
Resource Sharing under Server-based Multiprocessor

Scheduling

Sara Afshar, Moris Behnam
Mälardalen University, Västerås, Sweden

{sara.afshar, moris.behnam}@mdh.se

ABSTRACT

In this paper, we investigate a mechanism for handling resource

sharing among tasks under a server-based scheduling technique in

multiprocessor platforms, which combines partitioned and global

scheduling to benefit a better scheduling method compared to

conventional techniques.

1. INTRODUCTION
Semi-partitioned scheduling for multiprocessors benefits from

both conventional global and partitioned approaches such that

most tasks are assigned statically to processors similar to

partitioned scheduling, while a low number of tasks are split and

migrate among processors similar to global scheduling, [1, 2, 3].

Another recent multiprocessor scheduling approach is based on

hierarchical scheduling, which utilizes servers and is called

Synchronized Deferrable Servers (SDS) [4]. Under SDS, similar

to the semi-partitioned approach, some tasks are bound to

processors (non-migrating tasks), while others migrate among

processors (migrating tasks). The key difference with semi-

partitioned scheduling is that in SDS the migrated tasks are

processed within servers allocated to processors. The major

distinction between the semi-partitioned approach and SDS is that

under SDS tasks which migrate between processors may run in

any available server on any processor while in the semi-

partitioned approach each part of a split task always executes on a

specific processor which is determined during the partitioning

phase. Therefore, SDS provides more flexibility to execute

migrating tasks on processors that can improve the schedulability

performance. However, in [4] it is assumed that tasks are

independent, i,e., they do not share any resource. In this paper,

we propose a resource sharing protocol for the case when tasks

under the SDS multi-core hierarchical scheduling share resources

with each other. The main challenge is to adjust the response time

analysis presented in [4] to include the effect of resource sharing.

2. General Description
Our considered system consists of a set of n tasks that run on a set

of m identical processors. One deferrable server is assigned to

each processor that could provide a capacity during partitioning

phase. We define a common replenishment period for all servers

in the system. The scheduling policy includes two levels: (i) a

fixed priority uniprocessor scheduling that schedules non-

migrating tasks along with the server on each core and (ii)

migrating tasks scheduling decision which determines in which

server the non-migrating task execute. Next we develop our

protocol rules based on the SDS structure [4] and inspiration from

the synchronization protocol for semi-partitioned system [5].

1) Local resources are handled by uniprocessor protocols.

2) One global priority-ordered queue (Q) enqueues the ready or

preempted migrating tasks. However, in each processor a

local ready queue enqueues the non-migrating tasks.

3) After a migrating task is released, it is added to Q. The task

at the head of Q executes on a ready server with the available

capacity. If more than one ready server is available, the

server with highest assigned capacity is chosen. If the lowest

priority running task in any server has a priority lower than

that of the task at the head of Q, it will be preempted.

4) A global queue is dedicated to each global resource to

enqueue tasks from different processors which get blocked

on the resource; however one local queue is assigned to each

processor to enqueue local non-migrating tasks that are

granted access to different global resources. The tasks in the

global resource queues can be migrating or non-migrating

tasks. However, the migrating tasks which are granted access

to their requested resource will be inserted and wait in Q.

5) All resources that are requested in the migrating tasks are

assumed global since they can be requested in any processor.

6) The priority of a task accessing a global resource is boosted

to maximum priority to decrease the blocking times of tasks.

7) In order to prevent a migrating task holding a resource to

migrate to another processor, an overrun approach is

performed if the capacity of the server is finished and the

task is in a global critical section.

In our ongoing work we are performing system analysis, and the

challenge is to find an upper bound of the response time of

migrating tasks which share resources with other parts of the

system and can execute in any server on any processor.

3. REFERENCES
[1] J. Anderson, V. Bud, and U. Devi, “An EDF-based

scheduling algorithm for multiprocessor soft real-time

systems,” (ECRTS’05).

[2] S.Kato and N. Yamasaki, “Semi-partitioned fixed-priority

scheduling on multiprocessors,” (RTAS’09).

[3] N. Guan, M. Stigge, W. Yi, and G. Yu, “Fixed-priority

multiprocessor scheduling with Liu and Layland’s utilization

bound,” (RTAS’10).

[4] H. Zhu, S. Goddard, and M. Dwyer, “Response time analysis

of hierarchical scheduling: The synchronized deferrable

servers approach (RTSS’11).

[5] S. Afshar, F. Nemati, and T. Nolte, “Resource sharing under

multiprocessor semi-partitioned scheduling,” (RTCSA’12).

