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Timing is often seen as the most important property of systems after function, and
safety-critical systems are no exception. In this paper, we consider how timing
is typically treated in safety assurance and in particular the safety arguments
being proposed by industry and academia. A critique of these arguments is
performed based on how systems are generally developed and how evidence is
gathered. Significant weaknesses are exposed resulting in a more appropriate
safety argument being proposed. As part of this work techniques for identifying
relationships, in the form of contracts, between parts of the argument and the
strength of evidence are used. The work is demonstrated using a Computer
Assisted Braking example, specifically an Anti-Lock Braking System for a car,
as it is a classic example of a component that may be used “Out of Context”,
as discussed in a number of safety standards, and may also be reused across a

number of systems as well as part of a product line.
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1. INTRODUCTION

Many safety-critical systems are ‘hard real-time’
systems in which failure to meet a timing requirement
might be catastrophic [1]. Typically, the principal
timing-related safety evidence is timing analysis.
Developers determine the Worst-Case Execution Time
(WCET) of each task, compute the Worst-Case
Response Times (WCRT) of the task set, and then
use the results to show that timing requirements will
be met (barring hardware failure). Unfortunately, this
method does not always inspire sufficient confidence.
Moreover, this problem is worsening as microprocessors
grow more complex. Accordingly, developers use health
monitoring (i.e. detection of a fault condition followed
by an appropriate response) to mitigate occurrences
that might otherwise lead to failures [2, 3].
Judging whether a system’s timing-related hazards

have been adequately managed requires understanding
both the quality of the timing analysis and how health
monitoring complements it. Our thesis is that it is
possible to construct a software safety argument that
better conveys the crucial timing-related information
that is inadequately conveyed by current standards-
based and argument-based approaches. We achieve
this by presenting a more accurate description of
the evidence, the limitations of the evidence, and
the relationship between timing analysis and health
monitoring. In this paper, we make four contributions:

1. An assessment of the state of the art of WCET
determination and WCRT analysis

2. A discussion of current prescriptive and argument-
based approaches to safety assurance

3. Identification of issues hindering assessment of
confidence that timing requirements are met

4. An example illustrating how to argue more
compellingly that a system adequately manages its
timing-related hazards

We discuss the state of the art in WCET estimation
and WCRT analysis in Section 2. We discuss the state
of the practice in safety assurance in Section 3. We
present our example argument in Section 4. Finally, we
conclude in Section 5.

2. THE STATE OF THE ART OF WCET
ESTIMATION, WCRT ANALYSIS, AND
HEALTH MONITORING

The standard approach to ensuring that a system meets
its timing requirements is to determine the WCET of
its tasks and then compute WCRT. Unfortunately, on
modern platforms, determining WCET is problematic.
Moreover, WCRT analysis typically requires making
and compensating for simplifying assumptions that are
false. These difficulties limit the confidence inspired by
timing analysis. Health monitoring can restore some of

The Computer Journal, Vol. ??, No. ??, ????



2 P. Graydon and I. Bate

this confidence. However, the confidence inspired by the
combination of timing analysis and health monitoring
is often unclear.

2.1. The Difficulty of Accurately Determining
WCET

Typical approaches to analysing WCRT, such as Park
et al.’s seminal work, require each task’s exact WCET
as input [4]. Unfortunately, it is not generally possible
to determine the exact WCET of anything other than
the simplest of problems. Instead, developers produce
either a (safe, pessimistic) upper bound on WCET or
a (possibly optimistic) estimate of WCET. Approaches
to determining WCET can be divided into three cat-
egories: (a) static (analysis-based) approaches; (b) dy-
namic (measurement-based) approaches; and (c) hybrid
approaches .
Ideally, an approach would satisfy two criteria. First,

underestimation of WCET should be adequately un-
likely. Timing analysis based on an underestimate could
falsely conclude that a system meets timing require-
ments. Accordingly, the probability of underestimation
must be small enough to yield adequate confidence that
deadlines will be met. Second, because large overesti-
mates waste processor resources, the approach should
not grossly overestimate WCET. Unfortunately, no cur-
rent approaches always meets both of these criteria for
all target processors. Current static approaches work
for some moderately complex single-core processors but
find their limits in more complex architectures (e.g.,
multicore). Most measurement-based approaches might
underestimate WCET with an unknown probability.
Moreover, it is possible to err using any of these ap-
proaches. Achieving adequate confidence in the WCET
figure requires developers to consider and address each
form of potential error.

2.1.1. Static Approaches to Determining WCET
Static analysis of WCET considers, in principle, all
possible paths through the analysed code. While a
suite of timing tests might not include the worst case,
static analysis does. However, despite this tremendous
advantage, static analysis does not always produce
perfect confidence in a usefully-tight upper bound
on WCET in all applications. Moreover, there are
possibilities for error that developers must address.
In general, computing an exact WCET from program

text is intractable and would require solving the
unsolvable halting problem [5]. In practice, analysis
tools generally require some user input. For example,
users of the AbsInt aiT tool specify the starting and
stopping points of the analysis and some aspects of the
microprocessor’s configuration [6]. When the analysis
cannot determine details such as loop bounds, users
supply these also. A tool given faulty data might
produce faulty output. As a result, developers must
demonstrate the adequacy of all tool inputs to justify

confidence in the resulting WCET bound.
Modern processors are becoming more complex. For

example, they now employ branch prediction, specula-
tive execution, multi-layer caches, and sometimes even
multiple cores. This complexity makes static WCET
analysis difficult [7]. Static WCET analysis tools are
based on abstract models of processor timing. If these
models are incorrect, analysis results might be incor-
rect. As a result, developers must demonstrate that the
tools they use are fit for purpose. In practice, develop-
ers of some tools can provide tool qualification evidence
as required by standards such as RTCA DO-178B and
ISO 26262 [2, 6, 8]. However, like software safety evi-
dence, tool qualification evidence is never perfect: some
possibility of error, however small, remains.
No current tool models all of timing-related internals

of today’s most complex embedded microprocessors. As
a result, static WCET tools are not available for some
embedded microprocessors (e.g. the Freescale MPC
P4808 [9]). Moreover, it is usually more work to extend
a tool to a new processor than to devise a means of
measuring execution time on that processor [5].
For some processors, static timing analysis tools

make conservative simplifying assumptions in order to
achieve usefully quick analysis. For example, consider
instruction caches and their timing effects. Instructions
at the beginning of each basic block might or might
not be in the cache depending upon the path taken
to reach the block. One classic analysis approach uses
a call graph to determine whether all, some, or no
possible prior basic blocks leave a given instruction
in the cache [10]. Unless all possible paths would
yield a hit, the analysis assumes a miss. While
such assumptions are deliberately pessimistic to avoid
underestimate, they can and do lead to overestimate.
Most modern static WCET analysis tools that model
instruction cache use some variation on this technique
and make some variation on this pessimistic simplifying
assumption [5].
In practice, a static analysis result within 20% of

the highest WCET observed in testing is considered
very good. This has been achieved for a simple
system written in SPARK and running on a 68020
microprocessor [11]. More recent work using state of
the art techniques claims similar figures [12, 13]. Good
results can sometimes be obtained when developers
expend substantial effort to optimise the analysis result,
e.g. by accurately modelling the software’s control flow.
However, complex features such as multi-level caches
can result in overestimates exceeding 100% in some
cases [14]. Static analysis reports usefully tight bounds
for some software on some processors, but it cannot do
so for all software on all processors.

2.1.2. Dynamic Approaches to Determining WCET
Dynamic WCET analysis techniques can be split into
three categories: high water mark, probabilistic, and
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FIGURE 1. Example WCET distribution (data taken
from [15]).

search-based.

High water mark. In high water mark approaches,
analysts use the longest execution time observed in
testing as a WCET estimate. Unfortunately, it is not
generally possible to determine either the likelihood or
degree of underestimate.

Probabilistic. In probabilistic approaches, analysts use
Extremal Value Theory (EVT) to fit observed execution
times to a distribution such as the example presented
in Figure 1 [15, 16]. By selecting a WCET estimate
from further to the right of the distribution, a developer
decreases the likelihood of underestimation. However,
high confidence is expensive. Moreover, analysts using
these approaches typically do not question the validity
of the data used to form the distribution, making the
result uncertain [17].

Search-based. Search-based techniques have been
shown to be relatively successful [18]. Given appropri-
ate objectives, they can solve relatively complex prob-
lems [19, 20]. However, they are optimistic. Moreover,
their accuracy is subject to randomness.
In all cases, as with static analysis, developers must

consider the correctness of any user-supplied data.
Developers must also show that any tools used are fit for
purpose. Moreover, if instrumentation is used to obtain
timing measurements, the process of instrumenting
a test binary might alter its timing characteristics.
Developers must show that their test data accurately
reflects the runtime of the system as it will operate in
the field.

2.1.3. Hybrid Approaches to Determining WCET
Hybrid approaches combine static analysis and mea-
surement [16, 21, 22]. In this approach, the analysis
tool divides the software into blocks. The analyst then
executes the software, using the tool to measure the ex-

ecution time(s) of each block. Finally, the tool combines
the measurement values to produce a WCET estimate
as in the static analysis approach. In its simplest form,
the analysis uses the highest observed execution time
for each block. Researchers have proposed more compli-
cated analyses that take inter-block dependencies into
account [23].
Intuition suggests that, for a given test suite, hybrid

approaches are less likely to underestimate WCET
than high water mark approaches. However, both
underestimation and overestimation remain possible.
The likelihood of underestimate is unknown. The
likelihood and degree of overestimation vary with the
complexity of the hardware architecture and may, in
some cases, be large [24].
As in static and dynamic approaches, user-supplied

inputs and tool correctness are a concern. Moreover,
as in dynamic approaches, developers must show that
the timing test data accurately reflects the delivered
system.

2.2. WCRT Analysis Relies Upon Simplifying
Assumptions

Developers have usedWCRT analysis as safety evidence
in critical systems such as avionics [25]. Typical WCRT
analysis approaches use either static scheduling [26],
fixed priority scheduling [27], or a mix of the two [28].
Researchers have proved that these approaches are
mathematically exact so long as certain assumptions
hold. These assumptions include:

• There are no overheads, e.g. no interrupts and no
cache-related preemption delay

• There are no dependencies, i.e. the runtime of each
task is independent of the execution of other tasks

• The WCET figures used are the exact WCETs of
the tasks in the context of the delivered system

The issue of dependencies and overheads have been
addressed in the literature [25, 29]. The WCET
figures and their surrounding assumptions represent the
biggest problem. Even if developers used a technique
that produced exact values, WCET estimation is
typically carried out under conditions that differ from
the runtime environment of the delivered system. For
example, WCET estimation is frequently carried out
under the simplifying assumption that each task will
run atomically as the sole task on the processor.
Where simplifying assumptions are false, developers

compensate for their effect on WCRT analysis results.
Researchers have developed techniques that compensate
for cache-related timing effects from preemption and
caches shared between cores [30, 31, 32]. However,
even where techniques for compensating for false
assumptions are available, the challenges faced are
similar to those already discussed. Developers must
show that each such assumption has been adequately
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compensated for, e.g., that the effect of interrupts is
accounted for by a sufficiently large overhead figure.

2.3. Timing Analysis and Health Monitoring in
Practice

In practice, most developers use the high water mark
method to estimate WCET [5]. During WCRT analysis,
developers sometimes add both an engineering safety
margin and limited adjustments for real world effects
such as overheads [28, 33]. They assume that it
is unlikely that the worst cases for all tasks will
occur together and thus unlikely than an overrun in
a single task will cause the system to violate a timing
requirement. End-to-end timing tests partially confirm
this assumption, albeit with limited confidence. While
this practice supports to a degree the claim that a hard
real-time system’s timing requirements will be met, it
cannot do so to a degree that is adequate when the
consequence of a failure is catastrophic.
Developers employ health monitoring to mitigate any

overruns that occur even though timing analysis shows
that they are unlikely. That is, they construct systems
so as to detect overruns, insulate other subsystems from
the effects of overruns, and trigger recovery mechanisms
as needed. For example, a system might respond to
the overrun of a control calculation by re-issuing the
last control outputs. Alternatively or in combination,
developers might use a hardware watchdog timer to
reset the microprocessor if deadlines are breached.
Timing analysis and health monitoring are related in

two ways. First, it is necessary to know the details
of both in order to judge whether the developers have
adequately managed a system’s timing-related hazards.
Second, the appropriateness of health monitoring
responses depends upon system timing characteristics
that are assessed through timing analysis. For example,
suppose that timing analysis establishes that overruns
are vanishingly unlikely. In that case, it is reasonable
to assume that a deadline miss could only result from
a hardware failure that derailed the computation. As
a result, it would be reasonable to use a hardware
watchdog to reset the microprocessor. Suppose instead
that developers used a high water mark approach,
that the test suite was not large enough, and that
they did not apply a large safety margin. In that
case, while rare, overruns must be expected. Resetting
the microprocessor in response to these might only
aggravate the problem.

2.4. Living With an Imperfect State of the Art

A perceived benefit of many timing analysis approaches
is their mathematical rigour [34]. However, it is not
generally possible to use state of the art techniques to
prove that a hard real-time system will always meet
its timing requirements. For the reasons discussed in
Section 2.1, it is not always possible to guarantee that

WCET figures are not underestimated. Moreover, both
WCET determination and WCRT analysis are complex
and must be conducted carefully if the results are to
inspire confidence. Health monitoring can be used to
mitigate overruns. However, the appropriateness of a
given health monitoring approach depends upon the
timing characteristics of the system and the hazards
to be mitigated.
To judge whether a given system adequately manages

its timing-related hazards, developers and assessors
must know three things:

1. The quality of the WCET figure. This depends on
factors such as:

(a) The likelihood of underestimate

(b) Whether tools are fit for use

(c) The quality of inputs such as loop bounds

2. The quality of the WCRT analysis. This depends
on factors such as:

(a) The assumptions the analysis is based on

(b) Compensation for simplifying assumptions

(c) The soundness of the analysis method

(d) Whether tools are fit for use

3. How timing analysis relates to health monitoring.
Determining the appropriateness of health moni-
toring requires knowing the timing characteristics
of the system. Moreover, judging the adequacy of a
system requires knowing the details of both timing
analysis and health monitoring.

Our thesis is that it is possible to construct a
software safety argument that better conveys the
crucial timing-related information that is inadequately
conveyed by current standards-based and argument-
based approaches. In Section 3, we will show how
current standards-based and argument-based safety
assurance practices inadequately communicate this
critical information. In Section 4, we present an
example software safety argument that more clearly
does so.

3. THE STATE OF THE PRACTICE OF
SAFETY ASSURANCE

In some domains, applicable standards require devel-
opers to meet specified timing-related development ob-
jectives or to follow a prescribed process [2]. In others,
developers must address timing as part of a comprehen-
sive safety case, i.e. a “structured argument, supported
by a body of evidence, that provides a compelling, com-
prehensible and valid case that a system is safe for a
given application in a given environment” [35]. In nei-
ther case is the state of the art satisfactory.
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3.1. The RTCA DO-178B and DO-178C Stan-
dards

In the United States and Europe, software operating
on civil air transports is generally developed in
conformance with RTCA DO-178B, it successor RTCA
DO-178C, or their European equivalents ED-12B
and ED-12C [2, 36, 37, 38]. In the process that
these standards prescribe, developers capture high-level
timing requirements and decompose these across the
design into low-level requirements. Developers then
demonstrate the satisfaction of these requirements via
a combination of test, review, and analysis evidence.
DO-178B and its successor require two items of timing-
related evidence:

• Paragraph 6.3.4f requires “reviews and analyses”
of the source code to (amongst other objectives)
“determine . . . worst-case execution timing”

• Paragraph 6.4.3a requires “requirements-based
hardware/ software integration testing” that
could detect “failure to satisfy execution time
requirements”

The standard does not explicitly call for the use of
a watchdog timer, specify how execution should be
scheduled, demand a specific approach to establishing
WCET, or constrain how the system should respond
to overruns. However, paragraph 6.3.3f does require
review and/or analysis of the “partitioning integrity”
of the software architecture. This, arguably, forces
developers to examine the adequacy of the mechanisms
relied upon to implement temporal partitioning.

WCET Figure Quality Unclear. Despite the language
of DO-178B, it is not generally possible to precisely ‘es-
tablish’ the WCET of tasks running on modern proces-
sors (for the reasons discussed in Section 2.1). RTCA
DO-248B, the clarification of DO-178B, explicitly al-
lows developers to use either static or dynamic ap-
proaches [39]. Static approaches must account for “all
compiler and processor behavior and its impact” on tim-
ing. Dynamic approaches are permitted only “if it can
be demonstrated that the test provides worst-case ex-
ecution time”. Personal conversation with industrial
practitioners, safety assessors, and tool vendors sug-
gests that dynamic approaches are used, and indeed
might be more common. The standards offer no guid-
ance on how to demonstrate that these provide WCET
and it is not clear what evidence assessors demand in
practice.

WCRT Analysis Quality Unclear. DO-178B does not
explicitly constrain how developers use task WCET
figures to show that timing requirements have been
met. Arguably, the standard requires this. However,
with no explicit constraint on how this is done, it is not
clear which techniques and simplifying assumptions are
permissible.

No Connection Between Timing Analysis and Health
Monitoring. The standard makes no connection be-
tween timing analysis methods and health monitoring.
It thus offers developers and assessors no guidance on
which combinations are appropriate.

3.2. The ISO 26262 Standard

ISO 26262 is an international safety standard for road
vehicles. Part 6 of this standard provides guidance
for “product development at the software level” [3].
Software in road vehicles frequently must meet timing-
related safety requirements. Accordingly, ISO 26262
includes six time-related requirements:

• The software safety requirements should include
any necessary timing constraints (§6.4.2).

• The software architecture should describe temporal
constraints on the software components, including
tasks, time slices, and interrupts (§7.4.5b).

• If partitioning is used, no software partition may
affect the performance, rate, latency, jitter, or
duration of other partitions’ access to shared
resources (§7.4.11a).

• The developers must perform a safety analysis of
the architecture and, if necessary, include health
monitoring in the system design (§7.4.13–14).

• When developing the architecture, developers
must make “an upper estimation of required
resources for the embedded software”, including
“the execution time” (§7.4.17).

• Software testing must include resource usage tests
to confirm that the execution time allocated to each
task is sufficient (§9.4.3, §10.4.3).

In addition, the standard requires developers to verify
“software unit design and implementation”, using a
variety of static techniques, including “inspection”,
“semi-formal verification”, control and data flow
analysis, “static source code analysis”, and “semantic
code analysis” [8]. The text of this requirement does
not explicitly mention timing properties. Moreover, it
only recommends (rather than “highly” recommends)
semantic code analysis, even for the most critical
software. As a result, we do not interpret ISO 26262 as
requiring static analysis of WCET (although we would
recommend such analysis where practicable).

WCET Figure Quality Unclear. ISO 26262 does not
specify how the resource usage tests are to be
conducted. If developers statically analyse WCET, the
standard does not specify how inputs are to be verified.
The quality of a WCET figure established or confirmed
by testing varies with the technique used, the size of the
test set, and the selection of test cases. ISO 26262 offers
no guidance on what form of timing tests is appropriate.

The Computer Journal, Vol. ??, No. ??, ????



6 P. Graydon and I. Bate

G11 — Exhibited timing 
behaviour is correct

C7 — ‘Correct’ = Engine operates with defined 
performance and environmental conditions

C8 — Timing requirements (obtained 
through hazard analysis and modelling)

G16 — Timing 
requirements are met

S2 — Argument that scheduling 
policy is deterministic and all 
timing properties are guaranteed

J3 — Timing requirements
can be guaranteed if the scheduling 

policy is deterministic J

G15 — Timing require-
ments are correct

G20 — Scheduling 
policy is deterministic

G21 — Timing requirements guaranteed 
through static timing analysis

Goal

Justification

Strategy

Context

Undeveloped

Solved by

In the context of

GSN Key

J

FIGURE 2. Typical timing argument (taken from [40]).

WCRT Analysis Quality Unclear. ISO 26262 requires
developers to specify temporal constraints on compo-
nents. However, it does not specify a process for WCRT
analysis based on those WCET figures. While such
analyses typically make use of simplifying assumptions,
the standard offers no guidance on what is appropriate.

No Connection Between Timing Analysis and Health
Monitoring. ISO 26262 explicitly recommends moni-
toring of execution time to detect overruns. However,
it makes no connection between the quality of timing
analysis and how overruns are handled.

3.3. Defence Standard 00-56

UK Defence Standard 00-56 takes a different approach
to system safety than ISO 26262. Rather than
prescribing elements of the development process, Def
Stan 00-56 requires developers to create and maintain
a safety case [35].
When a system contains software, its safety argument

might depend, in part, on the software’s behaviour. For
example, a fly-by-wire aircraft design creates a hazard:
an aircraft might become uncontrollable if software
outputs are not computed on time. To argue that this
hazard has been adequately managed, developers might
cite evidence arising from WCET and WCRT analyses.
The main text of Def Stan 00-56 offers no guidance for

software development or for software-related portions
of the safety case. However, part 2 of the standard
offers guidance on compliance with the standard’s main
text [41]. Part 2 gives the following advice on the use
of analysis evidence for software components but also
highlights that run-time errors, which could be due to
inaccurate analysis, have to be accounted for:

Analysis may be used to provide evidence
that the safety requirements are satisfied
and the derived safety requirements of the
complex electronic element hold. Such

analyses may include timing (e.g. worst
case execution times), use of resources,
computational accuracy, possibility of run-
time error and functional properties.

The standard requires the developers’ safety ar-
gument to be “compelling, comprehensible, and
valid” [35]. Arguably, a safety argument would not meet
these criteria if its treatment of software did not demon-
strate the combined adequacy of any timing analysis
and health monitoring mechanisms. However, current
safety arguments do not do this well.

3.4. Typical Timing Arguments

Figure 2 presents a typical approach to arguing about
timing. The argument concerns an engine control
computer and is presented in the graphical Goal
Structuring Notation (GSN) [42, 43, 44]. The arguer
contends that the system will exhibit correct timing
behaviour because a correct set of timing requirements
(goal G15 and context C8) are met (goal G16). Since a
deterministic scheduling policy is used (goal G20), static
timing analysis (goal G21) is sufficient to show that the
timing requirements have been met. While this was
not shown in the original argument, goal G20 might be
solved by reference to the scheduling policy used. In
a typical argument, goal G21 would be solved by citing
the WCET estimation and WCRT analysis as evidence.
This argument was written in 1996 [40]. Nevertheless,

its logic reflects current timing analysis practice
including that found in academic papers [5, 33],
recommended in standard textbooks [26, 45, 46, 47],
and reported in industrial papers [34, 48]. This is the
logic that underpins the standards we have discussed.
Reliance upon timing analysis is typical, although in
other arguments this might be backed up by evidence
showing that the system has behaved as expected in
testing or in practice. The assumption codified in
justification J3 is also typical.
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G26 — Value discrepancies 
between processors detected 
through trusted voting 
mechanism

G27 — Timing errors 
detected through 
timing watchdog

G28 — Platform will attempt to 
recover from detected processor 
faults through shut-down and restart

G29 — Where processor restart 
cannot remove detected faults, 
faulty resource will be removed 
from available configuration

G22 — Platform behaviour deterministic in 
the presence of credible faults

C10 — Credible faults (identified as 
part of Software HAZOP study)

G24 — Faults are 
detected in bounded time

G25 — Faults are recovered (in 
bounded time) or safely tolerated

C11 — Acceptable time bounds for 
fault recovery (from safety analysis)

FIGURE 3. Typical health monitoring argument (taken from [40]).

WCET Figure Quality Unclear. In typical safety
arguments, the WCET estimate would be cited as
evidence with no argument about its quality. If the
reader of a safety case report is aware that WCET
analysis quality might be an issue, he or she could
read the analysis report, judge the analysis quality, and
compare that judgement with his or her understanding
of the importance of WCET analysis evidence to the
argument as a whole. However, the argument structure
does not make clear to the reader that analysis quality
is an issue requiring attention.

WCRT Analysis Quality Unclear. In typical safety
arguments, the WCRT analysis would be cited with no
argument about the analysis process, its assumptions,
or the quality of its result. Again, if a reader was
aware that simplifying assumptions might be an issue,
he or she could read the analysis report and make
a judgement. However, once again, the argument
structure does not draw the reader’s attention to this
potential issue.

No Connection Between Timing Analysis and Health
Monitoring. Figure 3 presents a health monitoring
argument taken from the same safety case as Figure 2.
The arguer claims that timing overruns will be detected
through the use of a reliable watchdog timer (goal G27)
and handled by restarting the processor (goal G28).
However, the argument does not explicitly connect
the issues of timing analysis and health monitoring,
or deal with the issue of duration and frequency of
failure. The latter of these is particularly important as
there is plenty of evidence that unreliable systems lead
to distrust of the systems and consequently accidents
[49, 50]. In addition, a slow response to failures can lead
to hazards. Finally the more time the system spends in
a failed state, the less useful it is. Therefore the time
taken to recovery and the frequency of failures should
be reasoned about.

3.5. State of the Art Modular Software Safety
Arguments

The Industrial Avionics Working Group (IAWG) aims
to produce a state of the art modular software safety
case process. While the IAWG effort continues, early
results have included an approach to arguing about
software timing [51]. In this approach, the claim that
“all critical operations complete within the allotted
time” is broken down into five sub-claims:

1. “All users of throughput have been adequately iden-
tified.” That is, all scheduled applications, inter-
rupts, scheduling overheads, and other overheads
(e.g. DMA, cache) have been identified.

2. “Each user of throughput has an execution time
budget.” This budget is identified in the system
design documentation.

3. “All users of throughput stay within individual
execution time budgets.” This claim is supported
by: (a) analysis that identifies the worst case;
(b) a timing measurement of the worst case; and
(c) temporal partitioning.

4. “Cumulative use of throughput is within overall
execution time budget.” This claim is supported
by: (a) analysis of the scheduling algorithm
showing that the “total of [the] throughput budgets
is schedulable”; (b) end-to-end tests showing that
the “test cases meet [their] timing constraints”; and
(c) (optionally) unspecified evidence showing that
“overruns do not affect critical operations.”

5. “Scheduling software implements the scheduling
algorithm.” This would be supported by testing
and analysis evidence.

WCET Figure Quality Unclear. The IAWG modular
software safety argument claims that the worst case has
been identified. This is implausible. Identifying the
worst case cannot be done by testing without perfect
coverage, which is not generally attainable. It is also
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impossible to identify the worst case using an analysis
tool that does not exactly establish ET in all cases: any
degree of overestimate or underestimate might cause the
tool to evaluate a shorter-running case as worse than
a longer-running case. The claim to have identified
the worst case cannot be substantiated beyond any
reasonable doubt. However, the claim does not specify
the level of confidence that is actually achieved. As
a result, the quality of WCET figures cited in the
argument is questionable.

WCRT Analysis Quality Unclear. The IAWG argu-
ment addresses some issues better than typical safety
arguments do. In particular, it cites analysis that iden-
tifies all overheads. However, the impact of simplifying
assumptions on the analysis result remains unclear.

No Connection Between Timing Analysis and Health
Monitoring. The IAWG argument cites evidence of
temporal partitioning and, optionally, evidence showing
that overruns do not affect critical operations. However,
it does not explicitly identify the interplay between
these and the cited timing analysis evidence.

4. IMPROVING ARGUMENTS ABOUT
SOFTWARE TIMING

The second part of our thesis is that it is possible to
construct a software safety argument that better con-
veys the crucial information that existing approaches
obscure. In this section, we present an example of
such an argument that illustrates six benefits of a well-
structured software safety argument:

1. WCET Assumptions. Our argument captures and
justifies assumptions about the WCET estimation
context (e.g. atomic operation, processor architec-
ture) and data (e.g. distribution of inputs).

2. WCET Quality. Our argument states the quality
of WCET estimates in quantitative terms.

3. WCRT Assumptions. Our argument captures and
justifies assumptions about the WCRT analysis
context (e.g. overheads, processor architecture)
and system inputs (e.g. accuracy of WCET).

4. WCRT Quality. Our argument clearly states the
confidence inspired by the WCRT analysis analysis.

5. Health Monitoring. Our argument explains how
health monitoring justifies confidence that a
system meets its safety requirements despite the
limitations of timing analysis and WCET figures.

6. Traceability to Evidence. Our argument traces
each system hazard through software safety
requirements to evidence. It explains what each
form of evidence (e.g. task timing tests, end-to-end
timing tests) shows and how much confidence each
form should inspire.

x4ABS

ECU
Valve (x4)

Speed sensor (x4)

FIGURE 4. Computer assisted braking system.

Our example argument shows one approach to
WCET and timing analysis. However, our choice of
specimen is not a recommendation of that approach
over the others discussed in Section 2. Each approach
has distinct advantages, disadvantages, and issues of
confidence. Each requires a different argument. We
leave specific argument patterns for each common
approach for future work.

4.1. Specimen Application: Computer As-
sisted Braking

Our example argument concerns a specimen Computer
Assisted Braking (CAB) system. We chose this system
both because relatively comprehensive safety cases for
it are in the public domain [52, 53] and because CAB
is representative of systems in a number of domains,
e.g. Anti-Lock Braking (ABS) systems for cars, and
Anti-Skid systems for aircraft and trains.

4.1.1. CAB System Architecture
Figure 4 illustrates the CAB system that is the subject
of our case study. The system comprises:

1. An Electronic Control Unit (ECU)

2. A brake pedal sensor

3. Four wheel speed sensors (one per wheel)

4. Four valves, each of which can relieve or restore
braking force at one wheel

5. A dashboard indicator light to warn the user when
the system is not available

The braking system is primarily hydro-mechanical,
not brake-by-wire. The CAB components are not
replicated. The ECU implements software health
monitoring that can detect task overruns and take
fine-grained remedial action. For example, if control
calculations are not completed on time, the software
re-issues its last outputs to the valves. The ECU also
implements simple hardware health monitoring that
resets the microprocessor when a hardware watchdog
timer expires. Software on the ECU is scheduled using
fixed priority scheduling [25].
Our specimen CAB system is simple but realistic.

ABS has been implemented in cars using similar ar-
rangements, although current systems might also fea-
ture brake-by-wire and use a separate microcontroller
for each wheel. This system is an appropriate choice
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for our example because, despite its simplicity, arguing
about its timing properties requires the same kind of
arguments that a system with more features or more
processors might.

4.1.2. CAB System Hazards
Wilson et al. have conducted a hazard analysis on a
similar system [52]. Several of the hazards that they
identify will also be present in our system. For the
purpose of this paper, we focus on one such hazard:

Hazard ID: Lock Up

Description: One to four of the wheels stops
turning while the vehicle is in motion

Severity: Catastrophic

4.2. Example Argument For The CAB System

Figure 5 shows the top level of a safety argument for the
CAB system. Goal GSafety represents the main claim, that
the system is acceptably safe to operate. Context elements
CBrakeSys, CSafety, and COpContext provide operational
definitions of ‘Braking System’, ‘acceptably safe’, and
‘operating context’, respectively.

As is typical and recommended in safety arguments, we
support this claim in part by arguing that all identified
hazards are acceptably managed [54]. We support the
claim that the Lock Up hazard is acceptably managed by
showing that contributions from the software and other
subsystems are acceptably managed. In Figure 5, we focus
on one particular software contribution to this hazard: the
possibility that the software will be late in commanding the
valves to mitigate Lock Up.

A different application would have a different operating
context, different hazards, and different safety requirements.
Nevertheless, this example illustrates two improvements
that could be used elsewhere:

1. It demonstrates traceability from hazards to safety
requirements (and, in subsequent figures, to evidence).

2. It uses multiple deadlines at different levels of
confidence to model the impact of health monitoring.

As developers choose means of managing each identified
hazard, they record safety requirements that describe
successful management. In Figure 5, the goals GSSR10,
GSSR11, and GSSR12 represent three tiers of software
management of the Late Correction contribution to Lock
Up. In general, we require that the Anti-Lock function
activate within 50 ms of the onset of wheel lock up (goal
GSSR10). However, for the reasons given in Section 2, we
could not satisfy this requirement with sufficient confidence.
Goals GSSR11 and GSSR12 represent requirements to meet
relaxed deadlines with the greater confidence made possible
by health monitoring strategies.

We represent confidence using categories analogous to
the Safety Integrity Levels (SILs) defined in some safety
standards. In our scheme, confidence level A is the highest.
One could, instead, represent confidence in terms of the
likelihood (over some assumed distribution of inputs) that
the deadline would be missed in operation. However,
unless the required confidence was low enough that practical
system-level testing could provide it, it might be difficult to

argue convincingly that such a requirement had been met.
For example, we do not know how to quantify the effects of
human error and other sources of epistemic uncertainty.

This portion of the example argument links hazards
to safety requirements and the confidence that must be
inspired by health monitoring and timing analysis. In the
following subsections, we illustrate how to complete the link
to evidence and the confidence that evidence inspires.

4.2.1. Arguing About Confidence In WCET Figures
Figure 6 illustrates part of an argument module focused
on WCET claims for our specimen system. A different
approach to determining WCET would require a different
argument. Nevertheless, this example illustrates two
improvements that could be brought to other arguments:

1. Context element CWCET.C clearly communicates the
confidence level associated with WCET figures.

2. Context elements CWCET.NI, CSysHW, and CSysOS
summarise the contextual assumptions that underpin
the analysis.

Communicating Confidence. The confidence figure in
CWCET.C is part of the WCET argument module’s contract.
That is, this argument will defend the claim to have
achieved that level of confidence so that other portions
of the argument can rely upon the truth of that claim.
As elsewhere in the argument, we might have stated the
confidence in terms of a SIL rather than a failure rate.

Confidence in the WCET figures is limited by epistemic
and aleatoric uncertainty from several sources:

1. Configuration Management. Analysis of the wrong
binary might produce the wrong WCET figure. Goal
GBPCM.WCET (supported in another module, not
shown) show that we have taken adequate care.

2. Tool Fitness. An error in the hybrid WCET analysis
tool might also produce an incorrect WCET figure. We
cite tool qualification evidence to show that the tool is
fit for use in this application.

3. Tool Inputs. Erroneous user-provided loop bounds or
other tool inputs might also result in incorrect output.
Evidence for goals such as GWCETAI.LB shows that
each input is of adequate quality.

4. Test Coverage. Timing tests that achieve incomplete
coverage might miss the worst case. Goal GWCETAI.-
BBT represents the claim that testing-derived basic
block timing data is sufficient to meet our quality goals.

We argue that test-derived basic block timing data is
sufficient because our tests achieved suitable code coverage.
Context element ABBTInput represents our definition of
‘suitable’. Since our chosen timing tool statically infers loop
bounds, this definition does not include loop bounds (or
recursion depth). (I.e., basic blocks do not include loops).
Ongoing research is addressing the relationship between
confidence and timing test coverage [17]. Nevertheless,
expert developers and safety assessors routinely use expert
judgment to make assumptions about what coverage is
appropriate. Such assumptions should be documented.

Communicating Assumptions. CWCET.NI, CSysHW,
and CSysOS summarise assumptions that form part of the
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CSSRs1 — List of SSRs that address 
Late Output of Brake Modification

. . .

. . .

. . .

. . .

GSafety —
The Braking System is 
acceptably safe to operate in 
its intended operating context

GLockUpHM — The Lock Up 
hazard is acceptably managed

GLockUpSWCM — Software contributions 
to Lock Up are acceptably managed

StArgOverHazards —
Argument over identified hazards

StAoContribs1 —
Argument over identified contributions

CBrakeSys — Design
of the Braking System

CSafety — Definition
of ‘acceptably safe’

COpContext —
Design and operation of the 
vehicles in which the Braking 

System will be used

CHazards — List of 
identified hazards

CContributions1 — List of
Software contributions to Lock Up

GLateCorrection — Late Correction 
of Lock Up is acceptably managed

StAoSSRs1 — Argument over
Software Safety Requirements

CCLs — Definitions of
each confidence level

GSSR10 — The Anti-Lock function shall 
activate within 50 ms of the onset of 
lock up with confidence level C

GSSR11 — The Anti-Lock function shall 
activate within 200 ms of the onset of 
lock up with confidence level B

GSSR12 — The Anti-Lock function shall 
activate within 1000 ms of the onset of 
lock up with confidence level A

Goal elaborated elsewhereGSN Key (continued)

FIGURE 5. Top level of CAB system safety argument.

argument module’s contract. As we show in Section 4.2.2,
interlinked portions of the argument must demonstrate
compatibility with these assumptions.

Other Cases. Most forms of WCET analysis use tools.
Thus, the basic strategy of arguing over a tool and its inputs
should be generally useful. However, suppose we had used a
dynamic approach as discussed in Section 2.1.2. The tool
might be simpler and use fewer inputs (e.g. eliminating
GWCETAI.LB and GWCETAI.CPUC), but we would still
require evidence of its fitness. The coverage criteria would
differ depending on the exact approach taken (e.g. statistical
versus high water mark).

Had we instead used a purely static approach, we would
not need the sub-argument headed by GWCETAI.BBT at
all. However, much of the remaining argument would be
the same as for the example hybrid approach. For example,
we would still need GWCETTC: static analysis tools are
complex, and some have been based on incorrect information
provided by microprocessor vendors [55].

Regardless of the approach, details of the argument will
depend on details of the approach. For example, some tools
restrict developers to a subset of a programming language.

Users of RapiTime and C should not use goto because
paths containing goto are ignored in WCET analysis [56].
Some language constructs promote repeatability, which
is important in dynamic approaches [57]. The coding
guidelines mentioned in goal GWCETAI.CG must be
appropriate given the approach and confidence targets.

4.2.2. Arguing About Confidence In Timing Analysis
Figure 9 illustrates part of an argument module focused
on timing analysis. While this argument reflects a
schedulability analysis, there are other approaches to timing
analysis. Nevertheless, it illustrates three improvements
that could be brought to other arguments:

1. Context element CTiming.HC clearly communicates our
confidence in the timing analysis.

2. Context elements summarise the contextual assump-
tions underpinning the analysis.

3. The argument demonstrates that the assumptions
underpinning the timing analysis are compatible with
those underpinning the WCET figures.
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StAoWCETI — Argument
over inputs to the WCET tool

GWCETIC — The inputs 
to the tool were adequate

GWCETTC — If given adequate inputs,
the tool produces output that is sufficiently 
unlikely to underestimate WCET

GWCETFDNU — The WCET 
Figures are sufficiently
unlikely to underestimate WCET

CWCET.F — The WCET
Figures for the system's tasks

CWCET.NI — Tasks always
run to completion without interruption by physical 
interrupt handlers, software interrupt handlers, or 

operating system context switches 

CSysHW — The
system hardware

Safety

CSysOS — The
operating system

Safety

CWCETTool — By “WCET tool”, we
mean the ACME hybrid timing analysis tool

StAbCUoCWCETT —
Argument over use
of the WCET tool

GBPCM.WCET — WCET tool, its inputs, 
and its outputs are controlled using best-
practice configuration management

ConfMgmt

CWCETProcess — The WCET determination
process, including tools and how these are used to 

produce the WCET Figures

WCET Tool

Certification pack provided by ACME

GWCETAI.LB — 
User-provided loop 
bounds are correct

GWCETAI.SS — The start 
and stop points of each 

task are defined correctly

GWCETAI.SC — 
The correct source 
code was analysed

GWCETAI.CPUC — The specified 
CPU configuration matches the 

configuration of the target

CInputReqs — Definitions
of the tool’s inputs and what it 

means for each to be ‘adequate’

WCET Tool

GWCETAI.BBT — The basic 
block timing data is adequate

StAoMoIB — Argument
over timing testingCTTP — Plan for timing testing CTTS — Suite

of timing tests

GTTBTBI — Recompilation and the 
addition of test harnesses does not 
reduce the execution time of basic blocks

CWCET.C — The likelihood that a task will
overrun its WCET figure is 10-4 per release

GTTSAAC — The timing 
test suite achieves 
adequate coverage

GTTEFRRA — The timing tests 
were executed faithfully and 
their results reported accurately

GWCETAI.CG — The 
source code conforms 
to coding guidelines

ABBTInput — Basic block timing derived
from testing that achieves MC/DC, 100% requirements coverage,

coverage of common use case scenarios, and coverage
of exceptional conditions is adequate A

Goal exported from module

GSN Key (continued)

Context exported from moduleReference to another module

Away context imported from another module Away goal imported from another module

FIGURE 6. Argument over WCET estimation in the CAB system.
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CTiming.TR — List of Timing 
Requirements – timing analysis

will show the satisfaction of these

CSysHW — The
system hardware

Safety

CSysOS — The
operating system

Safety

CCLs — Definitions
of each confidence level

Safety

StAoS — Argument over schedule

GSPriorities — Tasks execute 
with the specified priorities

GTETs — Tasks complete 
within their execution times

GSchedComplete — 
The schedule includes 
all tasks and overheads

GTARates —
Tasks arrive at the 
specified rates

GTRTimes —
Tasks are released at 
the specified times

GTRsMet — The schedule’s 
deadlines satisfy the Timing 
Requirements

GSPolImplemented —
The system implements 
the scheduling policy  

GSchedulable — The 
system is scheduleable

StAoToT1 — Argument
over types of tasks

GNOTCWETs — Non-overhead tasks 
complete within their execution times

GOTCWETs — Overhead tasks 
complete within their execution times

StAoOaUET1 — Argument
over overhead and

uninterrupted execution time

JTETD — Task execution
time can be divided into overhead 
and uninterrupted execution time J

CTaskOverhead — Task
overhead includes the effects of task 

dispatch, task cleanup, context switching, 
and cache conflict effects

GNOTUETNU — Non-overhead 
task uninterrupted execution 
times are not underestimated

GNOTETONU — Non-overhead 
task execution time overheads 
are not underestimated

CWCET — The WCET Figures
were used as the non-overhead task 

uninterrupted execution times 

CWCET.F — The WCET
Figures for the system's tasks

WCETGWCETFDNU — The WCET Figures are 
sufficiently unlikely to underestimate WCET

WCET

CTiming.HC — The highest-
confidence Timing Requirement is level C 

CTiming.S — System schedule

GTimingA — The timing analysis shows
that all Timing Requirements are met

FIGURE 7. Argument over timing analysis in the CAB system.

Compatibility of Assumptions. The argument support-
ing goal GNOTCWETs illustrates how the timing analy-
sis process compensates for the assumptions made in the
WCET and timing argument module. Because the WCET
measurement process assumed that each task ran in isola-
tion, we divide each timing figure into uninterrupted exe-
cution times and overheads. We use the WCET argument
module to support a claim that the uninterrupted execu-
tion times are not underestimated (goal GNOTUETNU). We
must separately argue that the overhead figures used are
sufficient to convert uninterrupted execution times into fig-
ures that do not underestimate runtimes in the real system
context (goal GNOTETONU, support not shown).

Table 8 illustrates how the argument contract between the
WCET and timing analysis demonstrates the compatibility
between their separate assumptions [58, 44]. Argument
contracts expresses the relationship between argument

modules and include elements not shown in the figure.
In this case, the relationship is that the WCET module’s
goal GWCETFDNU supports the timing module’s goal
GNOTUETNU. This support requires compatibility between
the modules’ context. In this case, we state why we believe
that it is acceptable to assume that tasks run in isolation for
the purpose of using WCET figures in the timing analysis.

Other Cases. Suppose that the target was a multicore
microprocessor. Developers could either analyse WCET
in the context of what might be running on the other
cores or assume during WCET analysis that each task
has exclusive access to all shared caches, memories, and
other devices. Either choice presents assurance difficulties
that are revealed by the argument structure. Researchers
have proposed multicore architectures that make the time
cost of using shared resources either predictable or truly
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Goals matched between participant modules

Goal Required by Addressed by Goal

GNOTUETNU Timing Analysis WCET GWCETFDNU

Collective context of participant modules held to be constant

Context Rationale

CWCET.NI While tasks do not always run to completion without interruption, goal GNOTUETNU is
concerned with ‘uninterrupted execution times’. WCET figures estimated under the
assumptions listed in CWCET.NI will not underestimate uninterrupted execution times.

FIGURE 8. Extract from contract between the WCET and timing analysis modules

random [59, 60, 61]. While such architectures would make
the assumption easier to compensate for, implementations
are not yet commercially available. Researchers have also
proposed static analysis techniques for modelling shared
caches [62, 63, 64]. While these would obviate the need
for the assumption, there are no commercially available
static WCET analysers that produce usefully tight execution
time bounds for platforms where cores share parts of a
memory hierarchy. Unless developers statically schedule all
access to shared components, we know of no way to argue
high confidence in usefully-tight WCET figures for software
running on most modern multicore platforms.

4.2.3. Linking Health Monitoring To Timing Analysis
Figure 9 illustrates part of our argument about software
contributions to CAB system hazards. Other systems’
hazards will differ. Nevertheless, the figure illustrates two
improvements that could be brought to other arguments:

1. Health monitoring supplements timing analysis to show
that timing requirements will be met.

2. End-to-end timing test evidence and historical evidence
increase confidence still further.

Arguing About Health Monitoring. Goal GSSR11 repre-
sents the claim that the Anti-Lock function activates within
200 ms of the onset of lock up with confidence level B.
We argue that this claim is true because the vast major-
ity of the time, each software task makes progress (goal
GSCFGPR2), and when it does not, the system restarts the
task (goals GSWDEDR and GRestart). The assumption be-
hind this logic, ASoftErrors, is that restarting a task can clear
many sources of error that would cause it to miss deadlines.

We must also show that it is acceptable to restart tasks
even if the problem is not a soft error. The design of our
example system is such that, if restarting the task fails
to clear the problem, the system will go on to reset the
processor or even go on to disable itself and illuminate
the dashboard warning light. Safety analysis of the design
should provide support for goal GNoHarm (not shown).

Health monitoring affects factors other than response
time. For example, health monitoring and recovery affects
availability. We would expect a safety requirement for
system availability to also cite evidence related to health
monitoring. In this example, we focus solely on timing.

Multiple Sources of Timing Evidence. Goal GSSR10
is supported by multiple forms of timing evidence. We
claim that this increases confidence because the evidence is
diverse. We would have less confidence in goal GSSR10 if, for
example, the end-to-end timing tests were based on the same
set of timing test cases as the timing analysis. Assurance
claim point 41 identifies the subject of a confidence argument
that provides backing for our claim of independence [65].
The confidence argument (not shown) gives our reasons for
claiming that these sources of evidence are independent and
discusses and justifies any remaining assurance gaps.

5. CONCLUSIONS

Typical approaches to demonstrating that a software system
meets its timing requirements rely upon a complicated
combination of WCET determination, timing analysis,
and the provision of health monitoring. The WCET of
software running on modern microprocessors can be difficult
to determine, and analyses often make incompatible or
false simplifying assumptions that must be compensated
for. Unfortunately, existing approaches to certification do
not address these complexities well. We have presented
example safety arguments to demonstrate how to better
communicate the quality of WCET figures and timing
analysis and how these are complemented by health
monitoring. Our argument illustrates how developers can
make six improvements to their method of demonstrating
the safety of real-time systems:

1. It documents and justifies the assumptions that
underpin WCET analysis

2. It clearly communicates the quality of WCET figures

3. It documents and justifies the assumptions that
underpin WCRT analysis

4. It clearly communicates the quality of the WCRT
analysis

5. It explains how health monitoring boosts confidence
that the system meets its timing requirements

6. It shows how evidence justifies confidence that safety
requirements are met and system hazards managed

While our example argument focuses on one specimen
system, the way in which it achieves these gains can be
transferred to safety arguments for systems using other
approaches to determining WCET and analysing timing.
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GSSR11 — The Anti-Lock 
function shall activate within 
200 ms of the onset of lock 
up with confidence level B

CLockUp — A wheel
experiences the onset of lockup when 

(vehicle_speed - wheel_speed) . 
threshold

CActivate — The Anti-Lock
function has actuated when it

commands the valve of the affected
wheel to reduce pressure

StAoEDR2 — Argument
over error detection

and recovery

CSWWEDR — The design
uses a watchdog timer to reset the 

braking tasks if they do not complete 
at least once in 100 ms

GSCFGPR2 — 
Software causes 
of failure to make 
gross progress 
are rare

CRare2 — With
confidence level C, 
software should not 

cause failure to make 
gross progress

GSWDEDR —
The task-level error 
recovery mechanism 
resets any braking task 
that does not complete 
at least once in 100 ms

GRestart — A 
restarted braking 
task is ready to 
execute within 
50 ms

ASoftErrors — Many
potential failures are due to soft errors that can be

fixed by restarting the task (thus restoring its 
persistent state to its initial value) A

GSSR10 — The Anti-Lock 
function shall activate within 
50 ms of the onset of lock 
up with confidence level C

SEtETests — 
End-to-end 
timing tests

SHistory — 
Operational 

history of 
system

ACP42
ACP43

ACP44

StAoDE19 — Argument
over diverse evidence

ACP41

CLockUp — A wheel
experiences the onset of lockup when 

(vehicle_speed - wheel_speed) . 
threshold

CActivate —The Anti-Lock
function has actuated when it 

commands the valve of the affected 
wheel to reduce pressure

STimingA —
Timing analysis

Timing
Analysis

GNoHarm — There is no 
harm in resetting the task if 

the error is not a soft error; if 
this doesn’t clear the 

problem, the processor will 
be reset by health monitoring

FIGURE 9. Argument over health management in the CAB system.
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