A Method to Formally Evaluate Safety Case
Arguments against a System Architecture Model

Stefan Bjornander and Rikard Land Patrick Graydon and Kristina Lundqvist
School of Innovation, Design, and Technology Department of Computer Science
Milardalen University
Visterds, Sweden
{patrick.graydon kristina.lundqvist}
@mdh.se

System Safety
CrossControl AB
Visterds, Sweden

{stefan.bjornander,rikard.land}
@crosscontrol.com

Abstract—For a large and complex safety-critical system,
where safety is ensured by a strict control over many properties,
the safety information is structured into a safety case. As a small
change to the system design may potentially affect a large section
of the safety argumentation, a systematic method for evaluating
the impact of system changes on the safety argumentation would
be valuable.

We have chosen two of the most common notations: the Goal
Structuring Notation (GSN) for the safety argumentation and
the Architecture Analysis and Design Language (AADL) for the
system architecture model. In this paper, we address the problem
of impact analysis by introducing the GSN and AADL Graph
Evaluation (GAGE) method that maps safety argumentation
structure against system architecture, which is also a prerequisite
for successful composition of modular safety cases.

In order to validate the method, we have implemented the
GAGE tool that supports the mapping between the GSN and
AADL notations and highlight changes in impact on the argu-
mentation.

Index Terms—Safety Argumentation; GSN; AADL

I. INTRODUCTION

For a large complex industrial safety-critical system, the
safety is ensured by a strict control over many properties,
some related to management and processes, others to the
technical characteristics of the system and its components. All
this information is structured into a safety case, see e.g. [1].
The sheer size of the information to be included in the safety
case requires it to be structured in a systematic way. A small
change to the system design during development, or a change
requested after the system has been put in operation may
potentially affect a large section of the safety argumentation. A
systematic method for evaluating the impact of system changes
on the safety argumentation would be very valuable.

When tracing potential changes in the system onto the safety
argumentation, a number of questions arise. Will the safety
claims still hold or will the system violate previous premises?
How much reverification and revalidation is required?

In this paper, we present the GAGE method, which we
have developed recently. It helps the safety engineer to answer
these, and related questions, by mapping elements of a system
model to the affected parts of the corresponding safety argu-
ments (GAGE stands for GSN and AADL Graph Evaluation).

Philippa Conmy

University of York
York, Great Britain
philippa.conmy
@york.ac.uk

There are many ways to organize and present a safety case.
In its simplest form, it can be written in natural language
using a word processor. A more methodical approach is to
use a semi-formal structure, such as the Claims, Arguments
and Evidence (CAE) notation, which is a simple yet effective
notation, or the Goal Structuring Notation (GSN), which is a
graphical notation. We have chosen to use GSN for defining
the safety case. In GSN, claims and evidences are termed goals
and solutions, respectively.

We have chosen AADL for modeling the system archi-
tecture. AADL is commonly used in industry, e.g., in the
fields of avionics and automobile. However, the general idea
is applicable to other modeling languages, e.g., UML [2].

The contributions of this paper are: (1) the GAGE method,
which maps a GSN safety argument to an AADL model of the
system architecture; and (2) the GAGE tool, which assesses
consistency between the argument and architectural model.

The rest of this paper is organized as follows: in Section II,
we give some background information regarding GSN and
AADL. Section III explains the GAGE method, and Section IV
discusses its validity. In Section V, we discuss formalization
of different kinds of safety arguments, and the paper is
concluding with related work (Section VI) and conclusions
and further work (Section VII).

II. BACKGROUND

This section gives some background information about GSN
and AADL. Our intention is that the description and examples
provided will give sufficient information to understand the
context of our research and our method. For full reference,
see [3] and [4].

A. The Goal Structuring Notation

GSN is a notation designed for organizing and commu-
nicating a safety case by providing an argument structure
with the purpose of convincing the reader that the system
is reasonably safe. One important point of GSN is that the
structure only states that the system is safe enough, absolute
safety is regarded an unobtainable goal. Another important
point is that the safety context of the system always must be
defined, since context-free safety is impossible to argue.



System can
tolerate single
component

Argument by
elimination of all
hazards

Fault Tree
for Hazard
H1

failures
Goal Solution Strategy
All ldentified
System
Hazards
Undeveloped Goal
Context

(to be developed further)

Figure 1: The elements of a GSN safety case as illustrated by
Kelly and Weaver [4].

G1: The hazard ‘The airbag remains
uninflated for too long following a
crash’ is sufficiently managed.

N

G2: All relevant G3: The ftf,aﬁiiiﬂ,w
software components airbag inflates that inflation
conform to MISRA C within 50 ms. within 60 ms
2004. (Formal: ...) (Formal: ...) is sufficient.

S1: The
variable names
have been
examined by
an external
reviewer

$2: End-to-end

timing tests

Figure 2: A GSN safety case involving an airbag system (the
formal argument specifications have been abbreviated and are
stated in Listing 2).

GSN represents the individual elements of the safety case;
that is, strategies, goals, solutions, and contexts. It also shows
the relationship between evidence and safety goals; that is,
how strategies are supported by specific goals, how goals are
supported by solutions, and the contexts defined for the goals.
Figure 1 illustrates the graphical notation of the elements.

Figure 2 illustrates part of an example GSN safety argument
that illustrates why developers believe that their mitigation of a
hazard is adequate. In this case, the airbag remains uninflated
for too long following a crash. Figure 2 includes three goals
expressed in natural language. Of these, goals G2 and G3 are
also expressed formally in terms of the system’s AADL model.
They are more closely described in Section IV.

The safety case of Figure 2 illustrates only part of a real
complete safety case. Some of the goals have been omitted
due to space limitations.

B. Architecture Analysis and Design Language

AADL is an Architecture Description Language (ADL)
intended for the design of both the system hardware and soft-
ware. The component abstractions of AADL are separated into
three categories: application software (thread, thread group,
process, data, and subprogram), execution platform (processor,
memory, device, and bus), and the system component, which
allows systems to include other systems as well as software
or hardware components.

accelerometer gyroscope

outSpeed outéngle
airBagControlUnit
inSpeed inAngle
inLeftPressure inRightPressure < f——
Ezttjggr“;ﬁgz:tg: outRightSeatActuatar 21—
outRightSideActuator
inFrontFressure
lefiSidelnfiator ightSidelnflator
—1 inTrigger
5d inTrigger
leftSeatinflator rightSeatinflator
inTrigger
98 inTrigger
leftPressureSensar rightPressureSensor
—{~. outPressure

outFressure

frontPressireSensor

outPressure

Figure 3: System architecture of an airbag control system.

Components communicate with each other through ports
and it is possible to define physical port-to-port connections.
Component definitions are divided into component types hold-
ing the public (visible to other components) features, and
component implementations that define the private parts of the
component and can hold subcomponents that are instances of
other components (equivalent to classes and objects in object-
oriented languages).

Figure 3 illustrates an example of an airbag control system.
The system consists of three pressure sensors placed at the
front and the two sides of the car, four inflators for airbags
in the front seats and at the sides. There are also connections
to the accelerometer and a gyroscope. However, the central
part of the system is the airbag control unit, which receives
information from the pressure sensors and notifies the airbag
inflators in case of a collision.

III. THE GAGE METHOD

We have developed the GAGE method that parses and maps
the safety case against the system architecture. The basic idea
is to bridge the gap between the safety case and the system
architecture by traversing the safety arguments and evaluating
them against the properties of the components of the system.
The safety case and the system architecture are orthogonal,
one GSN element might correspond to many AADL elements
and vice-versa. Thus, it is difficult to isolate one part of the
safety argument structure and compare it to one part of the



system. Instead, our approach is to evaluate the whole safety
case in order to find areas of argument that are inconsistent
with the AADL model.

Step 1
Organize the system architecture as a directed acyclic
graph.

A4

Step 2

Organize the safety case as adirected acyclic graph,
where each formal argument is connected to a
Boolean expression.

A

Step 3
For each argument, identify the goals supporting the
argument in the structure.

A4

Step 3.1
For each argument stated with formal form:

A

Step 3.1.1

Evaluate the Boolean expression, connected to the
formal argument, over the architecture components
(using component propositions).

A4

Step 3.1.2

If the Boolean expression is false, we report a
mismatch between the safety argument and the
software architecture.

Figure 4: A Flow Chart of the GAGE Method.

The GAGE method is illustrated in Figure 4. Step 3 (with
sub-steps) is a deterministic step-by-step procedure suitable
for automated execution.

IV. VALIDATION

In order to validate our approach we have developed the
GAGE tool, which we have tested on the airbag example of
Section II-B (Figure 3). As a next step, we plan to apply the
method to an industrial safety-critical system. The three stages
of validation, tool implementation, application to an example,
and application to an industrial system, are described in the
three following subsections.

A. Tool Support

The GAGE tool evaluates a safety case against a system
architecture in accordance with the GAGE method. The input
is a GSN safety case and an AADL system architecture model.
The tool is written in Java and reads source code defined in
XML. An AADL model can be stored in three different file
formats: plain source code (.aadl), source code in XML format
(.aaxl), and source code in XML with graphical annotations
(.aaxldi). The tool reads the source code in XML format. The
tool implements the GAGE method of Section III.

Listing 1 The AADL model definition of a pressure sensor as
part of an airbag system.

device PressureSensor
features
outPressure:
properties
Info => ”"ReactionTime=5";
Info => ”MisraC=true ”;
end PressureSensor;

out event port;

Each AADL component can be annotated with one or
several properties named Info holding a name-value pair. For
instance, the pressure sensor (which is part of the airbag
definition of Section IV-B) defined in Listing 1 hold the
properties ReactionTime and MisraC. For each formal goal,
the tool traverses the subcomponents and evaluates the value
of the Boolean expression by inspecting the property values.

B. The Airbag Example Revisited

In this section, we take another look at the airbag example
of Section II-B and Figure 3. It can be argued that an airbag
system constitutes a safety-critical system, since if it becomes
inflated too late (or not at all) a person runs the risk of serious
injuries. On the other hand, if it does not inflate as expected,
the situation does not become worse, compared with a non-
present airbag in the first place.

Moreover, the airbag may cause damage if it inflates at the
wrong time. For instance, if the driver seat airbag becomes
inflated when the car is driven at high speed, it may cause a
serious traffic accident. The AADL source code of the airbag
system is given in Listing 4.

In order for the airbag to work properly, it has to become
inflated within 50 milliseconds after one of the pressure
sensors detects a collision. This condition (which is stated
as goal G2 in the safety case of Figure 2) can formally be
stated in the summary attribute in the XML-code of the safety
case, see Listing 2. Since less-than (<) and greater-than (>)
characters are not allowed in XML elements, we have instead
used the FORTRAN relational operators (‘.le.” instead of ‘<=").

In the claim, we want to make sure the total reaction time for
the airbag system is less-than or equal to 50 milliseconds. This
can be viewed as a graph searching problem; we want to find
the longest path (corresponding to the maximum reaction time)
from any of the pressure sensors to any of the airbag inflators.
We can also make sure the software of each component has
been developed in compliance with the MISRA-C standard [5]
(goal G3 in Figure 2).

The function path_set(start_set,end_set) returns the set
of paths (lists of components) from any component in the
start set to any component in the end set. The function
evaluate(path_set, function, property) applies the given
function (sum and and in Listing 2) and the given property
value (ReactionTime and MicraC' in Listing 2) on each
path, and returns a set of resulting values (one value for each
path). The function sum(value_set) return the sum of all
values in the set, max(value_set) returns the largest value



Listing 2 A formal GSN safety case as input to the GAGE
tool.

<goal name="G3” formal=
"max(evaluate (path_set(set(leftPressureSensor ,
frontPressureSensor ,
rightPressureSensor),
set(leftSeatInflator ,
rightSeatInflator ,
leftSideInflator ,
rightSidelInflator)),
sum, ReactionTime)).le.50”/>
<goal name="G2” formal=
“and(evaluate (path_set(set(leftPressureSensor ,
frontPressureSensor ,
rightPressureSensor),
set(leftSeatInflator ,
rightSeatInflator ,
leftSideInflator ,
rightSidelInflator)),
and, MisraC))”/ >

Listing 3 The result of the GAGE tool execution.

Goal G2:
Goal G3:

Conditional expression satisfied.
Conditional expression satisfied.

of the set, and(value_set) returns true if all values in the set
are true'.

The tool then gives the output in accordance to Listing 3.
Each formal GSN claim is evaluated against the AADL
properties in order to decide whether the claim is consistent
with the architectural model.

By this example, we have validated the GAGE method
internally; that is, we have shown that it is possible to
implement the method with the expected result. However, the
formal goals of Listing 2 are to some extent simplifications,
see Section V for a discussion.

C. Case Study

CrossControl AB is a Swedish company manufacturing
safety-critical products. We plan to, in the near future, develop
a safety case based on one of CrossControl’s safety-critical
products. The product is a display computer including both
software and hardware. It comes equipped with an Intel
processor, a touch screen, the Linux operating system, and
the Qt graphical system. It does also provide safety-critical
functionality monitoring the execution, such as supervision
of safe display rendering and safe sound management. The
product specification includes eight safety functions. We are
in the process of modeling the product in AADL and its safety
argumentation in GSN, which will give us a comprehensive
validation and provide us with feedback regarding the appli-
cability of the GAGE method to a real-world case [6] as well
as its limitations, which will help us improve the method and
the tool. The case study will include a model of the system
architecture in AADL and a safety case in GSN based on the

IThe sum, maz, and and functions can also be called with a list as
argument. In that case, the list becomes converted into a set and all duplicates
are removed.

safety functions. We also plan to investigate the strategy and
context GSN elements.

V. DISCUSSION AND LIMITATIONS

Most safety arguments up to date are informal and intended
for human readers, and clearly not all arguments are possible
to formalize. However, since there are obvious advantages with
arguments that can be automatically evaluated, an interesting
research question is to examine which arguments are suitable
to formalize and what limitations there are for formalization.

One ever-present challenge when modeling is to abstract
away details while avoiding over-simplification. Crucial for
the argument whether the system (not the model) is sufficiently
safe for humans is how well any model reflect the reality, and
not least how well the chosen properties can represent the rich-
ness and complexity of the system (including issues related to
processes, management, humans, training, competence, etc.).
For instance, in the example of Section IV-B we chose to
require MISRA-C [5] compliance for all software components,
which is in line with many safety standards. Furthermore,
we chose to represent it as a Boolean value, which makes it
relatively straightforward to parse, map, evaluate, etc. MISRA-
C does indeed includes rules which are required and can be
automated, such as the prohibition of the gofo statement in
the C source code, which can easily be checked by a static
analysis tool. However, other rules are advisory, and/or require
human judgment. For instance, pointers and interrupts should
be avoided but may be allowed if well motivated and used
with caution, variable names should be well chosen, etc. Thus,
the source code needs to pass through an appropriate review
process, finally resulting in the “MISRA-C compliance” state-
ment.

Another challenge is how to represent the (un)certainty of
values, such as the timing values in the example. Execution
times (e.g. shortest, longest, average) may be based on (a
combination of) statistical testing or measurements which may
depend on environmental conditions, static analysis based on
some assumptions, etc. The safety argument should be partly
used to justify why we believe that a Boolean expression
has been sufficiently met. This becomes especially important
to address when discussing compositional safety cases, i.e.
where statements about components (made out of system
context, or based on a previous system’s context) are used
in the argumentation of a new system as solutions to meet the
system’s goals. In isolation, it may be easy for us to examine
these properties, but when there are multiple components, with
varying degrees of certainty and confidence in the arguments
it becomes more complex to justify some of these formalized
statements. This is discussed in, e.g. Sentilles et al. [7].

An additional challenge is to put the models, properties etc.,
under strict configuration management, and ensure a process
is in place where actual changes to system components are
indeed reflected in the component properties in the model.
The SafeCer project [8] is aiming to a tool-chain framework
for exactly this purpose, see related work in Section VI.



One preliminary classification of safety arguments is the
following:

« Arguments based on properties that can be objectively
measured, such as length, weight, and temperature, can
clearly be formalized.

« Arguments based on properties that can be subjectively
assessed, such as competence of the personnel, can to
a certain extent (level of training, course certificates) be
measured and formalized.

« Arguments that complies with standards, used for compo-
nents developed using the standard as a reference point.
For instance, the Safety Integrity Level (SIL) 3 of the
IEC61508 standard [9] would dictate a particular design
flow. This kind of arguments could be formalized.

« “Proven-in-use” arguments based on experience showing
that the component works under the specified conditions
are harder to formalize.

« Reasoning about verification and validation evidence
(even formal verification evidence) requires human in-
sight. For instance, goal G3 in the safety case of Figure 2.
If we perform regression analysis, one important question
is how many tests need to be redone.

As this is a work in progress, we plan to elaborate on a more
fine-grained classification, and describe how these are inter-
related. For example, the verification method used to produce
a value for a property (for instance, worst-case execution
time) is related to certainty, and explicit (and to some extent,
formalized) context dependencies are needed to know whether
an argument is valid in a new system.

At the moment, the GAGE tool cannot detect portions of a
safety argument that refer to recently-removed architectural
elements, which could be a subject for the next version.
Another future goal would be to perform traceability analysis
between the safety case and the model; that is, to detect the
safety cases affected by a change in a component property,
and to detect the components affected by a change in a safety
case.

VI. RELATED WORK

The problem of a small change causing large impact of
the safety case is an important challenge for future modular
safety cases, which is being studied in the SafeCer project
(http://www.safecer.eu). The project is researching the use of
Component Based Software Engineering (CBSE) to develop
safety critical systems, and support reuse of components. In
SafeCer, the aim is to support the reuse of certification data,
assisted by the use of safety arguments which capture the
context, quality and extent of the argument [8]. The authors
are part of the project, and this paper holds clear relevance for
the project as our purpose is reuse of component safety cases.

There have been a number of approaches to extend the
GSN notation. Kelly and Weaver [4] discuss the foundation
of GSN and describes some extensions, such as maintenance
of safety arguments, safety case patterns, and assurance of
safety arguments as well as modular safety cases. Similar to

this paper, the authors aim at reuse of safety cases. However,
they do not try to formalize the safety case elements.

Attwood, Kelly, and McDermid [10] describe the refinement
of requirements into specifications as a recursive process. In
their paper, the authors offer a critique of standard traceability
techniques and propose a method for developing traceability
structures for requirements reuse, including an argument clas-
sification similar to our classification in Section V.

Fenn et al. [11] present an approach to modular and
incremental certification, including the trial deployment on
an aircraft programme, developed by the Industrial Avion-
ics Working Group (IAWG). The authors discuss a method,
similar to our method in Section III, including modular and
incremental certification.

VII. CONCLUSIONS AND FURTHER WORK

In this paper, we have presented the GAGE method that
maps a safety case against a system architecture in order to
perform impact analysis. We have also developed the GAGE
tool that reads the GSN safety case and the AADL system
architecture model and, in accordance with the GAGE method,
traverses the arguments of the safety case and decides which
of them are satisfied by evaluating the properties of the model.

We plan to further exam and categorise the different kinds
of safety arguments in order to decide which safety claims
are suitable to formalize. We also plan to use one of Cross-
Control’s safety-critical products as a case study, in order to
validate our approach.

One important goal is to apply our approach to component-
based systems, i.e. partial or incomplete safety arguments
that have to correspond to component information providing
evidences that the claim holds.

ACKNOWLEDGEMENT

This research work was partially supported by Swedish Re-
search Council (VR) and the Swedish Foundation for Strategic
Research via the ARTEMIS JU, Vinnova, and CrossControl
AB in the SafeCer project (JU Grant Agreement number
269265) as well as the ITS-EASY Research School.

REFERENCES

[1] ENS50129, Railway applications. Communication, signalling and pro-
cessing systems. Safety related electronic systems for signalling. Euro-
pean Standards in English, 2003.

[2] R. Miles and K. Hamilton, Learning UML 2.0. O’Reilly Media, 2006.

[3] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The architecture anal-
ysis & design language (AADL): An introduction,” Technical Note
CMUY/SEI-2006-TN-011, Software Engineering Institute, Pittsburg, PA,
USA, February 2006.

[4] T. Kelly and R. Weaver, “The Goal Structuring Notation — A Safety
Argument Notation,” in Proc. of Dependable Systems and Networks
2004 Workshop on Assurance Cases, 2004.

[5] MISRA, Guidelines for the use of the C language in critical systems.
The Motor Industry Software Reliability Association, 2004.

[6] R. Land, J. Carlson, S. Larsson, and I. Crnkovié, “Towards guidelines
for a development process for component-based embedded systems,” in
Workshop on Software Engineering Processes and Applications (SEPA)
in conjunction with the International Conference on Computational
Science and Applications (ICCSA), pp. 43-58, Springer, June 2009.



[7]

[8]

[9]

[10]

(11]

S. Sentilles, P. gtépén, J. Carlson, and I. Crnkovié, “Integration of
extra-functional properties in component models,” in /2th International
Symposium on Component Based Software Engineering (CBSE 2009),
2009.

P. Conmy, J. Carlson, R. Land, S. Bjornander, O. Bridal, and I. Bate,
“Deliverable D2.3.1 — Extension of Techniques for Modular Safety
Argument,” tech. rep., SafeCer — Safety Certification of Software-
Intensive Systems with Reusable Components, 2012.

International Electrotechnical Commission, “IEC 61508 Functional
safety of electrical/electronic/programmable electronic safety-related
systems (Part 0-Part 7),” 2004.

K. Attwood, T. Kelly, and J. McDermid, “The Use of Satisfaction
Arguments for Traceability in Requirements Reuse for System Families,”
in International Workshop on Requirements Reuse in System Family
Engineering, 2004.

J. Fenn, R. Hawkins, P. Williams, T. Kelly, M. Banner, and Y. Oakshott,
“The who, where, how, why and when of modular and incremental
certification,” in Proceedings of the 2nd IET International Conference
on System Safety, 2007.

APPENDIX

In this appendix, we present the AADL source code of the
airbag system example of Section IV-B.

Listing 4 The AADL airbag model source code.

device Accelerometer

features
outSpeed: out data port;
end Accelerometer;
device Gyroscope
features
outAngle: out data port;

end Gyroscope;

device PressureSensor
features

outPressure: out event port;
properties
Info => ”ReactionTime=5";
Info => ”MisraC=true ”;
end PressureSensor;
device Inflator
features
inTrigger: in event port;

properties
Info => ”ReactionTime=30";
Info => ”MisraC=true ”;
end Inflator;

system AirBagControlUnit

features
inSpeed: in data port;
inAngle: in data port;
inLeftPressure: in event port;
inFrontPressure: in event port;

inRightPressure: in event port;
outLeftSeatActuator: out event port;
outRightSeatActuator: out event port;
outLeftSideActuator: out event port;
outRightSideActuator: out event port;
properties

Info => "ReactionTime=10";
Info => ”"MisraC=true ”;

end AirBagControlUnit;

system AirBagSystem
end AirBagSystem;

system implementation AirBagSystem.impl
subcomponents
airBagControlUnit: system AirBagControlUnit;
accelerometer: device Accelerometer;
gyroscope: device Gyroscope;

leftPressureSensor:
frontPressureSensor:
rightPressureSensor:

device PressureSensor;
device PressureSensor;
device PressureSensor;

leftSeatInflator:
rightSeatInflator:
leftSideInflator:
rightSidelnflator:
connections
data port

device Inflator;
device Inflator;
device Inflator;
device Inflator;

accelerometer.outSpeed —>
airBagControlUnit.inSpeed;
gyroscope.outAngle —>

airBagControlUnit.inAngle;

data port

leftPressureSensor.outPressure —>
airBagControlUnit.inLeftPressure;
frontPressureSensor.outPressure —>
airBagControlUnit.inFrontPressure;
rightPressureSensor.outPressure —>
airBagControlUnit.inRightPressure;

event port

event port

event port

event port airBagControlUnit.outLeftSeatActuator —>
leftSeatInflator.inTrigger;
airBagControlUnit.outRightSeatActuator —>
rightSeatInflator.inTrigger;
airBagControlUnit.outLeftSideActuator —>
leftSideInflator.inTrigger;
airBagControlUnit.outRightSideActuator —>
rightSideInflator.inTrigger;

end AirBagSystem.impl;

event port

event port

event port




