
Support for High Performance using Heterogeneous
Embedded Systems - a Ph.D. Research Proposal

Gabriel Campeanu
Mälardalen University

Västerås, Sweden
gabriel.campeanu@mdh.se

ABSTRACT
Nowadays it is more common to build embedded system on
a heterogeneous platform, i.e. a platform containing differ-
ent computational units such as mCPU, GPU and FPGA.
This enables better performance, but also introduces addi-
tional complexity with respect to the software deployment.
For complex systems it is not obvious which deployment is
the best. For different constraints and requirements, differ-
ent deployment configuration can be optimal. To address
this problem, an approach is to model the system, includ-
ing both software and hardware parts, with specification of
extra-functional properties. The deployment can be then
modeled and an (semi)optimal solution can be provided. In
this paper we present an overview of our planned research
on software modeling and software deployment of heteroge-
neous embedded systems, which enables assisting the devel-
oper in designing this type of systems.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: [Design tools and tech-
niques]

General Terms
Architecture, Deployment

Keywords
Heterogeneous systems, component-based software engineer-
ing, model-based engineering, extra-functional properties,
component deployment

1. INTRODUCTION
The latest advances in technology and frequency scaling

favored the computer applications to increase their perfor-
mance. As along with the technology advances, the soft-
ware complexity increases, the applications performance is
confronting several hardware obstacles such as memory size

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WCOP’13, June 17, 2013, Vancouver, BC, Canada.
Copyright 2013 ACM 978-1-4503-2125-9/13/06 ...$15.00.

or computational power. The resources constraints are in
particular important for embedded systems. Significant im-
provements in increasing performance and decreasing the
dependencies of the resources can be achieved by heteroge-
neous embedded systems, which bring together, along with
a general purpose processor (GPP), other specialized re-
sources such as graphics processing unit (GPU), or field-
programmable gate array (FPGA). This mixture of various
computational units makes a heterogeneous system to be-
have in a similar way as a parallel computing or multi-core
computing system.

The heterogeneous embedded systems, which allow high
amount of data to be processed in real-time, have various
type of applications in different areas of autonomous sys-
tems. For example, in the automotive industry a consider-
able effort is made in researching and implementing vision
systems which can identify obstacles such as people or other
vehicles. The massive amount of data which is produced
by the sensors need to be processed in real-time in order to
make the 3D reconstruction. In this context, a heteroge-
neous system processes the raw data using an FPGA, and
send it to a multi-core CPU which may use a GPU as a
co-processor.

In the domains of general-purpose systems two proven ap-
proaches to meet the challenges related to complexity are
component-based software engineering (CBSE) and model-
based development (MBD).

Our objective is to use CBSE and MBD techniques and
apply them for heterogeneous embedded systems. Using
MBD and CBSE, our goal is to model the system deploy-
ment, and to provide for the model a feasible and possibly
optimal deployment solution. The modeling includes the
system architecture (so both software and hardware) along
with certain extra-functional properties (EFPs), e.g., per-
formance, resource utilization. The (optimal) deployment
will be calculated to satisfy requirements for the EFPs.

The rest of the paper is structured as follows. We start
with a background of heterogeneous systems in Section 2.
Section 3 presents the motivation, the goal and the plan of
our research. The related work is presented in Section 4,
followed by conclusion in Section 5.

2. BACKGROUND
This section presents the characteristics of embedded het-

erogeneous systems, followed by challenges in present soft-
ware design.

2.1 Embedded heterogeneous systems

A typical modern embedded system heterogeneous plat-
form includes single-processor units or multi-core general
purpose processors (GPPs) with graphics processing units
(GPUs) and field-programmable gate arrays (FPGAs). Each
new technology has its own architecture, properties and limi-
tations. Deployment is an important aspect in designing het-
erogeneous systems; it may lead to bad performances when
the software is not optimally deployed onto the hardware.

GPP#
#Core1# Core2#

GPP#
Core2#Core1#

GPU# FGPA#

HT#

PCI0X# PCI0X#

Figure 1: Example of heterogeneous system

Figure 1 presents an example of a heterogeneous platform,
which contains two multi-core GPP (e.g., two AMD dual-
core processors), one GPU and one FPGA. The processors
are connected using an Hyper Transport bus, and the GPU
and FPGA are connected to the processors using a PCI bus.
On this platform we can execute various applications such
as audio and video processing or sensor based signal pro-
cessing applications. The execution of the application can
be divided between the units of the platform in such a way
that we can run, for example, pattern recognition on the
mGPP, while on the GPU we can run parallel computing ac-
tivities. Some software components which run on the GPP
may have better performances if are executed on the FPGA,
but requires different programming and different specifica-
tions. An important aspect of this type of application is that
it requires the data to be processed in real-time; if is not,
then the system is useless. This streaming application is a
typical example which shows that EFPs are as important
as functional properties (FPs). EFPs like performance, en-
ergy consumption, dependability, maintainability, usability,
security, etc., need to be specifically addressed during the
development of the system to ensure the quality level of the
desired service.

The new heterogeneous platforms are suitable for stream-
ing applications because of their diversity in processing units
and memory distribution. While, for a multi-core GPP, all
of its cores can access the same processor memory, the other
units such as GPUs or FPGAs can access their own and the
main memory. This distributed way of the memory increases
the software time execution, which can be exploited by the
applications which are processing high amount of data.

One of the main challenges of heterogeneous embedded
systems is the distribution of the workload over the vari-
ous computing units of the system. For a large embedded
system, many deployment schemes (i.e., mapping portion of
software onto hardware nodes) are possible. Some schemes
will not satisfy the requirements; others can improve a par-
ticular property of the system while satisfying the require-
ments. For example, the performance of a system can be
improved if the workload is distributed in such a way that

the more powerful processors do more work, while the less
powerful processors execute less work.

2.2 Challenges in software design
Modern ways of designing systems are using MBD or CBSE,

which are raising the abstraction level of the implementa-
tion, focusing on models. Using models in designing embed-
ded system has its challenges, one of it referring to the spec-
ification of components. In most of the component models,
the components comply to the same specification rules, i.e.,
FPs and EFPs. In embedded systems design, we need to use
different approaches which may use distinctive component
instances or different specifications of EFPs. A component
instance describes the component with the same FPs, but
with different EFPs. This implies that, the design process
may address different instances of the same components. Be-
cause of heterogeneity of the EFPs for different implementa-
tions, there is a need to extend standard modeling languages,
or define a domain-specific language.

Using MBD, both software and hardware should be mod-
eled. The software model should contain components with
platform-independent properties, but also properties which
are depending on different platforms. The hardware model
should contain components with hardware nodes specifica-
tions. During the code generation process, the code should
be generated according to the platform context. Using CBSE
to design embedded systems, the system is seen as a com-
position of components. To address the reusability of the
components, which can be used to model different hardware
platforms, a special attention should be placed on the way
EFPs are specified. The management and specification of
EFPs are even more challenging, if we add real-time con-
straints.

3. PROPOSED RESEARCH
In this section, we first present the motivation and goal of

our intended research in heterogeneous embedded systems,
followed by the research questions and the steps planned to
take in achieving our goal.

3.1 Motivation
The hardware technologies breakthrough in the last years

allow building embedded systems with high input data rates.
The new systems, which can process huge amount of data in
real-time, can find various application usage from different
domains, such as automotive industry. For instance, many
research initiatives are focused on different types of vision
systems for various vehicles. These vision systems need to
process high amount of data from the input sensors, in a
real-time perspective. The raw input data may be handled
by an FPGA, after which may be sent to a CPU which may
use a GPU as a co-processor. Comparing with homogeneous
systems, the new heterogeneous systems bring a high per-
formance due to the diversity of processing units and their
memory distribution. The need and use of such products
will grow in the future, which will make the industry that
master the new technology to gain a significant leverage on
the global market.

To optimize a performance metric (e.g., system utiliza-
tion, latency) of a system, is not a straightforward issue,
and it deals with finding the right deployment of software
onto hardware. Finding a suitable distribution is a com-
plex process which deals with various factors such as a large

number of possible deployment schemes, hardware resource
restrictions or software resource demands.

There is a lack of methods to model the software of hetero-
geneous embedded systems. The software system is defined
by its properties, i.e. FPs and EFPs. While reusing a soft-
ware component in different heterogeneous architectures, its
EFPs may be very different. This requires novel methods to
specify EFPs which should include platform-specific param-
eters and software parameters.

3.2 Research questions
Considering there are various ways in building embedded

systems, some being more efficient then others, we are ad-
dressing a general research question which can be formulated
as follows: How can we facilitate the development of hetero-
geneous embedded systems? This question addresses a large
area of research; in order to refine it, we propose two con-
tributions as follows:

• Developing a domain-specific modeling language for
heterogeneous systems; the language covers software,
hardware and deployment models.

• Developing a semi-automatic deployment method which
can optimize the system performance.

3.3 Research context
We propose to use a model-based approach when develop-

ing heterogeneous embedded systems. While following this
approach, our research will be focused on modeling the soft-
ware and hardware infrastructure, and on optimization of
the deployment.

We see the software model as a composition of compo-
nents, where each component is characterized by its own
FPs and EFPs (e.g., required memory). While there are
means to specify the FPs of a components (e.g., interfaces),
we need to develop novel methods or adapt existing meth-
ods for EFPs specification which should include platform-
specific parameters and also software parameters. In addi-
tion, we need to provide support for management of EFPs,
as well as composition of them.

A heterogeneous hardware platform consists of various
processing units, where each unit it is characterized by its
own architecture, properties and limitations. The hardware
model is a composition of nodes, each one being character-
ized by a set of properties (e.g., available memory). The
deployment model can be explicitly defined by the devel-
oper, or it can be created in a semi-automatically process,
and it will define which component runs on which hardware
node. The consequence of a particular deployment, compar-
ing to other deployments, may have different quality aspects
(e.g., average time, worst-case time, precision, energy con-
sumption, memory usage). In order to improve a particular
quality property of a heterogeneous system, the developer
needs to define one (or several) optimization criterion. The
semi-automatically process will determine one best distribu-
tion, with respect to the optimization criterion. As input,
the optimization model will take some restricted form of
software and hardware models, along with the optimization
criterion.

We propose, as an initial representation of the software
model, to use, for simplicity, a graph notation where the
nodes stand for the software components, while edges act as
the components communication. Both directed and undi-

rected graphs may be used to represent the software model.
While the directed graphs may represent the execution de-
pendencies between the components, the undirected graph
may represent the information exchanged between compo-
nents. Similar to the software model, the hardware infras-
tructure may be represented as an undirected graph, where
the vertices stand for the processing units, while the edges
act as the communication between the hardware units. Later
in the research, when we will have complex models, we pro-
pose to use a more formal representation (i.e., meta-model)
to describe the models and their specifications.

C1#

C2# C3#

C4#

CPU$

GPA$FPGA$

Software and
hardware

models

Memory usage:...
CPU usage:... Available Memory: ...

Available CPU: ...

Deployment
optimization

Software constraint:
$$$C1$requires$10kb$memory$
$$$C2$requires$15kb$memory$
$$$…$
$

Optimized
deployment
model

Optimization criterion

Hardware constraint:
$$$CPU$provides$20kb$memory$
$$$GPA$provides$25kb$memory$
$$$…$
$

C1 ! CPU
C2, C4 ! GPA
C3 ! FPGA

Figure 2: Overview of the proposed approach

The overview of our approach can be visualized in figure
2. In the upper part of the figure, the software model and
hardware infrastructure are described. The software model
is presented as an undirected graph with four nodes, each
node being characterized by two properties, i.e., memory us-
age and CPU power usage. In the same manner, the hard-
ware platform is described. In the middle part of the figure,
based on the software demands and hardware constraints,
along with the optimization criterion provided by the devel-
oper, a good optimization deployment is searched. In the
bottom part of the figure, an optimized deployment model
is provided, which is further allocated on the hardware plat-
form.

The factors which are considered in the optimization pro-
cess are:

• Hardware resource constraints. Based on different hard-
ware nodes properties described in the hardware model,
certain distributions are ruled out. For example, we
can no deploy software components onto a hardware
node which has insufficient memory to hold all the
units assigned to it.

• Software resource demands. The software components,
through their specifications described in the software

model, place different resource demands on the hard-
ware infrastructure. For example, the bandwidth re-
quirement between two components placed on differ-
ent hardware nodes, demands a certain available band-
width communication between the two nodes.

• Optimization criterion. There are many feasible de-
ployments, but we need to select the ”good” deploy-
ment in order to enhance a particular system quality
(e.g., performance).

3.4 Research plan
We have started our research with a literature review on

existing modeling languages and how they manage to handle
the EFPs. We need to adapt an existing one, or to develop
a new modeling language which can address the heteroge-
neous embedded systems. The language should model both
the software and hardware parts of the system. To do that,
we need to identify the properties relevant in our research.
Having in mind that our research is focusing on augmenting
performance of heterogeneous systems, the extra-functional
properties should mainly be focused on performance prop-
erties, such as execution time, response time, throughput,
latency or resource utilization. After studying the relevant
properties, the focus should be placed on their specification
and instantiaton for different embedded contexts. In the
next step, a framework for managing EFPs should be devel-
oped. The framework should handle the properties specifica-
tion independent of deployment, but also should manage the
component properties which specify all possible deployment
values.

As a result of our previous research work, we can start
developing a prototype tool for software and hardware mod-
eling.

The next step in our research is addressing the optimiza-
tion challenge. In order to understand how to distribute
the functionality over an hardware platform, it demands of
understanding the consequences of a particular deployment.
We need to study the importance of different quality as-
pects such as average time, worst-case time, memory usage.
In the next step, we need to develop a way to derive the sys-
tem properties. Starting from a allocation mapping, we need
to study how to derive a system property from the EFPs of
individual components and hardware platform specification.
Once we have the method to derive properties, we can use
it to guide an automated search of suitable deployment.

The modeling language and optimization method will be
developed and evaluated in several iterations.

Evaluation - case study
To examine the findings from our research we will use an

underwater robot with stereo cameras, as a demonstrator.
The robotic industry is a domain which is increasing fast,
and is finding new application areas, such as robots for en-
vironmental rescue operations. We consider an underwater
robot to be an appropriate demonstrator for our research
area, in this way connecting our research with the industry
demands.

The hardware platform used by our demonstrator is com-
posed of a multi-core GPP, one GPU and one FPGA. We
propose to use, as a starting point of our case study, a sys-
tem characterized by a small number of EFPs (i.e., memory,
CPU). Using our deployment optimization method, we can

find a good software deployment onto hardware platform.
One way to test the feasibility of our optimization method
is to compare the results of our found optimized deployment
against several random feasible distributions. In the next it-
eration phase, we will consider a more complex system by
adding and refining the system properties, such as the static
and dynamic memory, the frequency of component commu-
nication or the size of components data exchanged.

We can further test the flexibility of our novel modeling
language by using it on a different heterogeneous embed-
ded platform, and examine how it manages to handle the
domain-specific EFPs composition. In the future, we in-
tend to enhance the performance of our demonstrator by
adding several numbers of computational units. This will
increase the complexity in finding a good optimized deploy-
ment, which can be a good test on the method feasibility.

We can also verify the easiness in designing heterogeneous
systems using our methods by comparing with the tools and
methods already existing on the market (e.g., MARTE).

3.5 Benefits
The benefits of our research will be represented by a novel

domain-specific modeling language and a semi-automatic de-
ployment method. The language will assist the developer in
modeling the system, while the deployment method will ease
the distribution process of the software onto the hardware
platform. In this way, a developer will have efficient means
to design heterogeneous embedded systems.

A tool can be developed based on our novel methods; it
can provide assistance to the developer during the process
of designing heterogeneous systems. The tool can be used in
the academic community, in form of open development for
learning purposes.

Having an working demonstrator in the form of an under-
water robot, will motivate the industry to show interest in
exploiting our methods and tool, or even to further develop
them.

4. RELATED WORK
In the first part of this section, we present an overview

of different component-based and model-driven models for
embedded systems and how they manage to provide support
for EFPs. The second part will cover different methods of
software deployment onto hardware platforms.

4.1 Modeling
UML [16] is a tool which allows modeling of about any

type of application and helps in visualizing and document-
ing the software models. Its flexibility allows to model dis-
tributed applications, build OO concepts (e.g., classes) or
real-time, fault-tolerant systems. MARTE [18] is an UML
profile, which adds capabilities for model-driven develop-
ment of real-time and embedded systems, providing ways
of modeling both hardware and software aspects. MARTE
enables also analysis aspects of the models. SysML [17] is
another UML profile that provide modeling support for com-
plex system such as hardware and software.

The SaveCCM [2] is a component model developed at
Mälardalen University. The model is intended to be used
in the vehicular and safety-critical embedded systems do-
mains. The model is build by interconnecting three distinct
type of elements (i.e., components, switches and assemblies)
with well defined interfaces. The pattern of the model is in-

spired from the pipe-and-filter paradigm with an important
attribute appended, given by the distinction between data
transfer and control flow.

The Rubus component model [11], developed by the co-
operation of Malardalen University and Articus system, is
intended to be used in the development of distributed real-
time systems. The model intents to support the following ac-
tivities: design, analysis and synthesis, which can have some-
times contradictory requirements. The goal of the model is
to support and balance the common requirements of the
previously enumerated activities, in order to gain industrial
usefulness.

The Palladio component model [6] is a meta-model used
to describe component-based software architectures, and which
addresses the prediction of components attributes, especially
performance and reliability. The performance of a software
component is highly influenced by its usage. The resource
demands of a component is directed connected with the in-
put parameters. The model is using some probability func-
tion to express the component resource demand. The Pal-
ladio model is important to our research because of the pre-
diction of EFPs, which are relevant to our study.

In [19] Sentilles et al. propose a model to specify the
component attributes and their model integration. The at-
tribute is defined as a tuple <TypeIdentifier, Value>, where
TypeIdentifier defines the EFP, and Value is defined as triple
<Data, Metadata, ValidityConditions>, where Data is the
property value, Metadata provides extra information of the
property, and ValidityConditions presents the conditions un-
der the property data is valid.

Another model which tackles the management of EFPs is
the Robocop [15] model. This is done by using a resource
model which describes, using mathematical cost functions,
the resource usage of components. Besides Robocop, the
Koala [20] model addresses also the management of compo-
nents EFPs but is limited to only one, i.e., the static memory
usage of components. In Koala model, each component has
attached an extra interface which describes the information
of this static property. The interface can not be added to
already created components.

A classification of component models is presented in [8].
The paper presents the fundamental principles of component
models and provides a classification framework for compo-
nent models.

4.2 Deployment optimization
The deployment of the software model onto the hardware

platform is know to be NP-hard [5], which means it would
take years to investigate all potential deployment schemes
when we have large number of units. This challenge was
addressed in different forms, the most used one being the
heuristic methods. There are several literature reviews on
software architecture optimization methods [3], performance
evaluation of component-based systems [13] and model-based
performance prediction [4].

The heuristics approaches provide a fast way to obtain
sub-optimal solutions. These methods are useful on appli-
cations where finding the solutions is not bounded by a time
limit. One of the heuristic approaches, the genetic algo-
rithm [9] was used for solving different allocation problems,
such as task allocation onto distributed systems [1, 21]. The
method is based on the methods of natural section and nat-
ural genetics. In this technique, a possible solution to the

problem is represented by an individual which is composed
of a chain of genes. A pool of individuals construct a popula-
tion. The population evolves to a next generations, in which
a new individual is created in three steps: 1) A pair of in-
dividual parents are selected, 2) A crossover mechanism is
performed, in which partial solution are exchanged between
the parents, and 3) A mutation mechanism is performed by
changing few randomly selected genes on the new child in-
dividual.

Another often used heuristic approach, the simulated
annealing (SA) method [12], was used for solving various
optimal allocation problems, such as distribution of program
modules to processors [10]. The method is inspired by the
annealing process in metallurgy, where a number of steps in-
volving heating and cooling of materials are made in order to
increase the size of the metal’s crystals while its defects are
reduced. If every point from the search space corresponds
to a state of a physical system, then the goal of the method
is to take the system from an arbitrary initial state to a
state characterized by a minimum energy using a number of
iterative steps. At each step, SA considers some neighbor
state of the current state and, based on some probabilities,
decides to move or not to it in such a way that the current
state will be characterized by a lower energy.

The branch and bound [7] method is another heuris-
tic method used to find optimal solutions for several allo-
cation problems, such as task allocation onto processors in
distributed systems [14]. It uses a search tree to describe
the allocation problem. The method is characterized by
four steps: branching, bounding, selection and elimination,
which are used on several iterations, during which the a
best solution is progressively improved. In the first step,
the problem domain is divided into several smaller subsets,
on which the same optimization problem is defined. The
second step defined the bounds of the optimal solution of
the considered problem. The selection step identifies a new
solution, while the last step eliminate nodes which do not
lead to optimal solution.

Several of the optimization solutions for the allocation
problem are not addressing the performance properties and
others are addressing only few performance properties, for
example optimizing the distribution taking in consideration
only the latency of the system. Also, the optimization so-
lutions are constructed for different type of systems, e.g.,
wireless systems, distributed systems, which requires adap-
tation to heterogeneous type of system. Our research is not
trying to develop new optimization methods, but to adapt
and use the existing methods onto heterogeneous environ-
ments.

5. CONCLUSION
This article has described our research plan on supporting

high performance for heterogeneous embedded systems. In
the first part of the paper, we presented the background
followed by the motivation and goal of our research, while
the last part discussed our research plan, expected results
and related work.

The latest hardware technology which allows high amount
of input data, opens new opportunities to the industry mar-
ket. Heterogeneous embedded systems, containing multi-
core processors with GPUs and FPGAs which are nowadays
quite straightforward to build, are characterized by various
performance capabilities, limitations and architectures. In

parallel with the increasing of the hardware platform com-
plexity, the software of such systems is becoming more and
more complicated. The increased complexity of a system
makes it difficult to handle and distribute the software model
onto the hardware platform using traditional development
methods. Our research focuses on facilitating software devel-
opment across heterogeneous embedded systems using new
software development paradigms such as MBD or CBSE.
The optimization of the software deployment onto the hard-
ware platform, considering both the software and hardware
properties, along with their limitations and constraints, rep-
resents a significant challenge in the development of hetero-
geneous embedded systems.

6. REFERENCES
[1] J. Aguilar and E. Gelenbe. Task assignments and

transaction clustering heuristics for distributed
systems. Journal of Information sciences, 1997.

[2] M. Akerholm, J. Carlson, J. Hakansson, H. Hansson,
M. Nolin, T. Nolte, and P. Pettersson. The SaveCCM
Language Reference Manual. Technical report,
Malardalen Univeristy, 2007.

[3] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and
I. Meedeniya. Software architecture optimization
methods: A systematic literature review. In IEEE
Transactions on Software Engineering, 2012.

[4] S. Balsamo, A. D. Marco, P. Inverardi, and
M. Simeoni. Model-based performance prediction in
software development: A survey. In IEEE
Transactions on Software Engineering, 2012.

[5] S. Baruah. Task partitioning upon heterogeneous
multiprocessor platforms. In IEEE Real-Time and
Embedded Technology and Applications Symposium,
2004.

[6] S. Becker, H. Koziolek, and R. Reussner. Model-Based
performance prediction with the Palladio component
model. In Proceedings of the 6th international
workshop on Software and performance, 2007.

[7] E. G. Coffman and J. L. Bruno. Computer and
Job-Shop Scheduling Theory. Wiley, 1976.

[8] I. Crnkovic, S. Sentilles, V. Aneta, and M. R. V.
Chaudron. A classification framework for software
component models. IEEE Trans. Softw. Eng., 2011.

[9] D. E. Goldberg. Genetics algorithms in search
optimization and machine learning. Addison-Wesley,
1989.

[10] Y. Hamam and K. Hindi. Assignment of program
modules to processors: A simulated annealing
approach. European Journal of Operational Research,
2000.

[11] K. Hanninen, J. Maki-Turja, M. Nolin,
M. Lindbergand, and J. Lundback. The Rubus
component model for resource constrained real-time
systems. In International Symposium on Industrial
Embedded Systems, 2008.

[12] S. Kirkpatrick. Optimization by Simulated Annealing:
Quantitative Studies. Journal of Statistical Physics,
1983.

[13] H. Koziolek. Performance evaluation of
component-based software systems: A survey. Journal
of Performance Evaluation, 2010.

[14] P. Y. R. Ma, E. Y. S. Lee, and M. Tsuchiya. A Task
Allocation Model for Distributed Computing Systems.
In IEEE Transactions on Computers, 1982.

[15] H. Maaskant. A Robust Component Model for
Consumer Electronic Products. Springer, 2005.

[16] OMG. Unified Modeling Language.
http://www.uml.org/, 1990.

[17] OMG. System Modeling Language.
http://www.omgsysml.org/, 2001.

[18] OMG. Modeling and Analysis of Real-Time and
Embedded Systems. http://www.omgmarte.org/,
2009.

[19] S. Sentilles, P. Stepan, J. Carlson, and I. Crnkovic.
Integration of Extra-Functional Properties in
Component Models. In Proceedings of the 12th
International Symposium on Component-Based
Software Engineering, 2012.

[20] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee. The koala component model for consumer
electronics software. In Computer, 2000.

[21] D. P. Vidyarthi and A. K. Tripathi. Maximizing
reliability of distributed computing systems with task
allocation using genetic algorithm. Journal of System
Architecture, 2011.

