
Searching for the Minimum Failures that Can Cause a
Hazard in a Wireless Sensor Network

Iain Bate1,2

1 Mälardalen Real-Time Research Centre
Mälardalen University

Västerås, Sweden
iain.bate@cs.york.ac.uk

Mark Louis Fairbairn2

2 Department of Computer Science
University of York

York, UK
mlf@cs.york.ac.uk

ABSTRACT
Wireless Sensor Networks (WSN) are now being used in a
range of applications, many of which are critical systems,
e.g. monitoring assisted living facilities or for fire detection
systems which is the example used in this paper. For critical
systems it is important to be able to determine the minimum
number of failures that can cause a hazard to occur. This
is normally a manual, human intensive, task. This paper
presents a novel application of search to both the WSN and
safety domains; searching for combinations of failures that
can cause a hazard and then reducing these to the mini-
mum possible using a combination of automated search and
manual refinement. Due to the size and complexity of the
search problem, a parallel search algorithm is designed that
runs on available compute resources with the results being
processed using R.

Categories and Subject Descriptors
H.4 [Performance of Systems]: Reliability, availability,
and serviceability; Performance attributes; Fault tolerance

General Terms
Performance

Keywords
stress-based testing; search-based testing; safety and de-
pendability; wireless sensor networks

1. INTRODUCTION
Wireless Sensor Networks (WSN) are a fast growing area

of research and are now being commercially deployed. Sys-
tems are normally composed from many simple nodes that
autonomously deliver the overall functionality needed for
the application. Uses of WSNs include, assisted living facil-
ities to monitor patients, fire detection systems in building
or forests, or within oil refineries to monitor stages of pro-
duction. A typical deployment would consist of tens, if not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

hundreds, of autonomously-operating nodes. The combina-
tion of humans being central to the system, their mission
critical nature and the fact functionality is delivered largely
by software-based processing make them a classic example
of a Cyber Physical System (CPS) where a complex comput-
ing system provides essential services to its human operators
in order to make the operators more efficient and effective.
The essential nature of the services extend beyond merely
the functional or real-time properties but also encompass
safety and dependability. At the same time there is grow-
ing evidence that deployments of WSNs have dependability
issues [21, 22, 6].
WSNs use adaptive communications protocols which es-

tablish reliable ad-hoc networks, and minimise energy us-
age by reducing the number of message hops and aggregat-
ing information into fewer packets. The result is individual
nodes having complex software in terms of how they are
written and the algorithms encoded. These algorithms in-
clude signal processing from the sensors, data aggregation
based on data being fed in from a range of nodes, and sys-
tems software including the operating system and network
stack. Due to the low resources available, these algorithms
tend to be written in a highly optimised device-specific man-
ner. Clearly their behaviour is dependent on their software.
However added difficulty is introduced as they are also de-
pendent on, and interact with, other nodes in the WSN, as
well as other wireless devices and physical objects in the col-
lective shared environment. To this end, it is important to
understand how many node failures can lead to the WSN not
delivering the expected functionality. It is also important to
know the physical area in which the failures may occur, i.e.
there should be no more than M failures within area N.
This information allows the designers to decide whether the
design is sufficiently dependable, i.e. reliable or available.
The designer can then either add more nodes or make the
individual nodes more reliable. We only need to know why
the individual nodes fail if there is a need to understand
the cause of a failure, i.e. to prevent it having effect in the
future [11].
There are two key approaches to understand the safety of

systems, analysis and testing. Static analysis can work well
for more constrained systems in terms of the design princi-
ples used and the configurations deployed [12, 2]. However
even where these are highly-automated, they still require a
model of the system to exist and then the results from this
model are validated against the final system. It is our thesis
that using search to manipulate the failures within a simu-
lation can find similar results. Simulated models are used

as large-scale evaluation is not possible on “real” WSNs and
for every trial (i.e. move of the search) all the nodes may
need re-programming, and trials would consume much of
the already limited power. The simulated models have been
shown to be close to reality [5], however any inaccuracies
do not matter to the results obtained. The reason is that
we aim to determine the minimum number of node failures
that can lead to a hazard without trying to understand what
might have cause the nodes to fail. Of equal importance to
the fact any inaccuracy should have a negligible effect is that
the results obtained using a simulated model can easily be
validated.
Even though simulation is easier to perform than large-

scale trials with real hardware, each simulation can still take
minutes, if not hours, [16] making search more difficult.
Even though, for a particular system design, determining
the minimum number of failures does not need to be de-
termined often, there are still benefits that this is done as
quickly as possible. One such benefit is the possible eval-
uation of many proposed designs. For this reason, a par-
allel search approach is proposed. This has the secondary
advantage that the risk of premature convergence can be
reduced by each of the individual searches swapping par-
tial solutions at appropriate points in time [9]. It is as-
sumed that most organisations have a reasonable number
of computers that can be used to perform the simulations,
e.g. as part of their background processing using frameworks
like BIONC (http://boinc.berkeley.edu), or there are plenty
of relatively cheap cloud computing facilities, e.g. Amazon
EC2 (http://aws.amazon.com/ec2/). However these “com-
modity” solutions tend to larger variations in completion
time due to the need to fairly share the resources across
users or machines. This necessitates a parallel search algo-
rithm where the individual search algorithms are not too
tightly coupled.
The contributions of this paper include:
1. Presenting a search-based method for WSNs to deter-

mine the minimum number of failures that could lead
to hazards.

2. Defining the size and complexity of the search problem.
3. Designing a search algorithm that can deal with these

complexities despite the evaluation being time inten-
sive.

The structure of the paper is as follows. Firstly, our ap-
proach to making WSNs dependable is presented including
an example application that is to be used throughout this
paper. Next, the search framework is designed showing the
choices of the search algorithm itself, the fitness function
that guides the search towards the desired solution, and the
moves that the search algorithm makes to achieve an effi-
cient and effective solution. Finally there is an evaluation
of the approach followed by conclusions.

2. THE USE OF DEPENDABLE WSNS
The purpose of this section is to do the following: provide

an overview of how WSNs are used as part of dependable
systems; a description of the fire detection system used in
this paper; and details of our approach based on the use
of Health Monitoring (HM), specifically Safety Policy Mon-
itoring (SPM).

2.1 WSNs for Dependability
An important feature of WSNs to consider is that nodes

have highly restricted resource availability, owing to the re-
quirement for small physical size and low unit cost. Limited
availability of energy resources are particularly significant.
When a node runs out of energy it cannot participate in
the WSN. Eventually a state is reached in which there are
insufficient active nodes for the distributed application to
function correctly; at this stage the entire WSN is effectively
useless for the application. WSN designs must therefore be
sufficiently optimised to ensure correct operation for at least
the specified operational lifetime. One approach that may
be taken is to make them reactive. A reactive system will
only transmit messages when there is something of interest
to communicate. By contrast, a traditional approach taken
in hard-wired systems would use many more messages and
hence energy to provide similar functionality, due to the
sensors continuously reporting back to the application. A
quandary for the designer is that a silent network could in-
dicate nothing of interest is happening or that the network
has failed, e.g. due to a lack of energy. Therefore appropri-
ate means, e.g. HM, are need to ensure that the network
can still function correctly should the need arise that bal-
ances resource usage against the need to know if the WSN is
still capable of delivering the intended application semantics
[21]. The purpose of HM is to periodically check key aspects
of the WSN’s operation in order to ensure dependability [1].
In this paper, the attributes of dependability of considered
are; reliability, availability, maintainability and safety.
One technique to improve the dependability is to use HM.

HM approaches are split into centralised systems such as
MANNA [14], and distributed systems where typically de-
cisions are made based upon the local neighbourhood, with
the global network improving as a more emergent behaviour.
The main issue with these approaches is they simply detect
failed nodes and do not check the WSN’s ability to deliver
the expected application semantics. A consequence of this
is that maintenance may be ordered before it is needed, for
example if sufficient replicas still exist to report information.
Wu et al [21] proposed RTA, which aims to verify the

application level semantics of the system by simulating cer-
tain behaviours in the WSN. The approach is motivated by
WSNs often being reactive which means for long periods
the WSN may be quiet indicating there is no sensed data
worth reporting, however it could also mean that the WSN
has failed. Wu used the example of a fire detection system.
Firstly omission of a fire detection is the only hazard con-
sidered, and secondly maintenance is only ordered when the
WSN can no longer detect a fire. In [4], an improved type
of RTA was introduced that specifically targets the mitiga-
tion of hazards and hence improving the safety of systems.
The approach is referred to here as SPM and the tests that
are periodically performed Safety Policy Tests (SPT). SPM
is based on the concepts of Safety Policies [15] and Safety
Kernels [20]. SPM is used in this paper as it is the only
known example of an approach targeting safety of WSNs.

2.2 Fire Detection System
The purpose of this section is to introduce a case study, a

firefighting system which is used throughout this paper, and
the WSN design that has been produced to deliver depend-
ability.
The firefighting system [21] is intended for use on larger

buildings, e.g. skyscrapers, with each room having a number
of different sensors, e.g. temperature and humidity. Based

on these sensors a decision is made as to whether there is a
fire in the building. Should a fire be detected then a signal is
sent to a central monitoring station where information from
all the rooms is then used to initiate and control appropriate
firefighting measures. As part of the firefighting system it is
envisaged the firefighters themselves will receive information
on which rooms have a fire and in the case of evacuation
what the best route out of the building would be. Other
users of the information would be the buildings supervisor
who would have responsibility for ensuring an operational
fire fighting system, the people who have to maintain the
WSN, and the fire chief(s) with responsibility for coordinat-
ing the firefighting. The reasons we feel this system is an
appropriate example are as follows:

1. The system has clear hazards associated with it, for
example not detecting a fire, not warning a firefighter
of hazards within a room they are about to enter, or
not providing or providing an incorrect egress route.

2. The system is sufficiently complex as it features het-
erogeneous sensors, data aggregation, communications
that will be subject to interference and voids, and mul-
tiple categories of users. As such the failure conditions
leading to the hazards are not straightforward.

In our WSN-based implementation of a fire detection sys-
tem, there are five rooms. Each room has four nodes of
which a minimum of two are needed to detect a fire. Each
node would have a cpu with an application, network stack
and a micro-kernel. The software has three distinct pur-
poses. Firstly to sense the environment with some of the
available sensors that each node might have, e.g. temper-
ature or humidity, and then process it accordingly, e.g. to
reduce the data size. The processed information is then
sent to a sink node which collects it together, and then ei-
ther processes the data or uploads it to remote computers
for remote processing. This sink node is assumed to be
hard-wired to the operators console, so is less likely to ex-
perience failures and is also mains powered. Secondly as
most WSNs are multi-hop, a node commonly acts as a rout-
ing node. Its software is therefore responsible for receiving
information from other nodes and forwards it to the next
node en-route towards the sink. Unlike most traditional
critical systems, WSNs operate in environments that are
not well understood even after deployment and failures are
more common place. These failures are more common due
to node hardware being unreliable and also the possibility
that new interference sources may be introduced during use.
To counter these problems WSNs are often designed using
adaptive algorithms and protocols which makes verification
more challenging [17, 18, 19]. Finally it has system software
which is responsible for scheduling, security, HM etc..
A hazard analysis was performed that determined a late

fire detection is potentially unsafe, which leads to a DSR
being specified. That is, DSR2 - The fire detection system
should detect a fire in a room within Z time units, where Z
is dependent on the building’s safety case and the need to
evacuate the building within a given amount of time. There-
fore due to the reactive nature of WSNs, periodic simulated
fire signals are raised at all nodes. These periodic signals
are referred to as Safety Policy Tests (SPT). They allow the
system to determine whether the DSR is in fact met. The
test to cover DSR2 is to check whether any SPT message
indicating a simulated fire has been delayed by more than
Z time units from each and every node in the network. In

the fire scenario Z is assumed to be 1 minute, as this is an
early indication of either a node failure, node communica-
tions being dropped, or messages simply taking too long to
reach the operator node. All of these should be handled by
maintenance procedures. These failures could be for a large
variety of reasons including: environmental noise effecting
the chance of successful transmission, the number of hops
to traverse the network, or the latency of other messages.
The test looking for DSR2 failures is performed on the op-
erator(s) consoles.
If problems are detected then maintenance is planned.
1. Replacement maintenance is scheduled if more than

P nodes within a room have a permanent fail silent
failure or a fail noisy failure indicating that the node
is faulty and must be replaced.

2. Communications maintenance is scheduled by the pres-
ence of a DSR2 failure (transient fail silent failure) be-
ing raised on a node without the presence of a DSR1
failure (permanent fail silent failure). Should this be
an isolated case then it’s most likely a communica-
tion hardware failure, and thus the node should be
replaced. If many nodes exhibit this behaviour then
this form of maintenance does not physically replace
the failed nodes, as this would not fix the issue, instead
requiring that the network parameters are tuned to de-
crease the number of collisions, e.g. increasing commu-
nications jitter (decreasing the likelihood of a collision
occurring during the sending of messages).

Further details on the methods by which the DSRs and
SPTs are derived and used are contained in [8].

2.3 Assessing the Search Landscape
Each injected failure is considered to be within a specific

node and is transient for a given period and given duration.
Durations can be up to and including the length of the pe-
riod at which point the failure becomes permanent. Each
time a failure is triggered, it is assumed that with a given
probability it will lead to a total failure of the node, i.e. the
node will no longer sense information, communicate its own
sensed data or act as a routing node for others. Where this
does not happen it is assumed the failure is either not sig-
nificant to these functions or it is tolerated. It is noted that
other (not-injected) failures will occur as part of the simu-
lation, e.g. communication failures due to packet collisions.

Variable Min Max Step
Failure Period (hours) 1 4 1
Failure Duration (mins) 1 Period 1
Failure Offset (hours) 0 Period 0.25
Failure Probability (%) 0 100 5

Maintenance Period (hours) 2 8 2

Table 1: Variables to be Manipulated
The variables, their ranges and the step function used

in this paper are described in Table 1. The step func-
tion assumes not all values might be chosen, i.e. a vari-
able can take values min_value, min_value+step_value,
min_value+2·step_value, ··, max_value. Without a step
function, i.e. if all real values were assumed in the range,
then the search space would be significantly larger. An im-
portant (related) issue is that the search landscape is not
smooth. This means that search approaches, e.g. hill climb-
ing, will struggle to find getting good solutions harder. Re-
ducing the search size helps, however it is at the possible ex-

pense of the best possible solutions not being found. Initial
trials show that too small a step_value, including not hav-
ing a step_value, meant that none of the search algorithms
could cause the hazard to occur within the time allowed.
Too large a step_value meant the failure state of the nodes
tended to be too regular, e.g. binary between not failed or
permanently failed. This would be unrealistic for a WSN.
The minimum and maximum values in Table 1 were cho-
sen as they are realistic for the application. The step values
were chosen, roughly following a binary search, to best show
the differences in the algorithms.
The size of the search space is therefore 20!·307200·5,

which equals 3.7x1024, based on the following.
1. There are 20! combinations of node failures that can

occur if physical position is ignored. If physical po-
sition is taken into account then the number of com-
binations would be much larger, however 20! is suffi-
ciently large to illustrate the significant complexity of
the search problem.

2. There are 4 · 240 · 16 · 20 (=307,200) combinations for
each node failure from the period, duration, offset and
probability respectively.

3. The maintenance periods give 5 further options.

2.4 Simulation Used for Evaluation
To measure the fitness of a specific solution it was nec-

essary to run a full simulation of the fire detection sys-
tem using co-simulation between the application simulator
and Network Simulator 2 (NS-2). The application was im-
plemented using a custom built application level simulator
which defines the behaviour of the nodes and the node fail-
ures. NS-2 (www.isi.edu/nsnam/ns/) was used to simulate
the transport and lower network levels of the nodes as it is
widely used, well tested and allows for high fidelity simula-
tion. NS-2 was configured for a typical WSN application,
Ad hoc On-Demand Distance Vector (AODV) protocol [13]
for the transport layer, and 802.15.4 for the MAC protocol
used in combination with the two-ray ground model for the
physical radio model (a typical WSN setup). The failures
injected into NS-2 are communications failures, whereby the
node simply has its radio turned off, stopping the node com-
municating its own messages, or relaying messages for oth-
ers. Further details on the simulation framework are in [8].

-PARAMETERS
SimulationTime, MaintenancePeriod
86400, 28800

-FAILURES
Type,NodeID,Probability,Offset,Period,Duration
1,4,0.350000,4560,14400,15840
1,19,0.950000,3840,14400,14880

Figure 1: Sample Search Solution
The failures are defined in each search solution, an ex-

ample of a search solution is shown in figure 1. The figure
shown in the figure defines the SimulationTime, which is
not manipulated by the search algorithm, and the Mainte-
nancePeriod. Then the failures are defined, with each row
represent one failure. Type distinguishes between a comms
failure (=0) and a node failure (=1). Node failures then have
a nodeID, Probability, Offset, Period and Duration. Whilst
the failure shown is simple, it represents much of the com-
plexity of WSNs that are hard to analyse as discussed within

in this paper such as sporadic interference or faulty hard-
ware.
3. DESIGN OF THE SEARCH FRAMEWORK
The purpose of this section is to describe how the parallel

search algorithm was implemented to manage the size and
complexity of the search problem, how the fitness function
was designed to guide the algorithm towards the desired
solution, and the moves made by the search algorithm to
efficiently and effectively transition the search landscape.

3.1 Parallelising the Search
Two main approaches of conducting the search were con-

sidered, genetic algorithms and simulated annealing. Ge-
netic algorithms were considered good at dealing with large
complex landscape and is easily parallelisable. Simulated
annealing also has these characteristics as it is a local search
algorithm. This means once it has got within the proximity
of a good result, i.e. caused a hazard, it should be good at
then exploring how to minimise the failures needed to cause
the hazard. One of the benefits of a meta-heuristic search
like simulated annealing is that, other than the definition
of the neighbourhood, the heuristics for a good solution are
not built into the algorithm but into the cost function. This
makes it easy to move between goals such as achieving a
load balanced system or minimising differences to an exist-
ing solution. One individual simulated annealing algorithm
in the parallel simulated annealing algorithm is described in
Figure 2 which is based on a standard algorithm from [10].

Γ = {γ0, . . . , γN} /* Set of parallel simulated algorithms*/
ω∗(i) = {ω∗1 , . . . , ω

∗
N}/* Best configuration for each γi algorithms*/

Ω = {ω0, . . . , ωN} /* Solution space */
f : Ω→ [0, 1] /* Cost function */
ψ ∈ Ω /* Initial configuration */
ω∗ = ψ /* Best configuration for this algorithm*/
ω = ψ /* Current configuration */
t = t0 /* Set initial temperature */
α = c0 /* Cooling factor */
λ = T0 /* Cooling period */
θ = R0 /* Re-seed period */
φ = S0 /* Swap period */
do
i = 0
do

if (j mod φ) = 0 then
ω′ = ω∗(rnd(Γ))

else
if (j mod θ) = 0 then
ω′ = ω∗

ω′ = modify_config(ω)
endif
fork calculate_fitness_function(f(ω′))
wait for all simulated annealing algorithms
δ = f(ω′)− f(ω)
R = random value ∈ [0, 1]
if (R < e−

δ
t) then ω = ω′ endif

if (f(ω) ≤ f(ω∗)) then ω∗ = ω, j = 0 endif
i = i+ 1
j = j + 1

endif
until (i = M or (stopping condition))
if (i mod λ) = 0 then t = αt endif

until (stopping condition)

Figure 2: Parallel Simulated Annealing

3.1.1 Parallel Simulated Annealing Algorithm
Parallelisation is achieved by executing multiple simulated

annealing algorithms, as described in 2. Specifically, each

individual simulated annealing algorithm will fork the cal-
culation of the fitness function every move and then it con-
tinues when it can join every individual simulated annealing
algorithm (i.e. they all complete the calculation of the fit-
ness function). The reason for doing this every move is any
individual simulated annealing algorithm may wish to swap
solutions at a particular move. This join does result in an
increase in the elapsed time of the algorithm, however in our
work this was not found to be significant and the computa-
tional resources were not wasted as they were free for other
users to use.
An individual simulated annealing algorithm swaps in a

new solution when no improvement has been found its cur-
rent solution within 50 moves. The new solution is selected
by taking the best solution from one of the other individ-
ual simulated annealing algorithms chosen at random. This
new solution is then used as the current solution and the al-
gorithm continues as normal. This value was found by trial
and error, again approximately following a binary search.
Twenty parallel versions were used as early trials found that
the greater the level of parallelism the faster the completion,
in terms of elapsed time, and for our cluster there was usu-
ally at least this many cores available. The individual jobs
were executed via a Sun Grid Engine (SGE) upon which at
least 20 cores should normally be available.

3.1.2 Individual Simulated Annealing Algorithm
For each individual simulated annealing algorithm, the

initial temperature was set at 1000 with a cooling factor of
0.99. Cooling is performed every 10 moves and if no im-
proved solution has been found within 25 moves the current
solution is returned to the previous best. Each simulated
annealing algorithm concludes when there has been a total
of 250 moves. Future work could investigate the choice of
search algorithms and perform parameter tuning of the al-
gorithm, including what level of parallelism gives the most
efficient and effective solution in terms of CPU time, and
then trading this off against the desire to finish the search
in the minimum elapsed time.

3.2 Evaluating the Fitness Function
In this work the fitness function has the usual purposes

of guiding the search towards meeting the primary objec-
tive, which in this case is the hazard of an undetected fire,
and then to achieve this with the minimum number of fail-
ures. Thus the fitness function has the following compo-
nents. Each component is normalised to return a value be-
tween 0 and 1. This means that the overall cost value can
also be in the range [0, 1] as the final step is to sum the
product of each component’s result and its corresponding
weight and then divide the result by the sum of the weights,
shown in equation 6.

1. Number of undetected fires - This component max-
imises the number of undetected failures or hazards
associated with a simulation. It is calculated to give
a normalised value using equation (1). This objective
is considered the most important. A challenge is to de-
cide on the value for the Maximum(#undetectedfires)
- assuming that multiple fires at the same time in a sin-
gle room is treated as one. The maximum is not known
apriori. An upper bound equivalent to the number of
rooms could be taken, however this has two distinct
issues. Firstly it is unlikely that all rooms have an un-

detected fire so the value of g1 may only take a very
small part of the [0, 1] possible range. Secondly each
room could theoretically have more than one unde-
tected fire, i.e. there is an undetected fire, the WSN is
repaired and then there is another one etc.. Therefore
the preferred approach, referred to as a dynamic fit-
ness function is to set Maximum(#undetected fires)
based on the maximum observed during the particular
search. Our previous work, e.g. [3, 7], and initial trials
showed the negative aspects of such a dynamic fitness
function were found to be better than the bias found
with an un-normalised fitness function.

g1 = #undetected fires

Maximum(#undetected fires) (1)

2. Number of node failures - This component attempts
to minimise the number of nodes required to achieve
a hazard. Its value is zero unless a hazard occurs.
Otherwise it is calculated using equation (2). Again,
for similar reasons to equation (1), a dynamic fitness
function is used. The purposes of the value found with
equation (2) are to fulfil the secondary objective, of
minimising the failures that cause the hazard, but also
to moderate the above objectives which would other-
wise drive the search towards failing all nodes in the
network in a permanent fashion. The designer may
be interested in inspecting failure combinations, other
than the minimum node failure, that lead to a hazard
to see if any improvements in the design are needed,
in which case the weight of this component could be
raised. An important point to note is that the fitness
function has been encoded with no knowledge of what
failure combinations could lead to a hazard, i.e. the
nature of the likely best solution is not included.

g2 =
{

Maximum failures (=20)−#F ailures)
Maximum failures

, if g1 ≥ 1
0 , otherwise

(2)
3. Number of SPT failures - The purpose of this compo-

nent is to maximise the number of failed SPTs in order
to guide the search towards situations where the pri-
mary objective is met as a SPT failure indicates that
we are starting to lose more nodes (but we may cur-
rently still be able to detect fires). A larger number
will indicate an unhealthy network. To normalise the
value the actual component is calculated using equa-
tion (3). Again, for similar reasons to equation (1), a
dynamic fitness function is used.

g3 = #SP T F ailures

Maximum(#SP T F ailures) (3)

The cost function f is calculated from the scalar product
of a vector of the cost function components and a weightings
vector.

~g = (g1, . . . , gn)T (4)
~w = (w1, . . . , wn)Twhere wi ∈ R ∀ i (5)

f = ~g · ~w∑n

1 wi

(6)

The weights, including the reasons for their relative sizes,
are given below. Part of the reason for the ratios between
the weights are the relative values of the fitness function

elements, which tended to have quite different ranges despite
being normalised.

1. w1 was given a value of 10 which makes it more im-
portant than the number of SPT failures but less im-
portant than minimising the number of hazards.

2. w2 was given a value of 100. Remembering that g2 only
has a non-zero value when a hazard has been found,
then the concentration of the search moves to minimis-
ing the value of g2.

3. w3 was given a value of 1 as it was least important

3.3 Moving Through the Search Landscape
To move from one solution to another, a randomly modi-

fied version of the existing solution is chosen by the function
modify_config(). If a move takes the parameters outside
of the ranges defined in Table 1 then no change is performed.
A move is taken by randomly choosing a single action from
the following list.

1. A node can be added with the random failure charac-
teristics based on the ranges in Table 1.

2. A node failure can be removed.
3. A randomly chosen node can have its period increased

or decreased by one hour.
4. A randomly chosen node can have its duration in-

creased or decreased by one hour.
5. The maintenance period can have its duration increased

or decreased by one hour.
6. The probability of a randomly chosen node failure can

be increased or decreased by 5%.
An initial solution for each individual simulated annealing

algorithm is generated as follows:
1. A random number of node failures in the range [1,20]
2. Each failed node has the following characteristics:

(a) A random integer failure period in the range [1,12],
all time units are hours

(b) A random integer failure duration in the range
[1,12] but not greater than the period

(c) A random probability in the range [0,100] selected
at multiples of 5, i.e. 0, 5, 10, ··, 100. Each time
a node is due to next fail, the probability is used
to decide whether an actual failure occurs, i.e. a
random value is generated in the range [0,100] and
if its less than or equal to the probability then it
occurs

3. A random integer maintenance period in the range
[4,24]

4. EVALUATION
The objective of this evaluation is to understand the feasi-

bility of the proposed search-based approach in the context
of the original motivating problem: finding the minimum
number of failures that can lead to a hazardous fault. These
requirements are expressed as three experimental questions:

1. EQ1 - Is it possible to search for failure conditions
that lead to a hazardous fault?

2. EQ2 - Can the minimum number of failures be found?
3. EQ3 - How does the approach compare to other pos-

sible approaches?
For this problem it is known that a hazard may be de-

tected, subject to there being a real or simulated fire, when
there is not a sufficient number nodes left in a single room
to detect the event. This means there must be less than two
nodes for the hazard to occur. If the starting position is four
nodes per room, then the best solution (i.e. a hazard occurs

with the minimum number of node failures) is three failures
within the entire network as any more is unnecessary.
4.1 Experimental Method
The experimental method employed is to run fifty trials

for each of the three following methods:
1. Parallel simulated annealing algorithm - as described

in section 3.
2. Sequential simulated annealing algorithm - The paral-

lel simulated annealing algorithm described in section
3, however instead of twenty parallel searches there is
only one. This is equivalent the sequential version of
simulated annealing in Figure 2. This is aimed at pro-
viding an understanding of whether the parallel search
is making reasonable usage of the available resources.
The only difference to the algorithm in section 3 is
that different parameters are used. The ones that are
different are the total moves is (= 20 · 250 = 5000),
the cooling factor (= 0.995) and the number of moves
before the current solution is returned to the last best
(= 20 · 25 = 500). The parameters are chosen to give
this algorithm the same number of moves as the par-
allel version and to maintain a higher level of diver-
gence allowing for the larger number of moves. Clearly
with this algorithm there is no swapping of best results
between individual simulated annealing algorithms as
there is only one

3. Random search - This again takes 5000 moves in order
to give the same number of moves as the parallel sim-
ulated annealing algorithm. For each move it chooses
a random solution in the same fashion as the initial
solution for the simulated annealing algorithm. This
search is sequential however this can be parallelised as
each of the 5000 moves are independent

The metrics to be used for the evaluation are the fitness
functions outlined in section 2.4 and the following:

1. #Haz - How many times each search method manages
to find a hazard, i.e. an undetected fire, across each of
the fifty repeated trials.

2. #FH - The number of moves to find the first haz-
ard, i.e. an undetected fire. To give a reasonably fair
comparison, the results for the parallel search are mul-
tiplied by 20 (To calculate the number of simulated
evaluations performed).

3. #Mo - The number of moves to find the best solution.
Again for the parallel search the number of moves is
multiplied by twenty.

4. Cl - How close each approach gets to the best solution
as shown in the equation below, where trial is an indi-
vidual trial, mf is the minimum failures that can lead
to a hazard, and fx is the number of node failures asso-
ciated with trial x, and pt is the set of positive trials,
where for each trial there is at least one undetected
fire. In most cases mf would not be known, however
in the case of this paper an exact value is known as it
is when there are too few nodes in a single room to de-
tect a fire. For this paper five rooms with four sensors
in each is used, which means mf is equal to 3. The
results for this metric are examined across a number
of repeated runs using the median and inter-quartile
ranges as well as the minimum and maximum values.

closenesstrial = ftrial−mf
mf

, if trial ∈ pt

= 2 ·max∀i∈ptfi , otherwise

4.2 Experimental Results
The parallel search algorithm was executed on a SGE and

the fifty repeated trials took 8 days. It is noted that this
time was dependent on what other work the SGE was doing.
The random and uniprocessor search algorithms were run
concurrently, i.e. all 100 trials at once, on a 64 core linux
machine with 128 GB of memory. These trials took 4 days,
however again the machine was not solely dedicated to this
task. The results were processed using scripts written in R.

●

●

●

●

●

●

●

●●●

●

●●●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0
5

10
15

20

Search Algorithm

F
re

qu
en

cy

Parallel Uniprocessor Random

#Fails
#Undet

Figure 3: Comparison of Results
The results are summarised in Figure 3. The box plot

shows the results for all three search algorithms against the
three metrics introduced in section 4.1. A box plot is used as
the box clearly shows the range of values between the upper
and lower quartiles, the circles outliers, and the thicker black
lines the minimum and maximum values.

1. #Fails - This indicates the minimum number of fail-
ures for which an undetected fire occurred. Where
no undetected fire was found, the value of 20 is given
as this is equivalent to every node failing. The box
plot shows the parallel search algorithm found a large
number of situations, 17, where there was an unde-
tected fire. The best result was to have an undetected
fire with 5 failures. In contrast the uniprocessor only
twice created the undetected fire hazard, however it
did it with fewer failures. These are considered ran-
dom chance. The random case created an undetected
fire more times, five, however it was with more failures
than the uniprocessor case. A further trial was run
with 500 moves for the parallel simulated annealing
algorithm instead of 250. This time an undetected fire
was reached with only two failures, i.e. the minimum
number, which shows the approach is successful. This
situation was found after 353 moves. Overall the re-
sults suggest the problem is in fact complex to solve
and the parallel search algorithm was more reliable at
solving the problem. It also showed given enough cases
random search could do well. If failures were made less
likely however, it is unlikely to succeed.

2. #SPT - This is not shown in the graph as the non-

parallel search algorithms’ best solution often features
many failures, e.g. all the nodes in a single room at
the same time. These situations lead to extremely
high numbers of SPT failures, e.g. 10K+, which would
skew the scale of the graphs. At the same time these
are not good solutions as the aim of the work is to
reach the hazardous state of an undetected fire with
minimal failures. It is noted that the non-parallel
search algorithms only reached the hazardous state
when there were many failures for long durations in
the same room, however this was always for a larger
number of failures.

3. #Undet - The parallel search algorithm’s best solu-
tion often had fewer undetected fires. This is seen as
a positive result as assessing the detailed logs showed
that there were solutions with more undetected fires,
however this was at the expense of more node failures.
The search then reduced the failures at the expense of
less undetected fires,
Algorithm #Haz #FH #Mo Cl
Parallel 86.4 794.8 3972.4 14.42

Sequential 8.62 513.54 186.04 18.5
Random 9.6 651.64 1802.02 16.58

Table 2: Summary of the Search Algorithms
Table 2 presents a summary of how each of the three

search algorithms perform against the metrics outlined in
section 4.1. The table gives the mean for each of them.
The results show parallel search is significantly better than
the other two algorithms in terms of the number of haz-
ards found and the closeness to the best possible result.
The time to find the first hazard (when one is found) for
the parallel approach is a little worse than the other ap-
proaches. However as the figures reported are multiplied
by 20, the results show given a parallel computing platform
then there is an almost linear speed up in terms of elapsed
time to find the first solutions. For hard to reach hazards
and with the abundance of processing cores then this is sig-
nificant. Further investigation is needed to understand the
precise relationship between cores available and the elapsed
time to the first hazard being found. The final metric, Mo,
indicates the parallel and sequential approaches tend to find
their best solution after the same amount of steps through
the algorithm (or elapsed time assuming sufficient process-
ing cores are available) remembering the figures reported are
multiplied by 20. Analysis of the results support the earlier
claim the parallel search is less likely to suffer premature
convergence. The analysis also show the parallelism allowed
more diverse parts of the search space to be examined.
4.3 Manual refinement of the results
Two methods of manual refinement were used with equal

effect. The first method was manual inspection. For the
system considered and a result close to the best possible
solution, this approach is possible. However in more com-
plicated systems, this will be more difficult and prone to
errors. The second is consider combinations of failures in
the best found solution by feeding them back into the simu-
lator. The mechanism for this is outlined below. The algo-
rithm is guaranteed to give the minimum number of failures,
based on the best solution found, that lead to a hazard. As
stated in section 4.1, for the system used in this paper the
minimum number of failures is an exact known value.

1. Step 1 - N is initialised to 1
2. Step 2 - For each combination of N failures from the

best found solution, simulate the system
3. Step 3 - if no hazard found then increase N by 1 and

repeat Step 2

4.4 Summary
The experimental questions posed at the start of this sec-

tion are now re-visited.
1. EQ1 - Is it possible to search for failure conditions

that lead to a hazardous fault?
The result for this question is clearly yes.

2. EQ2 - Can the minimum number of failures be found?
The result for this question is possibly yes. The exact
value was found. The parallel search algorithm was
shown to be much more effective at both creating the
hazards and doing so with fewer failures. The “best"
result was a hazard with five failures. This was suffi-
ciently few failures for the designer to determine that
only two of these were in fact needed. Three of the
failures were deleted from the configuration, the test
re-run and the hazard still found. The more failures
there are the harder this manual step becomes.

3. EQ3 - How does the approach compare to other pos-
sible approaches?
The results show that a parallel search algorithm out-
performs both sequential simulated annealing and ran-
dom searches in terms of ability to find solutions. As
each simulation takes minutes, if not hours, to per-
form, then the benefits of parallelisation are significant.
Future work could look at stress testing other DSRs,
and at how different search parameters and algorithms
could improve efficiency and effectiveness.

5. CONCLUSIONS
This work has shown search-based testing can obtain a

good estimate of the minimal failures that can cause a haz-
ard. This technique can be used ahead of deployment al-
lowing the designer then to make targeted (cost effective)
changes to the WSN to make it more dependable. The de-
signers can also use the results to validate the findings on
the real system as once the situations have been established
they would need less work to check. Parallel search was used
which had the dual benefit of speeding up the evaluation and
improving the results. Our belief is that the techniques pro-
posed here are useful for more general problems related to
WSNs and other complex software-based systems. Future
work will examine whether this is true.

Acknowledgement
We thank Tiong Hoo Lim for his help analysing the results.
We acknowledge the Swedish Foundation for Strategic Re-
search (SSF) SYNOPSIS Project for supporting this work.

6. REFERENCES
[1] A. Avizienis, J.-C. Laprie, and B. Randell. Dependability

and its threats - a taxonomy. In Proceedings of the IFIP
18th World Computer Congress, pages 91–120, 2004.

[2] I. Bate and A. Burns. An integrated approach to scheduling
in safety-critical embedded control systems. Real-Time
Systems Journal, 25(1):5–37, 2003.

[3] I. Bate and P. Emberson. Incorporating scenarios and
heuristics to improve flexibility in real-time embedded

systems. In Proceedings of the 12th IEEE Real-Time And
Embedded Technology And Applications Symposium, pages
221– 230, 2006.

[4] I. Bate, Y. Wu, and J. Stankovic. Developing safe and
dependable sensornets. In Proceedings of the 37th
Euromicro Conference on Software Engineering and
Advanced Applications, pages 279–282, 2011.

[5] D. Curren. A survey of simulation in sensor networks.
Project report (CS580), University of Binghamton, 2005.

[6] J. Decotignie. The real-time and wireless sensor networks:
are they compatible? Keynote at Euromicro Conference on
Real-Time Systems, 2012.

[7] P. Emberson and I. Bate. Minimising task migrations and
priority changes in mode transitions. In Proceedings of the
13th IEEE Real-Time And Embedded Technology And
Applications Symposium (RTAS), pages 158–167, 2007.

[8] M. Fairbairn, I. Bate, and J. Stankobic. Improving wireless
simulation through noise modeling. In Proceedings of the
9th International Conference on Distributed Computing in
Sensor Systems, page To Appear, 2013.

[9] S. Gordon and D. Whitley. Serial and parallel genetic
algorithms as function optimizers. In Proceedings of the
Fifth International Conference on Genetic Algorithms,
pages 177–183, 1993.

[10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220(4598):671–680, 1983.

[11] J. Laprie. Dependable computing: concepts, limits,
challenges. In Proceedings of the Twenty-Fifth International
Conference on Fault-tolerant computing, pages 42–54, 1995.

[12] J. McDermid, M. Nicholson, D. Pumfrey, and P. Fenelon.
Experience with the application of HAZOP to
computer-based systems. In Proceedings of the 10th Annual
Conference on Computer Assurance, pages 37–48, 1995.

[13] C. Perkins and E. Royer. Ad-hoc on-demand distance
vector routing. In Proceedings of the Workshop on Mobile
Computing Systems and Applications, pages 90–100, 1997.

[14] L. Ruiz, J. Nogueira, and A. Loureiro. Manna: A
management architecture for wireless sensor networks.
IEEE Communications Magazine, 41(2):116–125, 2003.

[15] J. Rushby. Kernels for Safety?, chapter 13, pages 210–220.
Blackwell Scientific Publications, 1989.

[16] J. Tate and I. Bate. YASS: A scaleable sensornet simulator
for large scale experimentation. In Proceedings of
Communicating Process Architectures, 2008.

[17] J. Tate and I. Bate. Sensornet protocol tuning using
principled engineering methods. The Computer Journal,
53(7):991–1019, 2010.

[18] J. Tate, B. Woolford-Lim, I. Bate, and X. Yao. Comparing
design of experiments and evolutionary approaches to
multi-objective optimisation of sensornet protocols. In
Proceedings of the 10th IEEE Congress on Evolutionary
Computation, pages 1137–1144, 2009.

[19] J. Tate, B. Woolford-Lim, I. Bate, and X. Yao.
Evolutionary and principled search strategies for sensornet
protocol optimization. IEEE Transactions on Systems,
Man, and Cybernetics, Part B, 42(1):163–180, 2012.

[20] K. Wika and J. Knight. On the enforcement of software
safety policies. In Proceedings of the 10th Annual IEEE
Conference on Computer Assurance, June 1995.

[21] Y. Wu, K. Kapitanova, J. Li, J. Stankovic, S. Son, and
K. Whitehouse. Run time assurance of application-level
requirements in wireless sensor networks. In Proceedings of
the ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN 2010), pages
197–208, 2010.

[22] F. Zhao. Challenge problems in sensornet research.
Keynote at NSF NOSS PI meeting and Distinguished
Lectures at Johns Hopkins and Princeton, 2005.

	Introduction
	The Use of Dependable WSNs
	WSNs for Dependability
	Fire Detection System
	Assessing the Search Landscape
	Simulation Used for Evaluation

	Design of the Search Framework
	Parallelising the Search
	Parallel Simulated Annealing Algorithm
	Individual Simulated Annealing Algorithm

	Evaluating the Fitness Function
	Moving Through the Search Landscape

	Evaluation
	Experimental Method
	Experimental Results
	Manual refinement of the results
	Summary

	Conclusions
	References

