
Probabilistic Worst-Case Response-Time Analysis for the Controller Area
Network

Thomas Nolte, Hans Hansson, and Christer Norström
Mälardalen Real-Time Research Centre
Department of Computer Engineering

Mälardalen University, Västerås, SWEDEN
http://www.mrtc.mdh.se

Abstract

This paper presents a novel approach for calculating a probabilistic worst-case response-time for messages in
the Controller Area Network (CAN). CAN uses a bit-stuffing mechanism to exclude forbidden bit-patterns within
a message frame. The added bits eliminate the forbidden patterns but cause an increase in frame length. How
much the length is increased depends on the bit-pattern of the original message frame.

Traditional response-time analysis methods assume that all frames have a worst-case number of stuff-bits. This
introduces pessimism in the analysis.

In this paper we introduce an analysis approach based on using probability distributions to model the number
of stuff-bits. The new analysis additionally opens up for making trade-offs between reliability and timeliness, in
the sense that the analysis will provide a certain probability for missing deadlines, which in the reliability analysis
can be treated as a probability of failure. We evaluate the performance of our method using a subset of the SAE1

benchmark.

1 Introduction

During the last decade real-time researchers have extended schedulability analysis to a mature tech-
nique which for non-trivial systems can be used to determine whether a set of tasks executing on a
single CPU or in a distributed system will meet their deadlines or not [1, 3, 10, 14]. The essence of this
analysis is to investigate if deadlines are met in a worst case scenario. Whether this worst case actually
will occur during execution, or if it is likely to occur, is not normally considered.

In contrast with schedulability analysis, reliability modelling involves study of fault models, charac-
terization of distribution functions of faults and development of methods and tools for composing these
distributions and models in estimating an overall reliability figure for the system.

This separation of deterministic (0/1) schedulability analysis and stochastic reliability analysis is a
natural simplification of the total analysis. However the deterministic schedulability analysis is un-
fortunately quite pessimistic, since it assumes that a missed deadline in the worst case is equivalent
to always missing the deadline. There are also other sources of pessimism in the analysis, including
considering worst-case execution times and the usage of pessimistic fault models.

1See [9] for details.

1

In this paper we provide a probabilistic response-time analysis method for messages in the Controller
Area Network (CAN). The Controller Area Network is extensively used in small scale distributed sys-
tems, such as automotive, medical and industrial applications.

We have in our previous work presented a method to model the number of stuff-bits in a CAN mes-
sage frame [6, 7]. Stuff-bits are extra bits added by the CAN protocol. There is a built in mechanism in
the CAN protocol which removes forbidden bit-patterns (e.g, patterns used for error signaling and the
communication protocol) within the message frame by “inserting” stuff-bits at specific positions. This
mechanism causes a variation in the CAN message frame length.

When performing worst-case response-time analysis, the worst case number of stuff-bits is tradi-
tionally used. In this paper we will introduce a worst-case response time analysis method which uses
distributions of stuff-bits instead of the worst-case values. This makes the analysis less pessimistic in
the sense that we obtain a distribution of worst-case response times corresponding to all possible com-
binations of stuff-bits of all message frames involved in the response-time analysis. Using a distribution
rather than a fixed value makes it possible to select a worst-case response time based on a desired prob-
ability � of violation, i.e., the selected worst-case response time is such that the probability of a response-
time exceeding it is � � . Our main motivation for calculating such probabilistic response-times is that
they allow us to reason about trade-offs between reliability and timeliness.

It should be noted that this paper focuses on a single aspect, namely a probabilistic worst-case re-
sponse time, based on using bit-stuffing distributions. There are other parameters, including execution
times and phasings of message queuings, that have similar variations and effects on the response-time
analysis. However, our calculations are based on the “critical instant” worst-case scenario.

Outline: Section 2 presents the traditional schedulability analysis for CAN. In Section 3 we present
the new probabilistic response-time analysis, and in Section 4 the analysis is evaluated using the SAE [9]
benchmark. Finally Section 5 concludes the paper and presents some future work.

2 Traditional Schedulability Analysis of CAN frames

The Controller Area Network (CAN) [8] is a broadcast bus designed to operate at speeds of up to 1
Mbps. Data is transmitted in frames containing between 0 and 8 bytes of data and a number of control
bits. Depending on the CAN format (standard or extended) the number of control bits are either 44 or
64. Between CAN frames sent on the bus, there is also a 3 bit inter-frame space. The standard format
CAN frame (and the inter-frame space) is shown in Figure 1.

Arbitration field

S
O
F

0

11-bit identifier
R
T
R

DLC 4-
bit

Control field Data field

0-8 bytes 15 bit CRC

0

r
0

1

CRC field

I
D
E

0

Ack End of frame

1 1 1 1 1 1 1

Int

1 1 11

Bits exposed to bit-stuff ing (34 control bits and 0-8 bytes of data -> 34-98 bits)

0 0 CRC delimiter bit

Known bit-values (standard format data frame)

Figure 1. CAN frame layout (standard format data frame).

The difference between the standard and the extended format is that the extended format has 29
identifier bits instead of the 11 bits used in the standard format (please consult [8, 4] for more details).
The identifier is required to be unique, in the sense that two simultaneously active frames originating
from different sources (i.e., nodes or CAN-controllers) must have distinct identifiers. The identifier

2

serves two purposes: (1) assigning a priority to the frame, and (2) enabling receivers to filter frames.
For a more detailed explanation of the different fields in the CAN frame, please consult [8, 4].

CAN is a collision-avoidance broadcast bus, which uses deterministic collision resolution to control
access to the bus (so called CSMA/CA). The basis for the access mechanism is the electrical charac-
teristics of a CAN bus: if multiple stations are transmitting concurrently and one station transmits a
‘0’ then all stations monitoring the bus will see a ‘0’. Conversely, only if all stations transmit a ‘1’ will
all processors monitoring the bus see a ‘1’. During arbitration, competing stations are simultaneously
putting their identifiers, one bit at the time, on the bus. By monitoring the resulting bus value, a station
detects if there is a competing higher priority frame and stops transmission if this is the case. Because
identifiers are unique within the system, a station transmitting the last bit of the identifier without de-
tecting a higher priority frame must be transmitting the highest priority queued frame, and hence can
start transmitting the body of the frame.

2.1 Classical CAN bus analysis

Tindell et al. [11, 12, 13] present analysis to calculate the worst-case latencies of CAN frames. This
analysis is based on the standard fixed priority response time analysis for CPU scheduling [1].

Calculating the response times requires a bounded worst case queuing pattern of frames. The stan-
dard way of expressing this is to assume a set of traffic streams, each generating frames with a fixed
priority. The worst-case behavior of each stream, in terms of network load, is to send as many frames
as they are allowed, i.e., to periodically queue frames. In analogue with CPU scheduling, we obtain
a model with a set � of streams (corresponding to CPU tasks). Each ������� is a triple �	����

���

������ ,
where ��� is the priority (defined by the message frame identifier), ��� is the period and ��� the worst-case
transmission time of frames sent on stream ��� . The worst-case latency ��� of a CAN frame sent on stream��� is, if we assume the minimum variation in queuing time relative to ��� to be 0, defined by

��������� �"!#�$�%��� (1)

where ��� is the queuing jitter of the frame, i.e., the maximum variation in queuing time relative start of��� , inherited from the sender task which queues the frame, and !&� represents the effective queuing time,
given by

!('� �*)��$� +,#-/.10/2 �43
5 !('7698� �:� , �";#< �>=� , ?A@ � , �CB/;#< �>=�D (2)

whereE)��F� maxG -/H 0/2 �43 @ � G D �:B/;#< �>= is the worst-case blocking time of frames sent on ��� , where I � @KJ D is the set

of streams with priority lower than ��� . The reason for the blocking factor is that transmissions are
non-preemptive, i.e., after a bus arbitration has started the frame with the highest priority among
competing frames will be transmitted until completion, even if a frame with higher priority gets
queued before the transmission is completed.ECL � @KJ D is the set of streams with priority higher than ��� .E ;#< �>= (the bit-time) caters for the difference in arbitration start times at the different nodes due to
propagation delays and protocol tolerances.E � , is the transmission time of message M . How to calculate � , is presented in the next section.

3

E B/;#< �>= represents the inter-frame space (traditionally [11, 12, 13], the inter-frame space was consid-
ered a part of the data frame, but separating it [2] removes a small source of pessimism in the
equations).

We rewrite (1) and (2) into a single expression since our probabilistic equations, in the following
section, will be based on having such an expression. Having a single expression we will be able to
separate the “fixed size” part of the calculations from the “varying size part” based on distributions.
The new expression is

� '� �����$�")�� �%���$� +,#-/.10/2 �43�� ��� ��'7698� � ��� � ����� @ � , �CB/;#< �>=�D (3)

where � � @�� D is defined as the worst-case number of periodic message releases, for a message J , in a time
interval of �

� � @�� D �
5 � �:��� �";#< �>=��� ? (4)

where ��� is the worst-case release jitter, and ��� is the period of the message.
Note that (2) and (3) are a recurrence relations, where the approximation to the @�	 ��
 D th value is

found in terms of the 	 th approximation, with the first approximation set to !
�� ��� for equation (2) and���� � �����:��� for equation (3). A solution is reached when the @�	 ��
 D th value is equal to the 	 th, given
that the total bus utilization is ��
 , i.e., ����� -������ �����! #" � $% �'& ��
 .
2.2 The Bit-stuffing Mechanism

In CAN, six consecutive bits of the same polarity (
(
(
(
(
(
 or �(�(�(�(�(�) is used for error and protocol
control signaling. To avoid these special bit patterns in transmitted frames, a bit of opposite polarity is
inserted after five consecutive bits of the same polarity. By reversing the procedure, these bits are then
removed at the receiver side. This technique, which is called bit-stuffing, implies that the actual number
of transmitted bits may be larger than the size of the original frame, corresponding to an additional
transmission delay which needs to be considered in the analysis.

Let us first define the number of bits, beside the data part in the frame, which are exposed to the
bit-stuffing mechanism as) �+*(B�,
.-�,0/ . This since we have either B�, (CAN standard format) or -�,
(CAN extended format) bits (beside the data part in the frame) which are exposed to the bit-stuffing
mechanism. 10 bits in the CAN frame are not exposed to the bit-stuffing mechanism (see Figure 1).
Now let us define the number of bytes of data in CAN message frame J as 1 ���32 �
.4�5 . Recall, a CAN
message frame can contain 0 to 8 bytes of data. According to the CAN standard [8], the total number of
bits in a CAN frame before bit-stuffing is therefore

461 � �7) ��
8� (5)

where 10 is the number of bits in the CAN frame not exposed to the bit-stuffing mechanism. Since only) bits in the CAN frame are subject to bit-stuffing, the total number of bits after bit-stuffing can be no
more than

461 � �7)���
8���:9) �;461 � �
, < (6)

4

111110000111100001111....before stuffing

stuffed bits

11111000001111100000111110....after stuffing

Figure 2. The worst case scenario when stuffing bits.

Intuitively the above formula captures the number of stuffed bits in the worst case scenario, shown
in Figure 2.

Let ;#< �>= be the worst-case time taken to transmit a bit on the bus – the so-called bit time. The worst-case
time taken to transmit a given frame J is therefore

������� 461 � �) ��
8���:9) �;461 � �
, <�� ;#< �>= (7)

3 New approach

The expression (6) describes the length of a CAN frame in the worst case. However, in our previous
work [6, 7] we represent the number of stuff-bits as a distribution. By using a distribution of stuff-bits
instead of the worst-case number of stuff-bits, we obtain a distribution of response-times allowing us to
calculate less pessimistic (compared to traditional worst-case) response-times based on probability.

Firstly, let us define � as the distribution of stuff-bits in a CAN message frame. � is a set of pairs
containing the number of stuff-bits with corresponding probability of occurrence. Each pair is defined
as @��
1� @�� D D ��� , where � @�� D is the probability of exactly � stuff-bits in the CAN frame. Note that�	�
�� � � @�� D �3
 .

From [7] we can extract 9 different distributions of stuff-bits depending on the number of bytes of data
in the CAN message frame. We define ��
 � as the distribution representing a CAN frame containing 1 �
bytes of data. Recall that 1�� is the number of bytes of data (0 to 8) in a message frame J .

An important basis of our probabilistic response-time analysis is that we, based on a desired proba-
bility � , extract an upper number 	 of stuff-bits from the distribution of stuff-bits � , i.e, the probability
of more stuff-bits than 	 , based on the stuff-bit distribution � , is � � . We define � @ � D to symbolize the
number of stuff-bits 	 such that ���
�� ' � 8 � @�� D � � .

By assuming that all CAN message frames are independent in the sense of number of stuff-bits,
we can define � ' � as the joint distribution corresponding to the combination of 	 equal distributions

of stuff-bits � , i.e., the number of stuff-bits caused by a sequence of 	 equal length (considering data
bytes) messages sent on the bus is described by � ' � �������������������� ��� �' , where � denotes multiplicative

combination of discrete distributions, as illustrated in the example below.

3.1 Example

As an illustration, let us use an example where we assume � ��* @ �
 � �
 D
 @
/
 � � 4 D
 @"!
.� �
 D / . Calculating� #$� is done by multiplying the probabilities for all combinations of stuff-bits, i.e., @&%
1� @&% D D(' @*)
1� @*) D D �@&% �)
1� @&% D$' � @*) D D where %
) � *��
�
/
 ! / . The result of a multiplication is a new number of stuff-bits
with a corresponding probability. In our example the multiplication yields

5

� # � ��* @ �
 � � �

 D
 @
/
 � � � 4 D
 @*!
 � � �

 D
 @
/
.� � � 4 D
 @*!
 � � ��, D
 @ B
.� � � 4 D
 @"!
 � � �
 D
 @ B
 � � � 4 D
 @ ,
.� � �
 D /
However, all probabilities in � # � of equal number of stuff-bits are added together leaving

� # � ��* @ �
 � � �

 D
 @
/
 � �
�� D
 @*!
 � � ��� D
 @ B
.� ��
�� D
 @ ,
 � � �
 D /
In our example, with � �3
8� 698 , � @ � D �3
 and � � #$� � @ � D � B .
3.2 Probabilistic Worst-Case Response-Time

In order to include the bit-stuffing distributions in (3) we need to redefine ��� and)�� whereE ��� is the transmission time of message J
��������� � �
 � @ � D ;#< �>= (8)

where �
 � is the distribution of stuff-bits in the message, and � � is the transmission time of messageJ excluding stuff-bits

����� @ 461 � �7) �
8� D ;#< �>= (9)

where 10 is the number of bits in the CAN frame not exposed to the bit-stuffing mechanism.E)�� is the blocking time caused by message J having to wait for a lower priority message sent on
the bus. Since the bus is non preemptive, the worst-case scenario is that the biggest (in size) lower
priority message just started its transmission when message J becomes ready to transmit. Thus
we can define the blocking time of a message J as

)����) � � �
max�	��
 ��
 � � 2
 � 3 @ � D ;#< �>= (10)

where � max�	��
 ��
 � � 2
 � 3 is the distribution of stuff-bits of the blocking message � (the biggest lower

priority message), and) � is the blocking time not considering the bit-stuffing mechanism

) ��� maxG -/H 0/2 �43 @ � G D �CB/;#< �>= (11)

where B/;#< �>= is the inter-frame space. Note that (10) is pessimistic in the sense that we always
assume that we will be blocked by a message. Taking probability of blocking actually occurring
into consideration as well as not always assuming biggest blocking message would give a less
pessimistic result. However, since we are basing the analysis on a “critical instant”, we create a
worst-case scenario but we use distributions of values instead of worst-case ones when calculating
the response-time.

6

Taking the bit-stuffing distributions of (8) and (10) into consideration we can reformulate (3) as

� 0 � ' ����� �) �$� ��� � +,#-/.10/2 �43�� , @ � 0 � '7698 � ��� � ��� D @ � , �CB/;#< �>=�D � � � @�� D (12)

where
� � is defined as the distribution of the total number of stuff-bits of all messages involved in the

response time analysis for message J
� ����� max�	��
 ��
 � � 2
 � 3 ���
 � � �,#-/.10/2 �43 �

��� 2�� � � 6 	 � 6 � � 3 �
 � (13)

where � max�	��
 ��
 � � 2
 � 3 is the distribution of stuff-bits caused by any lower priority blocking message, �
 �
is the distribution of stuff-bits in the message under analysis, and � ,#-/.10/2 �43 � ��� 2�� � � 6 	 � 6 � � 3 �
 � is the
distribution of stuff-bits in all interfering messages of higher priority sent before message J will be sent,
i.e., the higher priority messages sent causing message J to be queued.

Having the distribution
� � , a proper total number of stuff-bits is selected depending on the desired

probability � , i.e., for every step in the recurrence relation (12), a value
� � @ � D must be extracted from

(13).

3.3 Complexity

Regarding the complexity of the analysis, the dominating component is the calculation in (13). Since
all parameters in (13) are distributions, and distributions are multiplied together causing multiplications
of all combinations of stuff-bits, the complexity of solving the expression is as follows

 @ � H D (14)

where I is the number of messages involved in (13), and � is the number of stuff-bits in the biggest size
message, having largest number of stuff-bits in its distribution. However, due to the iterative nature
of the equations, solving (13) can be done with a much lower complexity. In fact, the complexity of
calculating the joint distribution can be reduced to

 @ I ' � # D since we in each iteration can reduce the
number of considered values to � ' I , as illustrated in Section 3.1.

3.4 Example

To illustrate our method we use a small example with 3 messages, message 1-3, where message 1 has
the highest priority, and message 3 the lowest priority. We assume that we have no jitter, i.e., � � �
for all messages, and that all messages have the same size. We assume � �+
8� , ;&< �>= �+
 , and � is as in
Section 3.1. Finally, all message periods are so big causing (4) never to exceed 1, i.e., � @�� D �3
 .

Based on our assumptions, the worst-case scenario for message 2 would be as illustrated in Figure 3,
i.e., message 2 is blocked by message 3 (the lowest priority message) and delayed by message 1 (the
highest priority message).
Using (12) we can calculate the response time � 0 # as

� 0 # �) # � � # � @ � 8 �CB/;#< �>=�D � � # @ � D ;#< �>=
where) # � � � �:B/;#< �>= and

� # � �
�� ���
�
 � �
�� � � � � (since 1 8 � 1 # � 1 �) where � � � is calculated

to be

7

33 Lbitc Υ+τ
11 Lbitc Υ+τ

22 Lbitc Υ+τ

Message 3 Message 1 Message 2

Blocking
message

Higher priority
message

Message under
analysis

Figure 3. Worst-case message sequence for message 2.

� � � � * @ �
 � � �(�

 D
 @
/
 � � � ! , D
 @*!
 � �
�� - D
 @ B
 � � -�� D
 @ ,
.� ��
��(- D
 @ -
.� � � ! , D
 @ �
 � � �(�
 D /
We select an acceptable probability of worst-case response time violation � to be
8� 698 . Based on �
� # @ � D � , , causing � 0 # � @
8���CB D ��
8��� @
8���"B D � , � , � .
4 Evaluation

In order to demonstrate the performance of our new approach for calculating a probabilistic worst-
case response time we make use of the widely published simplification [12] of the Society of Automotive
Engineers (SAE) benchmark [9].

We use a bus speed of 125kbit/s, and we select the acceptable probability of violation � to be
8� 6 #��
and
8� 698 # respectively. Then, we calculate the worst-case response time both according to the traditional
approach (1) and the probabilistic approach (12). The response times of all messages of the subset of
SAE messages are shown in Table 1, where � � denotes the results of traditional analysis and � 0 � the
results of our new probabilistic analysis. To have some real response times to compare the analytic
ones with, we simulated the SAE message set using the worst-case transmission times. The system was
simulated for 2000000 ms. The worst-case measured response time is presented as ��� ���� in the rightmost
column of Table 1.

What we see in Table 1 is that the probabilistic response times � 0 � are significantly lower than the
traditional worst-case response times � � . An interesting observation is that the gain is substantially
higher for some messages. The reason for this is that a slight additional interference, e.g., caused by an
additional stuff-bit, will in these cases extend the response-time such that transmission will be delayed
by one or more additional higher priority message transmissions. Note that all calculated probabilistic
response times are never optimistic in comparison with the simulation result (as seen in Figure 4).
This even though we are using worst-case transmission times. Using bit-stuffing distributions in the
simulation would give even shorter response times.

5 Conclusions

In this paper we have presented a new probabilistic approach to calculate response times for mes-
sages in the Controller Area Network. The key element to this approach is that we use bit-stuffing
distributions instead of worst-case values. The performance of our method is evaluated using a subset
of the SAE benchmark.

Our main motivation for calculating probabilistic response-times is that they allow us to reason about
trade-offs between reliability and timeliness. We have in [5] presented a method for such analysis of

8

� �
8� 6 #�� � �
8� 698 #
Priority Bytes ��� ��� � � ��� � 0 � gain � 0 � gain � � ����

(ID) (ms) (ms) (ms) (ms) (ms) (%) (ms) (%) (ms)
17 1 0.480 1000 5 1.416 1.384 2.26 1.328 6.21 0.680
16 2 0.560 5 5 2.016 1.936 3.97 1.864 7.54 1.240
15 1 0.480 5 5 2.536 2.448 3.47 2.360 6.94 1.720
14 2 0.560 5 5 3.136 3.032 3.32 2.920 6.89 2.280
13 1 0.480 5 5 3.656 3.536 3.28 3.424 6.35 2.760
12 2 0.560 5 5 4.256 4.120 3.20 4.000 6.02 3.320
11 6 0.864 10 10 5.016 4.840 3.51 4.720 5.90 4.184
10 1 0.480 10 10 8.376 5.368 35.91 5.248 37.34 4.664
9 2 0.560 10 10 8.976 8.480 5.53 8.336 7.13 5.224
8 2 0.560 10 10 9.576 9.144 4.51 9.000 6.02 8.424
7 1 0.480 100 100 10.096 9.728 3.65 9.592 4.99 8.904
6 4 0.712 100 100 19.096 15.256 20.11 10.304 46.04 9.616
5 1 0.480 100 100 19.616 18.472 5.83 18.176 7.34 10.096
4 1 0.480 100 100 20.136 19.224 4.53 18.968 5.80 18.320
3 3 0.632 1000 1000 28.976 19.928 31.23 19.704 32.00 18.952
2 1 0.480 1000 1000 29.496 27.920 5.34 20.400 30.84 19.432
1 1 0.480 1000 1000 29.520 28.352 3.96 27.944 5.34 19.912

Table 1. SAE CAN messages

controller area networks subject to external interference. An obvious next step would be to integrate
the bit-stuffing distribution based analysis presented here with that analysis.

References

[1] N. C. Audsley, A. Burns, M. F. Richardson, K. Tindell, and A. J. Wellings. Applying New Schedul-
ing Theory to Static Priority Pre-emptive Scheduling. Software Engineering Journal, 8(5):284–292,
September 1993.

[2] I. Broster and A. Burns. Timely Use of the CAN Protocol in Critical Hard Real-Time Systems With
Faults. Proceedings of the
 B = . Euromicro Conference on Real-Time Systems, June 2001.

[3] A. Burns. Preemptive Priority Based Scheduling: An Appropriate Engineering Approach. Techni-
cal Report YCS 214, University of York, 1993.

[4] CAN Specification 2.0, Part-A and Part-B. CAN in Automation (CiA), Am Weichselgarten 26, D-
91058 Erlangen. http://www.can-cia.de/, 2002.

[5] H. Hansson, T. Nolte, C. Norström, and S. Punnekkat. Integrating Reliability and Timing Analysis
of CAN-based Systems. IEEE Transaction on Industrial Electronics, 49(6), December 2002.

[6] T. Nolte, H. Hansson, and C. Norström. Using Bit-Stuffing Distributions in CAN Analysis.
IEEE/IEE Real-Time Embedded Systems Workshop (RTES’01), December 2001.

9

0

5

10

15

20

25

30

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Priority

R
es

po
n

se
 ti

m
e

WC

p=10-24

p=10-12

Sim

Figure 4. Message response times (priority is the message ID as in Table 1)

[7] T. Nolte, H. Hansson, and C. Norström. Minimizing CAN Response-Time Analysis Jitter by Mes-
sage Manipulation. IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02),
pages 197–206, September 2002.

[8] Road Vehicles - Interchange of Digital Information - Controller Area Network (CAN) for High-
Speed Communication. International Standards Organisation (ISO). ISO Standard-11898, Nov
1993.

[9] SAE. Class C Application Requirement Considerations-SAE J2056/1. SAE Handbook, pages 23.366–
23.371, June 1993.

[10] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority Inheritance Protocols: An Approach to Real-Time
Synchronization. IEEE Transactions on Computers, 39(9):1175–1185, September 1990.

[11] K. W. Tindell and A. Burns. Guaranteed Message Latencies for Distributed Safety-Critical Hard
Real-Time Control Networks. Technical Report YCS229, Dept. of Computer Science, University of
York, June 1994.

[12] K. W. Tindell, A. Burns, and A. J. Wellings. Calculating Controller Area Network (CAN) Message
Response Times. Control Engineering Practice, 3(8):1163–1169, 1995.

[13] K. W. Tindell, H. Hansson, and A. J. Wellings. Analysing Real-Time Communications: Controller
Area Network (CAN). In Proceedings 15th IEEE Real-Time Systems Symposium, pages 259–265. IEEE
Computer Society, December 1994.

[14] J. Xu and D. L. Parnas. Priority Scheduling Versus Pre-Run-Time Scheduling. Real-Time Systems
Journal, 18(1):7–23, January 2000.

10

