
Jitter Compensation for Real-Time Control Systems

Pau Martí and Josep M. Fuertes

Automatic Control Dept.
Univ. Politècnica de Catalunya

Barcelona, Spain
{pmarti,pepf}@esaii.upc.es

Gerhard Fohler
Dept. of Computer Engineering

Mälardalen University
Västerås, Sweden

gerhard.fohler@mdh.se

Krithi Ramamritham
Computer Science and

Engineering Dept.
IIT Bombay, India

krithi@cse.iitb.ac.in

Abstract

In this paper, we first identify the potential violations
of control assumptions inherent in standard real-time
scheduling approaches (because of the presence of jitters)
that causes degradation in control performance and may
even lead to instability. We then develop practical
approaches founded on control theory to deal with these
violations. Our approach is based on the notion of
compensations wherein controller parameters are
adjusted at runtime for the presence of jitters. Through
time and memory overhead analysis, and by elaborating
on the implementation details, we characterize when off-
line and on-line compensations are feasible. Our
experimental results confirm that our approach does
compensate for the degraded control performance when
EDF and FPS algorithms are used for scheduling the
control tasks. Our compensation approach provides us
another advantage that leads to better schedulability of
control tasks. This derives from the potential to derive
more flexible timing constraints, beyond periods and
deadlines necessary to apply EDF and FPS.

Overall, our approach provides guarantees offline that
the control system will be stable at runtime -- if temporal
requirements are met at runtime -- even when actual
execution patterns are not known beforehand. With our
approach, we can address the problems due to (a)
sampling jitters, (b) varying delays between sampling and
actuation, or (c) both – not addressable using traditional
EDF and FPS based scheduling, or by previous real-time
and control integration approaches.

1. Introduction

In control theory, sampling and actuation are generally
assumed to be synchronous and periodic, and a highly
deterministic timing in task executions is assumed [1].
Specifically, consider the three main parts of a control
loop (see Figure 1): sampling, control computation, and
actuation. Firstly, sampling should be performed at the
same sampling instant every period, secondly, control
computation should start and finish quickly after the

sample is available, and thirdly, actuation should occur
immediately after the control computation, or at a fixed
instant after the sampling. Moreover, these three actions
are assumed to be instantaneous. However, this is
impossible in practice given that the computations take
time and may have to contend with other computations for
processing and other resources.

��������	�
��
��������

When a control algorithm is executed by a task

(performing the three actions sequentially) or by a set of
subtasks (where each task performs one or more parts of a
control loop) in a multitasking real-time system, these
assumptions are not met, as scheduling algorithms
introduce various forms of jitter to each task instance
execution. These jitters can be characterized as:

Sampling Jitter: time intervals between consecutive
sampling points may not be constant (even assuming
insignificant sampling-actuation delays).

Sampling-Actuation Delays: even if sampling occurs at
regular intervals, there could be a delay between when a
sample arrives and when the actuation response occurs
after the completion of the control computation. This can
be due to start-time delays in the control computations.
The problem illustrated above is exacerbated due to
varying execution times of the control computation.

Sampling Jitter and Sampling-Actuation Delays: this is
a combination of the previous two problems and is caused
by varying sampling intervals, delays in the start of
control computations, non-negligible execution times, and
preemptions during the control computations, which in
turn can lead to variable actuation times.

These jitters cause control performance degradation

and even instability [12]. In addition, the scheduling

Plant Actuator

Sampler

Controller Reference

algorithm may over-constrain the system when trying to
fulfill the stringent timing constraints that control theory
mandates, resulting in poor schedulability. Classically,
these issues have been treated using either control theory
or real-time scheduling theory.

In this paper, we show how these problems can be
addressed using a combination of control theoretic and
scheduling principles so that control systems can exploit
new (and more flexible) scheduling approaches and
scheduling approaches can take advantage of control
systems properties. Specifically, we show that combining
offline schedulability and control analysis with online
scheduling and online control compensation we obtain
better schedulability and better control performance.

Our approaches address the practical problems posed
by sampling jitters and varying execution times:

• Traditional EDF [11] and FPS [18] based scheduling

approaches don’t address these issues. We do, by
adjusting the schedule, taking advantage of (a)
control properties and (b) the flexibility offered by
the compensation approach.

• Real-time and control integration approaches have
not examined these issues in their generality to
provide better control and schedulability. By
combining online compensations along with offline
analysis and online scheduling, we are able to provide
a solution that handles both sampling and actuation
jitters.

Specifically, we identify and discuss the main issues

stemming from control in real-time systems that the
scheduler must address, and present the control
compensation approach as a solution.

The compensation approach is used for compensating
the degradation that both irregular sampling (due to
sampling jitter) and irregular actuation (due to sampling-
actuation delays, which can include varying execution
times) causes for the control system response.

This technique was originally suggested as an ad-hoc
technique for PID (Proportional, Integral and Derivative)
controller design in [21, 2 and 5] and no formal approach
was presented. We not only extend the applicability of the
compensation technique to deal with both sampling jitter
and sampling-actuation delays but also examine its formal
as well as practical underpinnings (in particular space and
time overheads) for general state space models. The
compensation approach affords us the possibility of
relaxing the strict periodicity and deadline requirements;
we demonstrate how to obtain new flexible timing
constraints that can be exploited to improve
schedulability.

Overall, we offer a novel approach to real-time and
control systems integration that (i) compensates for

control degradation due to jitters, (ii) can guarantee
stability and (iii) can lead to better schedulability.

The rest of the paper is organized as follows. In
Section 2 we discuss control systems and list the types of
jitters resulting from real-time scheduling. In Section 3 we
present our compensation approach for the three critical
jitter types. Section 4 discusses implementation aspects
and presents solutions to time and memory problems. In
Section 5 we consider the demands placed by our method
on real-time scheduling and propose new, flexible timing
constraints to exploit the flexibility afforded by our
method. The effectiveness of our approaches is illustrated
in Section 6 via control simulations. Section 7 summarizes
the paper.

2. Impact of Scheduling on Control
Performance

2.1. Discrete Control Systems

Broadly speaking, computer-based control systems can
be designed following two methods: discretization of a
continuous-time design or discrete time design. In both
cases, the final controller, obtained using a suitable
controller design strategy, must meet the specified closed
loop system performance requirements taking into account
the dynamics of the process that is controlled. In the end,
the controller is a computation that will be executed at
every sampling period h. This controller is characterized
by several design parameters that are highly dependent on
the sampling period h used in the design stage.

Two important points must be noted. First, if the
sampling period is changed and the controller has to be
redesigned, the amount of recalculations (overhead) will
vary depending on both the design method and the
controller design strategy used. Secondly, the selection of
the sampling period h [1] is determined by the desired
performance of the closed loop system and the dynamics
of the process that is controlled. An accepted rule-of-
thumb is that the sampling frequency should be 4 to 20
times the system’s cut-off frequency. This means that the
sampling period, traditionally understood as a fixed timing
constraint for real-time scheduling, can take a specific
value within a specified range.

2.2. Example – Inverted Pendulum

Henceforth we will use an inverted pendulum mounted

on a motor driven cart to illustrate different results of the
paper. A sketch of this system is shown in Figure 2.

The control problem can be stated as follows: the
inverted pendulum (of length l and mass m) can only
swing in a vertical plane parallel to the direction of the
cart (of mass M), where g is the gravity. To balance the

pendulum, the cart is pushed back and forth on a track of
limited length. Balancing fails when the inclination of the
pendulum exceeds preset limits, or when the cart hits the
stops at the end of the track. The aim is to find a controller
to balance the inverted pendulum, preventing it from
failing, and bring the cart to the center of the track. The
force applied to the cart provides the controlling action
(u), calculated according to the actual angle (θ) and
position (x). A linear time invariant state space
approximation of the inverted pendulum, used for the
control design can be found in [13].

��������	������
������������

For the sake of simplicity, we will focus only on the

angle. Therefore, the goal of our controller is to maintain
the desired vertical position of the inverted pendulum at
all the times. It can be easily seen that the open-loop
system is unstable.

Although we use an inverted pendulum as example, our
compensation approach can be applied for linear and
linearised non-linear systems. Physical systems are
inherently non-linear. However, in many systems, if the
system signals do not vary over too wide a range, the
system responds in a linear manner. Consequently, even
though we deal with non-linear systems, in order to design
the control law, the usual procedure that we follow is to
work with a linearised approximation model (if not
already linear) of the system, concerning the functional
parameters. This is the case of the inverted pendulum
example we use.

2.3. Types of Jitters

As mentioned in the introduction, realistic

implementation of control loops violates the control loop
execution assumptions due to sampling jitter, sampling-
actuation delays, or both combined. Overall, we have six
different cases to consider (see table 1), which in turn can
be reduced to three for analysis.

1. Sampling jitter, with negligible controller execution
time: time intervals between consecutive sampling points
(hk) are not constant, and this results in sampling jitter.

2. Sampling-actuation delays with strictly periodic
sampling, with negligible controller execution time:

samples are taken at periodic times (via interrupts, for
example). Control computations suffer from start time
jitters. As a consequence, actuation instants are not strictly
periodic, and this results in varying sampling-actuation
delays (τk).

3. Actuation at the next sampling point with strictly
periodic sampling, with negligible controller execution
time: samples are taken at periodic times and actuation is
performed at the beginning of the next period. Control
computations suffer from start time jitters.

4. Sampling jitter with significant controller execution
times: time intervals between consecutive sampling points
(hk) are not constant, which results in sampling jitter. In
addition, control computations suffer from start time
jitters and may have varying execution times. As a
consequence, actuation instants are not strictly periodic,
which results in varying sampling-actuation delays (τk).

5. Actuation jitter with strictly periodic sampling with
significant controller execution times, which results in
sampling-actuation delays: samples are taken at periodic
times (via interrupts, for example). Control computations
suffer from start time jitters and may have varying
execution times. As a consequence, actuation instants are
not strictly periodic, which may produce varying
sampling-actuation delays (τk).

6. Actuation in the next sampling point with strictly
periodic sampling, with significant execution times:
samples are taken at periodic times and actuation is
performed at the beginning of the next period. Control
computations may suffer from start time jitters and may
have varying execution times.

In table 1, for each case we provide a sketch and we

derive the main sources of problems that scheduling may
introduce in the implementation of a control loop.

Given this case analysis, in the rest of the paper we will
focus on cases 1, 2, and 4, which are exactly the ones
discussed in the introduction: in case 1 sampling jitter is
present, violating the constant sampling assumption. In the
same way, in case 2, sampling-actuation delays occur,
violating the equidistant actuation assumption. Finally, in
case 4, both sampling jitter and sampling-actuation delays
occur (and made worse due to varying execution times),
which is a combination of the previous two problems.

Notice that in case 5, execution time variability
exacerbates the sampling-actuation delay problem.
However, from a control viewpoint, it can be modeled as
case 2, and it is already included in case 4 for analysis.

Finally, cases 3 and 6 will be no longer discussed in
this paper because from a control point of view, they are

M

m x

u

θ g
l

not violating the constant sampling or equidistant
actuation assumptions. It has to be said that case 6 is
violating the assumption that the control computation
should start and finish soon after the sample is available.
However, if the control computations are generated using
the appropriate control model [20], actuation will be
performed at the beginning of the next period and control
performance will not be affected.

3. A
the J

The

adjust
task in

and actuation jitters. By doing the online compensation at
runtime, each control task instance can be allowed to
execute at any pre-fixed time instant within a sampling
interval (hk). The sampling period variability and the set
of values at which any control task instance can start its
execution are determined by an offline control analysis
that includes a stability analysis [13]. In the end, this
implies that sampling and actuation will be performed as
follows:

• Sampling: hmin ≤ hk ≤ hmax, where hmin has to be larger

than 1/20 * period equivalent to the systems cut-off
frequency and hmax has to be smaller than ¼ *the
period equivalent to the systems cut-off frequency. h h

hk hk+1

6

k
(k-1)·
�����

Practical Ap
itters

 main idea behi
at runtime the c
stance execution

h

(k-1)·h

τk-1

h

hk

τk-1

(k-1)·h
��	���

�����

proach to

nd the comp
ontroller par
 to account

h

τk

k·h

h

h

k

k·h
(k+1)·

• Actuation: 0 ≤ τk ≤ hk+1, where the minimum

sampling-actuation delay will be zero (no delay) and
τk-1

its maximum will correspond to the next sampling
instant.

 h

k
(k-1)·
 k·
 (k+1)·

In the rest of this section, for each of the three cases of
jitters, we analyze what the problem is, which control
method applies, what the compensation approach solves,
what is needed from the schedule and the implementation
details that must be considered. h

 - - -
(k+1)·

τk
 3.1. Sampling Jitter (case 1)

Time intervals (hk) between consecutive sampling
instants are not constant. If the schedule cannot provide a h

hk+1

k
(k-1)·
 k·
 (k+1)·

constant sampling period, the control computation can
solve the problem by adjusting the controller parameters
according to the hk at each task instance execution, using
the irregular sampling discrete time system model with
varying time delays depicted in (1), with τk=0 for all k-h

k
(k-1)·h
 k·
 (k+1)·
τ

 Case
������

 Comp

ensation a
ameters a
 for both

(k+1)·h
S2

en

pp
t ea
 th

 -

SA3
sate

roach
ch co

e sam

 -
 SP4
Sketch1
1

2

3

instance execution. Knowing hk by time measurements or
provided by the scheduler (by adequate offline scheduling
analysis), online parameter adjustment is possible.

 -
5

4

 x - h
 - x τ
 x x hk,τ
 - x τ
3.2. Sampling-Actuation Delays (case 2)

Even if sampling occurs at the same point in time, there
could be a variable delay (τk) between when a sample
arrives and when the actuation response occurs following
the instantaneous control computation. If the schedule

1 , and denote sampling time, controller execution
and actuation time
2 S stands for sampling jitter
3 SA stands for sampling-actuation delays
4 SP stands for source of problems
 for

 is to
ntrol
pling

cannot provide equidistant actuation instants, the control
computation can solve the problem by adjusting the
controller parameters according to τk at each task instance
execution, using the irregular sampling discrete time
system model with varying time delays depicted in (1),
with hk=h for all k-instance execution. Knowing τk by time
measurements or provided by the scheduler (after an
appropriate offline scheduling analysis), online parameter
adjustment is possible.

3.3. Sampling Jitter and Sampling-Actuation
Delays (case 4)

This is a combination of the previous two problems
and is caused by varying sampling intervals (hk), delays in
the start of control computations, non-negligible execution
times, and preemptions during the control computations,
which in turn can lead to variable actuation times.
Therefore, varying sampling-actuation delays (τk) also
appear. If the schedule cannot provide a constant sampling
period and equidistant actuation instants, the control
computation can solve the problem by adjusting the
controller parameters according to hk and τk at each task
instance execution, the irregular sampling discrete time
system model with varying time delays depicted in (1).

In this case, apart from knowing hk by time
measurements or provided by the scheduler (after an
appropriate offline scheduling analysis), we need to know
τk. Therefore, the on-line scheduler, at runtime, at the
beginning of each control task instance execution, must
give assurances about the time the actuation will be
performed, through adequate offline and online
scheduling analysis. Knowing hk and τk, runtime
parameter adjustment is possible.

(1)

Due to space limitations, the reader is referred to [13]

for an extensive explanation of the control formulation
introduced in (1).

3.4. Jitters Summary

Although from a theoretical control point of view, the

compensation approach discussed above compensates for
the degradation that the controlled system suffers due to
jitters, its full applicability in a real-time system also
needs to be investigated with respect to its implementation
cost (computational overhead and memory requirements)
and the availability of the necessary information to
recalculate the controller parameters when it is needed
(information availability).

With respect to the implementation cost, at each
control task instance execution, the controller parameters
must be updated according to the actual jitters. Two
strategies may apply: runtime or offline calculations.

If the controller parameter adjustment is performed by
online extra calculations according to actual jitters, the
introduced computational overhead will depend on the

control design method and controller design strategy that
is being used. If the computational overhead is not
negligible, the controller parameter adjustment can be
performed online by accessing offline pre-calculated look-
up tables. These tables will contain the necessary
parameters to allow the control computation to
compensate for sampling jitter and/or the sampling-
actuation delays that may appear at runtime. In this case,
the memory requirements to store these tables must be
assessed. We will estimate the size of the tables, which
depends on both the design method and the controller
design strategy.

With respect to information availability, the
implementation of the different control strategies used in
the compensation approach mandates that hk and/or τk (for
the runtime calculations) must be known at the beginning
of each task instance execution. That means that whether
runtime or offline calculation approach is used in the jitter
compensation, the offline scheduling along with the online
scheduling must provide this information at the right time
when no time measurements are possible or available.

3.5. Related Work

The state-of-the-art in the field of control and

scheduling is represented by [4]. Many fundamental issues
in implementing real-time control applications in
distributed control systems are discussed in [19].

Some recent research has focused on the jitter problem
itself using specific scheduling-based solutions [6, 3, 9].
However, even after modifying the scheduling algorithm,
in these approaches, jitter is not completely eliminated.
So, if the control design does not take into account the
jitters, however small they may be, degradation in the
control system performance can still occur. What we
propose is to accept the jitter that the scheduling algorithm
is bound to introduce and to compensate for it at runtime
in the controller design so as to minimise the system
degradation that would otherwise occur.

The optimization of control system performance
subject to schedulability has also been treated in [16] and
[15]. However, these approaches, based purely on offline
optimization, do not take into account the runtime effects
(jitters) of the scheduled task instances on the control
performance. In addition, unlike our approach, no
flexibility is allowed at run time.

Runtime control performance and schedulability
optimization is treated in [8, 7, 14 and 17]. In these
approaches, the major goal has been to adapt at runtime
the properties of the schedule, modifying the scheduling
algorithm in order to improve schedulability and optimize
the control performance. However, no degradation due to
jitters is taken into account, even though tasks are prone to
jitters in the proposed scheduling algorithms.

+Γ+Φ=+)(),()()()(01 kkkkkk huhhxhhx τ)(),(11 −Γ kkk huh τ

)()()(kkk hDuhCxhy +=

)(),()(kkkk hxhLhu τ−=

∑=
k

kk hh
0

In summary, existing approaches have not considered
the deleterious effects of scheduling on control system
stability even though they have attempted quite
successfully to optimize control system performance
through the optimized selection of periods, by designing
special purpose task models, or scheduling algorithms.

4. Implementation of Compensation

4.1. Controller Parameter Adjustment

In this section, we will show how to implement the

control computation incorporating the compensation
approach. We first consider the usual control
computation and the computation compensating for
sampling jitter using online calculations.

For example, for a discretization of a continuous time
designed PID controller, at each execution of a PID
algorithm (Figure 3, top), the usual computations involve
the calculation of the three actions (pk, ik, dk) according to
the current error (ek) in order to obtain the output (uk).
Notice that the integral (ik) and the derivative (dk) actions
depend on the sampling period h. Figure 3 (bottom, in
bold), shows what is needed in the PID algorithm in order
to be able to compensate for the sampling jitter (hk), that
is, to obtain hk at each instance execution and to use this
value in the rest of the calculations.

��������	�����������
����

However, for a discrete time design and state feedback
design strategy, the implementation of the control
computation involves more calculations. At each
execution of a general state feedback controller (Figure 4,
top), the usual computation involves the calculation of
output (uk) according to the state (xk) and gain matrix L,
apart from updating the state for the next controller
execution according to the current state and the closed
loop matrix (Φc). Notice that the gain matrix and the

closed loop matrix that depend on the sampling period h
are fixed parameters of the controller algorithm,
calculated at the design stage, because h is supposed to
remain constant at run time. In Figure 4 bottom (in bold),
we see that the extra calculations in the readjusted
controller compensating for sampling jitter are, apart from
calculating the hk, to recalculate the discretization of the
system model (Φ(hk), Γ(hk)), the gain matrix (L(hk)), and
the closed loop matrix (Φc(hk)).

��������	�
�
��!�����"#�"��
��������

4.2. Computational Overhead

In the previous section, we have seen that the extra
calculations of the compensated PID or the compensated
State Feedback Controller depend on the design method
and control strategy. For the PID, the computational
overhead is insignificant because the only new
computation is obtain(hk). However, for the state feedback
controller, the computational overhead may be significant.
Therefore, we have to precisely evaluate it, and we do so
now, for the inverted pendulum example.

To control the angle of the inverted pendulum, we have
obtained a state feedback controller by the discrete time
pole placement observer approach using Ackerman’s
formula [1]. In this case, we estimate the computational
overhead of the controller performing the extra-
calculation of the compensation approach to be O(n4),
where n is the closed loop system matrix dimension. For
the example of the inverted pendulum (4x4 matrix) and a
simplified model (2x2 matrix), the approximate numbers
of flops, obtained via simulations for each control task
execution, with and without the extra-calculation
necessary for sampling jitter compensation are detailed in
table 2. This table points out that the overhead of extra
calculations may be too high (sometimes, orders of
magnitudes higher), depending on the processor speed.

PID
{ read_inputs (yk, rk);

 ek = rk - yk;
 uk = calculate_output (pk(ek), ik(h,ek), dk(h,ek));
 write_output (uk);

}

Compensated PID
{ read_inputs (yk, rk);

 ek=rk-yk
 obtain(hk)
 uk = calculate_output (pk(ek),ik(hk,ek),dk(hk,ek));
 write_output (uk);

}

State Feedback Controller
{ read_input (yk);
 uk = calculate_output (xk, -L(h));
 write_output (uk);
 xk+1 = update_state (xk, Φcl(h));
}

Compensated State Feedback Controller
{ read_input (yk);

 obtain(hk)
 calculate (�(hk), �(hk), L(hk), �cl(hk);
 uk = calculate_output (xk, -L(hk));
 write_output (uk);
 xk+1 = update state (xk, Φcl(hk), yk);

}

 No. of Flops

(without extra
calculations)

No. of Flops
(with
compensation)

simplified pendulum 25 250
pendulum example 60 2000

�������	�
����
�
���������������

In summary, if the computational overhead, that can be

assessed offline, is insignificant, runtime calculation of
controller parameters is a feasible approach. However, if
the computational overhead is not negligible, the offline
calculation approach, taking advantage of the look-up
tables, must be considered. However, we must determine
the memory requirements to store these tables.

This is done next.

4.3. Memory Requirements

From the three cases we have analyzed, we can derive
the size of the tables.

These tables will store the controller parameters.
Depending on the type of jitter the controller will
compensate for, hk will be an input parameter (if
compensating for sampling jitter), and for each hk, τk will
be a second input parameter (if compensating for
sampling-actuation delays). The worst case assumption is
to provide for the full range to hk and τk. Knowing that the
sampling interval and the delay is a multiple of the clock
tick size, the size of the table can be described by:

(hmax – hmin)*hmax*clkticksize * size(controller parameters)

Notice that in the expression above, the size of a table
for compensating only for sampling jitter will not have the
term hmax and for compensating only for sampling-
actuation delays will not have the term (hmax – hmin).

In table 3, we can see the size of the look-up table for
the inverted pendulum for each of the three cases, if hk
and τk are allowed to take 100 different values within their
respective ranges.

 Size(table)
Sampling jitter 8 Kb
Sampling-actuation delays 8 Kb
Sampling jitter and sampling actuation delays 64 Kb

�
�������	�$��������%�������
��

From this analysis, we can conclude that these tables

with the offline calculations are small enough to be stored
in any micro-controller’s RAM.

5. Timing Constraints for RT Scheduling

We will now discuss how the temporal constraints

imposed by our jitter compensation approach can be
exploited for improving real-time schedulability. First, we
address fixed timing constraints as demanded by standard
scheduling schemes. Then we show how novel, flexible
timing constraints can be used to fully exploit the
flexibility provided by our approach to improve
schedulability.

5.1. Fixed Timing Constraints

Standard scheduling schemes are based on fixed timing

constraints such as periods and deadlines. Here, fixed
means that a single value for a constraint holds for all
instances of a task. Classically, in control, task periods
and deadlines are selected as follows:

• Period: After an appropriate control analysis, the

value of the real-time period is chosen from a range
of suitable possible sampling periods.

• Deadline: The completion of the actuation task has to
occur at the next sampling time (if deadline = period)
or a fixed finishing time (deadline < period or
deadline > period).

Note that to apply the compensation approach an upper

bound on the completion time of the task is required
rather than the exact finishing time (recall that in
subsections 3.2. and 3.3 these requirements have been
already specified). This imposes additional demands on
scheduling. In a standard scheduling scheme, this can be
enforced, e.g., by non-preemptive execution, or setting a
deadline equal to start time plus execution time. In both
cases, however, the variability of the execution time can
still produce jitter. Furthermore, the strict scheduling
requirement can impair schedulability.

The selection of fixed timing parameters for a task has
to be based on worst-case assumptions about load
scenarios, task phasing, etc. That is, should the load
situation be because of a single instance, the timing
constraints to meet this worst-case demand have to be
imposed on all instances. This reduces schedulability and
may even render the tasks unschedulable although all
demands may be met from a control perspective. The
approach we describe next enables the derivation and
setting of timing constraints on a per instance basis,
adjusting the task instance timing constraints to the
situation faced by that instance. Thus, the timing
constraints may vary from instance to instance, but the
overall goal of control stability is ensured.

5.2. Flexible Timing Constraints

Our flexible timing method does not set specific values
for the timing constraints. Rather, it provides ranges and
their combinations to choose from, taking into account,
e.g., schedulability of other tasks. In addition, at runtime,
the resulting jitter and variations are compensated for as
described in the previous section. Thus, our methods
provide more flexibility than can be expressed by fixed
timing constraints.

We now define the following constraints, for task
instances:

• Instance separation: The interval between the start of

two consecutive instances of a sampling task, Si and
Si+1 is limited by the range for sampling intervals: hmin
≤ | st(Si+1) – st(Si) | ≤ hmax.

• Delay: The interval from the start of sampling to the
finishing time of an actuator task is limited by the
computation delay: 0 ≤ | ft (A) - st (S) | ≤ hk+1. The
actual sampling-actuation delay for a particular
instance has to be known at the start of the control
computation instance for the application of the
appropriate compensation. That is, the delay
constraint, while flexible, has to be kept such that the
actuation task finishes at rather than before the
specified time.

In both cases, the actual values have to be chosen from

the set of values we provided compensation for.
Note that while similar for subsequent instances, these

constraints differ from the fixed ones: using period T, the
ith instance of a task can start at i*T, whereas with the
constraints here it can start at ∑

−= 1,...,1 ij
jh . Since the hj can

vary, the instance start times will be different.
Instead of simply trying to guarantee an instance based

on these constraints, our compensation approach provides
the scheduler with the flexibility to select the constraints
as well. If a set of constraints cannot be met given the
schedule, the scheduler can pick another set of constraints
to find a feasible schedule for. Our method provides the
possible values to be used and ensures control stability by
compensation. Section 6 presents an example.

Note that we do not propose a scheduling approach,
rather a new set of flexible timing requirements. At this
point, we have used an offline schedule construction
approach but are currently investigating new scheduling
schemes to handle these new types of constraints.

6. Example and simulations

In this section, we show the effectiveness of the

compensation approach, firstly, from a control point of

view, and secondly, from a schedulability point of view.
All the simulations were carried out with the simulator
presented in [10].

6.1. Fixed Timing Constraints

For case 4 (combination of sampling jitter and varying

sampling-actuation delays), we show in Figure 5 the
possible effects (degradation) on the control performance
if the control computation is executing the state feedback
controller we designed for the inverted pendulum and
scheduled by RMA and EDF (top). We will also show
how the compensated state feedback controller
compensates for the degradation introduced by the
different type of jitters (bottom).

We show in table 4 the details of task 1 and task 2 that
were added in order to introduce the jitters into the control
task.

 Task1 Task2 Control task
T 60ms 70ms 80ms
C 10ms 10ms 1ms

�������	����#���
�

�
�������&	���

��������������!!�"
��'
��(������
��

"�������
����'��

��(�

6.2. Flexible Timing Constraints

We have studied how flexible timing constraints can
improve schedulability of task sets. Now we present an
example that cannot be scheduled using fixed timing
constraints. By exploiting flexible timing constraints,
however, we can construct a schedule that meets control
demands.

Consider the task set shown in table 5. As before, tasks
T1 and T2 were added in order to introduce the jitters to
the control task Cr.

 T C DL Offset
Task T1 100ms 60ms
Task T2 200ms 20ms 20ms
Control task Cr hk 20ms 20ms 40ms

������&	����#���
�

Suppose the possible values for hk are 60, 80, or

100ms. Consider scheduling using fixed timing
constraints, a schedule for which is depicted below for
400ms. Note that this schedule is executed repeatedly.
(Boxes mark periods of tasks, executions are shaded).

For illustrative purposes an hk value of 80ms has been
chosen as the period for Cr. Therefore in this example, hk
for all instances of the control task Cr is set to 80ms. It is
obvious that both Cr and T2 need to execute between
200ms and 220ms to meet their respective deadlines,
which is not possible. Hence this task set is not
schedulable, as shown in Figure 6.

 0 100 200 300

schedule
repeated

T1 … …
T2 … …
Cr … …

C:hk – const. hi=80 hi+1 = 80 hi+2 = 80 hi+3 = 80 hi+4 = 80

�������)	�*�
�!���������"������

Now, consider associating flexible timing constraints

with Cr.
Instead of a selecting only one fixed hk value for Cr,

flexible timing constraints allow us to choose a specific hk
value for each instance. As in the schedule above if we set
hi=80ms, it will cause a scheduling conflict with T2.
Instead, we choose hi+1 = 60ms and so Cr finishes before
T2 starts. Then, we choose hi+2 = 100ms and hi+3 = hi+4 =
80ms. Using these hk values instead of a fixed period, the
task set can be scheduled, as shown in Figure 7. Still, as
Figure 8 shows, because task executions are based on the
use of compensations, which take into account the specific

hk value used, stability is maintained – even though task
instances have different timing constraints.

 0 100 200 300
schedule
repeated

T1 … …
T2 … …
Cr … …

C:hk – var. hi=80 hi+1 = 60 hi+2 = 100 hi+3 = 80 hi+4 = 80

�������+	�����������"�������

�������,	� ��
�������������!���
��#��"��������
������!��-�����
������"���
����
��

Note that by applying flexible constraints, the task set,

which is not schedulable using fixed constraints, can be
scheduled to meet the control demands.

7. Summary

In this paper, we proposed a new approach for real-

time scheduling of control systems by compensating for
sampling jitter and sampling-actuation delays through the
adjustment of controller parameters. We discussed the
impact of scheduling methods on control performance and
identified the critical types of violations that can occur
due to sampling jitter, sampling-actuation delays, and both
combined. We presented an approach using control theory
to calculate the adjusted controller parameters to
compensate for these violations. These parameter
adjustments can be made (a) online -- if runtime
overheads are acceptable, or (b) offline -- via table
lookups at run time, if the overheads are not negligible.
We discussed practical issues, in particular computation
costs and memory needs, to make the above decision.
Furthermore, we proposed new, flexible timing constraints
to fully exploit the flexibility of our methods to improve
schedulability. These constraints are defined on a per
control task instance basis, as opposed to fixed values,
such as periods and deadlines, applicable to all instances –

as assumed by standard scheduling schemes such as EDF
and FPS.

Simulation studies show the effectiveness of our
approach for standard real-time scheduling schemes. By
accepting the jitter inherent in standard scheduling
schemes and including it in control analysis our method
can effectively maintain control stability. Our results also
show how the flexible timing constraints can be used to
provide control stability in real-time control tasks that are
not schedulable with fixed timing constraints.

We have applied an offline scheduling scheme to
exploit the flexible timing constraints to enhance
schedulability. As part of our work planned for the future,
we are investigating online as well as combined offline-
online algorithms.

8. Acknowledgments

This work has received support from the Spanish

CICYT project ref. DPI2000-1760-C03-01.

9. References

[1] K.J. Åström and B. Wittenmark. Computer Controlled
Systems. Third edition. Prentice Hall. 1997.

[2] P. Albertos and J. Salt. “Digital Regulators Redesign with
Irregular Sampling”, 11th IFAC World Congress (Preprints), vol
8, pp 157-161, 1990.

[3] P. Albertos, A. Crespo, I. Ripoll, M. Vallés and P.
Balbastre “RT control scheduling to reduce control performance
degrading”. 39th IEEE Conference on Decision and Control.
Sydney (Australia), December 12-15, 2000.

[4] K-E. Årzen, B. Bernhardsson, J. Eker, A. Cervin, K.
Nilsson, P. Persson and L. Sha “Integrated Control and
Scheduling”. Research report ISSN 0820-5316. Dept. Automatic
Control, Lund Institute of Technology, 1999.

[5] K.-E. Årzen, A. Cervin, J. Eker and L. Sha. “An
Introduction to Control and Scheduling Co-Design”, 39th IEEE
Conference on Decision and Control, Sydney, Australia,
December 12-15, 2000.

[6] S. Baruah, G. Buttazzo, S. Gorinsky and G. Lipari,
“Scheduling Periodic Tasks Systems to Minimize Output Jitter”
Proc. International Conference on Real-Time Computing
Systems and Applications, IEEE Computer Society Press. pp 62-
69, Hong Kong, December 1999.

[7] G. Buttazzo, G. Lipari and L. Abeni, “Elastic Task Model
for Adaptive Rate Control” IEEE Real-Time Systems
Symposium, Madrid, Spain, December 1998.

[8] M. Caccamo, G. Buttazzo and L. Sha, "Elastic Feedback
Control", IEEE Proc. 12th Euromicro Conference on Real-Time
Systems, Stockholm, Sweden, pp. 121-128, June 2000.

[9] A. Cervin “Improved Scheduling of Control Tasks” in
Proceedings of the 11th Euromicro Conference on Real-Time
Systems, York, England, June 1999.

[10] J. Eker and A. Cervin, “A Matlab Toolbox for Real-Time
and Control Systems Co-Design” In Proceedings of the 6th
International Conference on Real-Time Computing Systems and
Applications, Hong Kong, China, December 1999.

[11] Liu, C. and J. Layland “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment”. J.ACM,
20, 46-61. (1973).

[12] P. Marti, R. Villa, J.M. Fuertes and G. Fohler, “On Real-
Time Control Tasks Schedulability”, European Control
Conference, Porto, Portugal, September, 2001.

[13] P. Marti, R. Villa, J.M. Fuertes and G. Fohler, “Stability of
On-line Compensated Real-Time Scheduled Control Tasks”,
IFAC Conference on New Technologies for Computer Control,
Hong Kong, China, November 2001.

[14] L.Palopoli, L.Abeni, F.Conticelli, M. Di Natale, G.
Buttazzo, "Real-Time control system analysis: an integrated
approach." In Proc. of the Real-Time System Symposium,
Orlando, Florida, November 2000.

[15] H.Rehbinder, M. Sanfridson “Integration of Off-Line
Scheduling and Optimal Control”, 12th Euromicro Conference
on Real-Time Systems, Sweden, June 2000.

[16] D. Seto, J.P. Lehoczky, L. Sha and D.G. Shin, “On Task
Schedulability in Real-Time Control Systems”. RT Systems
Symposium, 17th IEEE. p 13-21, 1996.

[17] L. Sha, X. Liu, M. Caccamo and G. Buttazzo, “Online
Control Optimization Using Load Driven Scheduling”, 39th
IEEE Conference on Decision and Control, Sydney, Australia,
December 12-15, 2000.

[18] K. W. Tindell, A. Burns, and A. J. Wellings. An extendible
approach for analysing fixed priority hard real-time tasks. Real-
Time Systems The International Journal of Time-Critical
Computing, 6:133--151, 1994. 17.

[19] M. Törngren, “Modelling and Design of Distributed Real-
Time Control Applications”. Phd Thesis. ISRN KTH/MMK-
95/7-SE. Dept. of Machine Elements, KTH, Sweden, 1995.

[20] R.J Vaccaro, Digital control. A state-sapace approach.
McGraw-Hill 1995.

[21] B. Wittenmark and K.J. Åström. "Simple Self-tuning
Controllers". In Unbehauen, Ed. Methods and Applications in
Adaptive Control, number 24 in Lecture Notes in Control and
Information Sciences, pp 21-29. Springer-Verlag, Berlin, FRG,
1980.

	3.1. Sampling Jitter (case 1)
	Time intervals (hk) between consecutive sampling instants are not constant. If the schedule cannot provide a constant sampling period, the control computation can solve the problem by adjusting the controller parameters according to the hk at each task i
	3.3. Sampling Jitter and Sampling-Actuation Delays (case 4)
	This is a combination of the previous two problems and is caused by varying sampling intervals (hk), delays in the start of control computations, non-negligible execution times, and preemptions during the control computations, which in turn can lead to v
	Due to space limitations, the reader is referred to [13] for an extensive explanation of the control formulation introduced in (1).
	Figure 3. PID algorithms
	Figure 4. State feedback controllers

	4.2. Computational Overhead
	
	Table 2. Computational overhead

	4.3. Memory Requirements
	5.2. Flexible Timing Constraints
	
	Table 4. Task set

	6.2. Flexible Timing Constraints
	
	Table 5. Task set
	Figure 7. Feasible schedule

