5] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From the
prototype to the final embedded system using the ocarina
aadl tool suite,” ACM Trans. Embed. Comput. Syst., vol. 7,
no. 4, pp. 42:1–42:25, Aug. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1376804.1376810

[6] A. Rodrigues, G. Frédéric, and J. Dekeyser, “An mde ap-
proach for automatic code generation from marte to opencl,”
INRIA Lille-RR-7525 [Online]. Available: http://hal. inria.
fr/inria-00563411/PDF/RR-7525. pdf/, Tech. Rep.

[7] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson,
J. Hakansson, A. Möller, P. Pettersson, and M. Tivoli,
“The SAVE approach to component-based development of
vehicular systems,” Journal of Systems and Software, vol. 80,
no. 5, pp. 655 – 667, 2007. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0164121206002226

[8] K. Hanninen, J. Maki-Turja, M. Nolin, M. Lindberg, J. Lund-
back, and K.-L. Lundback, “The Rubus component model for
resource constrained real-time systems,” in Industrial Embed-
ded Systems, 2008. SIES 2008. International Symposium on,
june 2008, pp. 177 –183.

[9] H. Heinecke, W. Damm, B. Josko, A. Metzner, H. Kopetz,
A. Sangiovanni-Vincentelli, and M. Di Natale, “Software
components for reliable automotive systems,” in Proceedings
of the conference on Design, automation and test in Europe,
ser. DATE ’08. New York, NY, USA: ACM, 2008,
pp. 549–554. [Online]. Available: http://doi.acm.org/10.1145/
1403375.1403508

[10] L. Lednicki, J. Feljan, J. Carlson, and M. Žagar, “Adding sup-
port for hardware devices to component models for embedded
systems,” in ICSEA 2011, The Sixth International Conference
on Software Engineering Advances, 2011, pp. 149–154.

