
Translating End-to-End Timing Requirements to Timing Analysis Model in
Component-Based Distributed Real-Time Systems

Saad Mubeen∗, Jukka Mäki-Turja∗† and Mikael Sjödin∗
∗ Mälardalen Real-Time Research Centre (MRTC), Mälardalen University, Västerås, Sweden

† Arcticus Systems, Järfälla, Sweden

{saad.mubeen, jukka.maki-turja, mikael.sjodin}@mdh.se

Abstract—Often, component-based real-time systems are
modeled with trigger and data chains. The end-to-end timing
requirements on trigger chains are different from those on
data chains. For a trigger chain, the interest lies in the
calculation of holistic response time and its comparison with
end-to-end deadline. Whereas, the schedulability of a data
chain requires a comparison between its end-to-end latencies
and corresponding deadlines. We discuss the problem of
translating end-to-end timing requirements unambiguously
from component-based real-time systems into timing analysis
models which are required as input by the analysis tools. We
also provide preliminary guidelines for such translations in
the existing industrial tool suite.

Keywords-Response-time analysis; end-to-end timing anal-
ysis; timing model; component-based development.

I. INTRODUCTION

Often, component-based real-time systems are modeled
with chains of components that are translated to chains of
tasks at run-time. A task chain is a sequence of more than
one tasks in which every task (other than the first) receives
a trigger, data or both from its predecessor. One way to
classify these chains is as trigger chains and data chains.
In trigger chains, there is only one triggering source (e.g,
event, clock or interrupt) that activates the first task in the
chain which, in turn, triggers the next task and so on. On
the other hand, data chains have independent source of
triggering for every task. Each task (except first) in these
chains receives data from its predecessor. In component-
based real-time systems, the timing requirements such
as end-to-end deadlines on trigger and data chains are
specified in the component model.

The safety-critical nature of many real-time systems
requires evidence that the actions by the system will be
provided in a timely manner, i.e., each action will be taken
at a time that is appropriate to the environment of the
system. Therefore, it is important to make accurate pre-
dictions of the timing behavior of such systems. For this
purpose, a priori analysis techniques such as schedulability
analysis have been developed by the research community.
The analysis tools operate on the timing analysis model
which should be extracted from the modeled application.
The end-to-end timing requirements should be unambigu-
ously translated to the analysis model from the component
model of the real-time application.

In this paper, we discuss the problem of translating
the end-to-end timing requirements into analysis model
from single-node as well as distributed real-time systems
that are developed using component-based approach. We
also provide preliminary guidelines for such translations in
the industrial tool suite, Rubus-ICE, used for component-
based development of distributed real-time systems.

II. BACKGROUND AND RELATED WORK

A. Response Time Analysis (RTA)

RTA [1], [2] is a powerful, mature and well estab-
lished schedulability analysis technique. It is a method
to calculate upper bounds on response times of tasks (or
messages) in a real-time system (or a network). RTA
applies to systems where tasks are scheduled with respect
to their priorities and which is the predominant scheduling
technique used in real-time operating systems today [3].

1) RTA of tasks with offsets: Tindell [4] developed the
response-time analysis for tasks with offsets for fixed-
priority systems. It was extended by Palencia and Harbour
[5]. Mäki-Turja and Nolin [6] reduced pessimism from the
offset-based RTA. In this work we will consider the tighter
version of the offset-based RTA [6] as part of the end-to-
end response-time and latency analysis.

2) RTA of Messages in a Network: In this paper, we
will focus only on Controller Area Network (CAN) [7]
and its high-level protocols. Tindell et al. [8] developed
the schedulability analysis for CAN. It was revisited and
revised by Davis et al. [9]. In [10], Davis et al. extended
the analysis for CAN network with a mix of priority- and
FIFO-queued nodes. In [11], [12], Mubeen et al. extended
the existing analysis to support RTA of mixed messages
in CAN with priority- and FIFO-queued nodes. Later on,
Mubeen et al. [13] extended the existing analysis for CAN
to support mixed messages that are scheduled with offsets.
In this work we will consider all of the above analysis as
part of the end-to-end response-time and latency analysis.

3) Holistic RTA (HRTA): It calculates the upper bounds
on the response times of event chains that may be
distributed over several nodes in a distributed real-time
system. It combines the analysis of tasks in nodes and
messages in a network. We consider the HRTA that
corresponds to the analysis in [14].

B. End-to-End Latency Analysis

Stappert et al. [15] formally described end-to-end timing
constrains in automotive domain. In [16], Feiertag et al.
presented a framework for the computation of end-to-
end latencies for multi-rate automotive embedded systems.
They emphasized on the importance of two end-to-end la-
tencies, i.e., “maximum age of data” and “first reaction” in
control systems and body electronics domains respectively.
A scalable technique for the computation of end-to-end
latencies based on model checking is described in [17]. In
this work, we will consider the analysis discussed in [16].

C. The Rubus Concept

Rubus is a collection of methods and tools for model-
and component-based development of dependable embed-
ded real-time systems. Rubus is developed by Arcticus
Systems [18] in close collaboration with several academic



and industrial partners. Rubus is today mainly used for de-
velopment of control functionality in vehicles. The Rubus
concept is based around the Rubus Component Model
(RCM) [19] and its development environment Rubus-ICE
(Integrated Component development Environment), which
includes modeling tools, code generators, analysis tools
and run-time infrastructure. The overall goal of Rubus is to
be aggressively resource efficient and to provide means for
developing predictable and analyzable control functions in
resource-constrained embedded systems.

RCM expresses the infrastructure for software func-
tions, i.e., the interaction between software functions in
terms of data and control flow separately. The control
flow is expressed by triggering objects such as internal
periodic clocks, interrupts, internal and external events.
In RCM, the basic component is called Software Circuit
(SWC). The execution semantics of an SWC is simply:
upon triggering, read data on data in-ports; execute the
function; write data on data out-ports; and activate the
output trigger. Recently, RCM is extended to support the
development of distributed real-time systems [20], [21].

1) The Rubus Analysis Framework (RAF).: The Rubus
model allows expressing real-time requirements and prop-
erties at the architectural level. For example, it is possible
to declare real-time requirements from a generated event
and an arbitrary output trigger along the trigger chain.
For this purpose, the designer has to express real-time
properties of SWCs, such as Worst Case Execution Times
(WCETs) and stack usage. The scheduler will take these
real-time constraints into consideration when producing a
schedule. For event-triggered tasks, response-time calcu-
lations are performed and compared to the requirements.
RAF supports distributed holistic response-time analysis
and shared stack analysis.

III. RESEARCH PROBLEM

A. Problem Statement

A component-based real-time system can be modeled
with trigger chains (see Figure 4), data chains (see Figure
1) or a combination of both. The end-to-end timing
requirements on trigger chains are different from those on
data chains. If the system is modeled with trigger chains
then the interest, from the schedulability point of view, lies
in the calculation of their end-to-end or holistic response
times. Hence, the end-to-end deadline requirements placed
on trigger chains correspond to holistic response times.
In order to check the schedulability of such systems, the
holistic response times are compared to the corresponding
deadlines. If the holistic response times of all trigger
chains are less than or equal to the corresponding dead-
lines, the system is considered schedulable.

On the other hand, merely computing the holistic re-
sponse times and comparing them with corresponding end-
to-end deadlines is not sufficient to predict the complete
timing behavior of the real-time system that is modeled
with data chains. There may be over and under sampling
in a real-time system due to data chains with independent
and varying clock periods for individual tasks. This may
cause some values in the data buffers to be over written
by new values and hence, the effect of the old values
may never propagate to the output. Further, it is also
possible to have several duplicates of the output. In such
systems, the end-to-end timing requirements, especially in
automotive domain [16], are placed on the first reaction
to input and age of the data at output. Hence, it is also
important to compute the end-to-end latencies (or delays)

in such systems. The end-to-end latency refers to the time
elapsed between the arrival of a signal at the first task and
production of actuation signal (in response to the input
signal) by the last task in a data chain [17].

In a real-time system that contains only trigger chains,
tasks in a chain are not activated by independent events, in
fact, there is only one activating event in the chain. Hence,
holistic response times and end-to-end latencies will have
equal values. On the other hand, these values are not the
same for the systems modeled with data chains. Therefore,
a complete analysis of a real-time system modeled with
data chains requires the calculation of not only holistic
response times but also end-to-end latencies.

When real-time systems are modeled with both trigger
and data chains then end-to-end timing requirements are
specified on both types of chains in the component model.
These requirements should be unambiguously translated
into the analysis model which is required by the analysis
tools (implementing end-to-end timing analysis). In such
systems, the translation of modeled timing requirements
and corresponding timing information into a analysis
model is challenging due to several issues.

The first issue is the identification of each individual
chain with respect to its type from the modeled applica-
tion. This issue becomes more challenging in the case of
mixed-type chains, i.e., when some tasks in the chain are
activated by a single trigger while others are activated by
independent triggers as shown in Figure 6. The end-to-end
timing requirements in such task chains can correspond
to both end-to-end response times and latencies. Another
related issue arises when a task chain mimics as a data
chain as well as a trigger chain by means of trigger merges
as shown in Figure 7. A similar ambiguity exists in the
extraction of distributed transactions that contain mixed
messages [11], [12] in the network in distributed real-time
systems.

Not only such chains should be unambiguously iden-
tified, their end-to-end timing requirements should also
be translated to the end-to-end timing analysis model.
Another issue is to extract the tracing information in
each chain (from initiator to the terminator). This can be
challenging in the case of distributed real-time systems
because a distributed transaction may comprise of a data
chain in one node and trigger chain in another while these
chains communicate via network messages. Finally, the
network timing and message-related information should
also be extracted when data chains are distributed over
several nodes.

We proposed a method to trace trigger chains in
component-based distributed real-time systems in [21].
A method is needed for the identification, tracing, and
extraction of data chains from component-based real-time
systems; and unambiguous translations of their end-to-end
timing requirements into the timing analysis model.

Now, we discuss what do we mean by end-to-end timing
requirements in data and trigger chains.

B. End-to-end timing requirements in data chains

A single-node real-time system modeled with three
SWCs in RCM is shown in Figure 1. These SWCs are
activated by independent clocks with different periods,
i.e., 8ms, 16ms and 4ms respectively. SWC A reads the
input signals from the sensors while SWC C produces
the output signals for the actuators. Assume that each
SWC will be allocated to an individual task by the run-
time environment generator. Also assume that WCET of
each task is one time unit.



8 ms 16 ms 4 ms

SWC_A SWC_CSWC_BSensor Input Data sink

Figure 1. RCM model of a data chain in a single-node real-time system

The time line corresponding to the run-time execution of
the three tasks (corresponding to three SWCs) is depicted
in Figure 2. It can be seen that there are multiple outputs
corresponding to a single input signal. The four end-to-end
latency semantics are identified in Figure 2.

LIFO = 10

5 10 15 20 250 30 40 45 5035

5 10 15 20 250 30 40 45 5035

5 10 15 20 25

�C

0 30 40 45 5035

LILO (Data Age Latency) = 22
FIFO (Data Reaction Latency) = 26

FILO = 38

�B

�A

Figure 2. End-to-end latencies of a data chain in a real-time system

1) Last In First Out (LIFO): This latency is equal to the
time elapsed between the current non-overwritten release
of task τA (i.e., input) and corresponding first response of
task τC (i.e., output).

2) Last In Last Out (LILO): This latency is equal to the
time elapsed between the current non-overwritten release
of task τA and corresponding last response of task τC .
This latency is identified as “Data Age” in [16]. Data
age specifies the longest time data is allowed to age from
production by the initiator until the data is delivered to
the terminator. This latency finds its importance in control
applications where the interest lies in the freshness of the
produced data.

3) First In First Out (FIFO): This latency is equal to
the time elapsed between the previous non-overwritten
release of task τA and first response of task τC corre-
sponding to the current non-overwritten release of task
τA. This latency is identified as “Data Reaction” in [16].
Data reaction is the longest allowed reaction time for data
produced by the initiator to be delivered to the terminator.
This latency finds its importance in the body electronics
domain where first reaction to input is important.

4) First In Last Out (FILO): This latency is equal to the
time elapsed between the previous non-overwritten release
of task τA and last response of task τC corresponding to
the current non-overwritten release of task τA.

The data chains may also be distributed over more than
one nodes in distributed real-time systems. Consider a
model of a two-node distributed real-time system modeled
with RCM as shown in Figure 3. The nodes are connected
to a CAN network. The internal model of the nodes is also
shown in Figure 3. In Node A, SWC A is triggered by
a clock with a period of 8ms. The OSWC A component
that is responsible for sending a message to the network
is triggered by another clock with a period of 16ms. The
ISWC C is a component that receives a message from
the network and is activated by a clock with a period

of 4ms. Assume that each component is allocated to a
separate task at run-time, i.e., the components SWC A,
OSWC A and ISWC C are allocated to tasks τA, τB
and τC respectively. Since, the system consists of tasks
with similar activation patterns and periods as compared
to the tasks in the single-node real-time system example
discussed above, it can be scheduled in a similar manner
as indicated by τA, τB and τC in Figure 2. The end-to-end
latencies are also defined in a similar fashion.

Node CNode A CAN

Node C

4 ms

ISWC_C Actuation 
Signal

Node A

8 ms

SWC_A OSWC_ASensor 
Input

16 ms

Figure 3. RCM model of a data chain in a distributed real-time system

C. End-to-end timing requirements in trigger chains

An example of a trigger chain that consists of three
components is shown in Figure 4. Assume that each
components corresponds to a task at run-time. When
task τSWC A finishes its execution, it triggers τSWC B .
Similarly, τSWC C can only be triggered by τSWC B

after finishing its execution. There cannot be multiple
outputs corresponding to a single input signal. In fact,
there will always be one output of the chain corresponding
to the input trigger. The focus in a trigger chain is on the
calculation of the holistic response-response time only.
Hence, the end-to-end timing requirements correspond
to the holistic response times. In order to provide a
comparison of holistic response time in a trigger chain
with the end-to-end latencies in a data chain, assume that
the trigger chain shown in Figure 4 is the only chain
of tasks in the system. Let the priorities of all tasks be
the same while WCET of each task is 1ms. The holistic
response time of this trigger chain is equal to the response
time of τSWC C which is, intuitively, equal to 3ms.

�����

��	
� ��	
	��	
��������	�
�� ��������

Figure 4. RCM model of trigger chain in a single-node real-time system

Distributed real-time systems can also be modeled with
trigger chains. Consider a model of a two-node distributed
real-time system modeled with RCM as shown in Figure 5.
There is only one triggering ancestor in node A that
activates SWC A. The ISWC C in only activated when
an interrupt is raised due to the arrival of a CAN message
at node C. Once again, the end-to-end timing requirements
correspond to end-to-end response times.

����	

�����

���	
	 ����������
������

�����

�����

��	
� ���	
��������
	�
��

�����

Figure 5. RCM model of trigger chain in a distributed real-time system

IV. GUIDELINES FOR THE SOLUTION

We provide preliminary guidelines for the development
of a method to identify, trace and extract data chains from



	
�� 	
���	
����������	�
�� ��������	
���	
���

���� ����� ����

Figure 6. RCM model of a mixed-type chain

������
	�
�� ��	
� ��	
� ��	
	

����� �����

��������

�������������

Figure 7. RCM model of a data chain containing trigger merges

component-based real-time systems. The method will also
support unambiguous translations of the end-to-end timing
requirements specified on data and trigger chains into the
analysis model. The new method will be adapted from the
existing method in Rubus-ICE [21] to extract the complete
tracing information from all data chains.

We will introduce a new object in the component
model called trigger map that will extract the triggering
information for each task in every chain. Based on this
information in the trigger map, an iterative method will
determine whether the triggering of every two neighboring
tasks in a chain is dependent or independent of each other.
If all the triggers are dependent on the initial trigger then
the chain will be identified as a trigger chain. If there exists
at least one trigger, in the signal map of a chain, that is
independent of the rest then the chain will be identified as
a data chain. If trigger merges are identified in the trigger
map of a chain, it will be regarded as the a data chain. This
method will be iterated for all the chains in the system.

The new method will translate the extracted timing
information and the trigger map to the analysis model
that will input to the analysis tools in XML format. Based
on this model, the analysis tools will perform end-to-end
response-time and latency analysis. When this method is
fully developed, we will implement it in Rubus-ICE as a
proof of concept. We believe, this solution will also be
applicable to several other component models for real-
time systems that use a pipe-and-filter style for component
interconnection, e.g., ProCom [22].

V. SUMMARY

We discussed the problem concerning the issues that
arise when end-to-end timing requirements are translated
into the analysis model from component-based real-time
systems that are modeled with data and trigger chains.
The end-to-end timing requirements on trigger chains are
different from those on data chains. We distinctively iden-
tified these requirements in data and trigger chains within
single-node and distributed real-time systems. These tim-
ing requirements should be unambiguously translated into
the analysis model which serves as an input to the analysis
tools integrated with the component model. We provided
preliminary guidelines for the development of a method
to identify, trace and extract data chains and unambiguous
translations of their end-to-end timing requirements into a
analysis model. Currently, we are developing this method
and, in parallel, implementing the end-to-end latency anal-
ysis in Rubus-ICE. We plan to provide a proof of concept
by conducting an industrial case study using Rubus-ICE.

ACKNOWLEDGEMENT
This work is supported by the Swedish Knowledge

Foundation (KKS) within the project FEMMVA. The

authors would like to thank the industrial partners Arcticus
Systems and Volvo Construction Equipment, Sweden.

REFERENCES

[1] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings, “Fixed
priority pre-emptive scheduling:an historic perspective,” Real-Time
Systems, vol. 8, no. 2/3, pp. 173–198, 1995.

[2] L. Sha, T. Abdelzaher, K.-E. A. rzén, A. Cervin, T. P. Baker,
A. Burns, G. Buttazzo, M. Caccamo, J. P. Lehoczky, and A. K.
Mok, “Real Time Scheduling Theory: A Historical Perspective,”
Real-Time Systems, vol. 28, no. 2/3, pp. 101–155, 2004.

[3] M. Nolin, J. Mäki-Turja, and K. Hänninen, “Achieving Industrial
Strength Timing Predictions of Embedded System Behavior,” in
ESA, 2008, pp. 173–178.

[4] K. W. Tindell, “Using offset information to analyse static priority
preemptively scheduled task sets,” Dept. of Computer Science,
University of York, Tech. Rep. YCS 182, 1992.

[5] J. Palencia and M. G. Harbour, “Schedulability Analysis for Tasks
with Static and Dynamic Offsets,” Real-Time Systems Symposium,
IEEE International, p. 26, 1998.

[6] J. Mäki-Turja, , and M. Nolin, “Tighter response-times for tasks
with offsets,” in Real-time and Embedded Computing Systems and
Applications Conference (RTCSA). Springer-Verlag, August 2004.

[7] Robert Bosch GmbH, “CAN Specification Version 2.0,” postfach
30 02 40, D-70442 Stuttgart, 1991.

[8] K. Tindell, H. Hansson, and A. Wellings, “Analysing real-time
communications: controller area network (CAN),” in Real-Time
Systems Symposium (RTSS) 1994, pp. 259 –263.

[9] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller Area
Network (CAN) schedulability analysis: Refuted, revisited and
revised,” Real-Time Systems, vol. 35, pp. 239–272, 2007.

[10] R. I. Davis, S. Kollmann, V. Pollex, and F. Slomka, “Controller
Area Network (CAN) Schedulability Analysis with FIFO queues,”
in 23rd Euromicro Conference on Real-Time Systems, July 2011.

[11] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Extending schedula-
bility analysis of controller area network (CAN) for mixed (peri-
odic/sporadic) messages,” in 16th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA), sept. 2011.

[12] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Response-time analysis
of mixed messages in controller area network with priority- and
FIFO-queued nodes,” in 9th IEEE International Workshop on
Factory Communication Systems (WFCS), may 2012.

[13] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Worst-case response-
time analysis for mixed messages with offsets in controller area
network,” in 17th IEEE Conference on Emerging Technologies and
Factory Automation (ETFA), sept. 2012.

[14] K. Tindell and J. Clark, “Holistic schedulability analysis for
distributed hard real-time systems,” Microprocess. Microprogram.,
vol. 40, pp. 117–134, April 1994.

[15] F. Stappert, J. Jonsson, J. Mottok, and R. Johansson, “A Design
Framework for End-To-End Timing Constrained Automotive Ap-
plications,” in Embedded Real-Time Software and Systems (ERTS),
2010.

[16] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A Com-
positional Framework for End-to-End Path Delay Calculation of
Automotive Systems under Different Path Semantics,” in Workshop
on Compositional Theory and Technology for Real-Time Embedded
Systems (CRTS), dec. 2008.

[17] A. C. Rajeev, S. Mohalik, M. G. Dixit, D. B. Chokshi, and
S. Ramesh, “Schedulability and end-to-end latency in distributed
ecu networks: formal modeling and precise estimation,” in Pro-
ceedings of the tenth ACM international conference on Embedded
software, ser. EMSOFT ’10. ACM, 2010, pp. 129–138.

[18] “Arcticus Systems,” http://www.arcticus-systems.com.
[19] K. Hänninen et.al., “The Rubus Component Model for Resource

Constrained Real-Time Systems,” in 3rd IEEE International Sym-
posium on Industrial Embedded Systems, June 2008.

[20] S. Mubeen, J. Mäki-Turja, M. Sjödin, and J. Carlson, “Analyzable
modeling of legacy communication in component-based distributed
embedded systems,” in 37th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), Sep. 2011, pp.
229–238.

[21] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Extraction of end-
to-end timing model from component-based distributed real-time
embedded systems,” in Time Analysis and Model-Based Design,
from Functional Models to Distributed Deployments (TiMoBD)
workshop. Springer, October 2011, pp. 1–6.

[22] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic,
“A Component Model for Control-Intensive Distributed Embedded
Systems,” in Proceedings of the 11th International Symposium on
Component Based Software Engineering (CBSE2008).


