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Abstract 
 

In this paper, we first identify the potential violations 
of control assumptions inherent in standard real-time 
scheduling approaches (because of the presence of jitters) 
that causes degradation in control performance and may 
even lead to instability. We then develop practical 
approaches founded on control theory to deal with these 
violations. Our approach is based on the notion of 
compensations wherein controller parameters are 
adjusted at runtime for the presence of jitters. Through 
time and memory overhead analysis, and by elaborating 
on the implementation details, we characterize when off-
line and on-line compensations are feasible. Our 
experimental results confirm that our approach does 
compensate for the degraded control performance when 
EDF and FPS algorithms are used for scheduling the 
control tasks. Our compensation approach provides us 
another advantage that leads to better schedulability of 
control tasks. This derives from the potential to derive 
more flexible timing constraints, beyond periods and 
deadlines necessary to apply EDF and FPS. 

Overall, our approach provides guarantees offline that 
the control system will be stable at runtime -- if temporal 
requirements are met at runtime -- even when actual 
execution patterns are not known beforehand. With our 
approach, we can address the problems due to (a) 
sampling jitters, (b) varying delays between sampling and 
actuation, or (c) both – not addressable using traditional 
EDF and FPS based scheduling, or by previous real-time 
and control integration approaches. 
 
 

1. Introduction 
 

In control theory, sampling and actuation are generally 
assumed to be synchronous and periodic, and a highly 
deterministic timing in task executions is assumed [1]. 
Specifically, consider the three main parts of a control 
loop (see Figure 1):  sampling, control computation, and 
actuation. Firstly, sampling should be performed at the 
same sampling instant every period, secondly, control 
computation should start and finish quickly after the 

sample is available, and thirdly, actuation should occur 
immediately after the control computation, or at a fixed 
instant after the sampling. Moreover, these three actions 
are assumed to be instantaneous. However, this is 
impossible in practice given that the computations take 
time and may have to contend with other computations for 
processing and other resources.  
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When a control algorithm is executed by a task 

(performing the three actions sequentially) or by a set of 
subtasks (where each task performs one or more parts of a 
control loop) in a multitasking real-time system, these 
assumptions are not met, as scheduling algorithms 
introduce various forms of jitter to each task instance 
execution. These jitters can be characterized as: 
 
Sampling Jitter: time intervals between consecutive 
sampling points may not be constant  (even assuming 
insignificant sampling-actuation delays).  
 
Sampling-Actuation Delays: even if sampling occurs at 
regular intervals, there could be a delay between when a 
sample arrives and when the actuation response occurs 
after the completion of the control computation. This can 
be due to start-time delays in the control computations.  
The problem illustrated above is exacerbated due to 
varying execution times of the control computation. 
 
Sampling Jitter and Sampling-Actuation Delays: this is 
a combination of the previous two problems and is caused 
by varying sampling intervals, delays in the start of 
control computations, non-negligible execution times, and 
preemptions during the control computations, which in 
turn can lead to variable actuation times. 

 
These jitters cause control performance degradation 

and even instability [12]. In addition, the scheduling 
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algorithm may over-constrain the system when trying to 
fulfill the stringent timing constraints that control theory 
mandates, resulting in poor schedulability. Classically, 
these issues have been treated using either control theory 
or real-time scheduling theory.  

In this paper, we show how these problems can be 
addressed using a combination of control theoretic and 
scheduling principles so that control systems can exploit 
new (and more flexible) scheduling approaches and 
scheduling approaches can take advantage of control 
systems properties. Specifically, we show that combining 
offline schedulability and control analysis with online 
scheduling and online control compensation we obtain 
better schedulability and better control performance. 

Our approaches address the practical problems posed 
by sampling jitters and varying execution times: 

 
• Traditional EDF [11] and FPS [18] based scheduling 

approaches don’t address these issues. We do, by 
adjusting the schedule, taking advantage of (a) 
control properties and (b) the flexibility offered by 
the compensation approach. 

• Real-time and control integration approaches have 
not examined these issues in their generality to 
provide better control and schedulability.  By 
combining online compensations along with offline 
analysis and online scheduling, we are able to provide 
a solution that handles both sampling and actuation 
jitters.  

 
Specifically, we identify and discuss the main issues 

stemming from control in real-time systems that the 
scheduler must address, and present the control 
compensation approach as a solution.  

The compensation approach is used for compensating 
the degradation that both irregular sampling (due to 
sampling jitter) and irregular actuation (due to sampling-
actuation delays, which can include varying execution 
times) causes for the control system response. 

This technique was originally suggested as an ad-hoc 
technique for PID (Proportional, Integral and Derivative) 
controller design in [21, 2 and 5] and no formal approach 
was presented. We not only extend the applicability of the 
compensation technique to deal with both sampling jitter 
and sampling-actuation delays but also examine its formal 
as well as practical underpinnings (in particular space and 
time overheads) for general state space models. The 
compensation approach affords us the possibility of 
relaxing the strict periodicity and deadline requirements; 
we demonstrate how to obtain new flexible timing 
constraints that can be exploited to improve 
schedulability. 

Overall, we offer a novel approach to real-time and 
control systems integration that (i) compensates for 

control degradation due to jitters, (ii) can guarantee 
stability and (iii) can lead to better schedulability.  

The rest of the paper is organized as follows. In 
Section 2 we discuss control systems and list the types of 
jitters resulting from real-time scheduling. In Section 3 we 
present our compensation approach for the three critical 
jitter types. Section 4 discusses implementation aspects 
and presents solutions to time and memory problems. In 
Section 5 we consider the demands placed by our method 
on real-time scheduling and propose new, flexible timing 
constraints to exploit the flexibility afforded by our 
method. The effectiveness of our approaches is illustrated 
in Section 6 via control simulations. Section 7 summarizes 
the paper. 
 

2.  Impact of Scheduling on Control 
Performance 
 
2.1. Discrete Control Systems 
 

Broadly speaking, computer-based control systems can 
be designed following two methods: discretization of a 
continuous-time design or discrete time design. In both 
cases, the final controller, obtained using a suitable 
controller design strategy, must meet the specified closed 
loop system performance requirements taking into account 
the dynamics of the process that is controlled. In the end, 
the controller is a computation that will be executed at 
every sampling period h. This controller is characterized 
by several design parameters that are highly dependent on 
the sampling period h used in the design stage.  

Two important points must be noted. First, if the 
sampling period is changed and the controller has to be 
redesigned, the amount of recalculations (overhead) will 
vary depending on both the design method and the 
controller design strategy used.  Secondly, the selection of 
the sampling period h [1] is determined by the desired 
performance of the closed loop system and the dynamics 
of the process that is controlled. An accepted rule-of-
thumb is that the sampling frequency should be 4 to 20 
times the system’s cut-off frequency. This means that the 
sampling period, traditionally understood as a fixed timing 
constraint for real-time scheduling, can take a specific 
value within a specified range. 

 
2.2. Example – Inverted Pendulum 

 
Henceforth we will use an inverted pendulum mounted 

on a motor driven cart to illustrate different results of the 
paper. A sketch of this system is shown in Figure 2.  

The control problem can be stated as follows: the 
inverted pendulum (of length l and mass m) can only 
swing in a vertical plane parallel to the direction of the 
cart (of mass M), where g is the gravity. To balance the 



pendulum, the cart is pushed back and forth on a track of 
limited length. Balancing fails when the inclination of the 
pendulum exceeds preset limits, or when the cart hits the 
stops at the end of the track. The aim is to find a controller 
to balance the inverted pendulum, preventing it from 
failing, and bring the cart to the center of the track.  The 
force applied to the cart provides the controlling action 
(u), calculated according to the actual angle (θ) and 
position (x). A linear time invariant state space 
approximation of the inverted pendulum, used for the 
control design can be found in [13]. 
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For the sake of simplicity, we will focus only on the 

angle. Therefore, the goal of our controller is to maintain 
the desired vertical position of the inverted pendulum at 
all the times. It can be easily seen that the open-loop 
system is unstable.  

Although we use an inverted pendulum as example, our 
compensation approach can be applied for linear and 
linearised non-linear systems. Physical systems are 
inherently non-linear. However, in many systems, if the 
system signals do not vary over too wide a range, the 
system responds in a linear manner. Consequently, even 
though we deal with non-linear systems, in order to design 
the control law, the usual procedure that we follow is to 
work with a linearised approximation model (if not 
already linear) of the system, concerning the functional 
parameters. This is the case of the inverted pendulum 
example we use. 

 
2.3. Types of Jitters 

 
As mentioned in the introduction, realistic 

implementation of control loops violates the control loop 
execution assumptions due to sampling jitter, sampling-
actuation delays, or both combined. Overall, we have six 
different cases to consider (see table 1), which in turn can 
be reduced to three for analysis. 

 
1. Sampling jitter, with negligible controller execution 
time: time intervals between consecutive sampling points 
(hk) are not constant, and this results in sampling jitter. 
 
2. Sampling-actuation delays with strictly periodic 
sampling, with negligible controller execution time: 

samples are taken at periodic times (via interrupts, for 
example). Control computations suffer from start time 
jitters. As a consequence, actuation instants are not strictly 
periodic, and this results in varying sampling-actuation 
delays (τk). 
 
3. Actuation at the next sampling point with strictly 
periodic sampling, with negligible controller execution 
time: samples are taken at periodic times and actuation is 
performed at the beginning of the next period. Control 
computations suffer from start time jitters. 
 
4. Sampling jitter with significant controller execution 
times: time intervals between consecutive sampling points 
(hk) are not constant, which results in sampling jitter. In 
addition, control computations suffer from start time 
jitters and may have varying execution times. As a 
consequence, actuation instants are not strictly periodic, 
which results in varying sampling-actuation delays (τk).  
 
5. Actuation jitter with strictly periodic sampling with 
significant controller execution times, which results in 
sampling-actuation delays: samples are taken at periodic 
times (via interrupts, for example). Control computations 
suffer from start time jitters and may have varying 
execution times. As a consequence, actuation instants are 
not strictly periodic, which may produce varying 
sampling-actuation delays (τk). 
 
6. Actuation in the next sampling point with strictly 
periodic sampling, with significant execution times: 
samples are taken at periodic times and actuation is 
performed at the beginning of the next period. Control 
computations may suffer from start time jitters and may 
have varying execution times. 

 
In table 1, for each case we provide a sketch and we 

derive the main sources of problems that scheduling may 
introduce in the implementation of a control loop. 

Given this case analysis, in the rest of the paper we will 
focus on cases 1, 2, and 4, which are exactly the ones 
discussed in the introduction: in case 1 sampling jitter is 
present, violating the constant sampling assumption. In the 
same way, in case 2, sampling-actuation delays occur, 
violating the equidistant actuation assumption. Finally, in 
case 4, both sampling jitter and sampling-actuation delays 
occur (and made worse due to varying execution times), 
which is a combination of the previous two problems. 

Notice that in case 5, execution time variability 
exacerbates the sampling-actuation delay problem. 
However, from a control viewpoint, it can be modeled as 
case 2, and it is already included in case 4 for analysis. 

Finally, cases 3 and 6 will be no longer discussed in 
this paper because from a control point of view, they are 
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not violating the constant sampling or equidistant 
actuation assumptions. It has to be said that case 6 is 
violating the assumption that the control computation 
should start and finish soon after the sample is available. 
However, if the control computations are generated using 
the appropriate control model [20], actuation will be 
performed at the beginning of the next period and control 
performance will not be affected. 
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and actuation jitters. By doing the online compensation at 
runtime, each control task instance can be allowed to 
execute at any pre-fixed time instant within a sampling 
interval (hk). The sampling period variability and the set 
of values at which any control task instance can start its 
execution are determined by an offline control analysis 
that includes a stability analysis [13]. In the end, this 
implies that sampling and actuation will be performed as 
follows: 
 
• Sampling: hmin ≤ hk ≤ hmax, where hmin has to be larger 

than 1/20 * period equivalent to the systems cut-off 
frequency and hmax has to be smaller than ¼ *the 
period equivalent to the systems cut-off frequency. h h 

hk hk+1 
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• Actuation: 0 ≤ τk ≤ hk+1, where the minimum 

sampling-actuation delay will be zero (no delay) and 
τk-1

its maximum will correspond to the next sampling 
instant. 

 h 

k 
(k-1)·
 k·
 (k+1)·

In the rest of this section, for each of the three cases of 
jitters, we analyze what the problem is, which control 
method applies, what the compensation approach solves, 
what is needed from the schedule and the implementation 
details that must be considered. h 
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 3.1. Sampling Jitter (case 1) 
 

Time intervals (hk) between consecutive sampling 
instants are not constant. If the schedule cannot provide a h 
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k 
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constant sampling period, the control computation can 
solve the problem by adjusting the controller parameters 
according to the hk at each task instance execution, using 
the irregular sampling discrete time system model with 
varying time delays depicted in (1), with τk=0 for all k-h 
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instance execution. Knowing hk by time measurements or 
provided by the scheduler (by adequate offline scheduling 
analysis), online parameter adjustment is possible. 
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3.2. Sampling-Actuation Delays (case 2) 
 

Even if sampling occurs at the same point in time, there 
could be a variable delay (τk) between when a sample 
arrives and when the actuation response occurs following 
the instantaneous control computation. If the schedule 

 
 
 
 
 
 

1   ,    and    denote  sampling time, controller execution 
and actuation time 
2 S stands for sampling jitter 
3 SA stands for sampling-actuation delays 
4 SP stands for source of problems 
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cannot provide equidistant actuation instants, the control 
computation can solve the problem by adjusting the 
controller parameters according to τk at each task instance 
execution, using the irregular sampling discrete time 
system model with varying time delays depicted in (1), 
with hk=h for all k-instance execution. Knowing τk by time 
measurements or provided by the scheduler (after an 
appropriate offline scheduling analysis), online parameter 
adjustment is possible.  



3.3. Sampling Jitter and Sampling-Actuation 
Delays (case 4)  
 

This is a combination of the previous two problems 
and is caused by varying sampling intervals (hk), delays in 
the start of control computations, non-negligible execution 
times, and preemptions during the control computations, 
which in turn can lead to variable actuation times. 
Therefore, varying sampling-actuation delays (τk) also 
appear. If the schedule cannot provide a constant sampling 
period and equidistant actuation instants, the control 
computation can solve the problem by adjusting the 
controller parameters according to hk and τk at each task 
instance execution, the irregular sampling discrete time 
system model with varying time delays depicted in (1).  

In this case, apart from knowing hk by time 
measurements or provided by the scheduler (after an 
appropriate offline scheduling analysis), we need to know 
τk. Therefore, the on-line scheduler, at runtime, at the 
beginning of each control task instance execution, must 
give assurances about the time the actuation will be 
performed, through adequate offline and online 
scheduling analysis. Knowing hk and τk, runtime 
parameter adjustment is possible. 
 

 
 

(1) 
 

 
 

 
Due to space limitations, the reader is referred to [13] 

for an extensive explanation of the control formulation 
introduced in (1). 

 
3.4. Jitters Summary  

 
Although from a theoretical control point of view, the 

compensation approach discussed above compensates for 
the degradation that the controlled system suffers due to 
jitters, its full applicability in a real-time system also 
needs to be investigated with respect to its implementation 
cost (computational overhead and memory requirements) 
and the availability of the necessary information to 
recalculate the controller parameters when it is needed 
(information availability). 

With respect to the implementation cost, at each 
control task instance execution, the controller parameters 
must be updated according to the actual jitters. Two 
strategies may apply: runtime or offline calculations. 

If the controller parameter adjustment is performed by 
online extra calculations according to actual jitters, the 
introduced computational overhead will depend on the 

control design method and controller design strategy that 
is being used. If the computational overhead is not 
negligible, the controller parameter adjustment can be 
performed online by accessing offline pre-calculated look-
up tables. These tables will contain the necessary 
parameters to allow the control computation to 
compensate for sampling jitter and/or the sampling-
actuation delays that may appear at runtime. In this case, 
the memory requirements to store these tables must be 
assessed.  We will estimate the size of the tables, which 
depends on both the design method and the controller 
design strategy.  

With respect to information availability, the 
implementation of the different control strategies used in 
the compensation approach mandates that hk and/or τk (for 
the runtime calculations) must be known at the beginning 
of each task instance execution. That means that whether 
runtime or offline calculation approach is used in the jitter 
compensation, the offline scheduling along with the online 
scheduling must provide this information at the right time 
when no time measurements are possible or available.  

 
3.5. Related Work 

 
The state-of-the-art in the field of control and 

scheduling is represented by [4]. Many fundamental issues 
in implementing real-time control applications in 
distributed control systems are discussed in [19]. 

Some recent research has focused on the jitter problem 
itself using specific scheduling-based solutions [6, 3, 9]. 
However, even after modifying the scheduling algorithm, 
in these approaches, jitter is not completely eliminated. 
So, if the control design does not take into account the 
jitters, however small they may be, degradation in the 
control system performance can still occur. What we 
propose is to accept the jitter that the scheduling algorithm 
is bound to introduce and to compensate for it at runtime 
in the controller design so as to minimise the system 
degradation that would otherwise occur.   

The optimization of control system performance 
subject to schedulability has also been treated in [16] and 
[15]. However, these approaches, based purely on offline 
optimization, do not take into account the runtime effects 
(jitters) of the scheduled task instances on the control 
performance. In addition, unlike our approach, no 
flexibility is allowed at run time. 

Runtime control performance and schedulability 
optimization is treated in [8, 7, 14 and 17]. In these 
approaches, the major goal has been to adapt at runtime 
the properties of the schedule, modifying the scheduling 
algorithm in order to improve schedulability and optimize 
the control performance. However, no degradation due to 
jitters is taken into account, even though tasks are prone to 
jitters in the proposed scheduling algorithms. 
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In summary, existing approaches have not considered 
the deleterious effects of scheduling on control system 
stability even though they have attempted quite 
successfully to optimize control system performance 
through the optimized selection of periods, by designing 
special purpose task models, or scheduling algorithms. 

 

4. Implementation of Compensation 
 

4.1. Controller Parameter Adjustment  
 
In this section, we will show how to implement the 

control computation incorporating the compensation 
approach. We first consider the usual control  
computation and the computation compensating for 
sampling jitter using online calculations.  

For example, for a discretization of a continuous time 
designed PID controller, at each execution of a PID 
algorithm (Figure 3, top), the usual computations involve 
the calculation of the three actions (pk, ik, dk) according to 
the current error (ek) in order to obtain the output (uk). 
Notice that the integral (ik) and the derivative (dk) actions 
depend on the sampling period h. Figure 3 (bottom, in 
bold), shows what is needed in the PID  algorithm in order 
to be able to  compensate for the sampling jitter (hk), that 
is, to obtain hk at each instance execution and to use this 
value in the rest of the calculations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

��������	�����������
����
 

However, for a discrete time design and state feedback 
design strategy, the implementation of the control 
computation involves more calculations. At each 
execution of a general state feedback controller (Figure 4, 
top), the usual computation involves the calculation of 
output (uk) according to the state (xk) and gain matrix L, 
apart from updating the state for the next controller 
execution according to the current state and the closed 
loop matrix (Φc). Notice that the gain matrix and the 

closed loop matrix that depend on the sampling period h 
are fixed parameters of the controller algorithm, 
calculated at the design stage, because h is supposed to 
remain constant at run time. In Figure 4 bottom (in bold), 
we see that the extra calculations in the readjusted 
controller compensating for sampling jitter are, apart from 
calculating the hk, to recalculate the discretization of the 
system model (Φ(hk), Γ(hk)), the gain matrix (L(hk)), and 
the closed loop matrix (Φc(hk)).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

��������	� 
�
��!�����"#�"��
��������
 

4.2. Computational Overhead 
 

In the previous section, we have seen that the extra 
calculations of the compensated PID or the compensated 
State Feedback Controller depend on the design method 
and control strategy. For the PID, the computational 
overhead is insignificant because the only new 
computation is obtain(hk). However, for the state feedback 
controller, the computational overhead may be significant. 
Therefore, we have to precisely evaluate it, and we do so 
now, for the inverted pendulum example. 

To control the angle of the inverted pendulum, we have 
obtained a state feedback controller by the discrete time 
pole placement observer approach using Ackerman’s 
formula [1]. In this case, we estimate the computational 
overhead of the controller performing the extra-
calculation of the compensation approach to be O(n4), 
where n is the closed loop system matrix dimension. For 
the example of the inverted pendulum (4x4 matrix) and a 
simplified model (2x2 matrix), the approximate numbers 
of flops, obtained via simulations for each control task 
execution, with and without the extra-calculation 
necessary for sampling jitter compensation are detailed in 
table 2. This table points out that the overhead of extra 
calculations may be too high (sometimes, orders of 
magnitudes higher), depending on the processor speed. 

PID  
{     read_inputs (yk, rk); 

 ek =  rk  -  yk; 
 uk = calculate_output (pk(ek),  ik(h,ek), dk(h,ek)); 
 write_output (uk); 

} 

Compensated  PID  
{     read_inputs (yk, rk); 

 ek=rk-yk 
 obtain(hk) 
 uk = calculate_output (pk(ek),ik(hk,ek),dk(hk,ek)); 
 write_output (uk); 

} 

State Feedback Controller  
{     read_input (yk); 
       uk = calculate_output (xk, -L(h)); 
       write_output (uk); 
       xk+1 = update_state (xk, Φcl(h)); 
} 

Compensated State Feedback Controller 
{      read_input (yk); 

   obtain(hk) 
   calculate (�(hk), �(hk),  L(hk), �cl(hk); 
   uk = calculate_output (xk, -L(hk)); 
   write_output (uk); 
   xk+1 = update state (xk, Φcl(hk), yk); 

} 



 
 No. of Flops  

(without extra 
calculations) 

No. of Flops 
(with  
compensation) 

simplified pendulum  25 250 
pendulum example  60 2000 
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In summary, if the computational overhead, that can be 

assessed offline, is insignificant, runtime calculation of 
controller parameters is a feasible approach. However, if 
the computational overhead is not negligible, the offline 
calculation approach, taking advantage of the look-up 
tables, must be considered. However, we must determine 
the memory requirements to store these tables. 

This is done next. 
 

4.3. Memory Requirements 
 

From the three cases we have analyzed, we can derive 
the size of the tables.  

These tables will store the controller parameters. 
Depending on the type of jitter the controller will 
compensate for, hk will be an input parameter (if 
compensating for sampling jitter), and for each hk, τk will 
be a second input parameter (if compensating for 
sampling-actuation delays). The worst case assumption is 
to provide for the full range to hk and τk. Knowing that the 
sampling interval and the delay is a multiple of the clock 
tick size, the size of the table can be described by: 
 
(hmax – hmin)*hmax*clkticksize * size(controller parameters) 
   

Notice that in the expression above, the size of a table 
for compensating only for sampling jitter will not have the 
term hmax and for compensating only for sampling-
actuation delays will not have the term  (hmax – hmin). 

In table 3, we can see the size of the look-up table for 
the inverted pendulum for each of the three cases, if hk 
and τk are allowed to take 100 different values within their 
respective ranges. 
 
 Size(table) 
Sampling jitter 8 Kb 
Sampling-actuation delays 8 Kb 
Sampling jitter and sampling actuation delays 64 Kb 

�
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From this analysis, we can conclude that these tables 

with the offline calculations are small enough to be stored 
in any micro-controller’s RAM. 

 

5. Timing Constraints for RT Scheduling 
 
We will now discuss how the temporal constraints 

imposed by our jitter compensation approach can be 
exploited for improving real-time schedulability. First, we 
address fixed timing constraints as demanded by standard 
scheduling schemes. Then we show how novel, flexible 
timing constraints can be used to fully exploit the 
flexibility provided by our approach to improve 
schedulability. 

 
5.1. Fixed Timing Constraints 

 
Standard scheduling schemes are based on fixed timing 

constraints such as periods and deadlines. Here, fixed 
means that a single value for a constraint holds for all 
instances of a task. Classically, in control, task periods 
and deadlines are selected as follows: 

 
• Period: After an appropriate control analysis, the 

value of the real-time period is chosen from a range 
of suitable possible sampling periods.  

• Deadline: The completion of the actuation task has to 
occur at the next sampling time (if deadline = period) 
or a fixed finishing time (deadline < period or 
deadline > period ). 

 
Note that to apply the compensation approach an upper 

bound on the completion time of the task is required 
rather than the exact finishing time (recall that in 
subsections 3.2. and 3.3 these requirements have been 
already specified). This imposes additional demands on 
scheduling. In a standard scheduling scheme, this can be 
enforced, e.g., by non-preemptive execution, or setting a 
deadline equal to start time plus execution time. In both 
cases, however, the variability of the execution time can 
still produce jitter. Furthermore, the strict scheduling 
requirement can impair schedulability.  

The selection of fixed timing parameters for a task has 
to be based on worst-case assumptions about load 
scenarios, task phasing, etc. That is, should the load 
situation be because of  a single instance, the timing 
constraints to meet this worst-case demand have to be 
imposed on all instances. This reduces schedulability and 
may even render the tasks unschedulable although all 
demands may be met from a control perspective. The 
approach we describe next enables the derivation and 
setting of timing constraints on a per instance basis, 
adjusting the task instance timing constraints to the 
situation faced by that instance. Thus, the timing 
constraints may vary from instance to instance, but the 
overall goal of control stability is ensured. 

 



5.2. Flexible Timing Constraints 
 

Our flexible timing method does not set specific values 
for the timing constraints. Rather, it provides ranges and 
their combinations to choose from, taking into account, 
e.g., schedulability of other tasks. In addition, at runtime, 
the resulting jitter and variations are compensated for as 
described in the previous section. Thus, our methods 
provide more flexibility than can be expressed by fixed 
timing constraints. 

We now define the following constraints, for task 
instances: 
 
• Instance separation: The interval between the start of 

two consecutive instances of a sampling task, Si and 
Si+1 is limited by the range for sampling intervals: hmin 
≤ | st(Si+1) – st(Si) | ≤ hmax. 

• Delay: The interval from the start of sampling to the 
finishing time of an actuator task is limited by the 
computation delay: 0  ≤ | ft (A) - st (S) | ≤  hk+1. The 
actual sampling-actuation delay for a particular 
instance has to be known at the start of the control 
computation instance for the application of the 
appropriate compensation. That is, the delay 
constraint, while flexible, has to be kept such that the 
actuation task finishes at rather than before the 
specified time. 

 
In both cases, the actual values have to be chosen from 

the set of values we provided compensation for. 
Note that while similar for subsequent instances, these 

constraints differ from the fixed ones: using period T, the 
ith instance of a task can start at i*T, whereas with the 
constraints here it can start at ∑

−= 1,...,1 ij
jh . Since the hj can 

vary, the instance start times will be different. 
Instead of simply trying to guarantee an instance based 

on these constraints, our compensation approach provides 
the scheduler with the flexibility to select the constraints 
as well. If a set of constraints cannot be met given the 
schedule, the scheduler can pick another set of constraints 
to find a feasible schedule for. Our method provides the 
possible values to be used and ensures control stability by 
compensation. Section 6 presents an example. 

Note that we do not propose a scheduling approach, 
rather a new set of flexible timing  requirements. At this 
point, we have used an offline schedule construction 
approach but are currently investigating new scheduling 
schemes to handle these new types of constraints. 

 

6. Example and simulations 
 
In this section, we show the effectiveness of the 

compensation approach, firstly, from a control point of 

view, and secondly, from a schedulability point of view. 
All the simulations were carried out with the simulator 
presented in [10]. 

 
6.1. Fixed Timing Constraints 

 
For case 4  (combination of sampling jitter and varying 

sampling-actuation delays), we show in Figure 5 the 
possible effects (degradation) on the control performance 
if the control computation is executing the state feedback 
controller we designed for the inverted pendulum and 
scheduled by RMA and EDF (top). We will also show 
how the compensated state feedback controller 
compensates for the degradation introduced by the 
different type of jitters (bottom). 

We show in table 4 the details of task 1 and task 2 that 
were added in order to introduce the jitters into the control 
task. 
 

 Task1 Task2 Control task 
T  60ms 70ms 80ms 
C 10ms 10ms 1ms 
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6.2. Flexible Timing Constraints 
 

We have studied how flexible timing constraints can 
improve schedulability of task sets. Now we present an 
example that cannot be scheduled using fixed timing 
constraints. By exploiting flexible timing constraints, 
however, we can construct a schedule that meets control 
demands. 

Consider the task set shown in table 5. As before, tasks 
T1 and T2 were added in order to introduce the jitters to 
the control task Cr. 
 

 T C DL Offset 
Task T1 100ms 60ms   
Task T2 200ms 20ms 20ms  
Control task Cr hk 20ms 20ms 40ms 
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Suppose the possible values for hk are 60, 80, or 

100ms. Consider scheduling using fixed timing 
constraints, a schedule for which is depicted below for 
400ms. Note that this schedule is executed repeatedly. 
(Boxes mark periods of tasks, executions are shaded).  

For illustrative purposes an hk value of 80ms has been 
chosen as the period for Cr. Therefore in this example, hk 
for all instances of the control task Cr is set to 80ms.  It is 
obvious that both Cr and T2 need to execute between 
200ms and 220ms to meet their respective deadlines, 
which is not possible. Hence this task set is not 
schedulable, as shown in Figure 6. 
 

  0     100     200     300     

schedule 
repeated 

T1 …                                        … 
T2 …                                        … 
Cr …                                              … 
                       
C:hk – const.   hi=80     hi+1 = 80   hi+2 = 80   hi+3 = 80  hi+4 = 80 
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Now, consider associating flexible timing constraints 

with Cr. 
Instead of a selecting only one fixed hk value for Cr, 

flexible timing constraints allow us to choose a specific hk 
value for each instance. As in the schedule above if we set 
hi=80ms, it will cause a scheduling conflict with T2. 
Instead, we choose hi+1 = 60ms and so Cr finishes before 
T2 starts. Then, we choose hi+2 = 100ms and hi+3 = hi+4 = 
80ms. Using these hk values instead of a fixed period, the 
task set can be scheduled, as shown in Figure 7. Still, as 
Figure 8 shows, because task executions are based on the 
use of compensations, which take into account the specific 

hk value used, stability is maintained – even though task 
instances have different timing constraints. 
 

  0     100     200     300     
schedule 
repeated 

T1 …                                         … 
T2 …                                         … 
Cr …                                              … 
                       
C:hk – var.   hi=80   hi+1 = 60   hi+2 = 100   hi+3 = 80  hi+4 = 80 
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Note that by applying flexible constraints, the task set, 

which is not schedulable using fixed constraints, can be 
scheduled to meet the control demands. 

 

7. Summary 
 
In this paper, we proposed a new approach for real-

time scheduling of control systems by compensating for 
sampling jitter and sampling-actuation delays through the 
adjustment of controller parameters.  We discussed the 
impact of scheduling methods on control performance and 
identified the critical types of violations that can occur 
due to sampling jitter, sampling-actuation delays, and both 
combined. We presented an approach using control theory 
to calculate the adjusted controller parameters to 
compensate for these violations. These parameter 
adjustments can be made (a) online -- if runtime 
overheads are acceptable, or  (b) offline -- via table 
lookups at run time, if the overheads are not negligible. 
We discussed practical issues, in particular computation 
costs and memory needs, to make the above decision. 
Furthermore, we proposed new, flexible timing constraints 
to fully exploit the flexibility of our methods to improve 
schedulability. These constraints are defined on a per 
control task instance basis, as opposed to fixed values, 
such as periods and deadlines, applicable to all instances – 



as assumed by standard scheduling schemes such as EDF 
and FPS. 

Simulation studies show the effectiveness of our 
approach for standard real-time scheduling schemes.  By 
accepting the jitter inherent in standard scheduling 
schemes and including it in control analysis our method 
can effectively maintain control stability. Our results also 
show how the flexible timing constraints can be used to 
provide control stability in real-time control tasks that are 
not schedulable with fixed timing constraints. 

We have applied an offline scheduling scheme to 
exploit the flexible timing constraints to enhance 
schedulability. As part of our work planned for the future, 
we are investigating online as well as combined offline-
online algorithms. 
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