
Synthesizing a Comprehensive Framework for Lean Software Development

Henrik Jonsson
Technical System Development

Etteplan Oyj
Västerås, Sweden

henrik.jonsson@etteplan.com

Stig Larsson, Sasikumar Punnekkat
School of Innovation, design and engineering

Mälardalen University
Västerås, Sweden

{stig.larsson,sasikumar.punnekkat}@mdh.se

Abstract— Lean principles, originating from Japanese
automotive industry, are anticipated to be useful to improve
software development processes. Albeit its popularity there is
still no generally accepted, clear and detailed definition of what
lean software development actually means. This makes it
difficult to perform research on the effects of lean software
development and determine its usefulness in various contexts.
To fill in that research gap this paper analyzes the state of the
art based on twenty key Lean concepts derived from nine
seminal sources identified in a systematic literature review.
The original explanations of the key concepts have been
elaborated further and synthesized into a framework for lean
software development consisting of a set of goals,
recommended activities and practices. The detailed results for
the key concept Value are reported. The proposed framework
is expected to serve as a basis for further research and for
Lean assessment of organizations. (Abstract)

Keywords-Lean Software Development; Systematic Literature
Review; State of the art, Software Process Improvement, (key
words)

I. INTRODUCTION

 ‘Lean’ principles derived from Toyota car production

are now spreading into many other domains, with
expectations of radically improved process performance in
those domains as well. Software development is not an
exception and the interest for how to apply the lean
principles to development of software has grown rapidly.
However, the very basic question of what lean software
development means is still not clearly answered [8]. As long
as no unified definition of what lean software development is
exists, it is difficult to perform research on it and relate it to
agile and other streams of influences in the software process
improvement domain. From practioners’ point of view there
is also valuable to see what Lean can means more concretely
for software development. As many organizations are
adopting Lean in other areas, either on the manufacturing
floor only, or to the enterprise as a whole there is a need for
more concrete guidance of what Lean means for the software
development departments in particular.

To make it easier to perform research in this area and to
provide more concrete guidance to organizations, we have
derived a framework for Lean Software Development from
multiple recognized sources. The starting point for this
framework was a systematic literature review (SLR)

identifying nine seminal sources for Lean Software
Development and 44 different Lean principle statements
(Section IV). Based on their descriptions, 20 key Lean
concepts were compiled. Furthermore, specific goals,
recommended activities and examples of practices for each
key concept were extracted and synthesized in a traceable
manner (Section V). Section II relates this study to others
work and section III presents the details about the research
method applied. Section VI discusses the findings and
section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

The term ‘lean production’ was coined by researchers
from Massachusetts Institute of Technology (MIT) assigned
to study why Japanese automotive companies, mainly
Toyota, had managed to increase their productivity and
steadily taking market shares from the American ones [25].
What they found was a production philosophy and set of
principles, collectively called Lean. In Japan this is primarily
known as ‘The Toyota Way’ [19]. While many major
automotive industries now have integrated large parts of
these ideas into production to remain competitive, those
ideas have now been spread to other industrial domains. As
shown in this paper, the ideas to apply the Lean ideas to
software development has roots back to the MIT research
group coining the term [16], but it has mostly been
popularized by the books by the Poppendiecks [21],[22],[23]
as shown in this study.

Previous reviews [3],[14] of applications of Lean
principles to software development have summarized the
genealogy of lean software development. A recent paper [10]
compiled principles from selected sources in order to identify
common high level values for lean soft development
analogous to the agile values expressed in the Agile
manifesto (www.agilemanifesto.org). However, none of
these studies was reported to be based on a systematically
performed literature review as the one reported in this paper.
And none of these has attempted to synthesize a detailed
description of what a software development organization
should do to be Lean.

Extensive work to describe the general taxonomy of Lean
has been performed by MIT in the Lean Aerospace Initiative
(LAI) and an assessment tool for guiding organizations to
adopt lean on an enterprise level has been developed [18].
This LAI Self Assessment Tool (LESAT) has recently been
extended for software development, mainly by adding

common references to the agile manifesto and the
Poppendiecks’ [21] popular interpretation of lean software
development [7]. Since the focus is still on enterprise level,
the framework does not provide so much concrete guidance
for software development organizations.

III. RESEARCH METHOD

The overall approach to synthesize a framework for Lean
Software Development starting from a systematic literature
review is summarized in Figure 1.

Figure 1. Research workflow

This study began with a systematic literature review with
an approach and a protocol according to the guidelines given
by Kitchenham [9] (part I). The research question relevant to
this part of the study was which sources the primary papers
refer to when explaining Lean. Initial primary papers were
searched (step 1) using the EBSCO Discovery Service
including the databases ABI Inform, ACM Digital Library,
SpringerLink and ScienceDirect and IEEE Xplorer, October
11, 2012. The exact search terms were the combination of
“lean” and “software” in all metadata fields, with subject
terms "computer software development", "software
engineering", "software process" or "computer science".
Only peer reviewed sources in English were included. In an
initial screening, papers only mentioning lean in some other
context in the abstract or authors field (like Mr. Lean) were
excluded. When in doubt, the full paper was reviewed to
determine whether it should be included or not. To extract
seminal sources, defined as what the authors of the primary
papers refers to when explaining lean (step 2, Table I), the
full paper text and reference sections in each included paper
was read. The total number of references to each source was
then calculated. To cross-check the results the number of

citations to the identified seminal sources reported by Google
Scholar was also obtained (October 25, 2012).

The second part of the study was a content analysis of the
identified seminal sources (all books), with the goal to
identify important Lean concepts, recommended activities
and practices for software development. First, the seminal
sources were studied to identify sets of principle statements
summarizing Lean (step 3, Table II). The principle
statements were analyzed for recurring keywords to identify
a common set of key concepts (Table III). In case of doubt,
the extended descriptions of the principles by the seminal
authors were used to guide the mapping of principles into
common concepts. For selected concept areas, each of the
seminal authors’ description of the concept was
systematically scrutinized to identify and extract quotations
with page references to descriptions of the actually meaning,
motivation and recommended practices for organizations
developing software. The table of contents and the index
sections guided the search. The seminal authors’ views were
then compared to find similarities and discrepancies,
resulting in a synthesized background description for each
selected concept area. Based on that synthesis a number of
proposed general activities were formulated for each key
concept area. Any associated recommended concrete
methods or practices from the seminal authors were also
recorded. Finally, overall concept area goals were formulated
to summarize the seminal authors view.

IV. SYSTEMATIC L ITERATURE REVIEW RESULTS

As part of a systematic literature study the sources that
have been used in the academic computer science was
identified. These recognized sources were later used as the
basis for building a framework for lean software
development as described in section V.

A. Seminal sources identified

In the first database lookup 140 hits were found,
including six duplicates. After reading through the abstracts
(and full paper when in doubt) 30 peer-reviewed journal
papers remained. By looking at which references those 30
primary papers made when explaining lean and lean software
development, nine seminal sources (all books) were
identified. Table I summarizes the number of references to
each of the identified seminal source. The seminal sources
were divided into those that refer to descriptions mainly
concerning ‘lean production’ (manufacturing), those that
describe Lean product development in general (not only
software) and those applied to software development in
particular. Total number of references to these sources in
Google Scholar is also reported. Note that the latter includes
references from other sources than peer-reviewed papers as
well as references not focusing on software development.

1. Search primary papers

2. Extract seminal sources

3. Identify Lean principles
statements

4. Aggregate into key Lean
concept areas

5. Extract meaning and
proposals for software

development organizations.

6. Formulate goals, activities
and recommended practices

Part I:
Systematic
Literature
Review

(section IV)

Part II:
Content

analysis and
synthesizing a
Lean Software
Development
Framework
(section V)

Most of the found primary papers’ authors refer to

Womack and Jones’ books [26],[27] when explaining Lean
thinking in general. However, both Womack and Jones, and
Liker refer back to Ohno [19] and other Japanese sources
who initially invented the Toyota production system.

 When it comes to interpretation of lean in software
development, the Poppendiecks were the far most cited
source, with three books in the area [21],[22],[23]. More
recently, Andersson has also become popular, mainly for his
work on the software Kanban project management method
[2]. Middleton and Sutton are less cited but provide more
concrete guidance on how to apply lean concepts in
embedded software development. In addition, Middleton et
al. also provides some empirical study reports [12],[13],[14]
identified as primary papers in the systematic literature part.
Coplien and Bjornvig [5] also give some concrete guidance
to software, but with main focus on effective functional
specifications and software architecture. Morgan’s master
thesis from 1998 was the oldest reference seminal paper
found, but the work of Ayoyama [4], identified as a primary
paper, shows that lean principles in software has even older
roots from the Japanese industry, even before the term Lean
was introduced.

A third category of seminal sources identified by
studying the primary papers was the one about lean product
development (LPD), not particularly focusing on
development of software. Morgan and Liker’s book [17]
mainly describing the product development environment at
Toyota was the only source in this group referred to by the
primary papers. This and other LPD sources, for instance
Ward [25], were also referred to by a few of the seminal lean
software development sources described above. As many of
the challenges of product development is not unique to the
development of software, software engineering practitioners
and researchers can at least partly be helped in their Lean
journeys by studying the LPD literature more carefully. This
study includes content from Morgan and Liker’s book [17].

B. Lean principles identified

After identifying the seminal sources as described above,
these were examined in more detail in order to extract
summarizing key principles for Lean in general and lean
software development in particular. This section and Table II
summarize those principles and puts them side by side.

Principles from the Lean Production seminal sources

Liker’s [10] starting point for explaining the ‘The Toyota
way’ is the 4P’s: Philosophy, Process, People/Partners and
Problem Solving. The main Philosophy is to work for adding
value to customers and society to enable economic and social
growth. The Process parts emphasizes that we have to take
the right process path to reach our goals efficiently and to
have a long-term perspective. The People and Partner part,
also known as “respect for humanity”, emphasizes that
production and development is a learning and challenging
human environment, and that we have to work closely with
both customers and suppliers, helping both to improve their
businesses. Finally, the Problem solving part stresses the
importance to continuously solve root problems and
continuously learn. Besides these key pillars, Liker
summarizes Lean with 14 principles mostly from a
production perspective including process, organization as
well as technological issues (see Table II).

Womack and Jones [27] condense Lean Thinking into
five important concepts, namely Value, Value stream, Flow,
Pull and Perfection. In contrast to Liker [11] these are mainly
process oriented.

While both Liker’s [11] and Womack and Jones’ [27]
descriptions mostly stem from the production floor, the view
of Lean is extended Morgan and Liker [17] who describes
the Toyota product development system. Although there are
much common overlap, the principles stated by Morgan and
Liker [17] extends the view of Lean when it comes to
product development, more closely related to software
development than pure production. The way of front-loading
the development process and considering many options (set-
based engineering) are examples of process-related aspects
unique to production development. The way of aligning and
boosting the development organization using functional
expertise groups working in integrated product teams lead by
a chief engineer is also unique features to the lean product
development discussion.

Principles from lean software development seminal authors

Whereas the above principles are for lean production and
development in general, this subsection presents and
analyses how the seminal sources interpret them for software
development. The exact formulation and short explanations
of Poppendiecks’ principles for Lean Software Development
(www.poppendieck.com) seems still to be floating, making it
difficult to analyze them definitely. A deeper analysis below
(see Table III) showed that Poppendiecks’ principles in
general much overlap with the Lean production and
development principles discussed above when it comes to
process-related issues. Organizational and technical issues

TABLE I. SEMINAL SOURCES FOR LEAN SOFTWARE DEVELOPMENT
IDENTIFIED THROUGH A SYSTEMATIC LITTERATURE REVIEW

Author Ref.+ Year References
from

primary
papers

Google Scholar
references

Lean Production
Womack and Jones [26] 1991

[27] 2003
15

8942
3694

Liker [11] 2004 5 1723
Ohno [19] 1998 2 2588
Lean Software Development
Poppendieck [21] 2003

[22] 2006
[23] 2010

13
525
183
27

Andersson [2] 2010 6 58
Middleton and Sutton [15] 2005 3 33
Coplien and Bjornvig [5] 2010 1 27
Morgan [16] 1998 2 4
Lean Software Development
Morgan and Liker [17] 2006 1 373

are less covered in the way the principles summarized by the
Poppendiecks.

Andersson states five principles for his software Kanban
method [2]. Compared to Poppendiecks’ principles these are
more practice-oriented, mostly focused on the project
management issues.

Coplien and Bjornvig [5] summarize the lean principles
as the rule of thumb “everybody, all together, from early
on”. In itself this does not give so much concrete guidance
but could help practitioners already trained in Lean thinking
to keep aligned with it.

Middleton and Sutton [15] do not try to create an own
definition, but discusses the implications of the lean concepts
defined by Womack and Jones when applied to software
development. This was valuable input the detailed analysis

of what Lean means to software development presented
below.

V. SYNTHESIS OF A LEAN SOFTWARE DEVELOPMENT

FRAMEWORK

Based on the findings from the literature review results
presented above, a framework for lean software development
was constructed. At the highest level Lean concepts were
identified from keywords used in the principle statements
formulated by the seminal authors. Their view of each
concept and the implications for software development
organizations were then systematically analyzed and
synthesized into a number of activities to perform and
overall goals to strive for in order to be Lean according to
these sources.

TABLE II. LEAN PRINCIPLES IDENTIFIED

Author Principles
Liker [11] L1. Base your management decisions on a long-term philosophy, even at the expense of short-term financial goals.

L2. Create a continuous process flow to bring problems to the surface.
L3. Use “pull” systems to avoid overproduction
L4. Level out the workload (heijunka).
L5. Build a culture of stopping to fix problems, to get quality right the first time.
L6. Standardized tasks and processes are the foundation for continuous improvement and employee empowerment.
L7. Use visual control so no problems are hidden.
L8. Use only reliable, thoroughly tested technology that serves your people and processes.
L9. Grow leaders who thoroughly understand the work, live the philosophy, and teach it to others.
L10. Develop exceptional people and teams who follow your company’s philosophy.
L11. Respect your extended network of partners and suppliers by challenging them and helping them improve.
L12. Go and see for yourself to thoroughly understand the situation (genchi genbutsu).
L13. Make decisions slowly by consensus, thoroughly considering all options; implement decisions rapidly (nemawashi).
L14. Become a learning organization through relentless reflection (hansei) and continuous improvement (kaizen).

Womack and
Jones [27]

W1. Value: First identify what really matters to the customer
W2. Value Stream: Ensure every activity adds customer value
W3. Flow: Eliminate discontinuities in the value stream
W4. Pull: Production is initiated by demand
W5. Perfection: Retaining integrity via Jidoka and Poka-Yoke

Poppendiecks
(www.
poppendieck.
com)

P1. Optimize the whole (Focus on entire value stream; Deliver a complete product; Think long term)
P2. Eliminate waste (Build right thing; Learn; Eliminate trashing)
P3. Build quality in (Mistake-proof process; Break architectural dependencies)
P4. Learn constantly (Predictable performance is driven by feedback; maintain options, last responsible moment)
P5. Deliver fast (Rapid delivery; High quality, low cost are fully compatible; Queuing Theory applies, Managing workflow is easier
than managing schedules)
P6. Engage everyone (Use semi-autonomous teams; provide challenges and feedback; work for a purpose)
P7. Keep getting better (Failure is a learning opportunity; Standards exist to be challenged and improved; use the scientific method)

Andersson [2] A1. Visualize the workflow
A2. Limit work in progress
A3. Manage flow
A4. Make process policies explicit
A5. Improve collaboratively (using models and the scientific method)

Morgan and
Liker [17]

M1. Establish customer-defined value to separate value-added from waste.
M2. Front-load the product development process to explore thoroughly alternative solutions while there is maximum design space.
M3. Create a level product development process flow.
M4. Utilize rigorous standardization to reduce variation, and create flexibility and predictable outcomes.
M5: Develop a chief engineer system to integrate development from start to finish.
M6. Organize to balance functional expertise and cross-functional integration.
M7. Develop towering competence in all engineers.
M8. Fully integrate suppliers into the product development system.
M9. Build in learning and continuous improvement.
M10. Build a culture to support excellence and relentless improvement.
M11. Adapt technologies to fit your people and process.
M12. Align your organization through simple visual communication.
M13. Use powerful tools for standardization and organizational learning.

A. Synthesis of Lean concepts

By analyzing the principles from the above sources 20
key concepts for Lean were identified and mapped back to
principles of the individual seminal sources (Table III). From
this analysis it is clear that no author covers all the aspects of
Lean in their own set of specified principles. While the lean
software development seminal authors cover the process-
oriented concepts well, their set of principles has lower
coverage when it comes to organizational and technical
features to support the process. It is however important to
note that these results are solely based on how the main Lean
principles were stated by the seminal authors. Further
discussions related to the missing concepts were occasionally
found when analyzing the seminal papers further as
described below.

B. Implications for software development organizations

After identifying Lean key concepts as described above
the views of the different seminal authors about each of the
concept were analyzed in more details in a structured
manner, with the goal to create a comprehensive framework
for Lean Software Development traceable back to seminal
sources. First all seminal sources were searched for
definitions of the concept (what is it?). Based on that, a
general summary of the concept was formulated. Secondly,
statements about what a software development organization

should think of and do to be lean were extracted from the
authors’ more detailed description of the phenomena.
Recommended practices and methods mentions were also
extracted. All this information was recorded in a spreadsheet,
one per key Lean concept, with references to source and
page numbers. By comparing and aggregating the various
seminal sources’ views, a number of activities and goals
were formulated for each concept area.

The result of this work is exemplified below. Due to
space limitations, only the details for the Value concept area
are reported. Value was chosen because it is an essential
starting point according to Womack and Jones’ principles
(W1) [27] .

C. Summary for the Value concept area
Several aspects of the value term as used in Lean are

discussed by the seminal authors, but a strong common
theme as that it is the value for the ultimate customer that
must be in the focus all the time. Several seminal authors
claim that this focus is easily lost in a development
organization, when (1) starting to focus too much on project
scope (and not product) time and cost issues [22], (2) too
soon turning to discussing financial numbers with upper
management [17] or (3) engineers’ own interest in new,
fancy technology, occasionally developed to overly
perfection, takes precedents over the overall goal of creating
a good balance of customer needs in the product [27]. To

TABLE III. LEAN KEY CONCEPTS SYNTHESIZED FROM SEMINAL SOURCES

Concept Liker Morgan & Liker Womack &Jones Poppendiecks Andersson

Main Philosophy

 Long-term decisions L1 P1

 System thinking P1

 Continuous Improvement L14 M9 W5 P7 A5

Process
 Value M1 W1 P2

 Value stream W2 P1

 Flow L2 M3 W3 P5 A2-3

 Pull L3 W4

 Mistake-proof process L5 W5 P3

 Waste L4 M1 P2

 Set-based engineering L13 M2 P4

 Standardized work L6 M4 P7 A4

People
 Go see (genchi genbutsu) L12

 Mentorship leadership L10 M10

 Supplier integration L11 M8

 Chief engineer M5 P6

 Integrated functional expertice M6

 T-competence L10 M7 P6

Technology
 Visualization L7 M12 A1

 Adapt tools to humans L8 M11

 Powerful tools M13

avoid the latter it is important to “keep the customer values
in front of the technical people making detailed designed
decisions” [21].

Middleton and Sutton summarize value as the collection
of all the wants and needs of your customer [15], and point
out that value does not just encompass functionality and
usability, but also non-functional properties and pricing.
Similarly, Morgan and Liker [17] emphasize that both
quantitative and qualitative aspects of customer value,
including performance, cost and quality, must be addressed.
In terms of waste, a well-designed product shall help the
ultimate customer to avoid waste in their own value stream
[15]. Besides providing exactly the right functionality and
nothing more, a Lean software development organization
must work hard to minimizing the failure demand (for
instance bugs) that annoys and disturbs the customer and
creates waste both in the customer’s business and in the
developing organization [23]. In other words, a well-
designed product shall provide a hassle-free customer
experience [27].

D. Activities for the Value concept area

Further analysis of the extracted quotations from the
seminal sources resulted in the formulation of a number of
activities proposed by the seminal authors to be performed
by a software development organization in order to be Lean.
Associated concrete practices or methods recommended
were also captured. Although these can provide some more
guidance, they must be evaluated based on the particular
organizational context and how they fit together with upper-
stream and lower-stream activities. In the spirit of Lean’s
continuous improvement thinking, other existing modified or
novel practices should be considered at all times. The
activities themselves should also critically be considered in
the continuous improvement work.

The resulting activities for the Value concept area are
presented above, starting with a synthesized activity
statement including a motivation followed by a description
summarizing and giving further references to the seminal
sources.

V1. To create the right product and avoid rework, all
customers need to be identified taking into consideration
customer’s customer and any party that can affect the sales
and the business benefit of the product.

The very first step is to identify all important customer
stakeholders. Understanding who the customers are is central
in Lean thinking and to understand value, but not all seminal
authors elaborate on how customers are defined and
identified. According to the Poppendiecks, customers are
anyone who pays for, uses, supports or derives value from
the product [23]. Product managers and product owners are
not customers [23], but are the ones mainly responsible of
transferring customer’s need to the developing organization.
Sometimes the direct customer is within the same enterprise,
for instance for software supporting the production line. In
such cases and other, it is anyway useful to identify and
understand the needs of your customer’s customers [15].
Merely identifying the end users is not sufficient. Instead all
parties that can influence the ability to sale the product,

including government regulators, customer’s management
and general public must be taken into consideration [15]. For
product development, production and service personnel are
also important stakeholders in this context. Often, but not
always, the actual production (deployment) effort for
software is comparably easy. Anyhow it is important to
identify those functions that manage installation and
maintenance of the software product, which affects the
overall business benefit. One recommended practice to
identify customers is Brainstorming taking into
consideration all those that can affect the purchasing decision
[16].

V2. To be able to identify actual customer needs, the
engineering lead and other representatives from the
development organization need to visit the (typical) customer
home turfs to meet, study and interview the customer.

A crucial step is to early get access to ‘gemba’, that is a
home place for the end user where the product is intended to
be used in the end. Ideally, a chief engineer [17] (also known
as ’champion’ [21]) should do this early, then formulate a
vision statement and channel this into an effective value
stream and to the rest of the organization. Preferably several
representatives from the software development organization,
not only top management, shall visit this place and observe
the customers in their real-world context. This shall be
complemented by customer meetings and interviews,
explicitly excluding sales personnel [15].

V3. To be able to create a product with well-balanced
feature set, all customers’ wants and needs, including
performance and cost, need to be systematically captured,
analyzed and categorized.

Within this activity implicit and unrecognized needs shall
be captured for each customer. To find real customer
problems to be solved the Five Why method, central in Lean,
can be useful [15] and analyzing the customer’s own value
stream [21]. Besides the requirement to capture functional
wants and needs, important non-functional wishes must be
identified, including usability and what the customer are
willing to pay [15].

Several seminal authors [15], [21] refer to the Kano
model to categorize customer needs into must-be,
performance and attractive features. When there are
differences in customers and their environment the
organization must identify general kinds of activities all
customers are performing [15]. Identifying things that the
customer specifically wants to avoid can also be useful input
the requirements work and testing.

V4. To maximize the business profit-to-risk ratio,
customer values and the implementation of these need to be
prioritized, balancing different customer needs with the need
for risk reduction.

Simple prioritization into shall or should requirements is
not sufficient according to the seminal Lean authors. More
systematic and dynamic schemes to prioritize between
different customers and values should be considered.
Examples of such methods are Affinity Diagramming, Three-
pile method, self-rated importance questionnaires and
Scrum-style product backlogs with user stories [15] . The

Poppendiecks [21] emphasizes the importance of resolving
needs into when particular features are needed to maximize
the overall business performance (profit). Middleton and
Sutton adds that determining the right order must be a
balance between technical risk reduction and providing
sufficient hard features and emotional values for each release
[15]. In this process it can also be useful to think ahead on
how the customer will react, change behavior and wants after
a specific feature has been deployed to them [15].

V5. To be able to develop a distinguishable and

profitable product, the organization needs to analyze
competitors’ products’ features and their actual usage.

The value resolution process should include analysis of
competitors target customers, values and solution in order to
create a distinguishable and needed product [17]. Visiting
and studying customers who use competing product is
recommended [15].

V6. To enable an effective development value stream,

requirements need to be captured in a customer-centered
format, easy to verify and possible to easily map to
implementation and verification.

 Customer values shall be captured in a customer-
oriented language, using their own terminology, explaining
the goals to be achieved and the reason why, avoiding
talking about the solution space (how?). Ideally the
specification of value should be in the language of the
customer, easy to understand by both the customer and the
developer, be unambiguous, has evident completeness and
separate what from how [15]. From an ideal requirement
specification it should also be possible to define a clear
mapping to how and where to implement the feature and
how to verify it in the end. To facilitate the latter a test-
driven approach (i.e. writing requirements as tests or at least
writing test cases before implementation, preferably
automated) can be a step forward in line with Lean thinking
[21]. For simple products and when a customer
representative is present, User Stories may be sufficient to
capture the values in a condensed and effective way, at least
when there is no need for more formal specifications
according to legal and/or maintenance requirements. For
more complex systems expressing the behavior
systematically in the language of the user, use case diagrams
and scenarios are practices stated to be well in line with
Lean thinking [5],[21]. Another method claimed to
appropriate for lean software development is the Software
Cost Reduction (SCR) method, at least for real-time systems
[15].

Several of the seminal authors [5],[15],[21] stress the
importance of using domain modeling to both model and
understand the customer environments and to use that to
create a software architecture that reflects this model as
closely as possible, creating maintainable product with high
user-perceived integrity [21].

E. Formulating a goal for the Value concept area

The result of the review of seminal sources view of the
Value concept presented above the following overall goal
was formulated for this area:

“The software development organization shall work hard
to, and have a systematic way of, identifying and prioritizing
customers and their needs, and also use effective means to
let those permeate the development team and the design of
the software.”

with the motivation

“Strong focus on creating value for the customer and
society is central to create a profitable company by fulfilling
important needs of the customer and to be able to separate
waste from value-adding activities.”

Similar high level goals, recommended activities and

practices have been formulated for the other concepts in
order to create a comprehensive framework for lean software
development.

VI. DISCUSSION

The literature review identified only a few (30) primary
papers about lean software development indicating that this
is a relatively new research area. A limitation of this study
was that not all conference papers were included in
Discovery indexing service used. In this way there is a risk
that some seminal paper referred to in the scientific literature
could have been missed. Some useful literature could also
have been missed due to the fact that no author of peer-
reviewed papers has yet referred to it.

Although care has been taken to map key concepts and
recommended activities based on careful encoding, there is
always a room for misinterpretations. Nevertheless, the
framework is it built up in a very extensible and traceable
manner to easily accommodate corrections and extensions
based on new insights and experiences. In line with Lean
thinking, this framework serves merely as a basis for
standardization, and is expected to continuously change as
new insights are gained.

When comparing the goal and activity statements
obtained in this framework one by one with currently known
‘best practices’ for software development expressed in for
instance capability models such as Capability Maturity
Model Integration [24] or just as ‘common sense’, Lean
Software Development may not seem to provide much new
insights to the software engineering area. However, it is the
focus on improvement of the whole sociotechnical
organizational system and the value streams within it, not
individual process areas, which is the major important Lean
concern [17]. In this way, the Lean Software Development
framework developed has a potential to complement the
view of other models. It is however important to stress that
the purpose of the framework is guide researchers and
practitioners to what lean software development actually is.
Until evidence of use is provided it is not possible to claim

that this will lead to actual improvements of some aspect of
software development.

VII. CONCLUSIONS AND FURTHER WORK

This paper summarized the results from a literature
survey identifying nine seminal sources and 20 key concepts
for Lean software development. Based on those it was
demonstrated how these results could be transformed to a
comprehensive framework. Through the example Value, we
demonstrate the potential that such framework has to guide
researchers and practitioners in how to apply Lean thinking
to software development. The natural next step is to develop
this into a Lean assessment instrument to be validated and
developed iteratively in pilot studies in various contexts.

The framework may also help to contrast Lean and agile
software development. The terms Lean and agile are often
used synonymously, but by doing this study we have noticed
differences. These differences should be further investigated.

ACKNOWLEDGMENT

This research is supported by the Knowledge Foundation
(KKS) through ITS-EASY, an Industrial Research School in
Embedded Software and Systems, affiliated with Mälardalen
University, Sweden.

REFERENCES

[1] P. Abrahamsson, N. Oza and M. T. Siponen, “Agile software
development methods: A comparative review”, 2010, in
“Agile software development: Current research and future
directions”, Springer, doi: 10.1007/978-3-642-12575-1

[2] D.J. Andersson, ”Kanban”, 2010, Blue Hole Press
[3] D.J. Andersson, “Lean software development”, Microsoft

Development Network, 2012, http://msdn.microsoft.com/en-
us/library/vstudio/hh533841.aspx, accessed April 10, 2013

[4] M. Aoyama, “Beyond software factories: concurrent-
development process and an evolution of software process
technology in Japan.”, Information and Software
Technology, 1996, vol. 38, pp. 133–143

[5] J. Coplien and G. Bjornvig, “Lean architecture: for agile
software development”, 2010, John Wiley & Sons Ltd

[6] C., Ebert, C., P. Abrahamsson and N. Oza, “Lean software
development”. IEEE Software, 2012, vol. 29(5), pp. 22-25,
doi: 10.1109/MS.2012.116

[7] T. Karvonen, P. Rodriguez, P. Kuvaja, K. Mikkonen, and M.
Oivo, “Adapting the lean enterprise self-assessment tool for
the software development domain”, Sep. 2012, 38th
Euromicro Conference on Software Engineering and
Advanced Applications, pp. 266–273, doi:
10.1109/SEAA.2012.51

[8] P. Kettunen, “A tentative framework for lean software
enterprise research and development”, Lean Enterprise
Software and Systems (LESS2010), Lecture Notes in
Business Information Processing, 2010, vol. 65, pp. 60-71,
Springer Berlin, doi: 10.1007/978-3-642-16416-3_11

[9] B. Kitchenham, “Procedures for performing systematic
reviews.”, 2004, Keele University Technical Report TR/SE-
0401

[10] M. Lane, B. Fitzgerald and P. Agerfalk, “Identifying lean
software development values”, European Conference on
Information Systems (ECIS), 2012.

[11] J.K. Liker, “The Toyota way: 14 management principles
from the world’s greatest manufacturer”, 2004, McGraw-Hill

[12] P. Middleton, “Lean software process”. Journal of Computer
Information Systems, 2001. vol. 42, no. 1, p. 21

[13] P. Middleton, A. Flaxel and A. Cookson, “Lean software
management case study: Timberline Inc.”, Extreme
Programming And Agile Processes In Software Engineering,
Proceedings, 2005, vol. 3556, pp. 1-9

[14] P. Middleton and D. Joyce. “Lean Software Management:
BBC Worldwide Case Study”, IEEE Transactions on
Engineering Management, 2012, vol. 59, no. 1, pp. 20-32,
doi: 10.1109/TEM.2010.2081675

[15] P. Middleton and T. Sutton, “Lean software strategies:
Proven techniques for managers and developers”, 2005,
Productivity Press

[16] T. Morgan, "Lean manufacturing techniques applied to
software development", 1998, Massachusetts Institute of
Technology, MSc. Thesis

[17] J.M. Morgan and J.K. Liker, “The Toyota product
development system”, 2006, Productivity Press.

[18] D. Nightingale and J. Mize, “Development of a lean
enterprise transformation maturity model,” Information,
Knowledge, Systems Management, vol. 3, pp. 15–30, 2002.

[19] T. Ohno, “Toyota production system: Beyond large scale
production”, 1998, Productivity Press.

[20] K. Petersen, “Is lean agile and agile lean?: a comparison
between two software development paradigms” in Modern
Software Engineering Concepts and Practices: Advanced
Approaches, IGI Global, 2010, pp. 19-46, doi: 10.4018/978-
1-60960-215-4.ch002

[21] M. Poppendieck and T. Poppendieck, “Lean software
development: An agile toolkit”, 2003, Addison-Wesley

[22] M. Poppendieck and T. Poppendieck, “Implementing lean
software development: From concept to cash”, 2006,
Addison-Wesley

[23] M. Poppendieck and T. Poppendieck, “Leading lean software
development”, 2010, Addison-Wesley

[24] CMMI Product Team, “CMMI for development, version
1.3,” Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, Technical Report
CMU/SEI-2010-TR-033, 2010.

[25] A.C. Ward, “Lean product and process development”,
2007,The Lean Enterprise Institute Inc

[26] J.P. Womack and D.T. Jones, D. Roos, “The machine that
changed the world”, 2007, 2nd ed., Simon & Schuster UK.

[27] J.P. Womack and D.T. Jones, ”Lean thinking: Banish waste
and create wealth in your corporation”, 2003, Free Press,
New York.

