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Popularvetenskaplig
sammanfattning

Begreppet "realtid* anvands ofta i sammanhang dar en ifippgnomfors i
samma tempo som ett pagaende informationsflode. Ett gakekan vara ett
foretag som dvervakar sin egen verksamhet (inkop, Enveetc.) i realtid for
att pa sa satt kunna korrigera avvikelser innan debésént.

Inom det vetenskapliga omradet Datateknik har begremadtid (Real-
Time Systems) en helt annan innebord. | det foregaeneimplet finns det inga
direkt strikta krav pa hur lange tidsfordrojningen kaara fran t.ex. ett inkop
till att systemet notifierar detta till anvandaren (men maknar med att det
bor ske inom nagra minuter). En intressant observati@italet inte paverkar
foretaget negativt om det drojer nagon minut extra p.goaerbelastning i
natverket exempelvis. Med andra ord, man nojer sig med edetmattig
prestation av systemet i avseende pa tid. Daremot har wehtiénella de-
len av systemet harda krav pa sig, t.ex. att korrekt dagapsksenteras for
anvandaren.

Realtids system inom Datateknik kraver, utdver att spste ar funktionellt
korrekta, att de aven haller alla satta tidsgranser. @nsystem har 1000
olika tidsgranser, varav dessa ligger i ordningen p&aagkrosekunder, sa
far aldrig en enda av dessa 1000 tidsgranser dverskedasetta tiden. En
sadan forsening skulle kunna leda till katastrof dant.ododsfall skulle kunna
forekomma. Eftersom konsekvensen av en forsening pasé katastrofal, sa
analyserar man och testar dessa system noga. En viktigtéapat varenda
del i systemet ska kunna analyseras med avseende pa &t fsdutsagelser
kan goras innan systemet satts i bruk. | manga fall intoedar man feltol-
eranstekniker som hanterar situationer dar en tidsgididserskriden, for att
minska eller helt undvika en katastrof.



Ett av dagens stora mjukvaru/hardvaru problem ar attga&ystem in-
nehaller en stor och nara ohanterlig mangd datorer atvenk mellan dessa.
Ett exempel pa en industri med dessa problem ar fordonstrid. Problemet
ar att antalet funktioner tkar (anti-sladd, parkeriagsistans etc.) vilket leder
till fler datorer. En bil ar idag full av kablage och datoreiket okar vikt,
kostnad och komplexitet.

Malet ar att minska antalet datorer (och kablage) genolatatrealtidsmjuk-
vara samsas pa ett mindre antal datorer. Nya mjukvaruatdadfor bilin-
dustrin bygger pa detta koncept. Dessa mjukvaror hartattiiskrav som
beskrivet ovan, vilket orsakar problem nar dessa ska liatag. Integrerin-
gen ar ett stort riskmoment eftersom tidsgransernandsladt brytas. Det kan
darfor bli en dyr och svar uppgift att losa.

Avsikten med denna licentiatavhandling ar att hjalphatit I6sa denna
uppgift. | detta arbete anvander vi oss av en teknik vid ndmaerarkisk
schemalaggning” for att underlatta mjukvaruintegrgri Detta gors genom
att partitionera mjukvaror i separata delar, vilket gosteynet sakert och latt
att analysera. Tekniken harror fran 60-talet men hapgplieerats i s& stor ut-
strackning p.g.a. att den inte har anpassats for anvagdrmom olika
teknikomraden.

Avhandlingen presenterar anpassningar av hierarkisknsaldggning for
att gora den mer anvandbar. Vi presenterar en teknik sojiggor att kora en
realtidsmjukvara i en partition pa ett operativsystenuitptypsyfte. Detta kan
ses som en forstudie for att testa en mjukvarupartitiam @ttt behdva imple-
mentera och exekvera alla andra mjukvarupartitioner shgtiAll program-
meringskod genereras automatiskt och passar de flestiaisepkrativsystem,
inklusive Linux (standardversionen). Vi har aven utvetkva stycken partitions-
schemalaggare. Den ena ar skriven manuellt for realpieisativsystemet Vx-
Works. | syfte att kontrollera dess korrekthet har en progeparare utveck-
lats speciellt for denna typ av schemalaggare. Den anghsionen ar mod-
ellerad och verifierad med tidsautomater. Dess progranakoautomatiskt
genererad fran modellen och passar de flesta realtidgoysysiem. Dessa
tva versioner har en avvagning vad det galler prestardéegnot korrekthet
(bade tidsmassigt och funktionellt). Den verifieradessnhlaggaren har samre
prestanda an den manuellt utvecklade varianten. | dessfttet arbetet ingar det
bl.a. att forbattra prestandan for verifierade schewgdie.



Abstract

Hierarchical scheduling (also referred to as resourcavasen) is a hot topic
within the research of real-time systems. It has many adggestincluding that
it can facilitate software integration, fault isolatiotrustured analysis, legacy
system integration etc. The main idea is to partition resesi(processors,
memory, etc.) into well defined slots. This technique islyamsed in the most
common real-time applications; however, it is used in theraes industry to
isolate error propagation between system parts, and titdéeianalysis of the
system.

Much of the research within resource reservation deals thidoretical
schedulability analysis of partitioned systems, inclgdihared resources (other
than the processor). We will in this thesis address moretipeddssues related
to resource reservation. We focus on implementation aniyming aspects,
as well as verification and instrumentation. One of our aggiams is that we
deal only with fixed-priority pre-emptive scheduling (FBPS

The first part in this thesis deals with individual softwaystems that may
have its own tasks as well as a scheduler and it is assumedgrbef another
larger system, hence, we refer to this individual system sisbaystem. The
subsystem is assumed to be integrated together with otheystems, but at
an early stage, we make it possible to simulate the subsystening together
with the rest of the subsystems. This "simulation* does equire the actual
resource reservation mechanism, the only requirement @parating system
that supports FPPS. This pre-study may be a natural stepdevilae "real”
integration, since each individual subsystem can be testtged within its as-
signed partition. All subsystems are assumed to run togeieg a resource
reservation mechanism (during the actual integration) hee developed two
prototypes of this mechanism. The first prototype is hardted and it is
equipped with a program tracer for partitioned based sdeesluThis instru-
mentation is useful for debugging and visualization of pamg traces for this



type of scheduling. The second prototype is developed usimgd automata
with tasks (task automata). This model-based scheduleriied for correct-
ness and it is possible to automatically generate source fowdhe scheduler.
We have successfully synthesized this scheduler for thietirea operating
system VxWorks. However, it can easily be extended for gbhetforms. Both
prototypes have pros and cons. The first version has goodrpafce while
the second can guarantee its correctness; hence, thereadeadff between
performance and correctness.
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Chapter 1

Introduction

The increasing product competition and customer demanohéwe function-
ality in electronic products, such as consumer electrodicésmart phones),
cars [2], aeroplanes [3, 4] etc., makes them more complerveldp. Take a
mobile phone for example, which as of today not only has tliéatn make
phone calls but it can also navigate, take photos, browsethmet etc. Due to
the demand on its limited size, vendors can not afford tceiase the amount of
hardware. However, the amount of software increases sapidte this gives
rise to more functionality. Car vendors experience the seinmaof problems,
i.e., more functionality in the form of selective shock aflmy, steering assis-
tance, electronic stability programme, braking assistaparking assistance,
navigation etc. Due to weight and volume demands, the amafuoiboard
computers, referred to as Electronic Control Unit (ECU)wva# as connecting
cables need to be reduced. The difference, as compared tikerpbbnes, is
that much of the software executed on ECUs have real-tim@nagents with
strict time deadlines. An example of such an applicatiomisiabag, which
can cause severe human casualty if not executed correctingto time. The
problem of integrating a rapidly increasing amount of saftevon a steadily
decreasing amount of hardware, without violating extracfiomal properties
(time deadlines), is not completely solved yet but undegpess using new
standards such as the automotive standard AUTOSAR [2]. |[&imioblems
are solved in the aerospace industry through the ARINC6&3dstrd [3, 4].
ARINC653 adapts to partitioning of systems to solve intégrerelated prob-
lems. Techniques similar to ARINC653 are also used to getipiability and
composability in hardware such as memory controllers [5].
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We believe that system partitioning techniques has thenpiatdo solve
integration related problems in industry but it has not gotany foothold
yet. This is most likely because the technique itself brisgme complex-
ity/problems which are also needed to be solved. Anothesoreaould be the
difficulty to adapt it to fit with operating systems, standardevelopment pro-
cesses etc. in industry. Hence, the intention with thisishisso develop the
partitioning technique, which we refer to as hierarchicélexluling, in differ-
ent ways. One of our goals is to maintain total isolation agglasation be-
tween partitions; hence, we try to avoid dependencies letyartitions. This
property is worth to maintain since it can facilitate indegent development,
verification, analysis, tests etc. prior to system intagnat This increases
safety and it is less costly since partitions will not affeath other during the
development and integration phase.

1.1 Contributions

The main contributions of this thesis are as follows.

1. Prototyping

We have proposed a technique that can create a perioditigrarising
only a set of periodic tasks. What is needed to run the pamtii a task
scheduler that can schedule periodic tasks with offsets.havie used
the TIMES [6] tool to generate such a scheduler automayicaite the
task parameters are set. We introduce an algorithm that eaerate
these parameters. In this way, a partition can be executadptetform
(which has support for periodic releases of tasks) and getdime inter-
ference as it would in the final integrated platform. Henbis tonform
to independent development of partitions and suits welpfototyping
partitions. Paper A directs this contribution.

2. Implementation

We present an implementation of a two-level partition scifedn one of
the most popular real-time operating systems: VxWorks. We details
on implementation aspects and performance measuremédrigsmiple-

mentation is presented in Paper B. We have also developecbedss
that is specialized for debugging partitioned systemss Tstrumenta-
tion does not require any kernel modifications but still itfpems well

compared to existing recorders. Our recorder is presentBdper C.
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3. Modelling and Verification

A second version of an implementation of a two-level pantischeduler
is presented in Paper D. The difference, as compared to Bajethat
this scheduler is modelled and verified using timed automatHogics.
The partitions are verified independently of each otherctvisibnforms
to our goal of independent partition development. The ltegb,safter
verifying each partition scheduler, is the verification loé tentire sys-
tem, i.e., the global scheduler. Modularized verificatismseful since
modifications to a part of the system do not require re-vetitie of the
entire system. We have also synthesized the scheduler foYks and
measured its performance and compared it to the schedufaper B.

1.2 Thesis outline

The outline of the thesis is as follows. Chapter 2 presemsrthof real-time
systems, hierarchical systems and operating system datgdln Chapter 3
we give an overview of the research presented in this th&ési€hapter 4 we
present our conclusion and future work. The technical deery of the papers
that are included in this thesis are presented in Chapterdbwa present these
papers in Chapters 6 - 9.






Chapter 2

Background

2.1 Real-time systems

A real-time system can be defined as a computer system (inglbdth hard-
ware and software) that has strict demands on timing [7].tMfien, these re-
quirements require tasks to finish their execution beforeeadefined point in
time. Real-time systems have not only demands on the furat@orrectness,
but also demands on that functions within these systemdabewguaranteed
to complete within exact time boundaries. The guarantesstiiese systems
must provide are normally 100% guarantees, i.e., thay not ever exceed
these deadlines

A system is usually divided into several software partseckthskswhich
execute a sequence of operations. These tasks executallelpaither on a
single processor in which case they interleave each otlde@pseudo par-
allelism), or on multiple processors in which case they execute asédmee
time in parallel. Each task has special attributes relaidld timing demands
and these are used in analysis [8] (calculations) in ordehézk that all tasks
timing demands are met before executing them together. ifirtieg attributes
can consist of @eadlinewhich is the latest point in time when the task should
finish its execution (delays that other parts of the systemsesiusually affects
the actual finishing time of the task) akébrst Case Execution Tinfg/CET)
which is an analyzed maximum value of time that a task needsdi@r to com-
plete its execution. Tasks may be triggered to execute baséidhe points or
other events. In this case it executes (hot more than spekdifigs WCET)
and then waits for its next activation time. If the task geiggered at every



8 Chapter 2. Background

fixed interval of timeperiod then we call this task a periodic task [9]. If a task
gets triggered with a bounded minimum interval of time (bosgibly a larger
interval) then the task is referred to gigoradic A task that gets triggered at
any arbitrary time instant is referred to asaperiodictask.

There are two main categories of real-time systdmasg real-time systems
andsoft real-time system{§]. Tasks in hard real-time systems avever al-
lowed to miss their deadlines. Soft real-time systems orother hand can
tolerate some deadline misses. A system referred tosagety-critical system
is a type of hard-real time system which can lead to catasicdpcidents if
any task deadlines are missed. Examples of products th&in@uch safety-
critical systems are cars, aeroplanes, medical devices etc

2.2 Hierarchical systems

The taskis often the entity in which a system is divided into, i.e.g lasks
together form the system [7]. System requirements whichwlitla temporal
aspects (deadlines) of the functionality, calleah-functionalproperties (as
opposed tdunctional properties which is related to the functionality of the
system), can be fulfilled by having a set of tasks with “catr®ming attributes
that meet these requirements. The functional requirenaetshecked with
respect to what operations the tasks perform.

The reason why the task has become the natural entity toedavigl/stem
into is mainly due to how operating systems are built. Opegatystems are
the backbone of most real-time systems with respect to titva@. For exam-
ple,UNIX based operating systems have an internal architecturévetased
on processe$l10, 11]. The process can be viewed as a task. These processes
execute applications and internal operating-system ¢ipes All of the func-
tionality of an UNIX-based operating system resides in &he processes that
run within the operating system. It is usual that vendorsaymeating systems
(e.g. UNIX) in their products and adapt their system to ithsidering that
UNIX-based operating systems are widely used in PCs (GNuw# and Mac
0OS/X), mobile phones (Android and iOS), industrial apgimas (Embedded
Linux, RTLinux, VxWorks) etc. Hence, it becomes natural taidke a system
into entities that are found in the operating system.

There exist products (with real-time systems) where thedeesof the
product (and the industry itself) have realized that it canniore safe and
easier to develop software systems with a more coarseggtaiivision of
the system than just using tasks. Such an example is thepaemindus-
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try. They even created a standard/specification relatedisagsue, they call
it ARINC653 [3, 4] (Avionics Application Standard Softwalaterface). AR-
INC653 specifies that a system should be divided jpadtitions (instead of
just tasks) and that these partitions have separate memdmynae allocations.
Within each partition, tasks may execute in the same fasisdhey have been
doing in a regular operating system context. In this way, wetgo levels
of abstraction; high level functions can be divided and sztea into different
partitions giving rise to protective boundaries of eacleothhich is safer; each
high-level function, in the second level, can execute ita tagks separate from
other partitions. We call this kierarchical system

Operating system vendors, such as WindRiver, have addm&adperating
system to the aerospace industry and the ARINC 653 stanidihislis natural
since the aerospace industry has important customers fopaoies such as
WindRiver. WindRivers most sold operating system is calleilVorks and it
is widely used in many different industries. The VxWorks @ii;g system
has a special version called VxWorks 653 which is adaptethfobARINC 653
standard. This is a perfect example were we can see how adfémetarchical
software systems has emerged from an industry and latesféraed to the
operating system which they use.

However, this is unfortunately a special case. We can see sifarts
being done in the GNU/Linux operating system, however, &selts are lim-
ited so far Control Group$. The real-time systems research-community is
working hard and pushing to adopt GNU/Linux to the partitl@nscheme
(SCHEDEDF/SCHEDDEADLINE [12, 13]), however, it is not quite there
yet.

2.3 Operating system scheduling

This Licentiate thesis has a strong focus on the practidal af operating sys-
tem scheduling, i.e., almost all included research agitiehis thesis present
an implemented scheduler. Hence, this section will shededmyht on operat-
ing system scheduling.

Most operating systems, e.g. Microsoft Windows, VxWorks,dtave an
important software component callsdheduler The duty of the scheduler is
to schedule théasks i.e., choose in which order they should execute on the
processor. If there are more tasks than available process@axecute them
on, then they have to share the processor. The scheduleris jo schedule
the tasks according to some rule such that all tasks exemuseifne amount of
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time that complies with this rule. For example, the GNU/bLiracheduler will
execute most processes in a fair way, i.e., in a way that theyetan equal
amount of time of the processor. This is done by running eaobhgss for a
small amount of time (in the order of milli seconds), and tisgritch to an-
other process etc. All processes are stored in a list andctiezisler executes
each of them in turn. When reaching the end of the list, thedaler starts
all over again in the beginning of the list. This type of sahléd is called
round robinand it is a type ofair scheduling A process in GNU/Linux has
a so calledpriority associated with it. Most operating systems have a prior-
ity for their corresponding task. A higher priority value ams that a task is
more important, hence, the scheduler can choose the nkxbtasn based on
the tasks priority. GNU/Linux has two levels of priorityair andreal-time
priority. Tasks with real-time priority will always havedtier priority to the
processor wrt fair priority tasks. In turn, a task with higheal-time priority
will monopolize the processor wrt lower real-time priorisks. If the priority
of a task does not change during its life-span, then we saythiascheduler
schedules according to tffiged-priorityscheduling algorithm. If the scheduler
re-assigns task priorities during runtime, then it impletselynamic-priority
scheduling If the schedulerctivatesa task, it means that the task is eligible
to execute on a processor, but it will only run if it has thehast priority of
all activetasks. If the scheduler activates a task periodically, themefer to
this as scheduling gderiodic taskg9]. Note that all schedulers can not sched-
ule tasks periodically, for example, GNU/Linux and VxWoitkas no native
support for this.
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2.4 Assumptions of the thesis

With respect to the above presented background materelytink presented
in this thesis has been developed under the following litoitzs:

Real-Time Systems:
We assume hard real-time systems for the main part of thareh,
although some parts relate to soft real-time.

Hardware Architecture:
We assume uni-core architectures, i.e., a single procegstam.
Our assumptions include hard real-time systems but we ushvhee
for our experiments which are not adapted for hard realtieng., In-
tel processors. Despite this, we assume that our softwahedslers
etc.) should also be able to execute on hardware that havelmoited
sources of unpredictable (and non-composable) behavibhis kind
of behaviour typically comes from hardware functionalityrnemory
caches, branch-prediction components etc.

Scheduling Protocol:
We assume fixed-priority scheduling.

Synchronization Protocol:
This work does not account for resource sharing betwees @sgarti-
tions. However, our future work will include resource shati






Chapter 3

Development of
hierarchically scheduled
systems

This chapter presents the main idea of this thesis and ctmttez different
research results into a coherent story.

3.1 Independent subsystem development

Assume that software systems development will strive tdearpartition based
software division. As we described in Chapter 2, Section&Pospace has al-
ready adopted to this mechanism. In this scenario, it idylikeat partitions,
which we also refer to as subsystems, will be part of a sofhsgstem. This
software system may itself form another subsystem and sd-onexample,
the sensor software in an Anti Lock Brake System (ABS) fornssilasystem
in the ABS application, while the ABS system itself can besidared as a
subsystem in a vehicle. Independent of which level in thesdrichy we are fo-
cusing on, subsystems will most likely be developed by kife development
teams residing in different locations in the world, in diffat companies etc.
Take a car for example, the Original Equipment Manufact(@&M), i.e., the
company that produces the final product (Volvo, BMW, Honda)etloes not
develop and produce all subsystems in their cars. Subatotsafor example

13
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BOSCH, are responsible for delivering subsystems, e.gAB®1system. One
of the big challenges in software developmentis the sofhwrgegration where
all software parts, i.e., subsystems, are integrated. difdaienge has become
such a huge problem that the automotive industry has desdlapsoftware-
architecture standard called AUTOSAR [2] in order to tadkiegration re-
lated problems. One of the concerns is how the non-fundtiomgerties of
subsystems will change (and perhaps violate requirement® you integrate
them. An ARINC based approach solves timing and memoryeélatoblems
at integration phase, i.e., non-functional propertiestimpreserved. However,
the first part of this thesis (paper A) will focus on the deypstent phaserior

to the integration of subsystems where an operating syskenvkWorks 653
is needed to execute them together in a safe manner. The dedrthat we
have is to facilitate so that subsystem developers can ex#uoeir subsystem,
given timing parameters such as period etc., in an envirohmieich gives the
illusion that their subsystem executes together with teeatthe system. This
emulation can be done in most real-time adapted operatisigsyg (includ-
ing GNU/Linux) without the need for the actual mechanisne lik VxWorks
653. The assumption here is that there is no communicatibvele® subsys-
tems and it is limited to fixed-priority scheduling. Once thesystem has
been tested with this technique, it will behave exactly th@e (wrt to time)
when it is integrated together with other subsystems, asgthat the system
parameters are the same.

3.2 Operating system mechanism for supporting
hierarchical systems

We have developed two operating system schedulers; theffiess developed
for VxWorks and the second can be considered as platfornpentéent. These
two implementations give the mechanism support for hidriaed systems in
operating systems. The reason for developing two new sédedpaper B and
D), even though similar schedulers already exist in GNUdkiand VxWorks
653 for example, is because we want to extend the scheduletidnality and
property compared to existing solutions. The advantage datveloping our
own schedulers is that we can measure their overhead edsigr i interest-
ing since the increase in overhead is a drawback with parétl scheduling.
We can test more advanced scheduling schemes, i.e., wersbptiofixed and
dynamic priority scheduling in all levels. The scheduliegesmes that we have
developed has theoretical research behind it [14, 15, 16}. sGhedulers are
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also easy to adapt to resource sharing which is an integelitia of research.
The second scheduler that we have developed has the inigrpabperty that
it has been mathematically verified, i.e., we can guaraisesorrectness wrt
its specification. Moreover, it has a simple structure mgkieasily adaptable
to GNU/Linux, VxWorks etc.

We always implement our schedulers with the intention thay tshould
never require modifications to the operating system. Thasiisnportant prop-
erty in industry in order to preserve stability in the op&rgtsystems and to
avoid tedious updates to the scheduler when new versiohg afterating sys-
tem are released.

3.3 Testing and verification

Our last theme for this thesis is related to testing and eatifin of partitioned
schedulers (paper C and D). We have developed a tool whichezamd the
execution of tasks and subsystems; hence, we can then aiagfzehaviour of
the scheduler. This is a useful tool for schedulers whiclemat been analyzed
wrt correctness, i.e., verified. The recorder is based oatéopm independent
framework which makes it possible to record tasks and stbsyson any
operating system for which the framework has support forhdiee developed
this framework as well and currently it supports VxWorks a@NU/Linux.
The recorder is compatible with the (partitioned schedutace visualization
tool Grasp [17].

We have also developed a method for verifying two-levelipaned sched-
ulers using the timed automata language. Verification antification of soft-
ware (including schedulers) is very important in industkdnich have rigorous
safety standards to follow such as ISO 26262 which is relattte automotive
industry.

3.4 Summary

In this chapter we presented an overview of the contribstafriihe thesis. The
first part relates to independent subsystem developmamnttprthe integration
phase. The second part of the thesis contribution relatésetpractical im-

plementations of two different schedulers. The final pdédtes to testing and
verification of these two schedulers.






Chapter 4

Conclusions

4.1 Summary

In this thesis we have proposed techniques to aid in the dprrednt of hierar-
chical real-time systems. We have partly focused on thereggration phase
where each subsystem developer may develop and test theystam in iso-
lation of other subsystems without any partitioned schedwupport in the
operating system.

The main part of this thesis relates to the practical impletaténs of par-
titioned schedulers.

Finally, we have implemented a tool (together with a framegvavhich can
record traces of partitioned schedulers, and hence, malasitible to debug
such schedulers. We have also proposed a technique to matleesafy two-
level hierarchical schedulers.

17
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4.2 Future work

In the future we plan to extend our work by including logicgdource sharing
between subsystems. We will also develop a platform/sdimegimdependent
framework which can aid in the development of any real-tiigesluler. An-
other interesting line of work, connected to this thesigpisnprove the code
synthesis (of schedulers) in terms of its runtime efficiefidyis will also have
a great performance impact if the target is to synthesizedbe for other hard-
ware platforms such as Graphics Processing Units (GPU#)idtine of work
we aim at running the scheduler on the GPU which makes it ples& run
schedulers with much more complex behaviour than stateesfirt schedul-
ing algorithms such as FPS and EDF.

We already have some preliminary research results aimicgratecting
resource reservation with AUTOSAR. We see that AUTOSAR figdl with
partitioning; hence, there is a potential future work witttiis area as well.



Chapter 5

Overview of papers

5.1 PaperA

Mikael Asberg, Thomas Nolte and Paul Petterssdtototyping and Code
Synthesis of Hierarchically Scheduled Systems using TIM&®nal of Con-
vergence (FTRA), pages 77-86, December, 2010.

Summary In hierarchical scheduling a system is organized as a treeds,
where each node schedules its child nodes. A node contaiks aad/or sub-
systems, where a subsystem is typically developed by a a@velnt team.
Given a system where each part is subcontracted to diffdimrgiopers, they
can benefit from hierarchical scheduling by parallel deprlent and simpli-
fied integration of subsystems. Each team should have trehildyg to test
their system before integration. Hence, we show how a node hierarchical
scheduling tree, can be analyzed in the Times tool by ramieal interference
from nodes with a small set of higher priority tasks. We shovalgiorithm that
can generate these tasks, including their parameterddfunte use the Times
code-generator, in combination with operating systemresitms, to gener-
ate source code that emulates the scheduling environmeatdiobsystem, in
an arbitrary level in the tree. Our experiments include twaneple systems.
In the first case we generate source code for an industriahtad platform
(VxWorks) and conduct a performance evaluation. In the s¢@xample we
generate source code that emulates the scheduling enérdrfian a video ap-
plication, running in Linux, and we perform a frame-ratelaasion.

19
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My contribution The basic idea of this paper was suggested by Thomas
Nolte. Mikael Asberg was responsible for conducting the experiments and
writing the paper.

5.2 PaperB

Moris Behnam, Thomas Nolte, Insik Shin, Mikaksberg and Reinder J. Bril.
Towards Hierarchical Scheduling in VxWorkis 4" International Workshop
on Operating Systems Platforms for Embedded Real-Timeiégpins (OS-
PERT'08), pages 67-76, July, 2008.

Summary Over the years, we have worked on hierarchical schedulargdr
works from a theoretical point of view. In this paper we prdseur initial
results of the implementation of our hierarchical scheduframework in a
commercial operating system VxWorks. The purpose of thdémpntation
is twofold: (1) we would like to demonstrate feasibility &6 implementation
in a commercial operating system, without having to modify kernel source
code, and (2) we would like to present detailed figures obwerkey properties
with respect to the overhead of the implementation. Dutireginplementation
of the hierarchical scheduler, we have also developed a auoflsimple task
schedulers. We present details of the implementation a-Riinotonic (RM)
and Earliest Deadline First (EDF) schedulers. Finally, wespnt the design
of our hierarchical scheduling framework, and we discusscatrent status in
the project.

My contribution  The idea of this paper was suggested by Moris Behnam.
Moris Behnam was the main driver in writing the paper. Miksberg was
responsible for the implementation and evaluation of tiedaler proposed in
this paper.

5.3 PaperC

Mikael Asberg, Thomas Nolte and Shinpei Ka#.Loadable Task Execution
Recorder for Hierarchical Scheduling in Linuxn 17" IEEE International
Conference on Embedded and Real-Time Computing System#ppiita-
tions (RTCSA'11), pages 380-387, August, 2011.
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Summary This paper presents a Hierarchical Scheduling Framewo8&jH
recorder for Linux-based operating systems. The HSF recasda loadable
kernel module that is capable of recording tasks and sewiéitsut requiring
any kernel modifications. Hence, it complies with the rdligband stabil-
ity requirements in the area of embedded systems where ipr@msions of
Linux are preferred. The recorder is built upon the loadabéd-time sched-
uler framework RESCH (REal-time SCHeduler). We evaluateregorder
by comparing the overhead of this solution against anoftetcted) recorder.
Also, the tracing accuracy of the HSF recorder is tested bying a media-
processing task together with periodic real-time Linuxksasm combination
with servers. The tests are recorded with the HSF recorderttee Ftrace
recorder, in order to show the correctness of the expersnand the HSF
recorder itself.

My contribution ~Mikael Asberg was the main driver in writing the paper
and performing the experiments.

5.4 PaperD

Mikael Asberg, Paul Pettersson and Thomas NaWtedelling, Verification and
Synthesis of Two-Tier Hierarchical Fixed-Priority Preetimpe SchedulingIn
23¢ Euromicro Conference on Real-Time Systems (ECRTS’11)epdd2-
181, July, 2011.

Summary Hierarchical scheduling has major benefits when it comes-to i
tegrating hard real-time applications. One of those benifithat it gives a
clear runtime separation of applications in the time dom@his in turn gives
a protection against timing error propagation in betwegpliegtions. How-
ever, these benefits rely on the assumption that the schathdl schedules
applications correctly according to the scheduling patanseand the chosen
scheduling policy. A faulty scheduler can affect all apations in a negative
way. Hence, being able to guarantee that the scheduleriisatas of great
importance. Therefore, in this paper, we study how progewi hierarchical
scheduling can be verified. We model a hierarchically scleedsystem us-
ing task automata, and we conduct verification with modetkimg using the
Times tool. Further, we generate C-code from the model andxeeute the
hierarchical scheduler in the VxWorks kernel. The CPU andnony over-
head of the modelled scheduler is compared against an égpiivvaanually
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coded two-level hierarchical scheduler. We show that thestsacase memory
consumption is similar and that there is a considerablemiffce in CPU over-
head.

My contribution ~Mikael Asberg was the main driver in writing the paper
and conducting the modelling, verification and synthesis.
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Abstract

In hierarchical scheduling a system is organized as a treeadés, where
each node schedules its child nodes. A node contains tadksraubsystems,
where a subsystem is typically developed by a developmant.t&iven a sys-
tem where each part is subcontracted to different devedopieey can benefit
from hierarchical scheduling by parallel development aintpéfied integra-
tion of subsystems. Each team should have the possibiltigsictheir system
before integration. Hence, we show how a node, in a hiereatscheduling
tree, can be analyzed in the Times tool by replacing all fatence from nodes
with a small set of higher priority tasks. We show an alganittnat can gen-
erate these tasks, including their parameters. Furtheuseehe Times code-
generator, in combination with operating system exterssitingenerate source
code that emulates the scheduling environment for a sudrsy &t an arbitrary
level in the tree. Our experiments include two example systeln the first
case we generate source code for an industrial orientefbpia(\VVxWorks)
and conduct a performance evaluation. In the second exawglgenerate
source code that emulates the scheduling environment fiolem application,
running in Linux, and we perform a frame-rate evaluation.
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6.1 Introduction

The increase in global competitiveness and requiremenhofftear time-to-

market has increased the need for rapid development of eteldesbftware

systems. A crucial characteristic, in being fast and rédiaibthe development
of embedded software systems, is to do analysis and pratatgarly in the

development process, in order to decrease the load, coitypdex cost in the

integration phase.

Global scheduler

Interface (Cinterface |

Local Local
scheduler scheduler

Subsystem Subsystem

Figure 6.1: Hierarchical scheduling.

Recently, the technique of hierarchical scheduling (HS been intro-
duced in order to simplify parallel development of embeddgstems. HS
facilitates integration of such systems, by providing neadems for temporal
isolation of system parts, called subsystems. Essentiaflystem consists of a
number of subsystems that typically represents a parti€whetion/feature of
the whole system. For example, a car could have one subsysig@ementing
a engine control system, and another being the anti-lodkrgaystem. These
two subsystems should ideally be developed in parallel,aride integration
phase, no integration related problems should occur [1k €rth integration
related problem is software that turn out to require moretimexecute than
originally intended, and therefore causing unforseerrfatence with the rest
of the system. Another integration problem is the introgurcof new subsys-
tems, not apparent at early design. Integration of unforsebsystems should
not cause too much interference, i.e., the entire systemlgimot be required
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to be verified/validated again. HS insures that no unpradietinterference
will occur, related to timing, hence by allowing for timingalysis of subsys-
tems in isolation before the integration. Figure 8.1 iltagts HS. The top node
is defined as th&lobal schedulerlt is responsible for multiplexing the entire
CPU resource to the second layer of the scheduling tree. A nadbeither

a Subsystenor aTask(except for the top node which is a scheduler). In this
way, a hode schedules its child nodes withLitgal schedulerAll nodes have
anlnterface(set of scheduling parameters) which specifies the amou@Pof
that the node may access. The schedulers uses these iesaideschedule its
nodes.

Itis desirable to be able to conduct analysis of a subsystemttional and
non-functional properties in isolation, i.e., without uéing details of the rest
of the system. It is hard to get access to all details of othksgstems, espe-
cially at an early stage in the construction of a system. @op@sed technique
makes it possible to perform schedulability analysis dfsawith respect to its
subsystem interface. Also, the subsystem can be realizgdnmrating source
code (for our target platforms VxWorks and Linux) that withelate the sub-
system (under development) executing together with othlsystems/tasks.
The subsystem’s schedule will look like it is executing tibige with the other
subsystems in the tree (early prototyping). What is regére the interfaces
of the other subsystems/tasks, i.e., no subsystem intdatal such as task
source code, execution time, period etc. are needed. Asoe s no need to
implement any scheduler. The internal scheduler of the Fitoel is responsi-
ble for the schedulability analysis, and the generatedcsocwde will emulate
the scheduler(s) in the system.

Recently, automata based techniques have been propose@nsra way
to describe and analyze a broad variety of real-time sciglalgorithms. One
of the strengths of these techniques is the possibility tweéea general release
patterns of tasks. In the task automata model [2], releatterpa are modeled
using timed automata [3]. The schedulability analysis wthas shown to be
decidable for both fixed and dynamic priority schedulingoaitnms. Further,
this approach has the possibility to perform simulation fomchal verification
of timing and functional safety properties, as well as cegethesis [4]. For
the model of task automata, the Times tool provides thissupp].

In this paper our overall goal is to provide a technique foalgsis and
synthesis of hierarchically scheduled real-time systenan early stage in the
development process. Our main contributiong:are

1This work is an extension of our previous work [6]
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1. We have enabled timing analysis of hierarchically schet]dixed-priority
preemptive systems, in the Times tool.

2. We have transformed and made extensions to the genecatert sode
(from Times) for VxWorks and Linux, allowing for early prdiming/testing
of hierarchically scheduled, fixed-priority, preemptiystems.

3. Related to the above contribution (2), we have conductpdraments
on the generated code (for both VxWorks and Linux). We hagtided
response time measurements, overhead measurements tifdgtner-
ated scheduler, and a manually coded scheduler, and we bmpaced
these. Also, we have been running a video processing apiphdd/LC)
in Linux, and conducted frame-rate performance compasissimg a 2-
level hierarchical scheduler, as well as task tracing.

The outline of the paper is as follows: in Section 9.2 we aetlprelimi-
naries on hierarchical scheduling, task automata and Time3ection 6.3 we
outline the problem statement including its limitationsdan Section 6.4 we
show our solution. Section 6.5 shows two case-studieg)diml) an example
system, code generation and a performance evaluationioB&c6 presents
related work, and finally, Section 9.7 concludes.

6.2 Preliminaries

6.2.1 Hierarchical scheduling

Hierarchical scheduling has been introduced to faciliteseurce sharing among
applications under different scheduling policies. Hiehécal scheduling can
be represented as a tree of nodes (Figure 8.1), where eaehcnagsponds
to an application, equipped with a scheduler that schediuleshal workloads.
Looking at the tree-structure representation of HS, CPOue=®s are reserved
from a parent node to its children nodes (Shin and Lee [7])e Githe ad-
vantages of HS is that it provides a way to decompose a consgktem into
well-defined parts (subsystems). HS provides the mechafuspredictable
composition (in the time domain) of coarse-grained sulesyst This makes
it possible for subsystems to be developed independentlyader integrated,
without introducing timing errors. Also, HS makes it easydose subsystems,
since their computational demands are characterized bylefihed interfaces.
Subsystems and tasks are scheduled according to the siclgesiciheme
of the above scheduler and the parameters in the interfatteefubsystem.
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In this paper, we assume that the schedulers follow the fixexdity preemp-
tive scheduling policy. Subsystems can be viewed as "itagks”, where
the interface parameters corresponds to those in the petik model [8].

At runtime, subsystems reserve a defined titied@e} at everyperiod and

the execution order is based on thpifority. This is similar to a traditional
periodic task, scheduled preemptively with a fixed-pnostheduler. When
a subsystem is selected for execution by the overlayingdsdbie the subsys-
tem’s tasks are executed and scheduled according to thdudoiwepolicy of

the subsystem local scheduler. In the general case, thdudehngin HS may
all have different scheduling schemes.

6.2.2 Task automata and TIMES

Timed automatf3] is a modeling language that is widely used for formal mod-
eling and analysis of real-time systems. Essentially, &dirautomaton is a
finite state automaton to which clocks, that can be testedeset, are added.
Timed automata has shown to be suitable for a wide range lefilmasystems.

More recently, the model of timed automata has been extewithca no-
tion of real-time tasks.Task automatdof timed automata with tasksasso-
ciates asynchronous tasks with the states of a timed auboimatssumes that
tasks are executed with static or dynamic priorities by a@mgive or non-
preemptive scheduling algorithm. Task automata is supddmy the Times
tool [5]?, it facilitates schedulability analysis, formal verificat by model-
checking and code synthesis.

An input system to the Times tool can consist of a task tabietiich the
following parameters are defined for each task: name, caatipattime, (rela-
tive) deadline, priority (in case of static priority schdidg), offset and period
(if applicable), interface, semaphore usage, and its @&cdilternatively, a
task can be of typeontrolledwhich means that its release pattern is defined by
a user defined timed automata.

6.3 Problem statement

The aim of this paper is to consider a subsystem (potentidtly tasks and a
fixed-priority scheduler), residing in a scheduling tre®] o perform schedu-
lability analysis of it. The analysis is done by the Timesltatthough it does

2For more information about Times, see
http://ww.tinmes-tool.cont.
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not support schedulability analysis of hierarchicallyesthled systems. The
solution to this is to map the rest of the tasks and subsysiertte tree to
a small amount of interference tasks. Also, for the sake ofgtyping, we
generate executable code (that emulates the schedulingcbauling tree) of
hierarchically scheduled systems. In this section, we digline the system
model used, followed by some limitations and a descriptiooup approach.

6.3.1 System model

A systemS consists of a roaf, andn subsystems, ..., S,,. We assume inde-
pendent tasks, i.e., there is no synchronization betwests ta the scheduling
tree. Each subsystess; is defined as a tuplép;, Q;, 7;, p;, pr:), whereP,
is the subsystem period); is the amount of CPU (or computation time) pro-
vided to the subsystem in eaéh, 7; is the set of subsystems’( and tasks
(7) residing in subsysterfi;, p; € [0..n] is the index of the parent &f;, and
pr; is the fixed priority ofS; (higher value means higher priority). Each task
7, is defined as a tuplgl’;, C;, D, pr;), whereT; is the task periody; is the
task worst case execution timB,; is the relative deadline ang; is the task
priority (higher value means higher priority). The rogy is defined by the
tuple (7y), i.e., just a set of subsystems and tasks.

An example system with rodf, subsystems; and.S, (of Sp), and sub-
subsystems$’s andS, (subsystems o$5), is illustrated in Figure 6.2.

Limitations: We assume that the whole system and all subsystems are sched-
uled by fully preemptive fixed-priority schedulers. Gerieiag the considered
scheduling policy is deferred to future work. Given the sysimodel defined
above, we also impose the following two limitations on thitienship be-
tween task and subsystem periods:

* {VSiicnn : P > Py}, e, all subsystem periods are greater or equal
to their respective parent’s subsystem period and

* {VSiicnn, V7 € T : Tx > Py}, i.e., all task periods are greater or
equal to its corresponding subsystem’s period.

The main reasons for these assumptions are twofold: (1)nexguilities
are recommended in order to have a resource efficient sy§®ranalysis of
the system is simplified given the fulfilment of the above @qnalities.
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6.3.2 Approach

The objective is to perform schedulability analysis of tbatents (tasks/subsystems
resident inZ;) of a subsysteny;, with respect to its interface and the interfer-
ence from the rest of the tree. This analysis is intended s@stasngineers
in the development of a subsystem. In doing the analysis,re@te a set of
interference taskg;, representing (and consuming the computation time of)
the rest of the system, i.e., the whole system excluding ubeystem under
analysis. Hence, the interference frdimrepresents the interference from the
whole tree (excluding the subsystem under analysis). BHdefférence task is
described by period &, an offsetO, and a computation tim€'. Given the
interference tasks and the contents of the subsystem undérse (i.e. the
subsystem tasks), the Times tool is used to calculate tipiogerties (worst
case response time) of the task setSin Moreover, the Times tool is used
for code synthesis, allowing for early prototyping of hietsically scheduled
subsystems.

In order to perform analysis of a complete system, i.e., éohesubsystems
in a system, the approach outlined above can be repeategidosebsystem in
the system. If the analysis shows that the scheduling of salotystem is suc-
cessful, then we can conclude that the whole system is stat#duTraversing
the system tree and analysing each subproblem can be pedaatomati-
cally, either encoded as an automata in Times, or using amrex}tscript pro-
gram. In this paper however, we leave the details of how tdyaeaa whole
system, and focus on the analysis of one subsystem.

6.4 Analysis of hierarchical systems

In order to analyze the tasks and subsystems, residingeiassdibsystem (i.e.,
the subsystem under analysis), we create a set of intedetesksZ;. Tasks
and subsystems residing in the subsystem under analy$isesrgogether with
the interference taskg;, used as input to a tool for timing analysis. In this
paper, we use the Times tool because it supports analysévefad properties,
as well as code synthesis (see Section 6.5).

In the following, we outline how to obtain the sEt, a procedure with the
following three main steps:

Step 1: First we create a partial schedulg i.e., execution sequence (an
example can be found in Figure 6.3). This schedule inclullieslasystems and
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tasks interfering with the subsystem under analysis, @lintythe subsystem
itself (S;). The set of subsystems and tasks influencing the executian o
given subsystem is computed by the functidi P.

We define the recursive functiocH EP(S;) for a given systens in the
following way. H EP(S;) is the set of subsystems (includisgitself), on the
same level of the scheduling tree &s(with the same parent &%), that have
higher priority than subsyster$;. The recursiveness is defined in tHafy P
must also be calculated for the parent%f(Eq. 6.1). However, thél EP set
of the root node is empty (Eq. 6.2).

HEP(SL) = HEP(SPI) U {V Sk € 7;1 IprE > p’/‘i} U S; (61)

HEP(So) = {} (6.2)

For the set of task$/ EP(S;), we compute the schedulg for the time
interval|0, /;], where

I, =LCM({Vk € HEP(S;) : P.})

Ji.e., upto the least common multiple of the periods in thefE& P(.S;).
Example: To show how the procedure works, we use a simple example of

a hierarchical scheduled system consisting of 4 subsysitétinshe following
parameters:

Sy =(4,1,73,0,3)
Sy = (3,2,72,0,4)
Ss = (5,1, 73,2, 2)
Sy = (6,2,74,2,1)

The example system is outlined in Figure 6.2. Suppose thesystemsS;
is the subsystem that we are analyzing. LookingatHEP(Ss3) = {S2, S5}
(highlighted in Figure 6.2) and = LCM(HEP(S3)) = 15.

Scheduling the example system, for the interval Gste= 15, gives the
scheduless, depicted in Figure 6.3.

Step 2: In this step, we take schedugas input and create an ordered set of
time pointsg;. The first element is O, the lastlis= LCM({V k € HEP(S;) :

Py }), and the intermediate are the time-points when subsyStesscheduled
for execution, and is started, preempted or finished, inithe interval [0,/;].
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Figure 6.2: Example hierarchical system.

S [ ] [S)s] ] %]

[ I [ [ I I
0 5 10 15

Figure 6.3: Schedule; givenS; andis = 15.

Example (continued): Given the example system abovg,is as follows:

¢3 =1{0,0,1,6,7,10,11,15}

representing a schedule starting at time 0, where the stgmsysder analysis
is scheduled initially at time O, finished at time 1, schedwdgain at time 6,
finished at time 7, scheduled again at time 10, finished atlimand LCM is

15.

Step 3: Inthis step, givem; as input, we create a set of interference tagks

Let |¢;| denote the number of elementsgn We have to creater = @ in-

terference taskgl, ..., 9,,—1. The task parameters ave = (1}, 0,, C;, pr;),

whereT; is the perlod of the task (set, = LCM({V k € HEP(S;) : Py})

for all mterference tasks)); is the offset of the interference tasks given by
O; = ¢ilj = 2], given thatg;[z] returns the value stored ip; at positionz

(given that positions are indexed starting witland finishing with|¢;| — 1),
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Cj = ¢i[1 + j % 2] — ¢;[j = 2], and forpr; the following holds:pr; > pry,
where index is defined by the sét (7, A Sk) € 7.

Example (continued): Looking at the example system again,— léal — 4,

2
henceZ; hosting the set of 4 interference taskgis= {9y, 01, 92, 93} with

15,0 ,0,pro
15,1 ,5,pr
15,7 ,3,pr2
15,11,4, prs

9o = ( )
01 = ( )
02 = ( )
03 = ( )

Once the above three steps are finished, all interferenke $ésred inz;,
together with the tasks and subsystes {h the subsystem under analysis,
are taken as input to Times, giving detailed analysis oiaks inZ;.

6.5 Modeling example

In order to illustrate our solution, we have modeled an eXarspstem con-
sisting of 4 subsystems, arranged in a hierarchical trg@ctdsl in Figure 6.4.
The engineering challenge, highlighted in this examplapis a development
team (given a scheduling tree and a dedicated subsystefnwjtban develop
an application, consisting of real-time tasks, and be ableetrform schedu-
lability analysis of these tasks, in order to verify whetloemot they meet
their respective deadlines. Such a verification should Bsipte when speci-
fying and allocating task parameters, preferably earlyrduthe development
and testing phase, allowing for early prototyping. Theclatequires a way to
execute the tasks, on a given platform, within their coroesiing time slots,
determined by the actual scheduling of the whole systenutasstems). This
will be shown in section 6.5.2 and 6.5.3.

Recall, in this paper it is assumed that tasks within one ysibs do
not need to synchronize/communicate with tasks residimgtiar subsystems.
Given this assumption, we do not need to consider detailegidsding of tasks
in other subsystems, since their exact scheduling doedfect the scheduling
of the subsystem under analysis.

To summarize the above, in this example, we want to:

1. conduct schedulability analysis of a subsystems corfgertsystenA
andC’s content in this example), with respect to the interface{sub-
systemA, respectivelyC, and the rest of the subsystems, and
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2. generate executable code, a scheduler to be precisesxibaite sub-
systemA andC'’s content, within its precise time slots, as if the whole
system of subsystems was executing (even though we onlyduawree
code and task parameters of subsysteandC).

An assumption is that the subsystems in the tree are schwe(flar which
they are in this example) and that the scheduling tree islptermined by the
system description or similar. As a developmentteam, yewgaen the timing
parameters of your subsystem (i.e., subsy#iemnC in this case), which is the
period and capacity of these subsystems. The respongsilfitihe development
team is to develop an application consisting of a set of theksare schedulable
given the timing parameters of their subsystem. The issutéodevelopment
team to solve, is to assure that their application is scladeilconsidering that
their application will (in the future and final system) be sdhled together with
other subsystems in the hierarchical scheduling tree. &lg¢he development
team cannot assume that their subsysténfipr example, will get 1 time slot
exactly every 10 time units because subsystems, at the sahighzr level
in the scheduling tree, might interfere (as they may havadrigriority than
subsystent). The timing analysis of a subsystem (and its tasks) mustiden
all subsystem (of the same or higher level and with higherjy) parameters,
including its own.

The first step is to analyze whether the chosen task parasretersuffi-
cient in order for the tasks to meet their deadlines. Whatishbe done is to
add these tasks to the scheduling tree, like the one in Figdreunder their
subsystem, and check if they are schedulable with relatidhe interfaces of
the subsystems in the tree. This can be done with a schelityladst such as
Response Time Analysis (RTA) [9] for hierarchical systed®¥] However, we
want to show how this can be done in Times, by generatingfaremce tasks
(called dummy tasks in this section). These tasks emulateataexecution of
the subsystem under analysis by blocking out time reprigghigher priority
subsystem execution time, as well as time when the systeniche idle. By
laying out the schedule of all subsystems, one can idemté{itme-slots when
the subsystem under analysis should be executed, and yraseththe inverse
of this time. This inverse time represents the time that khoe "blocked out”
in order to simulate interference from higher priority systems, as well as
idle time. We achieve this "blocking out” (interference) bgeating dummy
tasks with higher priority than that of the tasks in the sy under analysis
(as described in Section 6.4). Once the dummy tasks areateddwhich can
be done following the steps in Section 6.4), they can be iedénto the Times
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tool. The dummy tasks’ release pattern can either be dest(ih Times) in
a task-parameter table (e.g. by setting offset, priorigyjqul etc.) or by con-
structing an automata. The latter has an advantage whemnagiexgecode (this
will be covered in more detail in Section 6.5.2). However, $ohedulability
analysis of tasks in Times, the easier approach is to spEfgummy tasks in
the task-parameter table. After entering the dummy tas&maters together
with the subsystem tasks in Times, it can simulate the syatehto response-
time analysis as shown in Figure 6.6 and 6.14. Times will outghether or
not the system is schedulable, and if schedulable, it wslb @ive the Worst
Case Response Time (WCRT) of all tasks.

In conclusion, the schedulability analysis performed im&$, is a simula-
tion which will produce the WCRT of each task. So we have dlstsanplified
the problem into a response time analysis of a set of pertadies (belonging
to the subsystem under analysis), together with a set adghieriasks with off-
sets (the dummy tasks). The WCRT value will include the ference from
subsystems (that can reside at different levels of the sdimgdtree), which
is actually modeled as interference from higher prioritskig as well as the
execution time of the task itself. Hence, for the sake ofrigranalysis, timing
analysis tools other than Times can be used. However, wecdrenty inter-
ested in timing analysis, but also in generating code folygaptotyping of
the subsystem under analysis.

6.5.1 Code synthesis

The Times tool is equipped with an automatic code generaligtwcan gen-
erate C-code of the modeled system to the platform brick@s well as a
simulator for Linux. We have used this code generator to gegaeode of
our example system. We show two examples, where we synéhesie for a
scheduler for VxWorks (section 6.5.2) and Linux (sectiob.8). The gener-
ated code is then transformed (extended) to fit the new sodtplatform, i.e.,
VxWorks or Linux. This transformation was done manually botild also be
done automatically.

The reason for choosing VxWorks is that we are well familidthwask
scheduling, execution tracing etc. in this platform, ityades an industry stan-
dard task scheduler, and it is a preferred platform of séwdraur industrial
partners. Having knowledge of scheduling is specially ingott since we need
to map brickOS scheduling to VxWorks (since the code geoeggnerates
brickOS code).

Shttp://brickos. sourceforge. net/
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For Linux, we generate the Linux simulator code from Timdégnt we
remove the simulator code manually (could be done autoalbfic What is
left is the actual automata code (i.e., the scheduler). Titenaata code in turn
is extended to fit in the Linux kernel, such that it can schedastks. This is a
manual step (which can be automated).

6.5.2 Subsystem C

In this example, the global scheduler and all local scheduiee. the inter-
nal scheduler of each subsystem) schedule their taskg&ebss according to
fixed-priority preemptive scheduling. The priority assiggnt is done accord-
ing to Rate Monotonic [8], i.e, the shorter the period, thghleir the priority.
Subsysten€ resides in the tree represented in Figure 6.4.

Global
| Scheduler |

(1,5) (2,3)
A B
—/ ¢
(1,10) (3,6)
C D

Figure 6.4: Subsyste.

In doing schedulability and response-time calculatioresyeed a detailed
description of the task set resident in subsystzrhese details are represented
in Table 6.1.

Name T C D pr
taskl 1) 40 1 40 5
task2 () 50 1 50 4
task3 ) 80 1 80 3
task4 1) 90 1 90 2
task5¢s) | 250 | 7 250 1

Table 6.1: Task set of subsyst&in
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Schedulability analysis

The corresponding schedule far, executing in the example system, is illus-
trated in Figure 6.5.

rr1r1r1rr1r 1 rrr T T T T T T T T T T T T T T
2 4 6 8 10 12 14 16 18 24 26 28 30

L ohbh 1o I aoab 1o

l__ o b [ o

taskl task2 task3
C’stasks

0 dummy1 5 dummy2 11 dummy3 23 dummy4

D S D

Dummy tasks
4 5 11 7

30

Figure 6.5: Schedule for subsyst&n

From this schedule we can conclude which dummy tasks thaeee @), -
04), as shown in Table 6.2.

Name T
dummyl @) | 30
dummy2 02) | 30
dummy3 @3) | 30
dummy4 ©4) | 30

3
3

N[ =
NS e
\lEU‘I-bQ
o|o| o o

Table 6.2: Generated dummy tasks for subsystem

The last step is to input all tasks in the Times tool and leteitfgrm a
simulation. Figure 6.6 shows that subsystéra tasks are schedulable with
the 4 dummy tasks, i.e., the other three subsystems in thensys

Code synthesis to VxWorks (kernel version 6.6)

In the analysis part (Section 6.5.2), we analyzed the sybsad on dummy
tasks (with offsets). We created periodic tasks and asgditireeoffsets through
the task parameter table (all other tasks were also creatbésimanner). Cre-
ating tasks with offsets can also be done by creating an aittorthis has the
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Worst Case Response Times|| _ | 4 [ 0 ) IIU ) 2ID 3IU

Name C |WCRT| D
curmmyl 4 30

dummy2 5 30 dummyl_
durnmy3 11 30
7| 30||ffeummy= -

curmrmy4

4

5

1

7

taskl 1 5] 40|{lqummys _

h |
i

i

7

idle

[

task2 15 50
25 s faummys |t

tasks
35 90

task4
tasks 105 250

taskl

taskz

task3

taskd

sl sl
|-

taskS

Figure 6.6: Times schedulability analysis (for subsys@m

advantage that we can specify that only one dummy task iagetkat all offset
instances and thereby replacing all dummy tasks with oné: drhis is good

when generating code, since most RTOSs have an upper lintiteoamount

of tasks. At code level, the execution time of this dummy taslst be set to
be dynamic, since it is replacing tasks which most probahixetdifferent ex-

ecution times. The two automata in Figure 6.7 models thesalg of dummy

tasks (a similar automata, but with other release timessasl tior the example
in section 6.5.3).

Start u
RunOffsetTasks? Init

offsetTime==24 offsetTime:=0

ReleaseDummy4 ReleaseDummy1l |
dummy1 dummy1 RunOffsetTasks!
offsetTime<=24 offsetTime<=5

offsetTime==23 MainLoop
time<=30

offsetTime==5

offsetTime== X
ReleaseDummy3 I ReleaseDummy2 time==30
d ' dummy1 RunOffsetTasks!

offsetTime<=23 offsetTime<=11 time:=0

a) b)

Figure 6.7: Task automata.

The automata in Figure &Y, releases the second automata (Figura)}.7
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every 30 time units by calling a synchronization functi®onOffsetTasks!
which starts a transition in the edge wh&wenOffsetTasks? is located. The
second automata releases the dummy tasks according toltiatad offsets
(with relation to the period).time and offsetTime are two clocks that pro-
gresses in discrete time. An invariant sucloffsetTime<=5 (located inside
a state) means that the automata may only be in that statethisticondi-
tion does not hold. A condition at an edge suclofsetTime==5means that
the transition can be made only when this condition holdstatesent such
astime:=0 means that the variable (in this case a clock) is assignedua.va
Whenever there is a transition to a state with a task namé, asdummy1,
this task is released for execution.

task() {

while(TRUE){

wait_even{task_release releaseflag)
// Task code here

ontroller() {

1:
2
3
4
5}
6.
7
8:  wait_evenichecktrans, 0)
9:

}

Figure 6.8: Function task() and controller().

3. 4.
Run check_trans Run check_trans
h‘ hRun task_release hsun task_release h
interupt e d P =
n"ll. Register check_trans 3 5. Register task_release ‘i
controller L ;

h ------------ i Register task_release I |"'
task

Figure 6.9: brickOS scheduling.

The mapping from the C-code (generated by Times) to VxWodksists
mostly of changing the way the task is suspended and relebstk brickOS
generated code, an initializer task caltamhtroller (Figure 6.8, lines 7-9) calls
wait_eventin order to register a functiooheck trans that will be executed
at every system tick by an interrupt routine. This will stopem the function
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1. 2. 3.
h Run check_trans h Run check_trans h Run check_trans h

in Run task_release Run task_release Run task_release
p

" —

Figure 6.10: VxWorks scheduling.

returns a non-zero value (which is not the casecf@ck trans). This function
traverses the automata (both user defined automata and Tifegdt gener-
ated automata) and sets a flag whenever there should be steake. Each
task (Figure 6.8, lines 1-6) registers a functiask releaseat the beginning of
its execution, before it suspends. This function checkstindrehe flag is set,
if so, it will return a non-zero value that in turn will releathe correspond-
ing task. Figure 6.9 illustrates how the scheduling is danéhe generated
code for brickOS. The mapping of this scheduling to VxWorkdllustrated
in Figure 6.10. We create an interrupt routine that is exetatt every sys-
tem tick. This routine executes both thleeck trans function and each tasks
task_releasefunction. Whenevechecktrans sets the task flag, i.e. that is
whentask_releasereturns a non-zero value, the corresponding task is irsserte
into the VxWorks ready queue.

We have successfully generated C-code for the examplensyistd-ig-
ure 6.4, that is comprised of the tasks in Table 6.1 and Talle /e trans-
formed the generated code and ran the system in VxWorks 6a6lotel Pen-
tium4 platform. Further, we recorded and visualized thecatien trace with
the Tracealyzer to6l

Figure 6.11 shows the graphical representation of the ngntaisks (note
that tasks 'dummy1’ etc. from Figure 6.6 are named 'idle&: @t Figure 6.11)
at critical instant and the recorded data is shown in Tal#ef&gure 6.6 shows
the WCRT of the simulation, correspondingtax. Response timein Ta-
ble 6.3, note that the time-base is 1000 times bigger in Talde The maxi-
mum response times in Table 6.3 are significantly higher tharsimulation
values because of overhead (scheduling, context swit¢bgsEhis prolonged
response time is illustrated in Figure 6.1&sk2 does not finish its entire ex-
ecution beforadle3 starts, leading to thatsk2 has to wait for it to finish
(which will take 11 time units), and then execute the finalt §aris a very
small amount so it does not show in this resolution). Thislkifi execution

4http://wwv. traceal yzer. se/ .
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' Tracealyzer
Fle Wews  About

0000.00 000 640 | 4| — Task Irbamaton

Fid

tochi2 e

Hergallan Centiol

Zoam In Maikar

Zoom In Cenler

I3 Zocm Out

Edlcol vieblo ror
Frate chatnely

taskd .

I™ Shrw swsbem pe

Place Marker

Select Tank \

> 000000 05 fE4
ket " I 000000 (32 640 |~

Figure 6.11: Tracealyzer screenshot.

scenario is valuable for a developmentteam and can onlyscewitred in time,
in the development process, through early prototypintifigs

Table 8.3 shows the scheduling overhead (from running tiesti Table 6.1
and 6.2) from the generated scheduler (Times) and a manc@digd sched-
uler; the Hierarchical Scheduling Framework (HSF) [11]. Weasured the
schedulers execution times with micro-second resolutiéntimes each (Ta-
ble 8.3 shows the average values), between time zero (wheystem started)
and LCM of all tasks (18000000si The HSF scheduler only executes at
task release and task deadline (in the latter case it chétks task has fin-
ished), while the Times scheduler executes at every systn{ite. every
milli-second), and releases tasks if necessary. VxWodelfihandles task
switching due to that a task has finished. The conclusionasdten though
Times runs more frequently than HSF, HSF still produces mweghead (the
majority of it comes from queue-management [11]).
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Task | Execution time (us) Response timgLs)
Avg. Max. Avg. Max.
taskl 996 999 11999 14003
task2 996 999 16998 24000
task3 995 997 27994 33996
task4 995 997 32042 63982
task5 [ 6267 6973 228643 | 291888
idlel 3995 4004 3995 4004
idle2 5000 5001 5000 5001
idle3 | 11000 11001 11000 11001
idle4 6999 7007 10994 11004

Table 6.3: Tracealyzer result.

Scheduler | Avg. overhead/Duration (us) | Avg. overhead(%)
Times 1952/18000000 0.01084
HSF 3283/18000000 0.01824

Table 6.4: Scheduling overhead.

6.5.3 Subsystem A

This example also assumes fixed-priority preemptive sdirefof periodic
tasks/subsystems, as well as rate monotonic priority assgt.

Global
__ Scheduler
(1,5) (2,3)
A B
—/

Figure 6.12: Subsystem.

The content of subsyste# is one task (Table 6.5), which correspond to
the parameters of its subsystem. Subsystesyposition in the scheduling tree
is shown in Figure 6.12.

Schedulability analysis

By laying out the schedule for subsystér(Figure 6.13), we have generated
the necessary dummy tasks (Table 6.6).
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[Name [T [ C [ D [ pr |
[taskA [ 5 [ 1 [ 5| 1]

Table 6.5: Task set of subsystem

T IrrrrirrrT T T TT I
o 2 4 8 10 12 14

== I o
Y T e Y e Y e O e TR

Odummy1 3 dummy2 6 dummy3 12 dummy4

Dummy tasks
> >
2 2 5 3
15

Figure 6.13: Schedule for subsystém

By inserting all tasks (Table 6.5 and 6.6) into Times and nogiits simu-
lation, we can get the schedulability analysis for subsystés task. This is
shown in Figure 6.14, the tool will output the worst case oasge times of all
tasks if the system is schedulable.

Worst Case Response Times - | e IU | 1|U 1|5
MName C WCRT D e

dummyl 2 2 15

durmmy2 2 2 15 dummylj

durmmmy3 5 5 15

dummy4 3 3| s||femmy2 i

2 L3l sl oy [
dummyd i
ao [Tl W o

Figure 6.14: Times schedulability analysis (for subsysém

Code synthesis to Linux (kernel version 2.6.31-9)

The subsystemX) execution trace is illustrated in Figure 6.13, as illusda
the four dummy tasks replace subsystBmA\e let a video processing appli-
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Name T
dummyl ;) 15
dummy2 92) | 15
dummy39s) | 15
dummy4 94) | 15

3
3

Ko w o O
[ ENENES)

NN N N

Table 6.6: Generated dummy tasks for subsyséem

cation (VLC) replace taskaskA in subsystemA in our experiments. The
release of subsysteand dummy tasks 1-4 is done with two automata simi-
lar to the ones in Figure 6.7. We generate code, using thesltoge generator
for generating a Linux simulator. The simulator will run taetomata, which
is also generated by Times. We then replace the simulatbrliitux kernel
scheduling functions, which are exported by the schedditampeworkResch
[12]. Resch is unique in that it does not require the user thenaay changes
in the Linux kernel, when implementing a scheduler in Reslthruns as a
kernel module, and the user implemented scheduler will @et@ugin kernel
module to Resch (hence no kernel patches are required). ttbmata code
generated from Times, is wrapped with Resch schedulingitives, and it is
executed as a kernel module in Linux. In the experimentdaaks, i.e., the
VLC application and the dummy tasks, are running as Linuktigge tasks.

We also ran the VLC application in a 2-level hierarchicalesiiing frame-
work, which is able to run a global scheduler, schedulingritrary number
of subsystems in one level. The subsystems themselves maytlgir own
local scheduler. All schedulers (local and global) schedvith fixed-priority
preemptive scheduling of periodic tasks/subsystems. fmdwork is imple-
mented by the authors of the paper, and it runs as a pluginiatdrén Resch,
i.e., as a kernel module. We executed subsysteamdB (Figure 6.12) with
corresponding parameters, including rate monotonic jigsr in the hierar-
chical scheduling framework. Subsyst@&rcorresponds td3 in Figure 9.16
and subsyster® maps toA (Idle is the idle subsystem). The VLC application
(referred to aslic_A in Figure 9.16) was running in subsystetnthe dummy
tasktask_B was running inB and dummy taskdle was running in subsys-
temIdle (which has lowest priority among the subsystems). Taskz is the
Linux idle task which will run wheneveusk_B, vic_A or idle does not run.

Figure 6.16 shows the execution trace when running the Temésmata
in Resch, as a plugin scheduler. The dummy tasksnimyl, dummy?2,
dummy3 anddummy4) in Figure 6.16 corresponds to our generated dummy

SVLC ht t p: // www. vi deol an. org/ vl ¢
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Figure 6.15: Execution recording from the HSF scheduler.

tasks in Figure 6.13 (these tasks have highest prioritye WhC application
was running as tasilc (intermediate priority) and the Linux idle tagkiux
was running with lowest task priority.

We ran all the experiments on an Intel Pentium Dual-Core (B536GHz)
platform, equipped with a Linux kernel version 2.6.31.9ming with load
balancing disabled (no automatic task migration) for sinifgl The task ex-
ecution recording was done with the tdétrace [13], and the recording of
subsystem scheduling events were done by our own recordigffhich is in-
tegrated in HSF). The recordings were visualized (Figut® @nd 6.16) with
the toolGrasp [15].

Scheduler fps (average)

Times scheduler| 25.3174938

HSF scheduler | 25.3582266
Linux scheduler 30

Table 6.7: Frames per second (fps) measurements of VLC.

We measured the execution time of the VLC application, wihjeeocessed
a 91 frame long video, with corresponding audio. The measergs were
done 10 times for each scheduler, and the data presentdd @l@prepresents
the average values. The resulting data is presented asniitgenof frames dis-
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H_m i

Figure 6.16: Execution recording from the Times scheduler.

played per second (Table 6.7). The measurements were ddlesshedul-

ing the VLC application with the HSF scheduler, and the Tirmelseduler.
When running VLC with only the native Linux scheduler, thele® process-
ing reached approximately 30 fps. The presented fps vahmsssthat both
schedulers (HSF and Times) gives almost the same amountbpo®er (ap-

proximately 20%) to the VLC application. However, VLC doest mse all

of its allocated CPU time (Figure 9.16 and 6.16) becausati¢snal clock will

decide when to process and display frames, which is depéonddine intended
frame-rate of the application (which is 30 fps).

The time points when the Times scheduler allocates CPU tonéLC
(Figure 6.16), matches the points that are generated byctrerlaling frame-
work HSF (Figure 9.16), which implements the schedulerithistended to be
used in the final system. However, HSF “leaks* CPU time, asbeaseen in
Figure 9.16. This is due to that we set the budget of subsyBtémrless than
20, so that the budget does not deplete at the same time ath#resobsystem
is released (which may cause our scheduler to execute tedsiaing events in
wrong order).

6.6 Related work

Related work in the area of hierarchical scheduling origidan open sys-
tems [16] in the late 1990’s, and it has been receiving areaging research
attention ever since. Since Deng and Liu [16] introduced @ l&vel hierar-

chical scheduling framework, its schedulability has besadywed under fixed-
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priority global scheduling [17] and under EDF-based gladaieduling [18,
19]. Mok et al. [20] proposed the bounded-delay resource model so as to
achieve a clean separation in a multi-level hierarchida¢daling framework,
and schedulability analysis techniques [21, 22] have be&nduced for this
resource model. In addition, Shin and Lee [7] introducedpr@odic resource
model (to characterize the periodic resource allocatidmbier), and many
studies have been proposed on schedulability analysigivgtinesource model
under fixed-priority scheduling [10, 23, 24] and under EDRestuling [7].
Looking at the kind of analysis possible with these hieraalscheduling
approaches, typically only timing is considered. In thipgrawe are also inter-
ested in code synthesis, as well as analysis using task atdoithis is similar
to [25], where the authors show how modeling and scheditiabihalysis of
two-level hierarchical scheduling, with timed automatan e accomplished
in the simulation tool Cheddar. Limet al.[26] model fixed and dynamic pri-
ority scheduling using time petri nets, which is similar ke twork in [27].
Scheduler modeling is showed in [28] using the controlleageym.

6.7 Conclusion

We have shown how to perform schedulability analysis in tie€eg tool,
where a subsystem within fixed-priority preemptive hielnéral scheduling is
the system under analysis. The concept we present simphiéeanalysis of
the whole system by analysing one subsystem and abstrabtngst of the
system (black-boxing). Iterating through all subsystemihis manner results
in analysing the whole system. In each step, the black-lgoisimone by re-
placing interfering subsystems with a small set of high fitjaasks (which
we refer to as dummy tasks). The procedure is described wittigorithm in
the paper, and the output of the algorithm is a set of dumnkstdsat are pe-
riodic with offsets. These tasks, and the tasks of the subsy® be analyzed,
are then modeled in the Times tool (with a task-table or timetdmata). The
last step is to run a simulation in Times which will generdte worst case
response time of each task, thereby deciding if the subsysteschedulable
or not. The Times tool could traverse the scheduling treearalyze each
subsystem, resulting in a complete analysis of the whote ff&e simulation
itself is essentially a response time analysis of tasksateaperiodic, whereas
some of them will also have offsets (the dummy tasks).

We have used the Times code synthesis and shown how to ge@ecaide
of two example systems. The code has been extended to exatate in-
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dustrial platform (i.e. VxWorks), and also on a PC desktaifprm (Linux).
Hence, our proposed method has shown to be practical. Aféeecode gen-
eration, a subsystem can be executed as if it would be rurwithgn a hi-
erarchically scheduled system. Hence, our proposed agipsagpports early
prototyping of hierarchically scheduled systems, by usingdummy-task al-
gorithm together with our code synthesis for VxWorks anduxin

Our example in VxWorks shows that response times can vanjfiigntly
when moved from simulation to a real platform, even thougheey small
amount of overhead is introduced. The overhead measursrsbhowv that
the scheduler, generated from Times, produces less ovkdwapared to a
manually coded scheduler. Our other example in Linux showe & video
processing application (VLC) is affected when running iaiprototyped sub-
system. We have measured the frame-rate and compared ttis fesm the
same example system running in a 2-level hierarchical sadhepframework.

As future work, we plan to optimize the code synthesis (ineottd min-
imize scheduler overhead) as well as to model and generde=foo hierar-
chical scheduling frameworks. This is interesting in thateat of proving the
correctness of scheduling, since model checking could bd te verify the
schedulers. As a last step of the contribution of this papeplan to imple-
ment the concept in a tool, which will provide graphical miaagof systems,
automatic generation of dummy tasks as well as automatibegis for various
platforms (such as VxWorks, Linux and FreeRTOS).
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Abstract

Over the years, we have worked on hierarchical schedulargdworks from
a theoretical point of view. In this paper we present ouiidhitesults of the
implementation of our hierarchical scheduling framewark icommercial op-
erating system VxWorks. The purpose of the implementasamwofold: (1)
we would like to demonstrate feasibility of its implemeitatin a commercial
operating system, without having to modify the kernel sewrade, and (2) we
would like to present detailed figures of various key prapsnvith respect to
the overhead of the implementation. During the implemémmatif the hierar-
chical scheduler, we have also developed a number of siragkestchedulers.
We present details of the implementation of Rate-Monot@Rigl) and Ear-
liest Deadline First (EDF) schedulers. Finally, we pregbetdesign of our
hierarchical scheduling framework, and we discuss oureturstatus in the
project.
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7.1 Introduction

Correctness of today’s embedded software systems geneiidis not only on
functional correctness, but also on extra-functionalecimress, such as satisfy-
ing timing constraints. System development (includindwafe development)
can be substantially facilitated if (1) the system can bedgiosed into a num-
ber of parts such that parts are developed and validatedlatisn and (2) the
temporal correctness of the system can be established bgasing the cor-
rectness of its individual parts. For large-scale embedéaldtime systems, in
particular, advanced methodologies and techniques atgregigfor temporal
and spatial isolation all through design, development, @malysis, simplify-
ing the development and evolution of complex industrial edded software
systems.

Hierarchical scheduling has shown to be a useful mechamisugporting
modaularity of real-time software by providing temporalfitisning among ap-
plications. In hierarchical scheduling, a system can beahdbically divided
into a number of subsystems that are scheduled by a globste(aylevel)
scheduler. Each subsystem contains a set of tasks thatreeduded by a local
(subsystem-level) scheduler. The Hierarchical Scheduiramework (HSF)
allows for a subsystem to be developed and analyzed iniisolatith its own
local scheduler, and then at a later stage, using an apijfabal scheduler,
it allows for the integration of multiple subsystems witheiolating the tem-
poral properties of the individual subsystems analyzedgatation. The in-
tegration involves a system-level schedulability testjfymg that all timing
requirements are met. Hence, hierarchical schedulingdnarks naturally
supportconcurrent developmenf subsystems. Our overall goal is to make hi-
erarchical scheduling a cost-efficient approach applectdsla wide domain of
applications, including automotive, automation, aerespand consumer elec-
tronics.

Over the years, there has been a growing attention to HShzdbtime
systems. Since a two-level HSF [1] has been introduced fen epvironments,
many studies have been proposed for its schedulabilityaisadf HSFs [2, 3].
Various processor models, such as bounded-delay [4] anddpef5], have
been proposed for multi-level HSFs, and schedulabilitylysis techniques
have been developed for the proposed processor models§69710, 5, 11].
Recent studies have been introduced for supporting logésalurce sharing in
HSFs [12, 13, 14].

Up until now, those studies have worked on various aspedt#Séts from
a theoretical point of view. This paper presents our workaias a full im-
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plementation of a hierarchical scheduling framework. Weehzhosen to im-
plement it in a commercial operating system already usedelsgral of our
industrial partners. We selected the VxWorks operatingesyssince there is
plenty of industrial embedded software available, which ean in the hierar-
chical scheduling framework.

The outline of this paper is as follows: Section 9.6 presesitted work
on implementations of schedulers. Section 7.3 presentysigs model. Sec-
tion 7.4 gives an overview of VxWorks, including how it supfsothe imple-
mentation of arbitrary schedulers. Section 7.5 presentscheduler for Vx-
Works, including the implementation of Rate Monotonic (R&f)d Earliest
Deadline First (EDF) schedulers. Section 7.6 presentsdhigd, implementa-
tion and evaluation of the hierarchical scheduler, andlfiréction 8.6 sum-
marizes the paper.

7.2 Related work

Looking at related work, recently a few works have implensendifferent
schedulers in commercial real-time operating systemsraviieés not feasi-
ble to implement the scheduler directly inside the kerngltf@ kernel source
code is not available). Also, some work related to efficiemlementations of
schedulers are outlined.

Buttazzo and Gai [15] present an implementation of the EOfeduler
for the ERIKA Enterprise kernel [16]. The paper discussesetffiect of time
representation on the efficiency of the scheduler and thénesdjstorage. They
use the Implicit Circular Timer’s Overflow Handler (ICTOHparithm which
allows for an efficient representation of absolute deadlinea circular time
model.

Diederichs and Margull [17] present an EDF scheduler piuigti OSEK/VDX
based real-time operating systems, widely used by autemotdustry. The
EDF scheduling algorithm is implemented by assigning [ties to tasks ac-
cording to their relative deadlines. Then, during the ekeay a task is re-
leased only if its absolute deadline is less than the onesoftinrently running
task. Otherwise, the task will be delayed until the time wtienrunning task
finishes its execution.

Kim et al. [18] propose the SPIRIT uKernel that is based on a two-level
hierarchical scheduling framework simplifying integaoatiof real-time appli-
cations. The SPIRIT uKernel provides a separation betweahtime appli-
cations by using partitions. Each partition executes adiggijpn, and uses
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the Fixed Priority Scheduling (FPS) policy as a local schedio schedule the
application’s tasks. An offline scheduler (timetable) igdiso schedule the
partitions (the applications) on a global level. Each piartiprovides kernel
services for its application and the execution is in userertogbrovide stronger
protection.

Parkinson [19] uses the same principle and describes theokaN653
operating system which was designed to support ARINC658.arbhitecture
of VxWorks 653 is based on partitions, where a Module OS plesiglobal
resource and scheduling for partitions and a Partition O@dmented using
VxWorks microkernel provides scheduling for applicatiasks.

The work presented in this paper differs from the last twoksdn the
sense that it implements a hierarchical scheduling framlewca commercial
operating system without changing the OS kernel. Furthesntbe work dif-
fers from the above approaches in the sense that it implenaehierarchical
scheduling framework intended for open environments [hre real-time ap-
plications may be developed independently and unawarectf@her and still
there should be no problems in the integration of these egupdins into one
environment. A key here is the use of well defineterfacesrepresenting the
collective resource requirements by an application, richugh to allow for
integration with an arbitrary set of other applicationshwsitit having to redo
any kind of application internal analysis.

7.3 System model

In this paper, we only consider a simple periodic task mad@l;, C;, D;)
whereT; is the task period;; is a worst-case execution time requirement, and
D; is arelative deadlined(< C; < D; < T;). The set of all tasks is denoted
by (I' = {r;| for all i = 1,..,n} where n is the number of tasks).

We assume that all tasks are independent of each otherhiege is no
sharing of logical resources between tasks and tasks daspesd themselves.

The HSF schedules subsystefiisc S, whereS is the set representing the
whole system of subsystems. Each subsysignonsists of a set of tasks and a
local scheduler (RM or EDF), and the global (system) schead&®M or EDF).
The collective real-time requirements.8f is referred to as iming-interface
The subsystem interface is defined(#%, Qs), whereP; is a subsystem pe-
riod, and@ s is a budget that represents an execution time requiremainiit
be provided to the subsystetiy every periodP;.
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7.4 VxWorks

VxWorks is a commercial real-time operating system devedidpy Wind River
with a focus on performance, scalability and footprint. Mameresting fea-
tures are provided with VxWorks, which make it widely usedhidustry, such
as; Wind micro-kernel, efficient task management and nagking, deter-
ministic context switching, efficient interrupt and exdgepthandling, POSIX
pipes, counting semaphores, message queues, signalscladlibng, pre-
emptive and round-robin scheduling etc.

The VxWorks micro-kernel supports the priority preemptaeheduling
policy with up to 256 different priority levels and a largember of tasks,
and it also supports the round robin scheduling policy.

VxWorks offers two different modes for application-tasigkecute; either
kernel mode or user mode. In kernel mode, application-teaksaccess the
hardware resources directly. In user mode, on the other,haskis can not
directly access hardware resources, which provides grpaitection (e.g., in
user mode, tasks can not crash the kernel). Kernel mode sdein all
versions of VxWorks while user mode was provided as a pahi®Real Time
Process (RTP) model, and it has been introduced with VxWeaeksion 6.0
and beyond.

In this paper, we are considering kernel mode tasks sinde awdesign
would be compatible with all versions of VxWorks and our aggtion do-
mains include systems with a large legacy in terms of exjstiource codes.
We are also considering fixed priority preemptive schedupolicy for the
kernel scheduler (not the round robin scheduler). A taskirity should be
set when the task is created, and the task’s priority can Begdd during the
execution. Then, during runtime, the highest priority netakk will always
execute. If a task with priority higher than that of the rurmtask becomes
ready to execute, then the scheduler stops the executidreaiunning task
and instead executes the one with higher priority. When tihaing task fin-
ishes its execution, the task with the highest priority agite ready tasks will
execute.

When atask is created, an associated Task Control Block Ji&ga8eated
to save the task’s context (e.g., CPU environment and systsources, during
the context switch). Then, during the life-cycle of a task thsk can be in one
or a combination of the following states (see Figure 7.1):

» Ready state the task is waiting for CPU resources.

» Suspended statethe task is unavailable for execution but not delayed
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Pending Delayed

~ ol

Suspended

Figure 7.1: The application task state.

or pending.

» Pending state the task is blocked waiting for some resource other than
the CPU.

» Delayed state the task is sleeping for some time.

Note that the kernel scheduler sorts all tasks that are rieaéyecute in a
queue called theeady queue

7.4.1 Scheduling of time-triggered periodic tasks

A periodic task is a task that becomes ready for executioiogieally once

everyn-th time unit, i.e., a new instant of the task is executedeeenstant

period of time. Most commercial operating systems, inalgdVxWorks, do

not directly support the periodic task model [20]. To imptrha periodic
task, when a task finishes its execution, it sleeps until #ggriming of its next
period. Such periodic behaviour can be implemented in tsle ltg the usage
of timers. Note that a task typically does not finish its exeeuat the same
time always, as execution times and response times vary émenperiod to
another. Hence, using timers may not be easy and accurate #ssk needs
to evaluate the time for next period relative to the currégnet whenever it
finishes its execution. This is because preemption may mpptveen the
time measurement and calling the sleep function.
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In this project we need to support periodic activatiorsefversin order
to implement the hierarchical scheduling framework. Thasoa for this is
that we base our hierarchical scheduling framework arohedperiodic re-
source model [5], and a suitable implementation of the plizicesource model
is achieved by the usage of a server based approach simithe tperiodic
servers [21, 22] that replenish their budget every congteniod, i.e., the
servers behave like periodic tasks.

7.4.2 Supporting arbitrary schedulers

There are two ways to support arbitrary schedulers in Vx\&fork

1. Using the VxWorks custom kernel scheduler.

2. Using the original kernel scheduler and manipulatingdagly queue by
changing the priority of tasks and/or activating and sudpentasks.

In this paper, we are using the second approach since imptergethe
custom kernel scheduler is a relatively complex task cosgbarth manipu-
lating the ready queue. However, it will be interesting tonpare between the
two methods in terms of CPU overhead, and we leave this asieefubrk.

In the implementation of the second solution, we have usebhtenrupt
Service Routine (ISR) to manipulate the tasks in the readyigquThe ISR is
responsible for adding tasks in the ready queue as well agyei@gtheir prior-
ities according to the hierarchical scheduling policy ie.us the remainder of
this paper, we refer to the ISR as the User Scheduling Ro(iS&). By using
the USR, we can implement any desired scheduling policiudieg common
ones such as Rate Monotonic (RM) and Earliest Deadline (RI3F).

7.5 The USR custom VxWorks scheduler

This section presents how to schedule periodic tasks usingaheduler, the
User Scheduling Routine (USR).

7.5.1 Scheduling periodic tasks

When a periodic task finishes its execution, it changesate $b suspended by
explicitly calling the suspend function. Then, to implerharperiodic task, a
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timer could be used to trigger the USR once every new taskadictn time to
release the task (to put it in the ready queue).

The solution to use a timer triggering the USR once every nesiod can
be suitable for systems with a low number of periodic taskewéver, if we
have a system with periodic tasks such a solution would require the use of
timers, which could be very costly or not even possible. Ia gfaper we have
used a scalable way to solve the problem of having to use toy tiraers. By
multiplexing a single timer, we have used a single timer twese periodic
tasks.

The USR stores the next activation time of all tasks (abediutes) in a
sorted (according to the closest time event) queue callet: BEvent Queue
(TEQ). Then, it sets a timer to invoke the USR at the time etjutiie shortest
time among the activation times stored in the TEQ. Also, ti&RW¢hecks if a
task misses its deadline by inserting the deadline in the WERken the USR
is invoked, it checks all task states to see if any task hasedigs deadline.
Hence, an element in the TEQ contains (1) the absolute t2)¢hé id of task
that the time belongs to, and (3) the event type (task nektadicn time or
absolute deadline). Note that the size of the TEQ wil2be: x B bytes (where
B is the size in bytes of one element in the TEQ) since we needve the
task’s next period time and deadline time.

When the USR is triggered, it checks the cause of the triggefiihere are
two causes for the USR to be triggered: (1) a task is releaseti(2) the USR
will check for deadline misses. For both cases, the USR wilhe following:

» Update the next activation and/or the absolute deadline &ssociated
with the task that caused triggering of the USR in the TEQ a@nichsert
it in the TEQ according to the updated times.

* Set the timer equal to the shortest time in the TEQ so thatie will
be triggered at that time.

 For task release, the USR changes the state of the task tly Rdao, it
changes priorities of tasks if required depending on theduler (EDF
or RM). For deadline miss checking, the USR checks the sfdbtedask
to see if it is Ready. If so, the task missed its deadline, hadieadline
miss function will be activated.

Updating the next activation time and absolute deadline tafsk in the
TEQ is done by adding the period of the task that caused the ibN@Ration
to the current absolute time. The USR does not use the systerat a time



66 Paper B

reference. Instead it uses a time variable as a time refereFiwe reason for
using a time variable is that we can, in a flexible manner,céd¢he size of
variables that save absolute time in bits. The benefits di smcapproach is
that we can control the size of the TEQ since it saves the atestimes, and
it also minimizes the overhead of implementing 64 bits ofi@na on 32 bit
microprocessor [15], as an example. The reference timablar, used to
indicate the time of the next activation, is initializece(i.t; = 0) at the first
execution of the USR. The value of is updated every time that the USR
executes and it will be equal to the time given by the TEQ thiggéred the
USR.

When a taskr; is released for the first time, the absolute next activation
time is equal ta; + T; and its absolute deadline is equattot+ D;.

To avoid time consuming operations, e.g., multiplicatiamsl divisions,
that increase the system overhead inherent in the exeaftibe USR, all ab-
solute times (task periods and relative deadlines) aredsaveystem tick unit
(system tick is the interval between two consecutive systemar interrupts).
However, depending on the number of bits used to store thelwtbstimes,
there is a maximum value that can be saved safely. Henceygsabisolute
times in the TEQ may cause problems related to overrun of, tirae the ab-
solute times become too large such that the value can nobbedstising the
available number of bits. To avoid this problem, we apply apping algo-
rithm which wraps the absolute times at some point in timetheatime will
restart again. Periods and deadlines should not exceed #peavound value.

The input of the timer should be in a relative time, so evahggthe time
at which to trigger the USR again (next time) is donelb¥Q[1] — ¢, where
TEQI1] is the first element in the queue after updating the TEQ as aeell
sorting it, i.e., the closest time in the TEQ. The USR checksee if there
are more than one task that have the same current activatierahd absolute
deadline. If so, the USR serves all these tasks to minimigeutinecessary
overhead of executing the USR several times.

7.5.2 RM scheduling policy

Each task will have a fixed priority during run-time when R&ienotonic
(RM) is used, and the priorities are assigned accordinggd=ikl scheduling
policy. If only RM is used in the system, no additional op&nas are required
to be added to the USR since the kernel scheduler schedutaskd directly
according to their priorities, and the higher priority taslan preempt the exe-
cution of the lower priority task. Hence, the implementataverhead for RM
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will be limited to the overhead of adding a task in the readgugiand man-
aging the timer for the next period (saving the absolute tifithe new period
and finding the shortest next time in the TEQ) for periodiks$as

The schedulability analysis for each task is as follows [23]

V1, € 1,0 < 3 <T; dbf(i,t) <t. (7.1)
And dbf (i, t) is evaluated as follows

abf(i,t) =Ci+ Y [iw Ch (7.2)
) Tk )

71, €HP(4)

whereHP(7) is the set of tasks with priority higher than thatmf

Eq. (7.2) can be easily modified to include the effect of ushigUSR on
the schedulability analysis. Note that the USR will be teggg at the begin-
ning of each task to release the task, so it behaves like adieiask with
priority equal to the maximum possible priority (the USR gaaempt all ap-
plication tasks). Checking the deadlines for tasks by uiegUSR will add
more overhead, however, also this overhead has a periotlicenas the task
release presented previously.

Eq. (7.3) includes the deadline and task release overhasastday the
USR in the response time analysis,

abf(it) = Ci+ Y. {THC& + ) ’V%—‘XR
er (7.3)

whereXr, is the worst-case execution time of the USR when a task iasetk
and X p is the worst-case execution time of the USR when it checkddad-
line misses (currently, in case of deadline misses, the UiPomly log this
eventinto a log file).

7.5.3 EDF scheduling policy

For EDF, the priority of a task changes dynamically during-time. At any
timet, the task with shorter deadline will execute first, i.e.] hive the highest
priority. To implement EDF in the USR, the USR should updhagegriorities
of all tasks that are in the Ready Queue when a task is addd:tRe¢ady
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Queue, which can be costly in terms of overhead. Hence, ohané, using
EDF on top of commercial operating systems may not be eftidepending
on the number of tasks, due to this sorting. However, the Ef¥feduling
policy provides, on other hand, better CPU utilization cangal with RM, and
it also has a lower number of context switches which minimizentext switch
related overhead [24].

In the approach presented in this paper, tasks are alreatdyl$o the TEQ
according to their absolute times due to the timer multiplg>explained ear-
lier. Hence, as the TEQ is already sorted according to thelatesdeadlines,
the USR can easily decide the priorities of the tasks acongridi EDF without
causing too much extra overhead for evaluating the progeriyrfor each
task.

The schedulability test for a set of tasks that use EDF is shiogq. (7.4) [25]
whichincludes the case when task deadlines are allowedésb¢han or equal
to task periods.

t+1T;,—D;
vt > 0, — - <t (7.4)
==

The overhead of implementing EDF can also be added to EQ. Hehce,
Eq. (7.5) includes the overhead of releasing tasks as weaHeasverhead of
checking for deadline misses.

V>0, {#J G+ Y [%]XR
1 J

el el 75)
t+Tj—Dﬂ (7.
——— 1 Xp <t

+Z [ T D=

T;el

7.5.4 Implementation and overheads of the USR

To implement the USR, we have used the following VxWorks eerfunc-
tions;

* Q_PUT - insert a node into a multi-way queue (ready queue).
* Q_REMOVE - remove a node from a multi-way queue (ready queue).
« taskCreat - create a task.

* taskPrioritySet - set a tasks priority.
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We present our initial results inherent in the implementatf the USR,
implementing both the Rate Monotonic (RM) scheduler as agthe Earliest
Deadline First (EDF) scheduler. The implementations wendggomed on a
ABB robot controller with a Pentium 200 MHz processor rumgtine VxWorks
operating system versidn2. To trigger the USR for periodic tasks, we have
used watchdog timers where the next expiration time is gimemumber of
ticks. The watchdog uses the system clock interrupt rodtremunt the time
to the next expiration. The platform provides system clodthwesolution
equal to4500ticks/s. The measurement of the execution time of the USR
is done by reading a timestamp value at the start as well deand of the
USR’s execution. Note that the timestamp is connected taeaiaphardware
timer with resolutionl 2000000ticks/s.

Table 7.1 shows the execution time of the USR when it perfdRivisand
EDF scheduling, as well as deadline miss checking, as aiumef the num-
ber of tasks in the system. The worst case execution time & Will happen
when USR deletes and then inserts all tasks from and to TEQcacapture
this, we have selected a same period for all tasks. The thblessthe mini-
mum, maximum and average out&if measured values. Comparing between
the results of the three cases (EDF, RM, deadline miss), weea that there
is no big difference in the execution time of the USR. The oeder this result
is that the execution of the USR for EDF, RM and deadline miexking all
includes the overhead of deletion and re-inserting thestasthe TEQ, which
is the dominating part of the overhead. As expected, EDFesati® largest
overhead because it changes the priority of all tasks in¢hdy queue dur-
ing run-time. Figures 7.2-7.3 show that EDF imposes betvéeeri 4% extra
overhead compared with RM.

7.6 Hierarchical scheduling

A Hierarchical Scheduling Framework (HSF) supports CPUislgaamong
subsystems under different scheduling policies. Here,amsider a two-level
scheduling framework consisting of a global scheduler andraber of local
schedulers. Under global scheduling, the operating sy&géobal) scheduler
allocates the CPU to subsystems. Under local schedulingga $cheduler
inside each subsystem allocates a share of the CPU (givha Bubsystem by
the global scheduler) to its own internal tasks (threads).

We consider that each subsystem is capable of exportingvitsrterface
that specifies its collective real-time CPU requirements.aésume that such a
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Number Xr (RM) Xgr (EDF) Xp (Deadline miss check

of tasks || Max | Average| Min || Max | Average| Min || Max | Average| Min
10 71 65 63 74 70 68 70 60 57
20 119 110 106 131 118 115 111 100 95
30 172 158 155 187 172 169 151 141 137
40 214 202 197 241 228 220 192 180 175
50 266 256 249 || 296 280 275 || 236 225 219
60 318 305 299 359 338 331 282 268 262
70 367 352 341 || 415 396 390 || 324 309 304
80 422 404 397 476 453 444 371 354 349
90 473 459 453 || 539 523 515 || 415 398 393
100 527 516 511 600 589 583 459 442 436

Table 7.1: USR execution time ins, the maximum, average and minimum
execution time oft5 measured values for each case.

subsystem interface is in the form of the periodic resourodet( P, Q) [5].
Here, P; represents @eriod and @, represents dgudget or an execution
time requirement within the perioQ; < Ps). By using the periodic re-
source model in hierarchical scheduling frameworks, ituargnteed [5] that
all timing constraints of internal tasks within a subsystesn be satisfied, if
the global scheduler provides the subsystem with CPU resswccording to
the timing requirements imposed by its subsystem interfatde refer inter-
ested readers to [5] for how to derive an interfdé¢g, @) of a subsystem,
when the subsystem contains a set of internal independéentetasks and
the local scheduler follows the RM or EDF scheduling politiote that for
the derivation of the subsystem interfgd®, @), we use the demand bound
functions that take into account the overhead imposed bgtheution of USR
(see Eq. (7.3) and (7.5)).

7.6.1 Hierarchical scheduling implementation

Global scheduler: A subsystem is implemented as a periodic server, and pe-
riodic servers can be scheduled in a similar way as scheglubrmal periodic
tasks. We can use the same procedure described in Sectiwitly Shme mod-
ifications in order to schedule servers. Each server shoaldde the following
information to be scheduled: (1) server period, (2) seruelgiet, (3) remaining
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Figure 7.2: EDF normalized against RM, for average USR eti@ttime.

budget, (4) pointer to the tasks that belong to this server(8) the type of the
local scheduler (RM or EDF) (6) local TEQ. Moreover, to sailedservers we
need:

» Server Ready Queuego store all servers that have non zero remaining
budget. When a server is released at the beginning of it®geits
budget will be charged to the maximum budg@etand the server will be
added to the Server Ready Queue. When a server executetitsain
tasks for some time;, then the remaining budget of the server will be
deceased withr, i.e., reduced by the time that the server execute. If
the remaining budget becomes zero, then the server will baadthe
control to the global scheduler to select and remove thedsigbriority
server from Server Ready Queue.

» Server TEQ to release the server at its next absolute periodic timesinc
we are using periodic servers and also track their remainicigets.

Figures 7.4 illustrates the implementation of HSF in VxWorkhe Server
Ready Queue is managed by the routine that is responsibefi@duling the
servers. Tracking the remaining budget of a server is sagddllows; when-
ever a server starts running, it sets an absolute time atwheserver budget
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Figure 7.3: EDF normalized against RM, for maximum USR exeauime.

expire and it equals to the current time plus its remainindget. This time
is added to the server event Queue to be used by the timegtetran event
when the server budget expires. When a server is preemptudilyer server,
it updates the remaining budget by subtracting the timetihatpassed since
the last release. When the server executes its internal tetk the time when
the server budget expiry event triggers, it will set its rarreg budget to zero,
and the scheduling routine removes the server from the SBeady Queue.

Local scheduler: When a server is given the CPU resources, the ready tasks
that belong to the server will be able to execute. We havestiya&ted two
approaches to deal with the tasks in the Ready Queue whenex $egiven
CPU resources:

« All tasks that belong to the server that was previously mgmwill be
removed from the Ready Queue, and all ready tasks that béboting
new running server will be added to the Ready Queue, i.e.pgivg
of the servers’ task sets. To remove tasks from the Ready € uke
state of the tasks is changed to suspend state. Howevewithiause
a problem since the state of the tasks that finish their ei@tig also
changed to suspend and when the server run again it will addeady
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Figure 7.4: The implementation of HSF in VxWorks.

tasks to the Ready Queue. To solve this problem, an additiamgis
used in the task's TCB to denote whether the task was remaooeed f
Ready Queue and enter to suspend state due to budget expivhits
server or due to finishing its execution.

* The priority of all tasks that belong to the preempted seni# be set to
a lower (the lowest) priority, and the priority of all taskst belong to the
new running server will be raised as if they were executinguesively
on the CPU, scheduled according to the local schedulingyali use
by the subsystem.

The advantage of the second approach is that it can give tigedrCPU
resources to tasks that belong to other servers. Howevedisadvantage of
this approach is that the kernel scheduler always sortsafies tin the Ready
Queue and the number of tasks inside Ready Queue using thredsagproach
will be higher which may impose more overhead for sortingdasin this
paper, we consider the first approach since we support onlgdie tasks.
When a server is running, all interrupts that are caused &joital TEQ, e.g.,
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Figure 7.5: Simple servers execution example.

releasing tasks and checking deadline misses, can be seithedit problem.
However, if a task is released or its deadline occurs dutegetxecution of
another server, the server that includes the task, may hiss\ent. To solve
this problem, when the server starts running after senagmption or when it
finishes its budget, it will check for all past events (indhgltask release and
deadline miss check events) in the local TEQ that have atestitoe less than
the current time, and serve them.

Note that the time wrapping algorithm described in sectidh17should
take into account all local TEQ's for all servers and the seevent queue,
because all these event queues share the same absolute time.

Figure 7.5 illustrates the implementation of hierarchs@ieduling frame-
work which includes an example with three servgysSs, Ss with global and
local RM schedulers, the priority ¢, is the highest and the priority df; is
the lowest. Suppose a new period)f starts at time, with a budget equal
to Q3. Then, the USR will change the state$) to Ready, and since it is the
only server that is ready to execute, the USR will;

 add the time at which the budget will expire, which equalte- Q3,
into the server event queue and also add the next period @vene
server event queue.

 check all previous events that have occurred while theesemas not
active by checking if there are task releases or deadlineksh@ the
time interval of[t*, t], wheret* is the latest time at which the budget of
Ss has been expired.
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« start the local scheduler.

At time t; the servelS; becomes Ready and it has higher priority tisan
So S will preemptS; and in addition to the previously explained action, the
USR will remove all tasks that belong &3 from the ready queue and save the
remaining budget which equals €% — (t; — to). Also the USR will remove
the budget expiration event from the server event queuee Nhait whenSs
executes next time it will use the remaining budget to caleuthe budget
expiration event.

Number of servers| Max | Average| Min
10 91 89 85
20 149 146 139
30 212 205 189
40 274 267 243
50 344 333 318
60 412 400 388
70 483 466 417
80 548 543 509
90 630 604 525

100 689 667 570

Table 7.2: Maximum, average and minimum execution time efWi$R with
100 measured values as a function of the number of servers.

The USR execution time depends on the number of the servedstha
worst case happens when all servers are released at theissméntaddition,
the execution time of the USR also depends on the number df taaks in
both the currently running server to be preempted as weli@sérver to pre-
empt. The USR removes all ready tasks that belong to the pteehserver
from ready queue and adds all ready tasks that belong to geenmting server
with highest priority into the ready queue. Here, the woastecscenario is that
all tasks of both servers are ready at that time. Table 7.®&slioe execution
time of the USR (when a server is released) as a function ohtimeber of
servers using RM as a global scheduler at the worst casegwlidhe servers
are released at the same time, just like the case shown imgkips section.
Here, we consider that each server has a single task in argerely investi-
gate the effect of the number of servers on the executiondirtiee USR.
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7.6.2 Example

In this section, we will show the overall effect of implemiaigtthe HSF using
a simple example, however, the results from the followingregle are specific
for this example because, as we showed in the previous setlioverhead is
a function of many parameters affect the number of preempsaoch as num-
ber of servers, number of tasks, servers periods and budgetsis example
we use RM as both local and global scheduler, and the serndrassociated
tasks parameters are shown in Table 7.3. Notethat D; for all tasks.

Si(PL=5,Q1=1) || So(P’2=6,Q2=1) || S3(P =70, Q3 = 20)
7 | T; C; 7 | Ty C 7 | Ty C

71 | 20 1 1 | 25 1 71 | 140 7

Ty | 25 1 Ty | 35 1 T | 150 7

73 | 30 1 T3 | 45 1 73 | 300 30

T4 | 35 1 T4 | 50 1

Ts 40 7 Ts 55 7

- - - 76 | 60 7

Table 7.3: System parametersiis.

The measured overhead utilization is ab2®5% and the measured re-
lease jitter for task— in serverSs; (which is the lowest priority task in the
lowest priority server) is aboddms. The measured worst case response time
is 208.5ms and the finishing time jitter i60ms. These results indicate that
the overhead and performance of the implementation argtatde for further
development in future project.

7.7 Summary

This paper has presented our work on the implementation ofievarchical
scheduling framework in a commercial operating system, U4, We have
chosen to implement it in VxWorks so that it can easily beesh an in-
dustrial setting, as we have a number of industrial partmés applications
running on VxWorks and we intend to use them as case studiasfadustrial
deployment of the hierarchical scheduling framework.

This paper demonstrates the feasibility of implementirg hierarchical
scheduling framework through its implementation over Vxk¢o In partic-
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ular, it presents several measurements of overheads shemplementation
imposes. It shows that a hierarchical scheduling frameveark effectively
achieve the clean separation of subsystems in terms ofgimiarference (i.e.,
without requiring any temporal parameters of other sulesys} with reason-
able implementation overheads.

In the next stage of this implementation project, we inteméhiplement
synchronization protocols in hierarchical schedulingrfeavorks, e.g., [12]. In
addition, our future work includes supporting sporadi&sda response to spe-
cific events such as external interrupts. Instead of allgwhem to directly add
their tasks into the ready queue, we consider triggeringy®R to take care of
such additions. We also plan to support aperiodic tasksewdolinding their
interference to periodic tasks by the use of some servarebamchanisms.
Moreover, we intend to extend the implementation to makeiiable for more
advanced architectures including multicore processors.
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Abstract

This paper presents a Hierarchical Scheduling Framewo8&{Hecorder for
Linux-based operating systems. The HSF recorder is a ldadatmel module
thatis capable of recording tasks and servers without rieguany kernel mod-
ifications. Hence, it complies with the reliability and stijp requirements in
the area of embedded systems where proven versions of Lieupraferred.
The recorder is built upon the loadable real-time schedrdenework RESCH
(REal-time SCHeduler). We evaluate our recorder by compgtie overhead
of this solution against another (patched) recorder. Afke, tracing accu-
racy of the HSF recorder is tested by running a media-prougsask together
with periodic real-time Linux tasks in combination with gers. The tests are
recorded with the HSF recorder, and ffteace recorder, in order to show the
correctness of the experiments and the HSF recorder itself.
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8.1 Introduction

The research that we conduct is primarily focused on theldpxeent of hi-
erarchical scheduling [1, 2, 3]. Our previous and ongoingkweithin hier-
archical scheduling includes practical (implementataspects of this kind of
scheduling [4, 5], the applicability/usage [6, 7] of it, asliras applying formal
methods [8] on it. In server-based scheduling (the predeced hierarchi-
cal scheduling), tasks (a sequence of instructions) areatdwed to execute
whenever their server (the virtual task which they belongtos. The server
itself executes according to some scheduling scheme (gdobaduling) which
is independent of the tasks. The advantage is that it caroweghe response
time (the time length between task activation and compi¢taf event trig-
gered tasks, and still keep the scheduling deterministaesthe server schedul-
ing parameters are known and included in the schedulabitiglysis. Further,
introducing a scheduler within each server (local schedylmakes it more
general since it supports time triggered tasks as well. Géisbe generalized
even further by representing a task as a set of tasks togeitiea scheduler.
When we have separate scheduling inside a server, i.e. haithlgand local
scheduling, then we refer to hierarchical scheduling orex&ichical Schedul-
ing Framework (HSF), this is illustrated in Figure 8.1.

Global scheduler

Interface ([Cinterface |

Local Local
scheduler scheduler

Figure 8.1: Hierarchical scheduling framework.

Hierarchical scheduling has several advantages, besmgeving response
time of event triggered tasks. It enables parallel develmrof system parts
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(subsystems), simplifies integration of subsystems (&glysupports runtime
temporal partitioning and safe execution of tasks etc. Hmweexcept for
ARINCG653 [9, 10] compliant operating systems that are comignéound in
avionics applications, hierarchical scheduling is raralyintegrated part of
an operating system (OS). Indeed, there is a need to deirafdpment new
scheduling algorithms, such as hierarchical schedulimthe area of embed-
ded and/or real-time systems [6]. A motivation of this canfduend in our
scheduling example in the evaluation (Section 8.4), wheeelet a media-
processing task (which does a movie playback) executemétlserver (server-
based scheduling). The server executes with a certaindrexyugiving (guar-
anteeing) the media task an even amount of CPU power whichoiep the
playback quality of the movie, even though it executes anmathgr time trig-
gered tasks. The mediatask has an unknown execution patterthe releases
are undefined. Still, we get predictability (since we canyaeathe behavior)
from both the media tasks point of view, and the time triggeesks. Also, we
avoid (temporal) interference at runtime, meaning that eteagsafe execution
environment for the tasks because temporal errors do npbageie between
the media task and the time triggered tasks.

From a practical point of view, it is an advantage if hieracahscheduling
can be implemented easily/efficiently and without modifythe kernel. The
latter makes it easier for both developers and users sirze th no need to
maintain/apply kernel modifications every time the kerisetéplaced or up-
dated. Moreover, keeping the scheduler isolated in a kenoelule, without
modifying the kernel, simplifies debugging and potentiatifieation of its cor-
rectness (component-based development advantages) eweas¢he RESCH
scheduling framework [11] is useful because it has the adgms mentioned,
since it does not need any kernel modifications. Also, it maaheduler de-
velopment easier because it simplifies the schedulingfatterto the user and
it supports the development of schedulers (plugins) whirhas independent
kernel modules. However, while the development of schedualee simplified
with this framework, it lacks support for debugging the stilers. That is
why we have developed a HSF recorder, which can easily begptii to a
server-based/hierarchical scheduler, developed in RES@GEl recorder does
not require kernel modifications and it is of course alsocadlét for analyzing
the runtime behavior of tasks/servers since the recorded tran be visualized
graphically with the Tracealyzer [12] or Grasp [13] viszalion tools. In turn,
these tools can present valueable trace data such as exeard response-
time.

The HSF recorder is able to record the following schedulivenés during
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run-time:

1.

4.

The time instance when a task/server is released (eveglhio might
not start to execute).

. The time instance when a task/server starts to execute.

. When there is a task/server context switch, the recortdtinguishes

between preemption and non-preemption.

The time instance when a task/server finishes its exectutio

Contribution The main contributions of this paper are:

1.

We have implemented a task/server recorder with the ustE&CH,

i.e., it does not require any kernel modifications. The rdepenables
debugging at task and server level, in Linux based realftipreeral-
purpose OSs.

. We have evaluated our HSF recorder by implementing yehancecorder

(Section 8.2.3), using the technique presented in [14] cantpared the
overhead of this recorder, with the HSF recorder.

. We have tested our recorder by running a media-procetskdogether

with time triggered tasks and servers. The example showgtheplay-
back quality gets improved by putting the media-processasyy in a
server. The HSF recorder is used in this example to debug iapthd
the runtime behavior.

Outline The outline of this paper is as follows: Section 8.2 prespngs
liminary background, in Section 8.3 we describe the HSEmer implemen-
tation. Section 8.4 evaluates the overhead and tracingaccwf the HSF
recorder. Section 8.5 presents related work, and finallgti®@e8.6 concludes.

8.2 Preliminaries

8.2.1 System model

We assume fixed-priority, preemptive, scheduling of pecditasks, according
to the periodic task model [15]. A tagks presumed to have the following pa-
rameters{T;, WCET;, D;, pr;), where the period; represents the frequency
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in which the task is released for executidfiCET; is the worst case execution
time of the task, the relative deadlid& (within the period) is when the task
must complete its execution (RESCH monitors this) ands the task priority
(lower value represents higher priority). Also, all tasks assumed to execute
independently of eachother and on the same core, i.e.estoge.

The servers are also assumed to have fixed priority and tieegcheduled
preemptively and periodic. A servgrhas similar parameters as tasks, i.e.
(Pj,Qj,pr;), whereP; is the server periody; is defined as a budget (which
is the time given at each peridg} to the tasks within the server) apd,; is the
server priority (lower value represents higher priority).

8.2.2 RESCH

We have been developing a loadable real-time scheduleeftank, RESCH
[11], designed to work with the POSIX-compliant SCHEIFO scheduling
policy implementation. RESCH has previously been used ebdisis for an-
other scheduler called AIRS [16] - a multi-core CPU schedideinteractive
real-time applications. As mentioned previously, RESCH isiodification-
free scheduling framework for Linux. It supports periodisks which can be
scheduled in a fixed-priority preemptive manner. RESCHng$y composed
of external kernel modules and user-space libraries foy eedallation. It
gives both an interface to the users in user space (e.g. apasific interface
like rt wait for_period())as well as in the kernel space. The kernel
space API (Application Programming Interface) has therfate shown be-
low:

1. task_run _plugin()

2. task_exit_plugin()

3. job_releaseplugin()
4. job_completeplugin()

These functions can be implemented BRBSCH plugin (Figure 8.3), i.e.,
a kernel module that has access to the RESCH kernel API. Tihastons
are called in theRESCH core at certain events which are illustrated in Fig-
ure 8.2. Functions 1) and 2) are executed every time a taiteegjunregisters
to RESCH. With register we mean that the task does a RESCH @PRtrans-
forming it to a RESCH task, which creates a RESCH TCB (Task Control
Block) and puts it in the RESCH ready-queue etc. A RESCH TGS aaong
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other real-time specific data, a reference to its corresipgridnux task TCB
(task_struct). Once the task is registered in RESCH, it will be scheduled
periodically (and preemptive) according to its real-timepty. The primitives
3) and 4) are called whenever a RESCH task is released fouaeor when
it has finished its execution. The plugins get these schegluibtifications
and can thereby affect scheduling, trace tasks etc. Thénphagifications are
shown in Figure 8.2. When a task notifies RESCH that it hashfausts exe-
cution in its current period, the RESCH core will inform arlygin about this
event and set a timer for the release of the tasks next petipa. last step, it
will call the Linux kernel to re-schedule another task. Tleatrrunning task
might be a RESCH task or any other Linux process.

RESCH task ]

rt_wait_for_period()

user level
kernel level mod_timer() =-=-----5

RESCH core

job_complete_plugin()
schedule()

switch_to() J/

RESCH plugin

. interrupt context
D kernel-thread context
Linux kernel

(JuiSn|dJaseajas—qof

()ss@d0udTdn™ axem

Figure 8.2: RESCH control flow.

When the kernel responds to the corresponding timeout (&lslase), a
handler in the RESCH core will get notified about this eveftie iandler will
notify any plugin about the task release and then call theéteo wake up the
task.

In Linux, since kernel version 2.6.23 (October of 2007)ksasan be either
a fair or areal-time task. The latter group has higher priority (0-99 where 0
is highest) than fair tasks (100-140). A task that registelRESCH is auto-
matically transformed to a real-time task. RESCH is resji&$or releasing
tasks, and tasks registered to RESCH must notify when theyfirdshed their
execution in the current period. In this way, RESCH can aitre schedul-
ing. RESCH uses an absolute-time clock, i.e., it does nopwraund. Also,
release times are stored as absolute values, so releasapaite exact.
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Figure 8.3: RESCH framework.

The cost of having a modification-free solution is that RESf2H only see
scheduling events related to its registered tasks. Real-tasks with higher
priority than RESCH tasks (i.e. tasks that are not regidt@ateRESCH) can
thereby interfere with RESCH tasks without the RESCH coredgable to
detect it. A simple solution to this problem is to schedulegdl-time tasks
with the RESCH framework.

8.2.3 Task-switch hook patch

Our previous work [14] includes an implementation ¢fask _swi t ch_hook
function (Figure 8.4), residing in a kernel module, whichadled by the Linux
scheduler at every scheduler tick. In this way, it is posstiol record task
scheduling events. This solution requires modificatiomaf tode lines in two
separate kernel source filesxhed_r t . ¢ andsched_f ai r . ¢). The modifi-
cation of filesched_r t . c isillustrated in Figure 8.4 (a similar change is done
in sched_f ai r. c¢). Linux has (since kernel version 2.6.23) two scheduling
classes, namely thgair and thereal-time scheduling classes. When a new
task should be released, the Linux scheduler iterates ghrds scheduling
classes (first theeal-time class, secondly thgair class) in order to find the
next task to release.
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The maodification (Figure 8.4) makes it possible to re-di@stcheduling
class’ function pointer pi ck_next _t ask to point to a user defined function
(i.e., our function
t ask_swi t ch_hook), instead of the original functiomi ck_next t ask_rt.
Our function will instead point tpi ck_next _t ask_rt, in this way, we do
not alter the kernel functionality other than executingfomctiont ask_swi t ch_hook
(which contains user defined code) just beforek _next _t ask_rt startsto
execute. Our function (hook) can be inserted and removeihgluantime.

A task recorder can easily be implemented (as a kernel mpduatk use the
t ask_swi t ch_hook function to register task context switches, however, the
kernel must be modified.

ﬁlmic canst struct sched_class it_sched_class = {

patch

pick_next_task = pick_next_task_rt,

4 Linux kernel \\

( \
rt_sched_class

-I .pick_next_task " pick_next_task_rt k—

. 7 re-compile n

kernel
k sched_rt.c

Loadable kernelmodule

Execution time monitor
after

task_switch_hook

—/

Figure 8.4: Hook patch.

8.3 Implementation

The implementation of the HSF recorder is based on the séérgulugin HSF
which in turn is based on the scheduling framework RESCHuf&i@.5 shows
that the HSF scheduler uses primitives exported by RESCHegparts these,
as well as server specific primitives, to the recorder. Tipesaitives are used
to register server and task context switches. Note that éxébfe structure
allows for new scheduler plugins to reuse the recorder a3 ésrnthey export
the same primitives.

For the recording to work correctly, it is assumed that ndaigpriority
real-time Linux tasks, which are not registered by RESCH, are executed

The current implementation does not supgetid balancing (a function
in Linux that migrates tasks to other CPUs based on load} iEthecause the
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HSF recorder
plugin

server_complete
server_release

HSF
plugin

l

job_complete_plugin
RESCH core job_release_plugin

Figure 8.5: HSF-recorder plugin.

RESCH scheduler cannot detect task migrations made by thelIsicheduler.
Each recorded event has 2 records:

 |ID of the next task/server to execute.
» Timestamp of the event.

The ID of the next task/server is used to calculate the pusviask/server.
The 4 hook functions (Figure 8.5) are used by the recordeme scheduling
records in memory (this is a circular implementation). Téearder flushes the
recorded data to disk when it gets unloaded by the user. Tdoediag format
can easily be converted to match any visualization tool. Aetsuccessfully
converted the format to fit with the Tracealyzer [12] and thiasp [13] visual-
ization tools. We use Grasp in the evaluation (Section 8.4yder to visualize
the trace of the HSF recorder since it also supports hiei@kcscheduling in
addition to regular (flat) scheduling.

Figure 8.6 illustrates how the HSF recorder gets triggeréd. can be
seen, the HSF scheduler gets triggered by its own timers dsawéy the
RESCH core. The HSF scheduler relays task releases and etionglto the
HSF recorder when the HSF scheduler itself is triggered byRESCH core.
Whenever the HSF scheduler gets triggered by a timer, inaatically calls its
server release/completion plugin, which in turn startsrdw®rder. The figure
also shows that the HSF recorder executes mostly in intecatext. This
makes it less expensive in terms of context-switch overhead
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Figure 8.6: HSF recorder control flow.

8.4 Evaluation

We have evaluated our HSF recorder by recording a set of éaxkservers (Ta-
ble 8.1 and 8.2). In our example, task_t ask1 belongs to serveBer ver 0,
rt task2 andrt _t ask3 does not belong to any server whil¢ -t ask4
belong to serveBer ver 1 andrt _t ask5 to Ser ver 2.

The evaluation shows two aspects: the measured overhezb(s8.4.1)
of the HSF recorder compared to the patched recorder [1d]Jaarexample of
how the Quality of Service (QoS) of multimedia tasks can bprowed with
hierarchical scheduling as well as how our HSF recorder saistin this work
(section 8.4.2). In the multimedia example we used our H8Brder and the
Ftrace [17] recorder.

During our experiments, the two recorders were recordiegtésks and
servers simultaneously.
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Task-name | T WCET | D | Prio | Server
ri_taskl 80 9 80 0 Server0

rt_task2 200 75 200 1 -
rt_task3 105 9 105 2 -
rt_task4 500 100 500 3 Serverl
rt_task5 - - - 4 Server2

Table 8.1: Tasks used in the evaluation.

Server-name| P | Q | Prio
ServerQ 40| 6 1
Serverl 90 | 23 2
Server2 25| 8 0

Table 8.2: Servers used in the evaluation.

8.4.1 Overhead measurements

In order to estimate the overhead impact, we measured ticexe time of the

patched and the HSF recorder, running simultaneously ading the same
trace. We also noted the amount of data (in kilo bytes) thatwo recorders
produced (out of curiosity we also measufeace). We implemented an
optimized version of the patched recordeatch (Table 8.3) so that it only
saved recorded data of the tasks that we were interestedaondiag. In this

way, the comparison to the HSF recorder became fair sinseitly triggered
at task/server events related to the tasks/servers wetaresied in recording
(RESCH related task and servers).

Recorder | Exec. time () | Rec. data (KB)
HSF 45 10.5
Patch 1246 174
Ftrace - 888.6

Table 8.3: Measurements of the recorders.

The values listed in Table 8.3 are the average measuredsvafu® runs
and the recorders recorded about 4 seconds at each run. Weasése HSF
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recorder has a ratio of 4.3sfKB while Patch has 71.64/KB. The conclu-
sion is that the HSF recorder produces less overhead thaatbleed recorder,
comparing the execution-time/data ratio. The small amotimécorded data
compared td-trace suggests that our recorder might be a better option if the
user is only interested in a subset of tasks. Having a smaduamof over-
head is attractive for recorders since they can remaineadatishipped prod-
ucts (without wasting too much resources), and therebyimditing the probe
effect.

8.4.2 Multimedia example

The purpose of this example is to show how a multimedia taskcgssing a
movie) can benefit from hierarchical scheduling in such a thay the movie
playback runs more smoothly. The HSF scheduler has never deduated
(and debugged) as properly as the example we are about to sbdhis is a
good case study for the HSF recorder. We run the multimediaitadiffer-
ent setups (with and without hierarchical scheduling), em@sure its perfor-
mance. The hierarchical scheduling gives the multimedik &@ even amount
of CPU power, and thereby improves the movie playback. Nad¢ &ll of
this is done, including the recording, without modifyingtkernel. The HSF
recorder plays a key role since knowledge of the scheduleigbior is im-
portant in order for the result of this evaluation to be cotre~or example,
the recorder shows that the tasks and servers get the amoGRtiLbthat we
specify (i.e., that tasks run within their servers) and thattasks/servers run
according to the specified frequency altCET' / Q. During our experiments,
the recording showed that the HSF cannot keep tasks withingarver if they
do a lot of blocking (e.g. multimedia tasks). Therefore, e Iswest pri-
ority to the multimedia task and add idle tasks with higheofity than the
multimedia task. This will keep the multimedia task withig server, thereby
guaranteeing the upper limit on its resource supply. This eaafirmed by the
recording of our HSF recorder. A second recorddrdce) was also used in
order to show that the HSF recorder recorded correctly. \Wd tise Grasp tool
[13] to visualize our recordings (for both the HSF recordstt Btrace), since
it can display both tasks and servers.

In this example, we have 5 tasks, ifet, t ask1ltort _t ask5 (Table 8.1).
Tasksrt t askltort _t ask4 are dummytasks, i.e., theyjustloap (t askl
in Figure 8.7).rt -t ask5 does a movie playback, its task body is shown in
Figure 8.7.
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Il rt_taskl
int main(nt argc,char *argvl[ ])

{
for (i=0; i < NR.OF.JOBS; i++){
for (j =0;j < USECUNIT; j++) {

if (Irt-wait_for_period()) {
printf("deadline is missed!n”);

¥
Il rt_taskb
int main (nt argc,char *argv[ 1)

{

iivac_mediapIayeLpIay(pIayer);

Figure 8.7: Task bodies.

rt _t ask5 used the libVLG for movie playback and the library itself has
the nice property that the movie processing can be execytaddmsk running
in real-time mode. We executedt _t ask5 in 4 different setups:

1. rt _t ask5 with lowest priority and taskst _t ask1tort _t ask4 with
priority order as in Table 8.1.

2. rt _t ask5 with medium priority (in betweent _t ask2 andrt _t ask3)
and tasks t _t ask1tort _t ask4 with priority order as in Table 8.1.

3. rt _t ask5 with highest priority and taskst -t ask1 to rt t ask4
with priority order as in Table 8.1.

4. rt _t ask5 executedinserve3er ver 2,andrt _t ask1l andrt _t ask4

LibVLC htt p:// wi ki . vi deol an. or g/ Li bvl ¢
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in serverSer ver 0 andSer ver 1 respectively(t _t ask2 andrt _t ask3
was not included in this setup).

Given these 4 setups, task _t ask5 will get different amount/distribution
of CPU power and the processing of movie images (frames)thétefore
also be affected. The movie processing is measured in anodyrbduced
frames per second (FPS). The CPU utilization (percantagG@tftime) of task
rt _task5 is shownin Table IV as well as the frame rate of whight ask5
is processing a movie. We measured the FPS by timestamprigetinning
and end of the movie playback system call and dividing thewarhof frames
of the movie with the measured time. The amount of frames iargd this
value was generated by Mplayéusing thebenchmar k flag). Itis important
to note that the CPU utilization given in Table 1V is theailable CPU time, it
does not mean that task _t ask5 uses this CPU time. The FPS values may
not considered to be 100% accurate, but it shows the appatigfficiency.
For example, runningt _t ask5 with 100% CPU should of course not give
worse FPS value than running it with 32% CPU. These valuesfaceurse
affected by overhead from the Linux kernel etc. We ran theeipeeriments on
an Intel Pentium Dual-Core (E5300 2,6GHz) platform, eqaippith a Linux
kernel version 2.6.31.9, running withad balancing disabled. The recorded
tasks (and servers) ran on the same core, i.e., all tasksmigrated to CPU
#0 at initialization phase.

Setup CPU utilization (%) | FPS
Lowest prio 22.65 22.55
Medium prio 51.25 23.57
Highest prio 100 25.48
HSF 32 25.66

Table 8.4: FPS of taskt _t ask5.

The conclusion based on Table IV is that the distribution BUCpower
influences the frame frequency a lot and that utilizatiomalis not sufficient
for determining this. For example, giving task _t ask5 51.25% of the CPU
produces less FPS than giving it 32%. The 32% CPU is guardifteemore
no less) and it is distributed evenly as can be seen by thediegpof HSF
recorder in Figure 8.8 (visualized with the Grasp tool [13])

’Mplayerht t p: / / www. npl ayer hg. hu/ desi gn7/ news. ht m
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Apparently, (during our experiments) task _t ask5 must have been ac-
tive when other higher priority tasks were occupying the CEldreby tem-
porarely getting less than 51.25% CPU. This is not the casnwihnning the
multimedia task in its server, since it is always supplie@32

B
31115 N 0 | AN | N S Y | S o A
S N8 I N 1 NS 0 1 RN 0K

Figure 8.8: Tasks and servers recorded with the HSF recorder

Figure 8.9 shows the same trace as in Figure 8.8, but recavidbdhe
Ftrace recorder. As can be seen, the HSF recorder records corralsty it
shows that taskt _t ask5 does not consume CPU continuously (i.e., it blocks
often).

Figure 8.10 shows a trace by our HSF recorder whenrtaskask5 was
running with lowest priority, without HSF. As can be seerm, @PU availability
for taskr t _t ask5 is highly dependant on when higher priority tasks execute.

Our example shows that it is difficult to fine tune the CPU sugdpl a
multimedia task, i.e., we can only do it by changing the fptyoof the task
since it is not periodic. However, it is possible to do tunimgsetting server
period, budget and priority, when using HSF. The main cbation of this
example is the trace (Figure 8.8) made by the HSF recorderhndtiows the
correctness of the CPU distribution, made by HSF, to reaéttasks (with
media processing). We have also tested the correctness BfSk recorder by
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Figure 8.10: Tasks recorded with the HSF recorder.

comparing its trace results with tiiérace recorder, i.e., the trace in Figure 8.8
is identical with the trace in Figure 8.9, which shows thakitords correctly.
Also, the trace in Figure 8.8 shows the amount of unused CRd (slack
time) at both server level and within each server, since iffierdnt idle tasks
represent this. For example, ser@ar ver 3 (which has lowest priority) and
itstasks3_i dl e representslack time at server level, while i dl e represent
unused time irBer ver 0. The conclusion is that the HSF recorder can be a
good tool for debugging hierarchical schedulers in RESGhtesit records
accurately and with low overhead. Further, this examplevsttbat our (HSF)
recorder and scheduler records (and schedules) correedy, though we do
not modify the kernel.
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8.5 Related work

The idea of our solution is based on the replay debuggingoagpr[18], which
records system events online and replays them offline. br abrk [19],
the replay debugging has been extended to be compiler- aridd@pendent.
While the replay debugging works with off-the-shelf conepd for application-
level debugging, our solution is self-contained softwassg Grasp [13] for
OS-level debugging, and it is primarily focused on realgischeduler debug-
ging.

The SCHED_DEADLINE project [20], which is in charge of the EDF
scheduler implementation for Linux, has used sithed_switch tracer pro-
vided by theFtrace toolkit [17] to output the recordings of context switches.
The outputlogs are later converted to the Value Change DW@P] format so
thatGtkWave can visualize the task execution traces. The trace can o$eou
be converted to other trace formats, such as the Tracedly2kor the Grasp
[13] format. Given thaFtrace is supported by the Linux community, it is rea-
sonable to use this toolkit to trace task executions for édedlebugging, but it
is dedicated to the Linux kernel, so it is not necessarilyaflé for real-time
scheduler debugging in general. For instascbged_switch does not catch job
releases, however, context switches are precisely tracedf can distinguish
between task completions and task preemptions. Our soligimore flexible
and integrated in that it is available not only for the Linwerkel, but also for
other OSs, once the RESCH framework is ported to other prago

Our previous work [21] includes a simple task recorder inuxirfbased
on RESCH) which supports the Tracealyzer [12] and the Gra8pfprmat.
Further, we have also implemented a task recorder [14] (k)i which is
able to record all task scheduling events, but it requiredifivations to the
kernel.

DTrace [22], SystemTrap [23], LTT [24], and LTTng [25] arevadced
tools for OS debugging. They are oriented for tracing erkienel events, so
it is required that the developers understand how to use.tMaanwhile, our
solution is more simplified by focusing on real-time scheddebugging, and
it is very easy to use in practice.

Real-Time Application Interface for Linux (RTAI) [26] is aotlection of
loadable kernel modules and a kernel patch which togetloetges a rich real-
time API to the user. It gives the possibility to add/deleteks for every task-
start, task-switch and task-delete. These hooks give thsilgiity to monitor
task execution in a detailed level.

Tracealyzer [12] is a visualization and analysis tool fobeaded systems.



8.6 Conclusion 101

It can visualize task traces as well as task communicati@coRlers imple-
mented in the OSs VxWorks, OSE, Rubus and RTXC support thee@itgzer
format.

8.6 Conclusion

We have presented the implementation and evaluation okéstaser recorder
based on the RESCH (REal-time SCHeduler) framework in LIREESCH is

a scheduling framework for Linux which support schedulegpts, i.e., multi-

, uni-core, flat-, server-based-scheduling etc. Our remoitiplementation
is a plugin on top of an already existing hierarchical schexdplugin called

HSF (Hierarchical Scheduling Framework). This framewangorts fixed-
priority preemptive scheduling of servers as well as tadike HSF recorder
uses scheduling primitives supported by RESCH itself, aBé,Hn order to
record scheduling events. The RESCH framework, the HSFdsddieplugin

as well as our HSF recorder require no modification of theédaand this is the
main contribution of this approach. To the best of our knalgks this is the
first attempt to perform task tracing (within hierarchicaheduling) in Linux,

without kernel modifications.

The evaluation of the HSF recorder includes two parts:

» Overhead comparison against an optimized version of auigusly im-
plemented task-switch patch [14].

e The correctness of the HSF recorder (as well as the HSF sighgd
is tested with a media processing example. The tracing dépaind
accuracy of the HSF recorder is compared against the magnkinux
recordertrace [17].

Our HSF recorder produces very low overhead, in terms of Ghiduemp-
tion, compared to the task-switch patch. The amount of dembdata is also
much smaller thafrtrace, suggesting that the HSF recorder could be a better
choice if only a subset of Linux tasks is of interest to monito

The media-processing example shows 5 real-time tasksngnmith, and
without servers, i.e., with the HSF scheduler activatedwitiol only RESCH.

In the example, we show that one of the tasks (which is praagssmovie)
produces higher frame rate with theoretically lower CPWzafion (using the
HSF scheduler) than with higher CPU utilization (using oRESCH). The
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reason for this is that HSF gives the media-processing tatielCPU re-
source distribution. In this example, the HSF recordergiontes by showing
that the media task uses only its allocated CPU resourcefliheshowing that
the example is correct. It also shows a weakness with the [dB&dsiler in
that it has problems with keeping media tasks (and simikdestavhich blocks
often) within its server. However, non-blocking real-tinaesks are shown to
be properly contained inside their servers. All traces ftbmHSF recorder,
in this example, are done in parallel with thzace recorder, thereby showing
the accuracy (and correctness) of our HSF recorder.

The conclusion is that the HSF recorder could be a good tealdbugging
hierarchical schedulers in RESCH. The recorder can, tegetith a visual-
ization tool, such as Grasp [13], visualize the executiotasks and servers
as well as display worst-case, best-case and average Vidhathoexecution-
and response-time of tasks. In case that the Linux kernenfigured with
Ftrace, then it could be useful to use also, since it complementsexorder
well. Our recorder can record server events and task redeagele Ftrace
can record the context switches between the RESCH realtéisks and other
Linux tasks.

Future work includes mergingtrace and the HSF recorder to get more
detailed and complete traces. We will also continue withrimmng the HSF
scheduler plugin as well as developing new server-baseedsétrs (Band-
width Sharing Server, Constant Bandwidth Server, Spor&adiwer etc.) and
support for multi-core scheduling (and tracing).
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Abstract

Hierarchical scheduling has major benefits when it comentegrating hard

real-time applications. One of those benefits is that it giaeclear runtime
separation of applications in the time domain. This in tuiveg a protec-

tion against timing error propagation in between applarai However, these
benefits rely on the assumption that the scheduler itseichdis applications
correctly according to the scheduling parameters and tsezhscheduling
policy. A faulty scheduler can affect all applications inegative way. Hence,
being able to guarantee that the scheduler is correct isest gmportance.
Therefore, in this paper, we study how properties of hidriaad scheduling
can be verified. We model a hierarchically scheduled systeimguask au-
tomata, and we conduct verification with model checkinggitiie Times tool.

Further, we generate C-code from the model and we executaeharchical

scheduler in the VxWorks kernel. The CPU and memory overbétd mod-

elled scheduler is compared against an equivalent mancadligd two-level
hierarchical scheduler. We show that the worst-case megmrgumption is
similar and that there is a considerable difference in CPétoead.
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9.1 Introduction

Hierarchical scheduling [1, 2, 3] has been introduced as ans& simplify
parallel development of embedded systems. It facilitdtegritegration of such
systems by providing mechanisms for temporal isolatiorwbeh software
parts, called subsystems. The schedulable entity masifdst a subsystem
is referred to as &erver A system (a product, a large piece of software etc.)
can be composed of a number of subsystems, where each ofypesdly im-
plement a particular function or feature of the whole systEor example, a car
has a number of features/subsystems, and two examplesefdhethe engine
control system and the anti-lock braking system. Theseaifeatsubsystems
should ideally be developed in parallel and integrated ship@4]. Integra-
tion related problems include having to cope with differgetieduling policies
among subsystems, sharing the CPU resource among subsysteanding to
their need (and keeping that share during runtime), andrigsthat timing
faults do not propagate from one subsystem to another. Ampbeaof such a
fault is a piece of software that requires more time to exethén originally
intended (exceeding its analysed worst-case executi@) tend thereby caus-
ing unforseen interference with the rest of the system. Wetleer integration
problem is the introduction of new software functions, npparent at early
design.

Hierarchical scheduling allows for timing analysis of aniensystem, as
well as for subsystems in isolation, before they are intiegrdt supports mul-
tiple scheduling policies and it has a runtime mechanisrarthdtiplexes the
CPU resource among subsystems, hence, making sure thapresgligiable in-
terference between subsystems will occur in the time dorddso, the size of
the CPU share can easily be re-configured, allowing for fiaistute” changes
when introducing new software late in the development gsce

One important property of hierarchical scheduling, wheroines to hard
real-time applications, is the safe execution environrfard subsystem. The
scheduling entity of a subsystem, i.e., a server, shouldrerftogether with the
scheduler) that the subsystem will get the exact CPU shaté thias promised.
Even though a subsystem is executed together with otheerfpally faulty)
subsystems, it should still get the CPU share that it isledtib. In practice,
hierarchical scheduling can prevent faulty subsystenmm fsmpagating timing
faults to other subsystems. However, hierarchical schegiacannot deal with
timing faults propagating from itself, i.e., a faulty sclist causing incorrect
scheduling events, and thereby violating the contractdd §tfares that belong
to the subsystems. This is of course not acceptable in @piolits with hard
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real-time constraints.

We have experience in the implementation of two-level hidr@al schedul-
ing frameworks in operating systems such as VxWorks [5] aindx.[6]. Our
implemented frameworks operate in two levels using pecipadiling servers
(PS) [7] and, inside these, fixed priority preemptive sctiad(FPPS) of peri-
odic tasks. Even though the setup of these frameworks ate sjuiple (two-
level, PS and FPPS), it gives rise to a large implementatompdexity, since
we are dealing with multiple schedulers (multiple schetydielated timing
events). From our experience, debugging/tracing of thid kif scheduling [6]
is very time consuming. Also, debugging/tracing does nargatee 100% cor-
rectness, since it can be difficult to determine wheathesthedule is correct
or not. Due to this, in this paper we look at modelling, formatification and
code-synthesis of hierarchical scheduling with FPPS.

The motivation for modelling hierarchical FPPS is inheiiarits wide sup-
port for schedulability analysis [8, 9, 10], as well as theleing research in
synchronisation protocols [11, 12], which need hierarahscheduling imple-
mentations/models for its development and evaluation.

Recently, automata based approaches have been propossdtibd/analyse
a broad set of real-time scheduling policies. One of the aidpes of these
approaches is the ability to generate generic task relegtserps. In task au-
tomata models [13], task release patterns are modelled tisired automata
[14]. It has been shown that the schedulability analysidlem is resolvable
for both FPPS and dynamic scheduling policies such as sad@adline first
(EDF). Other benefits of such approaches are that simulafwmal verifi-
cation of timing/functional safety properties, as well asle-synthesis [15]
is possible. The Times tool [16] supports modelling with task automata
model, and it can perform simulation, verification, codethgsis etc. How-
ever, hierarchically scheduled systems cannot be veriatjlexisting solu-
tions.

In this paper our overall goal is to model, verify and synibesa two-level
hierarchical scheduling framework. The main contribusiofithis paper are:

1. We have modelled two-level hierarchical schedulinghwiPPS and PS
at the global level with support for an arbitrary number afvees with
FPPS and periodic tasks at the local level. We have used thelfimg
language task automata and implemented the model usingithesT
tool. To the best of our knowledge, this is the first task-mata model
of two-tier FPPS with PS.

2. We have extended the model with support for verificaticsin@ what
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we call observers), allowing us to verify that the model matches the
scheduler behavior (properties) that we have specified.e it we
are NOT verifying schedulability analysis, but the scheditself (two-
level FPPS with periodic tasks/servers). The contributithe state-
of-the-art is the verification of the schedulers (schedyfinlicies) in a
hierarchically scheduled system.

3. We have used the built-in code generator in Times to sgig@eour
model. However, the manual work needed includes adaptiegdiae
for our large model (which has 370 edges and 155 locatiomg)e she
Times code-generator currently supports a limited sizes Work also
includes removing platform (Linux simulator) dependendeoand in-
serting VxWorks related code. This gives us the possibibitget real
overhead estimates of the modelled scheduler when exgdutirhe re-
sults presented are the actual execution traces of the sielexecuted
in the VxWorks kernel, as well as a comparison of CPU- and nrgmo
overhead against an equivalent manually-coded hierackaheduler.
To the best of our knowledge, there is no prior work on syngh@som
model) for this type of scheduling.

The outline of this paper is as follows: in Section 9.2 we ioetlprelimi-
naries on hierarchical scheduling, task automata and TimeSection 9.3 we
present the model of two-level hierarchical schedulingéation 9.4 we show
how we have verified the behavior of the modelled schedufet,faally in
Section 9.5, we show the result of the synthesis. Sectiop@$ents related
work, and finally, Section 9.7 concludes.

9.2 Preliminaries

9.2.1 Hierarchical scheduling

Hierarchical scheduling has been introduced to support @Rliiplexing in
combination with different scheduling policies. It can geaily be represented
as a tree of nodes with arbitrary size, where each node m&pea subsys-
tem with its own local scheduler for scheduling internal kioads (tasks).
Looking at the tree-structure representation, the CPUuresois allocated
from a parent node to its children nodes. One of the main adgas of hi-
erarchical scheduling is that it provides means for decaimgoa complex
system into well-defined parts (subsystems). In essenerriohical schedul-
ing gives rise to time-predictablmpositionof coarse-grained subsystems.
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This means that subsystems can be developed and testee meply, and
at a later stage assembled without introducing unwantegdesth behavior.
Hierarchical scheduling also facilitatesusability of subsystems, since their
computational requirements are characterised by well egiirierfaces

Figure 9.1 illustrates two-level hierarchical schedulife left side illus-
trates the structure: the top node is defined asGlubal scheduleand it is
responsible for distributing th€EPU capacity to the servers (the schedulable
entity of a subsystem). Servers are allocated a defined bodgg} every pre-
definedperiod [17] and they are executed based on theiority. They are
scheduled according to the scheduling policy of the globaéduler (for ex-
ample FPPS or EDF) and the parameters just mentioned, hiéregecan be
viewed as "virtual tasks”. Each server can comprideeal schedulewhich
schedules the workload inside it, i.e. its tasks, when itgegés selected for ex-
ecution by the global scheduler. Note that the local schiegylolicy may dif-
fer from the global policy. The interfaces (T,C,Pr) for taglad servers shows
the allocated CPU capacity. It includes the release peeregution time (or
budget in the case for a server) and priority (lower valueagponds to higher
priority). The right side of the figure corresponds to thetime behavior of

the structure.
d
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e g

| Local scheduler r Local scheduler | Local scheduler
[Siaskt | J (oot ) Cozrasie
\ \ Jl

| T4,C1,Pr0 | 1 T5,C:1,Pr0 | | T0,C:1,Pr1 | | T5,CLPr0 |l T T
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Figure 9.1: Example hierarchical FPPS.

9.2.2 Task automata and TIMES

Timed automat§l4] is a widely used modelling language for formal modeglin
and analysis of real-time systems. A timed automaton isn¢isdly a finite
state automaton extended with real-valued clocks that eaedied and reset.
The formalism has shown to be suitable for a wide range oftieed systems.
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The timed automata model has been extended with an exptiiitm of
tasks, with parameters such as periods, priorities, exettimes etc. The
model, referred to amsk automatgof timed automata with tasksassociates
asynchronous tasks with the locations (states) of a timéoh@aton, and as-
sumes that the tasks are executed using static/dynamigtiggowith a pre-
emptive or non-preemptive scheduling policy. This modelipported by the
Times tool. One of the main benefits of using this tool (in thatext of this
paper) is that it supports task automata, which is suitailenbdelling sched-
ulers. Secondly, it can verify properties of a modelled exyst Last but not
least, the tool has a code-generator which gives the pbsibr synthesis.

In case that tasks are released periodically (with or witlaffsets), or
aperiodically, the input to the Times tool is merely a tadiaan which the
following parameters are defined for a task: name, exectitiog, (relative)
deadline, priority (in case of static priority schedulingjfset and period (if
applicable), interface, semaphore usage, and its C-cotlernatively, a task
can be of typeontrolled meaning that the release pattern of a task is defined
by a given task automata. All tasks in our modelled hieraatscheduler are
of type controlled.

Location_1 time ==10 ] Thisisa
time <=10 channell Location 3 comment
time ==11 1=
time:=0 /\a. 2+l channel?

v Location_4
taskl

Location_2

Figure 9.2: Example task automata.

Figure 9.2 shows an example of a task automata that relegsestelled
task for execution, at minimum, every 10 time units. Thews@with a dot)
to stateLocation_1 andLocation_3 defines that they are the start locations.
The invariantime <= 10 defines that control can only be at this state up until
time 10, then a transition has to be made. The condiiime==10 defines
that a transition may take place if this holds. The chamhennel! defines
that when this transition is made, the corresponding chHactrennel? must
be activated, i.e., there has to be a transition betweea Istafation_3 and
Location_4. The latter location has a task release statentask{), and this
means that upon arrival at this state, téesklis released for execution. State
Location_4 is flagged asirgent(U), which defines that no time will pass when
computinga:=a+1 or before the transition to stateocation_3. A transition
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from statelLocation_2 to Location_1 may take place whetime==11, if so,
the clocktime will be reset to zero.

9.3 Model

This section will describe the hierarchical scheduler, alled in Times. The
modelling language of task automata is used for modellirgfthmework.
This language allows task releasing, and transitiongiastcan be controlled
with clock constraints (as shown in Figure 9.2). Howeverangyal, in order to
implement hierarchical scheduling, one either need to Ietalrelease tasks
and suspend theror, release tasks and change task priorities dynamically dur-
ing runtime (in order to perform a server context switch).fastunately, task
suspension and dynamic priority (of controlled tasks) issupported by the
Times tool. In order to solve this issue, we model an exegutisk as a se-
ries of task releases, where each task release will exdoaitask 1 time unit.
Hence, the minimum task execution time is 1 time unit, andettexution time
is discrete, i.e., it has to be divisible by 1 (without geriegaa remainder).
What this means in practice, is that when there is a task ¢érgcwithin a
server and its budget depletes, then we simply stop relgésintask (and take
a note of the amount of time executed so far). This is illusttan Figure 9.3
where a task is supposed to execute 5 time units, within 2 dfuidgtances
of its server. This results in 3 task releases at the firstesénstance and 2
releases in the second instance. This fragmentation ddeaffiect the task
model, schedulability analysis or verification, it just reakhe task automata
model more complicated to implement. A more practical apphas to only
model task releases and no actual task execution (heneewuliebe no task
suspension in the model). The downside of such a non-fratgdepproach is
restricted verification capabilities as well as no possied of graphical rep-
resentation during simulation (Figure 9.8). We will showifreation using
the fragmented task model, and we will show code-synthesisdth the frag-
mented and the non-fragmented model (Section 9.5).

Figure 9.3: Discrete task execution.

The model structure is illustrated in Figure 9.4. The glafwdeduler ac-
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tivates the servers with channels, through EheentHandlerautomata. The
global scheduler is unchanged when adding/deleting sereaty theEven-
tHandleris affected. Servers are activated periodically and thayaecording
to their budget and priority, i.e., PS with FPPS. In our mp8efver 3 has a lo-
cal scheduler, scheduling periodic tasks with FPPS. Sértiass no scheduler,
i.e., it just releases a task upon activation and lets it ntil budget depletion.

Each scheduler (global or local) has a ready- and a relezsgeq The
ready-queue contains the servers/tasks, ordered bytgridhe release-queue
stores the release times (in absolute time) of the serasks/tordered with the
earliest time first. The queues are implemented as arraymaedion is based
on a binary search algorithm.

As mentioned previously, a server is activated/deactivétteough chan-
nels (where the global scheduler is the initiator). This neghat a server must
always be prepared to be activated/deactivated, i.e.f @& states which are
not marked asirgentmust have an activation/deactivation channel. If this is
fulfilled, then the server will be in total control by the glllscheduler, hence,
scheduling errors will not propagate from local to globalele Also, if the
global scheduler is verified, then the local scheduler canrae that it is get-
ting its correct timeslots (according to its interface) king verification at the
local level easier (the power of compositional verificajiomhe local sched-
uler releases its tasks according to the model illustratdeigure 9.3, which
will prevent the tasks from executing outside of its senirrdget (the Times
simulation in Figure 9.8 illustrates this).

[ GIobaIScheduIerH Observerl ]
mm B
[EventHandIer] [ObserverZ]

Legend:

Synchronisation with
channels (1,?) are
represented with an arrow
from the initiating (sending)
state to the receiver.

| sender H receiver l

Serverl Server3

Figure 9.4: Structure of the model.

ObserverlandObserverFigure 9.4) will get notifications of scheduling
events through channels. We define scheduling events ag tasik/server re-
leases, server budget depletion and task suspension (thestsk finishing its
current execution). The observers themselves do nottmitieese synchroni-
sations and they do not affect the clocks, hence, they doffeat he behavior
of the model. The observers are mainly used for the purposerdying the
schedulers [18], this will be elaborated in more detail ictia 9.4.



116 Paper D

9.3.1 Global scheduler

Figure 9.5 illustrates a simplified version of the globalesthler. The excluded
parts include initialisation, queue management etc. B#lgjovhenever there
are no scheduling events, the automata waits in the maie, stat, the one
without theurgentsymbol Q). This is the only state where time is allowed to
pass. From the main state, there are in total three transipossible: server
budget deplete, server release and allowing for a tasktéiven task release
etc.) that belongs to the current active server. As can be, ske depletion
transition has highest priority, followed by the release task-event transi-
tions. The latter is necessary since the global scheduéstsygrecedence over
local scheduling events when they occur at the same time.ithshe priority
of the other two, it is simply more convenient to handle a lateiteplete event
before a release event (when they occur at the same time).
As can be seen by the model, we model that scheduling evemstdoon-
sume any time (hence thegentsymbols). The reason for this is to reduce
the complexity of the model. This means that during simafatthe scheduler
produces no overhead. However, running experiments wdutdurse yield
some scheduler overhead, these details will be shown inoBex5.

Observerl is notified about server budget-deple2epleteObs1) and
server release evenBéleaseObs])! this is shown in Figure 9.5.

Clock < S_BudgetEvent
, Clock < S_ReleaseEvent!
AllowServerToRun?

Clock < S_ReleaseEvent, Preemption==FALSE
Clock == S_ReleaseEvent

, S_ReleaseEvent < S_BudgetEvent U S_Release
, S_ReleaseEvent <= NextTaskEvent =
ReleaseObs1!
Clock < S_Rel nt|
, Preemption==TRUE Update queues
’ v
EventHandlerStart! UﬁiComextSwitch

Clock == S_BudgetEvent
, S_BudgetEvent <= S_Relea: nt
, S_BudgetEvent <= NextTaskEvent

Update queues
US_BudgetDepletion|

(DepleteObs1!

Figure 9.5: Model of the global scheduler (simplified).

9.3.2 Event handler

Figure 9.6 shows the model of the event handler. The modindtr its exis-
tence is that it abstracts the number of servers from theajgdheduler, i.e.,
adding/removing servers only affects the number of statdbé event han-
dler and not in the global scheduler. Sirdeannelscannot be declared as ar-
rays, every server requires 2 states (activation and degiot) in this model.
As can be seen in this model, the global scheduler obse®esdrver] is
notified if there is a server scheduling event, and whichessrthat are acti-
vated/deactivated.
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EventHandlerStart?
1 AY NotifyObserverl
Handlerlnit EventObsl Y
S3activate! Slactivate!
GJ S3ActivateEvent )O@Handlersxan )O@ S1ActivateEvent )

S3ActivateObs1! S1ActivateObs1!

Sldeactivate! S3BeActiveObs1l S3deactivate!

U SiDeactivateEvent [“§1peActiveObs1! U S3DeactivateEvent

Figure 9.6: Model of the event handler (simplified).

9.3.3 Local scheduler

The local scheduler model (Figure 9.7) is similar to the glazheduler. Dis-
cretising the time is important for keeping track of eveititsnce the added
time pass state that increments time (clocks are not alldyweectad in timed
automata). The time-pass state is crucial since the lotedader has more
scheduling events to keep track of, compared to the glol&iczder.
Whenever the server is deactivated, it stays in the sleép. dtaactive mode,
the server can release, stop and increment a tasks exectitienlatter goes
back to the statement that a tasks execution is discretesedtions of 1 time
unit of execution.

Observer2is notified of events by getting triggered by the local schedu
through a number of channels.

Each upcoming task scheduling-event must be passed todbealgicheduler
so that it does not schedule a server event (such as deaugitted server) with-
out letting the local scheduler handle task scheduling tsvitnat are earlier in
time. The upcoming task scheduling event is calculatedeiCdcNextEvent
state and stored in tiéextTaskEventvariable, which is visible in the global
scheduler.

DeactivateQbs2! S3 Deactivate? ReleaseObs2!
UNotifyObserverl - AllowServerToRun}
S3clock==1 |S3_Timepass|\ Preemption=gTRUE
S3_Deactivate?\ time:=time+1 S3clock<=1 US3_Release
- S3clock:=0
S3_Sleep Us3 Main Preemption==FALS
S3_Activate? =
AllowServerToRun! Update gueues

UCalcNextEvent

UNotifyObserver2

-U S3_TaskExec .
US3 T1 U S3_T2 NextTaskEvent:=...
taskl S

TaskSwitch==FAL S EventObs2!

U S3_TaskExecEnd \TaskSwitch::TRUE (U S3_ContextSwitch

ActivateObs2!

TaskExecEndOls2!
AllowServerToRun!

Figure 9.7: Model of the local scheduler (simplified).
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All models (including schedulers, observers etc.) can lesved in our
technical report [19].

9.4 \Verification

We have specified 5 respectively 4 properties for each sdbdduel (global/local)
that should be satisfied by our modelled schedulers. We usestwncalled
observer automata that will implement the behavior (properties) tha have
specified. The next step is to use the built in verifier in Timasd simply
construct logic statements (TCTL) that checks if certaiiest are reached in
the observers. The observers will reach these states ittt a scheduling
fault that contradicts our proposed properti@éscrverl is used to verify the
global scheduler, an@bserver?2 is used for the verification of the local sched-
uler. The reason for using observers, instead of only usigig Istatements in
Times, is that the verifier cannot determine the amount oé telapsed from
one location to another, which we need in order to conductveufication.
Naturally, all automata have been checked for the absendeanflock before
proceeding with the verification.

9.4.1 Task/server systems used in the verification

Itis well known that model checking requires a finite modaf ¢us, it might
cause problems when verifying schedulers [20, 21] sincdablks give rise
to unknown factors such as number of tasks, task parametertneessence,
different task sets will give rise to different automatasiions (behavior), so
the scheduler will behave different depending on task gaie.to this, we ex-
plore the fact that the modelled scheduler has a small setheiduling events
(task/server release, task/server suspension, contgghstc.), even when in-
cluding the combinations of these events (as we will see).id#mtify all of
these events, which represents the entire behavior of thexdster. Then we
run the scheduler together with selected task/server lsatsill generate all
of these (combinations of) scheduling events, during thigieation. Alterna-
tively (just to be safe), since the process from modelliegfication down to
synthesis is short, once the model is finished (the verifioaif models in this
size takes just a few minutes on a standard PC), a system caarified with
scheduler and load (task/server) together before deployme

We ran three different task/server systems (system 1, 2 pddrihg the
verification of our scheduler properties. The three systamaspresented in
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Name T | Budget | D | Prio Tasks
Serverl| 19 2 19 | Low {serverl}
Server3| 5 3 5 | High | {s3taskl,s3task2

Table 9.1: Server set (used in system 1 and 2).

Name T | Budget | D | Prio Tasks
Serverl| 19 2 19 | Low {serverl}
Server3| 10 6 10 | High | {s3taskl,s3task2

Table 9.2: Server set (used in system 3).

Table 9.3, 9.4 and 9.5. The corresponding execution tramede found in

Figure 9.9, 9.10 and 9.11. The server parameters used ftamsysl and 2
(Figure 9.9 and 9.10) are listed Table 9.1, and the servanpaters for system
3 (Figure 9.11) is shown in Table 9.2. Figure 9.8 shows a stian trace (in

Times) of system 1, i.e., Figure 9.9.

Name T | C | D | Prio
serverl | - - - -
s3taskl| 10 | 3 10 Low
s3task2| 11 | 1 | 11 | High

Table 9.3: Task set of system 1.

Table 9.6 list all possible scheduling events at the globatll A release
or suspension of a task/server can lead to a context switel).(df not (in
case of suspension), then there will be a switch to an idlddasver, which is
not part of our model, hence we define a context switch onlynathe model
switches between tasks/servers that are defined in the madinultaneous
suspension/release will always lead to a context switchdd\eot differentiate
if the task/server that is released is to be switched in,fdhdre is another
higher priority task/server ready to be switched in. Weat#htiate in that
local scheduling events can occur when its server is adtinetime when its
server activates and the time when its server deactivatesallscheduling
events happen only during the time when its server is actigedrding to the
model). Related to the undefined events in Table 9.7, a taglesision cannot
happen during a server release since it cannot finish itsuéracat the same
time as its server activates. The local scheduler does fietetitiate the cause
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Name T | C | D | Prio
serverl | - - - -
s3taskl| 16 | 4 | 16 | Low
s3task2| 11 | 2 | 11 | High

Table 9.4: Task set of system 2.

Name T | C | D | Prio
serverl | - - - -
s3taskl| 10 | 3 | 10 | High
s3task2| 11 | 1 11 Low

Table 9.5: Task set of system 3.

of its servers activation/deactivation, e.g., there isiffeicntiation if the server
activation is due to a release, or suspension of a higherifgraerver. Hence,
we do not need to consider all possible cases/combinatidnsal and global
scheduling events. All scheduling events in Table 9.6 an@#: referred to the
execution traces presented in systems 1, 2 and 3. Theseutiolgezl/ents will
occur during the verification of the global (section 9.4.8) docal scheduler
(section 9.4.3).

P W W =

coa| ol ol e e e W el LEL it
s Il I It I Il W

Figure 9.8: TIMES simulator (simulating system 1).

9.4.2 Global level verification

In the verification of the global scheduler, we use the sgraeameters shown
in Table 9.1, which will generate all server scheduling ¢sgshown in Ta-
ble 9.6). The following properties are defined (and lateifiesl):

Propertyl : A serverS; (with index ) should never get more that;
budget at any discrete interval (non sliding) of lenfthwhere the first interval
starts at time 0.

Property?2 : A serverS; (with index:) should never get less thah budget
at any discrete interval (non sliding) of length, where the first interval starts



9.4 Verification

121

Server event

Example

Release (c.s.)

Fig. 9.9, time=20

Release (no c.s.)

Fig. 9.9, time=57

Suspend (c.s.)

Fig. 9.9, time=03

Suspend (no c.s.)

Fig. 9.9, time=08

Suspend/Release (c.S

1) Fig. 9.9, time=38

Table 9.6: Server scheduling events.

Task event Server event
Active Activate Deactivate
Release (c.s.) Fig. 9.9, t=11 | Fig.9.10, t=55]| Fig. 9.10, t=33
Release (no c.s.) Fig. 9.11, t=22| Fig.9.10,t=00| Fig. 9.11, t=66
Suspend (c.s.) Fig. 9.11, t=13 - Fig. 9.9, t=23
Suspend (no c.s.) Fig. 9.9, t=06 - Fig. 9.10, t=08
Suspend/Release (c.s}) Fig. 9.11, t=33 - Fig. 9.9, t=33

Table 9.7: Task scheduling events.

at time 0O, if there is unused time within this interval.

Property3 : A serverS; (with indexi:) should always be released (inserted

in the server ready-queue) according to its specified pefjod

Property4 : A server should always be removed from the server ready-

gqueue upon server budget depletion.

Property5 : The highest priority server in the server ready-queue shoul

always be the current running server in the system.

We have modelled a task automata cal@blserverl (Figure 9.13 and

9.14) that will check that each of the 5 properties are felill

Figure 9.12 shows at which server scheduling events theodrsexecutes,

the following list explains each event:

» EventA represents a release event.

» EventB represents the start/stop of a budget (not necessarilyeia-b
ning and end of a budget).

» EventC represents the end of a budget.

» EventD represents the the beginning of a budget in case it was idle

previously.
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Figure 9.9: System 1.
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Figure 9.10: System 2.

Propertyl and Property?2 are checked by the observer by measuring the
server budget, ever® (Figure 9.12) illustrates these event®roperty?2 is
not valid if there is no unused budget within the period, sitftat indicates
a schedulability problem. At evem, a server is activated, and the observer
timestamps this point if no previous server was runningsTinestamp value
is checked at evert together with the measured budget. If the timestamp is
within the period, then there was unused time. At each e¥eRtropertyl and
Property2 are checked. In Figure 9.14, either a transition to dtessBudget
or MoreBudget is made if the budget has been underused or exceeded. Event
D corresponds t&€heckSlack(Figure 9.14). The logical expressions (1) and
(2) in Figure 9.15 checks that there is no path leading totitte states, i.e., for
all paths §), on every state along the patfl), a state is never) visited. The
transition to these error states contradicts the requinésred Propertyl and
Property2. For more details on the modelling of the error states, wectithe
reader to our technical report [19].

Property3 is checked at everk (Figure 9.12). StaténcorrectRelease?2
(Figure 9.14) is active if the global scheduler tries to aske a server at an
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Figure 9.11: System 3.

Figure 9.12:0bserverl events.

incorrect time. A transition to statecorrectReleasel(Figure 9.14) is done
if there should be an incorrect value in the server releaseigyjuwhich does
not match the calculated release time of the observer. We insad the logical
expressions (3) and (4) in Figure 9.15 to chébloperty3 in Times.

Property4 is checked at everit, Figure 9.12. Whenever there is a server
deplete event, the observer checks that the server is n@ddnghe server
ready-queudficorrectDeplete, Figure 9.13). The logical expression (5) (Fig-
ure 9.15) verifies this property.

Propertyb is checked at evert by checking the server ready-queue con-
tent and order, the logical expression used is (6) (Figuts)9 We check that
a server is in the ready queue after its rele@getkQueueContent and that
the queue is ordered correctigiteckQueueOrde), both states are found in
Figure 9.14 Server_Eventis entered whenever there is a server context switch
(Figure 9.13). It is not possible to enter this automata ifa budget deple-
tion or server release has occurré&héckExecution Figure 9.13), this refers
to expression (7) (Figure 9.15). Yet two more expressiomsimportant to
check, (8) and (9) (Figure 9.15), in order to veriBroperty5. Whenever
there is a server release that affects the server readyegusuch a way that it
ends up as the head no@efverCS2 Figure 9.14), then it implies that a server
context switch should occuBgrver Event, Figure 9.13). This is checked in
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EventFlag == RESET
GncorrectRunning UCheckExecution

EventFlag == FINISHED EventFlag == RELEASED
,AbsClock==DeplITstamp\ ,AbsClock==RelTstamp
Csflagl-— Csflag2——

EventFlag := RESET

EventObs1? Y DepleteObs1? S_ReadyQJi] == ActiveServer

U ServerDeplete IncorrectDepIetej
S_ReadyQ]i] != ActiveServel
,i < S_ReadyLen
++

S_ReadyQ][i] != ActiveServer
,i==S_ReadyLen
UServerCS1* pep|Tstamp:=budget

EventFlag:=FINISHED
Csflagl++

U Server_Event ‘Calc. spend budget etc. ‘

Figure 9.13:0bserverl: Server context-switch and depletion.

AbsClock==S_ReleaseQ[0]

(orepusge) RIS Ee0

AbsClock > S_Rel 0
SpendBudget[ID] < S_Budget[ID] Rﬁlspﬂ oﬁcﬂh 17 eleaseQlO]

SlackTstamp > LastPeriod[ID

LessBudget

S_ReadyQ[0]!=ID found==1
SpendBudget(iD] > S_Budget[ID] ,i == S_ReadyLen,ReleaseMore?

ID:=S_ReleaseQIndex[0] ID:=S_ReleaseQIndex[0]

ReleaseMore?

i <S_ReadyLen
SpendBudget[ID]==S_Budget[ID] - i+t
Uy
found == 1,i == S_ReadyLen ® ICheckQueueContent,
S_ReadyQ[0]==ID,CSflag2++ 'S_ReadyQ[i] == ID
UServerCs2, found =1

S_ReadyLen == 0
SlackTstamp:=RelTstamp

UCheckSlack

S_ReadyQJi]<=S_ReadyQ[i+1]
,i < S_ReadyLen

EventFlag:= RELEASED i==S_ReadylLen

UCheckQueueOrder,

Figure 9.14:0bserverl: Server release.

expression (8) (Figure 9.15), for all paths and staté§1f, whenever state
ServerCS2is reached, it implies & ) that at some state in all the upcom-
ing paths ¥ ¢), stateServer.Event is reached andX), at the same time the
conditionC'S flag2 = 0 holds. The condition is that it should happen directly,
i.e., no time should pass. This is a condition in the modelrevltige transitions
betweenCheckExecution and Server_Event checks the elapsed time (Fig-
ure 9.13). Also, there should not be any nesting, i.e., tweeseeleases (where
both imply server context switch) followed by one contexitstv (hence the
checkCS flag2 = 0 in the expression). The same check is made for budget
depletion, expression (9) (Figure 9.15).

9.4.3 Local level verification

During the verification of the local level we use all threektagstems presented
in section 9.4.1, and we use another observer céliegtrver2 (due to space
restrictions we direct the reader to the technical repdt far this figure) to
verify the following 4 properties.

Property6 : Ataskt; (with index:) should always be released (inserted in
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vV O =LessBudget (1)
vV O =MoreBudget (2)
V O —IncorrectReleasel 3)
V O —Incorrect Release2 4)
YV O —IncorrectDeplete (5)
vV O =IncorrectQueue (6)
YV O —Incorrect Running (7)

vO(ServerCS2 —
(V O Server_Event A CS flag2 = 0))  (8)
v 0O (ServerCS1 =
(V O Server_Event A CS flagl =0)) (9)

Figure 9.15: TCTL expressions.

the task ready-queue) according to its specified peFio®R if later, directly
when its server is activated.

Property7 : A task should always be removed from the task ready-queue
upon finishing its execution.

Property8 : The highest priority task in the task ready-queue (in each
server) should always be the current running task in theesgmhen it is active.

Property9 : All tasks should run within their respective server.

The only properties that are different in the local level pamed to the
global level areProperty6 and Property9, we will explain these two briefly.

Property6 is checked with the same expressions as in the global level, b
the local level observer will also allow task releases tbhatcide with its server
releases.

RegardingProperty9, Observer2 assumes that all context switches that
happen during its observation are within the server undseation. Hence,
it is only required to check that no task context switch (vettbie next running
task belongs to the observed server) will occur during sefeactivation. The
property is checked by timestamping all task context sve$ctA transition is
made to an error state if a task context switch occur at the sine as a server
deactivation.
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9.5 Code synthesis

We have synthesised the model into two different kernetllémplementa-
tions; the original model which has fragmented task exeaogtiand that is
fully verified (Section 9.4), and the more simple model (withfragmenta-
tion) where only the global level is fully verified, and the#d level is partially
verified (onlyProperty6 is fulfilled). In the simple model we don’t use any in-
ternal task ready-queue (tasks are just released accdoding release-queue),
hence, the local level cannot be fully verified. We synthesstbese two models
for the sake of comparing the CPU overhead, further, we aldaded our pre-
viously manually coded hierarchical scheduler HSF [5] (asfarence point)
in the comparison. The fragmented model is of course notipedcin terms
of synthesis (real applications cannot have this kind afrfrantation), but still
we show that it is possible to synthesise a fully verified dmiehical scheduler.
Removing the fragmentation (and keeping the full verifmaliis just a mat-
ter of adding dynamic priority support (or the ability to pead tasks) in the
Times tool.

We measured the CPU overhead of all 3 schedulers as well aseimory
consumption. The platform used for the experiments is VX&/@:.6, running
on an Intel Pentium4 (1,66 GHz, uni-core) desktop machirtee TPU over-
head was measured with tegsTimestamp facility and the dynamic memory
consumption was analysed with tiiéind River Workbench Memory Ana-
lyzer. The tasks used in the experiments were executing emptpdps and
the execution times were estimated using the VxWGaiiksex facility. During
the experiments, the tick resolution was set to 1000 Hz. \iv& tene unit in
the system represent 1 scheduler tick.

Scheduler CPU (%)
Times (fragmented) 1.78
Times (non-fragmented 1.36
HSF 0.08

Table 9.8: CPU overhead.

Table 9.8 shows the measured CPU overhead of the schedllersnea-
surements were done in the first 2090 scheduler ticks, he.least common
multiple (LCM) of all task and server periods of system 1. TRU over-
head (%) represents the LCM of all task and server periodsgetivby the
measured execution time of each scheduler. As can be oldsehe non-
fragmented version has less overhead than the fragmeniéth i8 due to less
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Scheduler Dynamic memory | Static memory
Max Average
Times (fragmented) 1646 1646 10874
Times (non-fragmented) 1646 1646 10874
HSF 11456 1692 24

Table 9.9: Memory overhead (bytes).

automaton transitions and task releases. Both generatedders has sub-
stantial more overhead than the manually coded schedgler] ¥ respectively
22 times more CPU overhead. We experimented on the genexadedvith an
optimisation which reduced the amount of scheduler invonatby 50% (1045
instead of 2090 scheduler invocations), however, the ©R overhead was
reduced by only 5%. We have identified more ways to optimisectide, but
we defer this to future work.

Table 9.9 shows the amount of dynamic/static memory usetidgdthed-
ulers. During the actual scheduling (after initialisa)iche memory allocation
of HSF drops down to 1692 bytes. The total memory used (duh@gchedul-
ing) by HSF is 1716 bytes, and for the generated schedulemuitts up to
12520 bytes in total. The conclusion is that there is a similarst-case mem-
ory usage (11480 vs. 12520 bytes), but less CPU overhead By(®183% vs.
1.36%).

Figure 9.16, 9.17 and 9.18 shows the actual runtime execrdimording of
the tasks and servers. As can be seen, our generated sckgéiderre 9.17
and 9.18) gives the same trace as the manually coded schéFigigre 9.16).
What can also be noted is how the fragmented model givestatlgligjfferent
execution trace than the non-fragmented since there are task releases due
to the fact that the task execution is divided into severaltime-unit sections
of execution.

Our execution recorder uses the VxWottkskHookLib and we use the
visualisation tool Grasp [22] to display the recordings.

9.6 Related work

Hierarchical scheduling theory There is a growing attention in that little
prior work has been done on verification of hierarchical sciieg imple-
mentations [23], as compared to the great amount of work baddability
analysis [8, 9, 10, 24, 25, 26, 27, 28] (where there is an aggamthat the
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Figure 9.16: Execution trace of HSF, running system1.

scheduling policy is correctly implemented), which hagmrated from open
systems [2] in the late 1990's.

Hierarchical scheduling implementation Among the implementation work,
Kim et al.[29] propose the SPIRIT uKernel that is based on a two-leP® &
hierarchical scheduling framework, simplifying intedgoat of real-time appli-
cations. A mix of theory and practice is presented in [3] wehtre authors
reason about general scheduling trees with arbitrary sdimedpolicies and
scheduling depths. They also present an implementationiirddWs 2000.
More recently, [5] and [30] implemented a two-level FPPS Hi$SEhe com-
mercial real-time operating systems VxWorks ar@/OS-II.

Scheduler modelling There are two main categories of scheduler modelling,
either the scheduler already exists as an implementatibit &modelled (and
verified) after code analysis or other techniques [31, 3233335, 36], or (as

in our paper) the scheduler is modelled and later verified (@rhaps also
synthesised) [37, 38, 39, 40, 41].

In the area of modelling hierarchical scheduling, the argfio [42] show
how modelling and schedulability analysis of two-levelraiehical schedul-
ing, with timed automata, can be accomplished in the sirmidabol Cheddar.
Ha et al. [43] describes the verification, using theorem-provingvecify the
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Figure 9.17: Execution trace of TIMES scheduler (non-fragted), running
systeml.

IMA scheduler DEQOS, used for safety critical domains suchexgspace and
space. The scheduler assigns a period and budget to eaal,ttire schedul-
ing policy used is RMA. The work of Mulleet al. [44, 45] is most similar
to our work. They use a domain specific language (DSL) to msedeéd-
ulers (including hierarchical schedulers). The diffeeiscthat they verify that
the scheduler is correct with respect to the kernel intesfand not the actual
scheduling policy. Their framework support synthesis famryeLinux kernel
versions. Zerzelidigt al. [46] model a system with multiple schedulers, in-
cluding resource sharing with SRP. The modelling tool UPPA®\used, and
the model is compatible with RTSJ. Each partition (localestifier) has a pri-
ority level, but no release time or budget. The verificatibovss the absence
of livelock/deadlock and the correctness of SRP.

Few papers touch upon the area of code-synthesis in thextafiteched-
uler modelling. Hsiunget al.[47] presents a framework (VERTAF) for devel-
oping real-time embedded software. The application, atagehe scheduler
is specified as UML diagrams. The framework does a transfiom#o ex-
tended timed automata (ETA) and model checking is used {by\@operties
such as livelock and deadlock. The framework supports aydéesis for the
OS'’s MontaVista Linux;C/OS, Embedded Linux, and eCOS dtial.[48] in-
troduce a meta-scheduler framework, compliant with POSIKported OS’s.
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Figure 9.18: Execution trace of TIMES scheduler (fragméhteunning sys-
teml.

Basically, the framework is a middleware layer which usesp@itives, and
it exports an interface to schedulers, which in turn are anpnted by the
users. The correctness of the framework is verified usingdAPPThey im-
plement several flat-schedulers in various platforms (Vi&/dor example),
and they measure the overhead of the schedulers.

To sum up, modelling of hierarchical scheduling has beeredbnt not
specifically for two-tier FPPS with PS. To the best of our kienlge, there
is no prior work on verification of hierarchical schedulinglipies, nor code-
synthesis (from model) for this type of scheduling.

9.7 Conclusion

In this paper we deal with modelling, verification and sysikeof hierarchi-
cally scheduled real-time systems. We have looked at twelleierarchical
scheduling, with fixed priority preemptive scheduling ofipdic tasks/servers.
The scheduler has been modelled using the task-automagadge and the
model was implemented in the Times tool. However, the Timesdoes not
support dynamic change of priorities, nor task suspensibich are two fun-
damental properties required when implementing hieraetlicheduling. In
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the paper we show how to get around this problem through avvative ap-
proach for how the system is modelled.

In addition we modelle@bservers which monitored the behavior of the
schedulers. We implemented rules for the observers, bas#teariteria that
we have specified as properties. These properties are afgtedpehaviors that
comply with hierarchical fixed priority preemptive schedglof periodic tasks
and servers. The observers are then modelled to enter tates § they detect
a contradiction to any of our properties. We check that theeolers do not
enter these error states through the use of model checkiagisé/task/server
systems that stress the schedulers to generate all comobimatf scheduling
events, so that we can verify the entire behavior of the hitiaal scheduler.

The code synthesis results showed a considerable differi@n€PU be-
tween the generated schedulers and an equivalent manodikdscheduler.
However, the worst-case memory consumption showed to biasita each
other.

To sum up, this paper presents a proof of concept, showirtgntbacan
model, verify, and generate source-code that executegartiécal scheduler
on an industrial platform.

As future work, we plan to optimise the synthesis of the mdxyeimple-
menting a new (optimised) code generator. This will makesthrghesis fully
automated, which will open up the possibility to generatgteys in a larger
scale.
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