Synthesizing a Comprehensive Framework for Lean Stfare Development

Henrik Jonsson

Technical System Development
Etteplan Oyj
Vasterds, Sweden
henrik.jonsson@etteplan.com

Abstract— Lean principles, originating from Japanese
automotive industry, are anticipated to be usefuld improve
software development processes. Albeit its populayi there is
still no generally accepted, clear and detailed digfition of what
lean software development actually means. This mageit
difficult to perform research on the effects of lea software
development and determine its usefulness in variousontexts.
To fill in that research gap this paper analyzes ta state of the
art based on twenty key Lean concepts derived frormine
seminal sources identified in a systematic literane review.
The original explanations of the key concepts havéoeen
elaborated further and synthesized into a frameworkfor lean
software development consisting of a set of goals,
recommended activities and practices. The detailedesults for
the key concept Value are reported. The proposed dmework
is expected to serve as a basis for further resedrcand for
Lean assessment of organization§Abstract)

Keywords-Lean Software Development; Systematic Literature
Review; State of the art, Software Process | mprovement, (key
words)

l. INTRODUCTION

‘Lean’ principles derived from Toyota car prodacti
are now spreading into many other domains,
expectations of radically improved process perforceain
those domains as well. Software development is arot

exception and the interest for how to apply thenlea

principles to development of software has grownidigp

However, the very basic question of what lean saftw
development means is still not clearly answered4&]long

as no unified definition of what lean software depenent is

exists, it is difficult to perform research on itcarelate it to
agile and other streams of influences in the sofivpmocess
improvement domain. From practioners’ point of vithere

is also valuable to see what Lean can means moi@ately

for software development.
adopting Lean in other areas, either on the matwiag

floor only, or to the enterprise as a whole thera need for
more concrete guidance of what Lean means fordfierare

development departments in particular.

To make it easier to perform research in this arehto
provide more concrete guidance to organizations,hese
derived a framework for Lean Software Developmeamf
multiple recognized sources. The starting point this
framework was a systematic literature

with

As many organizations ar

review (SLR)

Stig Larsson, Sasikumar Punnekkat

School of Innovation, design and engineering
Malardalen University
Vasteras, Sweden
{stig.larsson,sasikumar.punnekkat}@mdh.se

identifying nine seminal sources for Lean Software
Development and 44 different Lean principle stateime
(Section 1V). Based on their descriptions, 20 kegah
concepts were compiled. Furthermore, specific goals
recommended activities and examples of practiceedch
key concept were extracted and synthesized in cedlde
manner (Section V). Section Il relates this studyothers
work and section lll presents the details aboutrdsearch
method applied. Section VI discusses the findingsl a
section VII concludes the paper.

1. BACKGROUND AND RELATED WORK

The term ‘lean production’ was coined by researsher
from Massachusetts Institute of Technology (MIT3igsed
to study why Japanese automotive companies, mainly
Toyota, had managed to increase their productiaityl
steadily taking market shares from the Americansdi2&].
What they found was a production philosophy anddfet
principles, collectively called Lean. In Japan tikigprimarily
known as ‘The Toyota Way' [19]. While many major
automotive industries now have integrated largespaf
these ideas into production to remain competitittmse
ideas have now been spread to other industrial oh@mAs
shown in this paper, the ideas to apply the Leaasgdto
software development has roots back to the MIT arese
group coining the term [16], but it has mostly been
popularized by the books by the Poppendiecks [22],[23]
as shown in this study.

Previous reviews [3],[14] of applications of Lean
principles to software development have summaritted
genealogy of lean software development. A recepépHLO]
compiled principles from selected sources in otdedentify
common high level values for lean soft development
analogous to the agile values expressed in theeAgdil
manifesto (www.agilemanifesto.org). However, noné o
these studies was reported to be based on a systeiya
performed literature review as the one reportettis paper.
And none of these has attempted to synthesize alatbt
description of what a software development orgdiuna
should do to be Lean.

Extensive work to describe the general taxonomiyeain
has been performed by MIT in the Lean Aerospad&tivie
(LAI) and an assessment tool for guiding organirati to
adopt lean on an enterprise level has been dekIgs3.
This LAI Self Assessment Tool (LESAT) has receritgen
extended for software development, mainly by adding

common references to the agile manifesto and
Poppendiecks’ [21] popular interpretation of learftware
development [7]. Since the focus is still on entise level,
the framework does not provide so much concretdagge
for software development organizations.

Ill. RESEARCH METHOD

The overall approach to synthesize a framework é&am
Software Development starting from a systematraiture
review is summarized in Figure 1.

Part I: -
Systematic [1.Search primary papers
Literature V
Review
(section V) [2.Extract seminal sources
___________________________ [/2
4 N\
3.ldentify Lean principles
statemen
(. \1/ J
4 1\
Part II: 4.Aggregate into key Lean
Content concept are:
analysis and ~ 4 g

synthesizing a N

Lean Software

Development
Framework

(section V)

5. Extract meaning and
proposals for software
development organizatic.

N4
N
6. Formulate goals, activities
and recommended practi

Figure 1. Research workflow

This study began with a systematic literature nevigth
an approach and a protocol according to the guieelgiven
by Kitchenham [9] (part I). The research questielevant to

this part of the study washich sources the primary papers
refer to when explaining Leannitial primary papers were
searched (step 1) using the EBSCO Discovery Servic

including the databases ABI Inform, ACM Digital liy,
SpringerLink and ScienceDirect and IEEE Xplorertdber
11, 2012. The exact search terms were the combmatf
“lean” and “software” in all metadata fields, wigubject
terms “computer software development",
engineering", "software process" or "computer smén
Only peer reviewed sources in English were includiecin
initial screening, papers only mentioning lean @me other
context in the abstract or authors field (like Mean) were
excluded. When in doubt, the full paper was revidve
determine whether it should be included or not.ektract
seminal sources, defined as what the authors opringary
papers refers to when explaining lean (step 2, ergblthe
full paper text and reference sections in eachuded paper
was read. The total number of references to easttsavas
then calculated. To cross-check the results thebeurof

"software

theitations to the identified seminal sources rembhte Google
Scholar was also obtained (October 25, 2012).

The second part of the study was a content anaiysise
identified seminal sources (all books), with thealgdo
identify important Lean concepts, recommended et/
and practices for software development. First, daminal
sources were studied to identify sets of princgiltements
summarizing Lean (step 3, Table IlI). The principle
statements were analyzed for recurring keyworddeatify
a common set of key concepts (Table Ill). In casdoubt,
the extended descriptions of the principles by sheinal
authors were used to guide the mapping of prinsiji¢o
common concepts. For selected concept areas, dattie o
seminal authors’ description of the concept was
systematically scrutinized to identify and extrgobtations
with page references to descriptions of the agtua#aning,
motivation and recommended practices for orgarunati
developing software. The table of contents and itiakex
sections guided the search. The seminal authcesisvivere
then compared to find similarites and discrepascie
resulting in a synthesized background descriptmmeach
selected concept area. Based on that synthesisnbemiof
proposed general activities were formulated forhekey
concept area. Any associated recommended concrete
methods or practices from the seminal authors vedse
recorded. Finally, overall concept area goals iemaulated
to summarize the seminal authors view.

IV. SYSTEMATIC LITERATURE REVIEW RESULTS

As part of a systematic literature study the scurteat
have been used in the academic computer science was
identified. These recognized sources were lated asethe
basis for building a framework for lean software
development as described in section V.

A. Seminal sources identified

In the first database lookup 140 hits were found,
including six duplicates. After reading through thilestracts
élmd full paper when in doubt) 30 peer-reviewedrijall
papers remained. By looking at which referenceseh®0
primary papers made when explaining lean and letiware
development, nine seminal sources (all books) were
identified. Table | summarizes the number of refees to
each of the identified seminal source. The sensoalrces
were divided into those that refer to descriptionainly
concerning ‘lean production’ (manufacturing), thost
describe Lean product development in general (mdy o
software) and those applied to software development
particular. Total number of references to thesercgsuin
Google Scholar is also reported. Note that thedaticludes
references from other sources than peer-reviewpdrpaas
well as references not focusing on software deveéoy.

TABLE I. SEMINAL SOURCES FOR_LEAN SOFTWARE DEVELOPMENT
IDENTIFIED THROUGH A SYSTEMATIC LITTERATURE REVIEW

Author Ref.+ Year References Google Scholar
from references
primary
papers
Lean Production
Womack and Jones [26] 1991 15 8942
[27] 2003 3694
Liker [11] 2004 5 1723
Ohno [19] 1998 2 2588
Lean Software Development
Poppendieck [21] 2003 525
[22] 2006 13 183
[23] 2010 27
Andersson [2] 2010 6 58
Middleton and Sutton [15] 2005 3 33
Coplien and Bjornvig [5] 2010 1 27
Morgan [16] 1998 2 4
Lean Software Development
Morgan and Liker [17] 2006 1 373

Most of the found primary papers’ authors refer to

Womack and Jones’ books [26],[27] when explainireah
thinking in general. However, both Womack and 3oa@d
Liker refer back to Ohno [19] and other Japaneseces
who initially invented the Toyota production system

When it comes to interpretation of lean in sofevar

development, the Poppendiecks were the far mosd cit g,

source, with three books in the area [21],[22],[28lore
recently, Andersson has also become popular, mé&nlgis
work on the software Kanban project management odeth
[2]. Middleton and Sutton are less cited but previdore
concrete guidance on how to apply lean concepts
embedded software development. In addition, Midaiedt
al. also provides some empirical study reports,[12],[14]
identified as primary papers in the systematigdiigre part.
Coplien and Bjornvig [5] also give some concretédgnce
to software, but with main focus on effective fuontl
specifications and software architecture. Morgamaster
thesis from 1998 was the oldest reference seminpkp
found, but the work of Ayoyama [4], identified apamary
paper, shows that lean principles in software as @lder
roots from the Japanese industry, even beforeetime Lean
was introduced.

A third category of seminal sources identified by

studying the primary papers was the one about peaduct
development (LPD), not particularly focusing
development of software. Morgan and Liker's booK][
mainly describing the product development enviromireg
Toyota was the only source in this group referedby the
primary papers. This and other LPD sources, fotaimse
Ward [25], were also referred to by a few of thmisml lean
software development sources described above. Ay wia
the challenges of product development is not uniguthe
development of software, software engineering firaers
and researchers can at least partly be helpedein ltean
journeys by studying the LPD literature more catefr his
study includes content from Morgan and Liker’'s b§bkK].

on . .)
1 Principles from lean software development seminghars

B. Lean principles identified

After identifying the seminal sources as descri@ledve,
these were examined in more detail in order toaektr
summarizing key principles for Lean in general dedn
software development in particular. This sectiod &able I
summarize those principles and puts them sided®y si

Principles from the Lean Production seminal sources

Liker’s [10] starting point for explaining the ‘THeoyota
way’ is the 4P’s: Philosophy, Process, People/Restiand
Problem Solving. The main Philosophy is to workddding
value to customers and society to enable economicacial
growth. The Process parts emphasizes that we loatake
the right process path to reach our goals effitieahd to
have a long-term perspective. The People and RPapart
also known as “respect for humanity”, emphasizest th
production and development is a learning and chgilie
human environment, and that we have to work cloadily
both customers and suppliers, helping both to impreir
businesses. Finally, the Problem solving part ségshe
importance to continuously solve root problems and
continuously learn. Besides these key pillars, Like
summarizes Lean with 14 principles mostly from a
production perspective including process, orgaitinags
well as technological issues (see Table II).

Womack and Jones [27] condense Lean Thinking into
e important concepts, namely Value, Value streklaw,

Pull and Perfection. In contrast to Liker [11] these mainly
process oriented.

While both Liker's [11] and Womack and Jones’ [27]
.descriptions mostly stem from the production flabg view
'Bf Lean is extended Morgan and Liker [17] who dibss
the Toyota product development system. Althoughettzee
much common overlap, the principles stated by Morgad
Liker [17] extends the view of Lean when it comes t
product development, more closely related to softwa
development than pure production. The way of floatling
the development process and considering many ap(et-
based engineering) are examples of process-retespelcts
unique to production development. The way of alignand
boosting the development organization using fumétio
expertise groups working in integrated product te#ad by
a chief engineer is also unique features to the praduct
development discussion.

Whereas the above principles are for lean productial
development in general, this subsection presentd
analyses how the seminal sources interpret thersofitware
development. The exact formulation and short exilans
of Poppendiecks’ principles for Lean Software Depehent
(www.poppendieck.com) seems still to be floatingkimg it
difficult to analyze them definitely. A deeper aysa below
(see Table Ill) showed that Poppendiecks’ prinGpla
general much overlap with the Lean production and
development principles discussed above when it sotoe
process-related issues. Organizational and tedhrgsaes

an

TABLE 11. LEAN PRINCIPLES IDENTIFIED

Author

Principles

Liker [11]

L1. Base your management decisions tomg-term philosophy, even at the expense of steont-financial goals.
L2. Create a continuous process flow to bring potd to the surface.

L3. Use “pull” systems to avoid overproduction

L4. Level out the workload (heijunka).

L5. Build a culture of stopping to fix problems,det quality right the first time.

L6. Standardized tasks and processes are the faomdar continuous improvement and employee empoweet.
L7. Use visual control so no problems are hidden.

L8. Use only reliable, thoroughly tested technoltiigt serves your people and processes.

L9. Grow leaders who thoroughly understand the wibrke the philosophy, and teach it to others.

L10. Develop exceptional people and teams whovioljour company’s philosophy.

L11. Respect your extended network of partnerssapgliers by challenging them and helping them oaer
L12. Go and see for yourself to thoroughly undemténe situation (genchi genbutsu).

L13. Make decisions slowly by consensus, thoroughblysidering all options; implement decisions rp{demawashi).
L14. Become a learning organization through regsstireflection (hansei) and continuous improver(ia@iten).

Womack and
Jones [27]

W1. Value: First identify what really matters t@tbustomer
W2. Value Stream: Ensure every activity adds custoralue
W3. Flow: Eliminate discontinuities in the valueestm

W4, Pull: Production is initiated by demand

WS5. Perfection: Retaining integrity via Jidoka dwuka-Yoke

Poppendiecks
(Www.
poppendieck.
com)

P1. Optimize the whole (Focus on entire value strdaeliver a complete product; Think long term)

P2. Eliminate waste (Build right thing; Learn; Elimate trashing)

P3. Build quality in (Mistake-proof process; Breakhitectural dependencies)

P4. Learn constantly (Predictable performanceiigedrby feedback; maintain options, last respoesibbment)

P5. Deliver fast (Rapid delivery; High quality, lmest are fully compatible; Queuing Theory applManaging workflow is easier
than managing schedules)

P6. Engage everyone (Use semi-autonomous teanvg@rchallenges and feedback; work for a purpose)

P7. Keep getting better (Failure is a learning opity; Standards exist to be challenged and imgapuse the scientific method)

Andersson [2]

Al. Visualize the workflow
A2. Limit work in progress
A3. Manage flow
A4. Make process policies explicit
A5. Improve collaboratively (using models and thiestific method)

Morgan and
Liker [17]

M1. Establish customer-defined value to separateevadded from waste.

M2. Front-load the product development processxpioee thoroughly alternative solutions while theyenaximum design space.
M3. Create a level product development process. flow

M4. Utilize rigorous standardization to reduce &tidn, and create flexibility and predictable outers.
M5: Develop a chief engineer system to integrateld@ment from start to finish.

M6. Organize to balance functional expertise amds:functional integration.

M7. Develop towering competence in all engineers.

M8. Fully integrate suppliers into the product depenent system.

M9. Build in learning and continuous improvement.

M10. Build a culture to support excellence andrrééss improvement.

M11. Adapt technologies to fit your people and s

M12. Align your organization through simple viseammunication.

M13. Use powerful tools for standardization andamiigational learning.

are less covered in the way the principles sumradrizy the of what Lean means to software development predente

Poppendiecks. below.
Andersson states five principles for his softwasnbian
method [2]. Compared to Poppendiecks’ principles¢hare V. SYNTHESIS OF ALEAN SOFTWARE DEVELOPMENT
more practice-oriented, mostly focused on the ptoje FRAMEWORK
management issues. _ o Based on the findings from the literature reviewutts
Coplien and Bjornvig [5] summarize the lean prite® presented above, a framework for lean softwareldpmeent
as the rule of thumteverybody, all together, from early was constructed. At the highest level Lean conceysse

on”. In itself this does not give so much concrete guga identified from keywords used in the principle staents
but could help practitioners already trained inm.é&anking formulated by the seminal authors. Their view otlea
to keep aligned with it. concept and the implications for software developime

Middleton and Sutton [15] do not try to create amo organizations were then systematically analyzed and
definition, but discusses the implications of tharl concepts sSynthesized into a number of activities to perfoamd
defined by Womack and Jones when applied to softwaroverall goals to strive for in order to be Leanaxding to
development. This was valuable input the detailedlysis these sources.

TABLE III. LEAN KEY CONCEPTS SYNTHESIZED FROM SEMINAL SOURCES

Concept Liker Morgan & Liker Womack &Jones Poppendecks Andersson

Main Philosophy

Long-term decisions L1 P1

System thinking P1

Continuous Improvement L14 M9 W5 P7 A5
Process

Value M1 w1 P2

Value stream w2 P1

Flow L2 M3 w3 P5 A2-3

Pull L3 w4

Mistake-proof process L5 W5 P3

Waste L4 M1 P2

Set-based engineering L13 M2 P4

Standardized work L6 M4 P7 Ad
People

Go see (genchi genbutsu) L12

Mentorship leadership L10 M10

Supplier integration L11 M8

Chief engineer M5 P6

Integrated functional expertice M6

T-competence L10 M7 P6
Technology

Visualization L7 M12 Al

Adapt tools to humans L8 M11

Powerful tools M13

. should think of and do to be lean were extractednfthe
A. Synthesis of Lean concepts authors’ more detailed description of the phenomena
By analyzing the principles from the above sour28s Recommended practices and methods mentions weoe als
key concepts for Lean were identified and mappezkba extracted. All this information was recorded inpaesmdsheet,
principles of the individual seminal sources (Talile From one per key Lean concept, with references to soark
this analysis it is clear that no author coverstalaspects of page numbers. By comparing and aggregating theusri
Lean in their own set of specified principles. Véhihe lean seminal sources’ views, a number of activities godls
software development seminal authors cover theegsssc were formulated for each concept area.
oriented concepts well, their set of principles Hawer The result of this work is exemplified below. Due t
coverage when it comes to organizational and teehni space limitations, only the details for the Valomeoept area
features to support the process. It is however itapbto are reported. Value was chosen because it is senisl
note that these results are solely based on howdeLean starting point according to Womack and Jones’ fipies
principles were stated by the seminal authors. heart (w1)[27].
discussions related to the missing concepts werasianally
found when analyzing the seminal papers further as
described below. C. Summary for the Value concept area
Several aspects of the value term as used in Lean a
B. Implications for software development organizations discussed by t.hg seminal authors, bu_t a strong @omm
: theme as that it is the value for the ultimate awetr that

After identifying Lean key concepts as describedv@b must be in the focus all the time. Several seménghors
the views of the different seminal authors abowheaf the claim that this focus is easily lost in a developme
concept were analyzed in more details in a stredtur organization, when (1) starting to focus too muahpeoject
manner, with the goal to create a comprehensiveeweork scope (and not product) time and cost issues [23]t00
for Lean Software Development traceable back toirs#m soon turning to discussing financial numbers withper
sources. First all seminal sources were searched fenanagement [17] or (3) engineers’ own interest @w,n
definitions of the concept (What is It')) Based that, a fancy technok)gy, Occasiona”y deve|0ped to over|y
general summary of the concept was formulated. 1B8gp perfection, takes precedents over the overall gbateating
statements about what a software development a@f@on 5 good balance of customer needs in the produdt [2¥

avoid the latter it is important to “keep the cuséy values
in front of the technical people making detailecsigeed
decisions” [21].

Middleton and Sutton summarize value as the cadiect
of all the wants and needs of your customer [184 point
out that value does not just encompass functignalitd
usability, but also non-functional properties andcipg.
Similarly, Morgan and Liker [17] emphasize that tbot
guantitative and qualitative aspects of customelueya
including performance, cost and quality, must béresked.
In terms of waste, a well-designed product shalp hbe
ultimate customer to avoid waste in their own vedtream
[15]. Besides providing exactly the right functi¢itvaand
nothing more, a Lean software development orgapizat

must work hard to minimizing the failure demandr (fo

instance bugs) that annoys and disturbs the custame
creates waste both in the customer’s business mntiei
developing organization [23]. In other words, a Iwel

including government regulators, customer's managgm
and general public must be taken into considerdfibh For

product development, production and service persoare

also important stakeholders in this context. Ofteat not

always, the actual production (deployment) effodr f
software is comparably easy. Anyhow it is importamt
identify those functions that manage installationd a
maintenance of the software product, which affettts

overall business benefit. One recommended pradiice
identify customers is Brainstorming taking into

consideration all those that can affect the purclgadecision

[16].

V2. To be able to identify actual customer neells, t
engineering lead and other representatives from the
development organization need to visit the (typicaktomer
home turfs to meet, study and interview the custome

A crucial step is to early get access to ‘gemb# is a

designed product shall provide a hassle-free customhome place for the end user where the productésdted to

experience [27].
D. Activities for the Value concept area

Further analysis of the extracted quotations frdra t
seminal sources resulted in the formulation of enlmer of
activities proposed by the seminal authors to #opeed
by a software development organization in ordeved_ean.

be used in the end. Ideally, a chief engineer (&8 known
as 'champion’ [21]) should do this early, then fotate a
vision statement and channel this into an effectiadue
stream and to the rest of the organization. Prefgiseveral
representatives from the software development azgtion,
not only top management, shall visit this place ahderve
the customers in their real-world context. This lishmee

Associated concrete practices or methods recommendeomplemented by customer meetings and interviews,

were also captured. Although these can provide soime
guidance, they must be evaluated based on thecylarti
organizational context and how they fit togethethwipper-
stream and lower-stream activities. In the spifitLean’s
continuous improvement thinking, other existing iified or
novel practices should be considered at all tiniEse
activities themselves should also critically be sidared in
the continuous improvement work.

The resulting activities for the Value concept asa
presented above,
statement including a motivation followed by a dggion
summarizing and giving further references to thmisal
sources.

V1. To create the right product and avoid rework, a

customers need to be identified taking into comatiten
customer’s customer and any party that can affeetdales
and the business benefit of the product.

The very first step is to identify all importantstamer
stakeholders. Understanding who the customersarentral
in Lean thinking and to understand value, but ficgeaminal
authors elaborate on how customers are defined
identified. According to the Poppendiecks, custamare
anyone who pays for, uses, supports or deriveseviim
the product [23]. Product managers and product csvaee
not customers [23], but are the ones mainly resplnsf
transferring customer’s need to the developing regdion.
Sometimes the direct customer is within the santerprise,
for instance for software supporting the productioe. In
such cases and other, it is anyway useful to ifjertind
understand the needs of your customer’s custonish |
Merely identifying the end users is not sufficieimistead all
parties that can influence the ability to sale preduct,

starting with a synthesized #ctivi

explicitly excluding sales personnel [15].

V3. To be able to create a product with well-bakshc
feature set, all customers’ wants and needs, irictud
performance and cost, need to be systematicallyucaq,
analyzed and categorized.

Within this activity implicit and unrecognized neseshall
be captured for each customer. To find real custome
problems to be solved thli@ve Whymethod, central in Lean,
can be useful [15] and analyzing the customer’s salne
stream [21]. Besides the requirement to capturetiomal
wants and needs, important non-functional wishestrhe
identified, including usability and what the custmmare
willing to pay [15].

Several seminal authors [15], [21] refer to tKano
model to categorize customer needs into must-be,
performance and attractive features. When thee ar
differences in customers and their environment the
organization must identify general kinds of actest all
customers are performing [15]. Identifying thindett the
customer specifically wants to avoid can also bfulsnput

anfle requirements work and testing.

V4. To maximize the business profit-to-risk ratio,
customer values and the implementation of thesd teebe
prioritized, balancing different customer needswtite need
for risk reduction.

Simple prioritization intashall or shouldrequirements is
not sufficient according to the seminal Lean awthddore
systematic and dynamic schemes to prioritize beatwee
different customers and values should be considered
Examples of such methods a#inity Diagramming Three-
pile method self-rated importance questionnaires and
Scrum-style product backlogs with user stories [19]he

Poppendiecks [21] emphasizes the importance ofviago

needs intovhenparticular features are needed to maximize

the overall business performance (profit). Middtetand

Sutton adds that determining the right order mustab
balance between technical risk reduction and pmogid
sufficient hard features and emotional values émherelease
[15]. In this process it can also be useful to khédnead on
how the customer will react, change behavior andtsvafter

a specific feature has been deployed to them [15].

V5. To be able to develop a distinguishable and

profitable product, the organization needs to amely
competitors’ products’ features and their actuahges.

The value resolution process should include aralgsi
competitors target customers, values and solutiarder to
create a distinguishable and needed product [1i&iting
and studying customers who use competing product
recommended [15].

V6. To enable an effective development value strea

requirements need to be captured in a customerecedt

format, easy to verify and possible to easily map t

implementation and verification.

E. Formulating a goal for the Value concept area

The result of the review of seminal sources viewhaf
Value concept presented above the following oveyahl
was formulated for this area:

“The software development organization shall woalkch
to, and have a systematic way of, identifying amnakitizing
customers and their needs, and also use effecteansnto
let those permeate the development team and thgndef
the software.”

with the motivation
“Strong focus on creating value for the customerdan

society is central to create a profitable compamyfudfilling
important needs of the customer and to be ablepamte

i\g/aste from value-adding activities.”

Similar high level goals, recommended activitiesd an

rRractices have been formulated for the other cdscep

order to create a comprehensive framework for teditware
development.

VI. DISCUSSION

Customer values shall be captured in a customer-

oriented language, using their own terminology, l&xng
the goals to be achieved and the reason why, ap

The literature review identified only a few (30)irpary

idi Papers about lean software development indicatiag this

talking about the solution space (how?). Ideallye th is a relatively new research area. A limitationtlus study

specification of value should be in the languagetlof
customer, easy to understand by both the custontitre
developer, be unambiguous, has evident completegrasds
separate what from how [15]. From an ideal requiem
specification it should also be possible to defmeclear

mapping to how and where to implement the featurg a

how to verify it in the end. To facilitate the ktta test-
driven approach (i.e. writing requirements as testat least

was that not all conference papers were included in
Discovery indexing service used. In this way thiera risk
that some seminal paper referred to in the scietitiérature
could have been missed. Some useful literaturedcalso
have been missed due to the fact that no authqreef-
reviewed papers has yet referred to it.

Although care has been taken to map key concepts an
recommended activities based on careful encodiegetis

writing test cases before implementation, prefarabl always a room for misinterpretations. Nevertheletbe

automated) can be a step forward in line with Lésnking
[21]. For simple products and when
representative is presetdser Storiesmay be sufficient to
capture the values in a condensed and effective atdgast

framework is it built up in a very extensible amdceable

a customerfnanner to easily accommodate corrections and eatens

based on new insights and experiences. In line éhn
thinking, this framework serves merely as a basis f

when there is no need for more formal specification Standardization, and is expected to continuoushngb as

according to legal and/or maintenance requiremehnts.
more complex systems expressing the
systematically in the language of the usise case diagrams

behavior

new insights are gained.
When comparing the goal and activity statements
obtained in this framework one by one with curngkthown

and scenariosare practices stated to be well in line with €St practices’ for software development expressetbr
Lean thinking [5],[21]. Another method claimed to instance capability models such as Capability Mgtur

appropriate for lean software development is Sudtware

Model Integration [24] or just as ‘common sensegah

Cost Reduction (SCRyethod, at least for real-time systems Software Development may not seem to provide mwask n

[15].

Several of the seminal authors [5],[15],[21] stréke
importance of using domain modeling to both modad a
understand the customer environments and to usetdha
create a software architecture that reflects thideh as
closely as possible, creating maintainable progkittt high
user-perceived integrity [21].

insights to the software engineering area. Howelvés, the
focus on improvement of the whole sociotechnical
organizational system and the value streams withinot
individual process areas, which is the major imgatrt_ean
concern [17]. In this way, the Lean Software Depeient
framework developed has a potential to complembast t
view of other models. It is however important toess that
the purpose of the framework is guide researchexs a
practitioners to what lean software developmentalht is.
Until evidence of use is provided it is not possitd claim

that this will lead to actual improvements of soaspect of
software development.

VII. [10]
This paper summarized the results from a literature
survey identifying nine seminal sources and 20 ¢aycepts
for Lean software development. Based on those i$ wall1]
demonstrated how these results could be transfortimea

(9]

CONCLUSIONS ANDFURTHER WORK

comprehensive framework. Through the example Vakee, [12]
demonstrate the potential that such framework baguide
researchers and practitioners in how to apply ltbarking [13]

to software development. The natural next step etvelop
this into a Lean assessment instrument to be vatidand
developed iteratively in pilot studies in variowtexts.

The framework may also help to contrast Lean arilg ag [14]
software development. The terms Lean and agileoftem
used synonymously, but by doing this study we hateed
differences. These differences should be furthezstigated.

[15]
ACKNOWLEDGMENT
This research is supported by the Knowledge Foiomlat
(KKS) through ITS-EASY, an Industrial Research Siin [16]
Embedded Software and Systems, affiliated with kegken
University, Sweden.
[17]
REFERENCES
[1] P. Abrahamsson, N. Oza and M. T. Siponen, “Agilitvere (18]
development methods: A comparative review”, 20190, i
“Agile software development: Current research auatlire
directions”, Springer, doi: 10.1007/978-3-642-12875 (19]
[2] D.J. Andersson, "Kanban”, 2010, Blue Hole Press
[3] D.J. Andersson, “Lean software development”, Miofbs (20]
Development Network, 2012, http://msdn.microsofinéen-
us/library/vstudio/hh533841.aspx, accessed April2D1.3
[4] M. Aoyama, “Beyond software factories: concurrent-

development process and an evolution of softwacegss
technology in Japan.”, Information and Software (21]
Technology, 1996, vol. 38, pp. 133-143

[5] J. Coplien and G. Bjornvig, “Lean architecture: fagile (22]
software development”, 2010, John Wiley & Sons Ltd

[6] C., Ebert, C., P. Abrahamsson and N. Oza, “Leatwsoé
development”. IEEE Software, 2012, vol. 29(5), pg-25, (23]
doi: 10.1109/MS.2012.116

[7] T. Karvonen, P. Rodriguez, P. Kuvaja, K. Mikkonand M. (24]

Oivo, “Adapting the lean enterprise self-assessnwit for
the software development domain”, Sep012, 38th
Euromicro Conference on Software Engineering and

Advanced Applications pp. 266-273, doi: [29]
10.1109/SEAA.2012.51

[8] P. Kettunen, “A tentative framework for lean softea (26]
enterprise research and development”, Lean Enserpri

Software and Systems (LESS2010), Lecture Notes irt
Business Information Processing, 2010, vol. 65, ip71,
Springer Berlin, doi: 10.1007/978-3-642-16416-3_11

B. Kitchenham, “Procedures for performing systemati
reviews.”, 2004, Keele University Technical RepdR/SE-
0401

M. Lane, B. Fitzgerald and P. Agerfalk, “Identifginean
software development values”, European Conference o
Information Systems (ECIS), 2012.

J.K. Liker, “The Toyota way: 14 management prinespl
from the world’s greatest manufacturer”, 2004, Ma@-Hill

P. Middleton, “Lean software process”. Journal ofputer
Information Systems, 2001. vol. 42, no. 1, p. 21

P. Middleton, A. Flaxel and A. Cookson, “Lean saite
management case study: Timberline Inc.”, Extreme
Programming And Agile Processes In Software Enginge
Proceedings, 2005, vol. 3556, pp. 1-9

P. Middleton and D. Joyce. “Lean Software Managemen
BBC Worldwide Case Study”, IEEE Transactions on
Engineering Management, 2012, vol. 59, no. 1, [ip32
doi: 10.1109/TEM.2010.2081675

P. Middleton and T. Sutton, “Lean software straegi
Proven techniques for managers and developers’5,200
Productivity Press

T. Morgan, "Lean manufacturing techniques applied t
software development”, 1998, Massachusetts Institit
Technology, MSc. Thesis

J.M. Morgan and J.K. Liker, “The Toyota product
development system”, 2006, Productivity Press.

D. Nightingale and J. Mize, “Development of a lean
enterprise transformation maturity modellhformation,
Knowledge, Systems Management. 3, pp. 15-30, 2002.

T. Ohno, “Toyota production system: Beyond largelec
production”, 1998, Productivity Press.

K. Petersen, “Is lean agile and agile lean?: a eoispn
between two software development paradigms” in Mode
Software Engineering Concepts and Practices: Adxnc
Approaches, IGI Global, 2010, pp. 19-46, doi: 108/978-
1-60960-215-4.ch002

M. Poppendieck and T. Poppendieck, “Lean software
development: An agile toolkit”, 2003, Addison-Wesle

M. Poppendieck and T. Poppendieck, “Implementinanle
software development: From concept to cash”, 2006,
Addison-Wesley

M. Poppendieck and T. Poppendieck, “Leading lediwsoe
development”, 2010, Addison-Wesley

CMMI Product Team, “CMMI for development, version
1.3,” Software Engineering Institute, Carnegie Idell
University, Pittsburgh, Pennsylvania, Technical &ep
CMU/SEI-2010-TR-033, 2010.

A.C. Ward, “Lean product and process development”,
2007,The Lean Enterprise Institute Inc

J.P. Womack and D.T. Jones, D. Roos, “The machiaé t
changed the world”, 2007"%ed., Simon & Schuster UK.

27] J.P. Womack and D.T. Jones, "Lean thinking: Banisiste

and create wealth in your corporation”, 2003, FRress,
New York.

