
ELABORATION OF SAFETY REQUIREMENTS
Kristina Forsberg, Eva Mårbring Isaksson, Saab AB, Jönköping, Sweden

Barbara Gallina, Kristina Lundqvist, Achille Penna, Mälardalen University, Västerås, Sweden

Abstract
According to the aircraft standard ARP4754A,

requirements should be carefully traced and
validated. A systematic methodology for safety
requirements elaboration (refinement/decomposition
as well as allocation management) is lacking. To
overcome this lack, an ARP-aligned and DOORS
implementable approach called RAP (Requirements
Allocation Process) is proposed. RAP offers a textual
as well as graphical means for managing safety
requirements. Besides supporting requirements
decomposition and allocation, RAP also supports
design decisions. The usefulness of RAP is illustrated
by an example, applying the approach to a High Lift
System.

Introduction
The increasing number of requirements, coming

from the possibility to integrate and combine
functions, has increased the complexity level of
avionics systems, to a point where it is troublesome
to validate the requirements. In particular integration
and increased complexity is problematic regarding
safety requirements since integrated software
intensive systems have made it harder to assess
dependencies and fault propagation.

ARP4754A [1] plays a crucial role when
developing avionics systems. This is a preferred
guideline and recognized by FAA as an acceptable
method for establishing a development assurance
process [2]. ARP4754A prescribes close interactions
between the safety assessment process and the system
development process (see Figure 1), in order to
capture safety requirements imposed on the design.
However, more “What” than “How” is discussed in
ARP4754A. Therefore, in this paper, we elaborate on
hands-on methods to refine, decompose and validate
safety requirements. The lack of a systematic method
to refine system safety requirements is also
recognized by EADS Germany in [3] where an
approach that explicitly specifies the transition from
abstract system requirements to concrete item

requirements is presented. This transition is based on
domain knowledge and properties, while our method
is based on safety assessment methods targeting fault
tolerance concepts and properties. The gray box in
Figure 1 shows the focus of this paper.

Safety objectives are defined at aircraft level and
often expressed as “loss of function” or “erroneous
function”. This high-level abstraction makes safety
requirements differ from functional requirements in
the sense that they are not measurable or testable.
Since safety is a property of a system in use the
safety objectives are not easily visible at the item
(hardware/software) level. However, safety
requirements are met by making the functional
architecture evolve, by incorporating and combining
fault-tolerant redundant items aimed at achieving the
objectives. This incorporation is highlighted in the
development process described in ARP4754A.

PSSAPSSAPSSA

SSASSASSASSASSASSA

A/C level
FHA / PASA

Safety assessment process System development process

System level
FHAs

System level
FHAs

System level
FHA

System level
FHAs

System level
FHAs

System level
FHA

A/C function
development

Allocation of system
requirements to items

Development of
system architecture

System
implementation

Integration
& Verification

ASA

C
C

A
s

Allocation of A/C
functions to systems

Allocation of A/C
functions to systems

Figure 1. Safety assessment and development
processes

The alignment between the safety assessment
process and the system development process can be

seen in Figure 1. The left side (dotted) comprises the
safety assessment processes:

• FHA (Functional Hazard Assessment): Examines
aircraft and system functions to identify potential
functional failures and classifies the hazards.

• PASA/PSSA (Preliminary Aircraft Safety
Assessment/Preliminary System Safety
Assessment): Establishes the aircraft (A/C) or
specific system safety requirements and provides
a preliminary indication that the anticipated
aircraft or system architectures can meet those
safety requirements.

• ASA/SSA (Aircraft Safety Assessment/System
Safety Assessment): Evaluates systematically and
comprehensively the implemented A/C and
systems to show that relevant safety requirements
are satisfied.

• CCA (Common Cause Analysis): Provides the
tools to verify required independence, or to
identify specific dependencies.

These safety assessment processes should be
interleaved with the development phases, see Figure
1. However, operational guidelines to support safety
managers during the evolution (carried out via e.g.,
decomposition/refinement) of safety requirements are
missing. The contribution of this paper is a proposed
method that details the interaction between the safety
assessment process and the system development
process. This alignment is called RAP (Requirements
Allocation Process).

To develop RAP, we use the lessons learned
from a previously developed safety critical system
where refinement and decomposition of safety
requirements was done late in the program. That is,
the alignment between the two processes (see Figure
1) was not fully in place. As a result validation of
assumptions on software integrity was overseen in
the PSSA phase. This lead to a common mode
problem, which was captured later on during the SSA
process by safety engineers.

The rest of the paper is organized as follows. In
the background section, some fundamental
information onto which presented work is based. The
core sections present the proposed method RAP for
tracing and validating safety requirements; followed
by showing RAP in usage by applying it to a high lift
system and discussing its usefulness. Finally, some

concluding remarks and suggestions for future work
are presented.

Background
This section recalls the essential background on

which the presented work is based: typical
characteristics of safety-critical avionics systems,
requirements traceability and main characteristics of
a high lift system.

Safety-critical Avionics systems
Airplane safety is based on principles and

techniques of the fail-safe design concept, which
considers the effects of failures and combinations of
failures in defining a safe design. Critical systems
must be designed such that they will not fail in
unknown ways. Thus, designers are expected to take
into account all types of faults, e.g., random hardware
faults and design faults in both hardware and
software, together with the causality relationships
that may lead to severe failures.

For avionics systems, an aircraft-level safety
assessment establishes how critical a given function
is depending on how severe a failure would be. From
that criticality safety objectives are derived taking
into account the aircraft-level architecture
implementing the function. The key safety objectives
placed on any equipment or system installed in an
aeroplane is derived from CS-25 [4]. The paragraph
25.1309(b) in [4] requires that the aeroplane systems
and associated components considered separately and
in relation to other systems, must be designed so that:

1. Any catastrophic failure condition (i) is
extremely improbable; and (ii) does not result
from a single failure; and

2. any hazardous failure condition is extremely
remote; and

3. any major failure condition is remote.

The corresponding numerical values of
extremely improbable and/or remote are also found in
[4], e.g.,

“Extremely Improbable Failure Conditions are
those so unlikely that they are not anticipated to
occur during the entire operational life of all
aeroplanes of one type, and have a probability of the
order of 1 x 10–9 or less. Catastrophic Failure

Conditions must be shown to be Extremely
Improbable.” [4].

The reliability objective of one computing lane
can reach the order of 10-5 failures per flight hour, for
loss of function, thus at least two redundant lanes are
required to achieve this high safety objective.
However, for integrity level there is no known
methodology to calculate failure rate of design faults
or to mathematically prove the absence of design
faults thus fail-safe behavior is demonstrated through
a combination of development assurance and
independence and dissimilarity of redundant
items/functions.

The safety objectives for Software and Complex
Electronic Hardware (CEH) are not addressed by
quantitative failure rate analyses so a development
assurance approach is used in accordance with
RTCA/DO-178C [5] and RTCA/DO-254 [6]. The
development assurance approach is fundamentally
different than hardware failure rate analysis. The
applicable Development Assurance Level (DAL) for
a given function, as determined by the worst case
failure effect, are not considered independent and
must be maintained throughout all elements of the
system that contribute to that function. Five levels are
used, A to E. These levels span from negligible (DAL
E) to catastrophic (DAL A) hazards. For example, the
display of attitude is a critical function. The loss of
all attitude information is considered a catastrophic
event. The safety objective for a catastrophic event is
10–9. In a system that includes three similar attitude
sensors, each with a hardware probability of 10–3 for
loss of attitude data, the probabilities may be
logically AND’d as the hardware failures of each
sensor are considered independent. Therefore the
safety objective can be achieved. Failures are
considered common cause for both software and
CEH, and the DAL for each of the three sensors must
be Level A as determined by the catastrophic effect
of the worst-case failure.

Safety requirements drive the architecture where
several options are available for combining
redundancy and diversity. It must be noted that
software diversity designed by using N-version
programming, as discussed in [7,8], cannot be proved
to guarantee statistical independence and thus its
claimed effectiveness for increasing reliability should
be taken with caution and considered as an unproved
hypothesis.

Requirements traceability
To keep track of the requirements evolution

(e.g., decomposition and refinement), various
approaches can be adopted (e.g., tabular formats and
tree structures) and several tools, which implement
those approaches, are at disposal. DOORS (Dynamic
Object-Oriented Requirements System) [9] is one of
them. DOORS is a commercial tool for requirements
management and it offers a rather powerful support
for tracing requirements as well as filtering.
Requirements may be categorized as well as linked
showing one-to-one, one-to-many relationships.
Categories may be used to filter desired subsets.

Our approach is based on DOORS. Figure 2
shows a typical requirement tree where arrows
(inlinks and outlinks) illustrate trace between
DOORS modules. A requirement trace, for instance,
relates the safety requirement SRz with its
decomposed requirements SRz’ and SRz’’.

System
Specification

SR

Design Description

Concept, Assumptions &
Rationales to meet SR:

SRS

DOORS module
Req. trace
Design trace

SRxy SRz

Decomposed SRx’

HRS

Decomposed SRy’…

Decomposed SRz’
Decomposed SRz’’

…Decomposed SRy’’

Refined SRxy
Refined SRy

Figure 2. Requirement Tree System to Item level

How a system level safety requirement is
decomposed/met by a design is shown in the
requirements tree, characterizing requirements
traceability.

In this paper we use refinement to denote the
evolution of a high-level safety requirement from
system to sub-system level. As the design develops,
the safety requirement needs to be refined to address
the design. Refined requirements are fed back to the
system specification.

We use decomposition if a requirement is broken
down from higher to lower level, e.g., sub-system to
item SRS/HRS (SW/HW Requirements
Specifications).

Refinement or decomposition is needed to split a
complex requirement into a set of simpler more
manageable, readable and more suitable requirements
e.g., for allocation, implementation as well as
verification (testability) purposes.

In the context of ARP4754A, safety
requirements exist at the aircraft, system, and item
level. Moreover, within this de-facto standard only
decomposition is mentioned. Thus refinement is
treated as a special case of decomposition, i.e., a
requirement is decomposed into a set of simpler
requirements.

High Lift System
The system under examination in this paper is a

High Lift System (HLS). HLS extends and retracts
trailing edge flap used to increase lift during slow
flight. A flap is a movable portion of the wing that
can be lowered into the airflow to produce extra lift
to limit take-off and landing speeds. High lift control
systems can be driven hydraulically, electrically or
with hybrid technology. HLS consists of a set of
components that are installed along the wing (shaft,
actuators, sensors) in cockpit (Flap Lever) and
avionic bays (control and monitoring computers,
CMC). The main HLS functions are:

• Position the flap surfaces according to the pilot’s
command.

• Automatic control. Modify the input command
for aircraft safety reasons (to protect the structure
against outsized loads and avoid structural
damage).

• Ensure fail-safe operation.

• Provide actual flap surface angle of the HLS to
other A/C systems via output buses.

The pilot’s control commands are sent from a
single flaps lever located on the center console in the
cockpit. The CMCs receive and process the
commanded flap position and output corresponding
control signals to a power control unit. A mechanical
shaft transmission transmits the output torque to
actuators, illustrated in Figure 3. Brakes are located
at each motor output shaft and between drive stations
of the transmission system.

Flaps
Lever

Control&Monitor
Computer, CMC

Control&Monitor
Computer, CMC

Control
Unit

Mechanical Shaft

Flap
Flap

Flap
Flap

Figure 3. Overview of the High Lift System

The HLS in our example incorporates two
CMCs for availability only (“loss of function” is
classified as major). The high integrity safety
requirements are allocated on each CMC.

Requirements Allocation Process
As mentioned in the introduction, ARP4754A

prescribes the interaction between the safety
assessment and system development processes. Here
we present our method Requirements Allocation
Process, called RAP, for implementing the
interaction between PSSA work and the system
design development see Figure 4 (extracted from
Figure 1). RAP is performed in four steps comprising
the evolution (step-1 and step-3) and validation (step-
2 and step-4) of safety requirements. The Fault Tree
Analysis (FTA) [10] method is used to provide a
systematic support for requirements break down
combined with a requirement traceability tool such as
DOORS for safety requirements traceability and
validation.

Step-3

High-level
SR from FHA

Allocation of system
requirements to items

Development of
system architecture

Step-1

PSSPSSA

Figure 4. RAP Process Interaction Focus

This alignment process can easily be managed if
implemented in a DOORS requirement tree, see a
layout example in Table 1.

Table 1. RAP Usage for System Specification

ID Object	
 text Object	
 Type	

Link	

Design	

Descr. Allocation Validation

SR001
"High-­‐level	

requirement" Safety	
 Req. IN

System	

Specification	
 	

(RAP	
 Step-­‐1) (RAP	
 Step-­‐2)

SR001.1
"Fed-­‐back	

refined	
 SR" Safety	
 Req. OUT

HRS	
 /	
 SRS	

(RAP	
 Step-­‐3) (RAP	
 Step-­‐4)

SR001.2
"Fed-­‐back	

refined	
 SR" Safety	
 Req. OUT

HRS	
 /	
 SRS	

(RAP	
 Step-­‐3) (RAP	
 Step-­‐4)

SR001.3
"Fed-­‐back	

refined	
 SR" Safety	
 Req. OUT

HRS	
 /	
 SRS	

(RAP	
 Step-­‐3) (RAP	
 Step-­‐4)

…

SR001.X
"Fed-­‐back	

refined	
 SR" Safety	
 Req. OUT

HRS	
 /	
 SRS	

(RAP	
 Step-­‐3) (RAP	
 Step-­‐4)

RAP consists of four steps. The first step is to
refine the high-level safety requirement (SR)
allocated to a system (black box view), in parallel
with the system architecture development (white box
view). For the refinement step we use Design trees to
capture and identify the refined requirements. The
new set of safety requirements (refined requirements)
shall then be fed back into the requirement tree
(pictured in Figure 2 and Figure 5). The second step
is to validate the set of refined requirements against
the high-level safety requirement by using design
trace, links between requirement module and design
module. The third step is then to decompose (system-
to-item level) the set of safety requirements and
allocate to HW and/or SW items. For the
decomposition step we use Allocation trees. The
fourth step is to validate that the requirements have
been correctly decomposed and allocated.

Step-1 Refinement
In the design description module architectural

principles and design choices are described. As stated
previously we use the FTA method to refine the high-
level safety requirements imposed on the design.

Following symbols are used in the FTA
diagrams:

The OR-gate indicates that the output occurs
if and only if at least one of the input events occur.

The AND-gate indicates that the output occurs if
and only if all the input events occur.

The Undeveloped event is used to terminate the
tree without reaching the lowest level.

The design trees developed in this step give a
graphical view of how the top event might occur, and
which parts/items of the design that might contribute.
The gates in the tree clearly show where
independence is required or assumed.

Step-2 Validation of High-Level Safety
Requirements

The enhanced set of detailed architectural safety
requirements shall implement the higher-level safety
requirement, see Figure 5. The set of refined
requirements shall capture dependencies,
assumptions, safety objectives imposed on the
architecture. Validation is performed by assessing the
design concept and the corresponding gates in the
design tree which should be covered by the refined
requirements.

System
Specification

SR

Design Description

Concept, Assumptions &
Rationales to meet SR:

SRxy
SRzRefined SRxy

Refined SRy

Step-2

Figure 5. Design trace set for validation

Validation includes correctness and
completeness. To check the correctness we propose
to assess that the requirement is unambiguous and
verifiable. For completeness we propose to assess
that the resulting requirements (in the system
specification module) capture dependencies and
assumptions expressed in the design tree and the
design concept (in the design description module).
Equally important is to capture the rationales of the
design choices. Here Rationale is a suggested key-
textual means to support safety managers by forcing
them to state the rationale behind their choices.

Step-3 Decomposition System-to-Item
The resulting safety requirements from step-1

express which constraints and fault tolerance
mechanisms should be implemented. The system
level requirements need to be decomposed (broken
down) such that allocation to HW and SW items can
be performed. Decomposed requirements are linked
to the parent requirement. Also here we use FTA by
constructing allocation trees. Developing the tree is
done by combining the preliminary SW and HW
items using AND and OR gates to illustrate how the
components should interact to prevent or mitigate the
top event.

Assessing the tree structure is an easy and
straightforward way to identify and pin-point
independence requirements imposed on specific
hardware and software items.

Step-4 Validation of the refined Safety
Requirements

This step validates that all safety requirements
are properly broken down and allocated by checking
that the decomposed requirements capture the
connection between items seen in the allocation trees
(see example in Figure 7). The decomposed
requirements must be added into applicable HRS
and/or SRS, traced via DOORS links that enable
validation, see Figure 6.

System
Specification

SR

SRS

SRxy SRz

Decomposed SRx’

HRS

Decomposed SRy’…

Decomposed SRz’
Decomposed SRz’’

…Decomposed SRy’’

Step-4

Figure 6. Traced requirements for validation

Applying RAP to HLS
The purpose of this section is to show how RAP

is applied to HLS (which was briefly introduced in
the background section). HLS is a safety critical
system and is classified as DAL A.

When applying RAP we start with the safety
requirements with highest criticality, since these
typically drive the design. In our example we start
with the safety requirements classified as CAT. HLS
has 5 CAT events with required safety objective of
less than 10-10 failures/flight hour, e.g.:

Wrong flap control function

Output not switched as required

Wrong auto-function

As stated earlier, the high integrity level of 10-10

requires (at least) two independent processing lanes,
which must agree on correct output in order to move
the Flaps. Two design principles of the processing
lanes are: one command lane and one monitor lane
(COM-MON) or two command lanes (COM-COM).

We now limit our attention to the first CAT
event and we apply RAP, by executing its four steps.

Example Step-1
Refinement of the safety requirement, labeled

SR001-Wrong flap control function.

Design concept: In our example the COM-MON
design was chosen and the following design
constraints /assumptions were made:

• COM and MON shall be developed to DAL A

• No CEH (FPGA, CPU) dissimilarity

• No multiple version dissimilar software.

• No resource sharing between the COM and MON
processors

Integrity and independence principles used in
the design process are:

I. Experience data w.r.t. CEH
II. Allocation of functions, monitors, sensor

interfaces etc, to achieve independence
between functions and their monitors (the
COM and MON lanes).

III. Functional diversity between COM and MON.

Design Tree: The tree in Figure 7 shows the
COM-MON design concept. The AND-gate imposes
independence between COM and MON lanes to
mitigate CAT events i.e., prevent an erroneous
command from propagating.

Figure 7. COM-MON concept

The CAT event “wrong flap control function”
may occur when the command processing lane
(COM) fails in a way that requires that the CMC
shall be shut-down and both the COM and the
monitoring processing lane (MON) fail to shut-down
the servo command or arrest the flaps (deenergize
brake solenoids). The possibility for wrong flap
control function is a product between COM and
MON, where the former one controls and the latter
one monitors.

Resulting refined requirements:

1. SR001.1 Flap position shall be controlled by
COM and MON independently. Rationale:
to prevent undetected development errors
and hardware failures leading to wrong Flap
position.

2. SR001.2 COM shall be able to put CMC in
failsafe state independent from MON.
Rationale: The fail-safe behavior must be
enforced by all independent members
contributing to the undesired event.

3. SR001.3 MON shall be able to put CMC in
failsafe state independent from COM.
Rationale: The fail-safe behavior must be
enforced by all independent members
contributing to the undesired event.

4. SR001.4 Communication between COM and
MON must not jeopardize required
independence between COM and MON.
Rationale: If communication is implemented
(e.g., for fault detection) no single point of
failure should be introduced.

5. SR001.5 COM lane shall be developed to
DAL A.

6. SR001.6 MON lane shall be developed to
DAL A.

Continue with next high-level “CAT” safety
requirement and examine if the design concept and
design tree capture the requirement or if the concept
needs to be changed or modified.

Step-1 is finalized when all CAT-events are
covered. After this step a handful of design trees are
produced.

Example Step-2
Validation is performed using all the design

trees from Step-1. These represent the most critical
quantitative safety requirements and should be
examined having the qualitative safety requirements
in mind in order not to oversee constraints or
assumptions imposed on the design. The refined
requirements should capture both gate properties and
design assumptions. Step-2 should be finalized before
decomposition and allocation to HW and SW starts
(Step-3).

Example Step-3
HW/SW Design concept: Software; Multiple

version/dissimilar software is not anticipated
Software integrity between COM and MON is
assumed to be achieved by development assurance
level A combined with functional diversity between
COM and MON. This way COM and MON will not
experience the same design fault simultaneously, thus
the AND-gate is true. However, if the same function
needs to be implemented in both COM and MON
then correctness must be proven, i.e., the function
must be fully testable or this “common” function
must be dissimilar implemented between COM and
MON.

Allocation Tree: Figure 8 pictures an early view
of an allocation tree, not all events are developed.

Our example focuses on the software, thus the
hardware specific events are left undeveloped.

Figure 8. Decomposition of SR001.1

Resulting decomposed SW requirements:

Example of software requirements to be
allocated to the applicable SRS from assessment of
the AND-gates in Figure 8:

1. COM shall validate its input values.
Rationale: To ensure that the Flap position
command is based on correct values, taking
into account that sensor inputs are sufficient
w.r.t. their integrity and reliability.

2. MON shall validate its input values.
Rationale: To ensure that the Flap position
command is based on correct values, taking
into account that sensor inputs are sufficient
w.r.t. their integrity and reliability.

3. MON’s input monitors shall be fully
verifiable (testable) or dissimilar from
COM’s input monitors. Rationale: To
mitigate SW development errors in COM or
MON input monitors. Integrity based on
DAL A SW alone is not sufficient since an
error might propagate to a CAT event.

4. COM shall calculate the Flap position
command based on its own data. Rationale:
Important to enforce independence between
COM and MON.

5. MON shall calculate the Flap position
command based on its own data. Rationale:
Important to enforce independence between
COM and MON.

6. MON’s calculation of Flap position
command shall be fully verifiable (testable)
or use dissimilar algorithms from COM.
Rationale: To mitigate SW development
errors in COM.

Note: this is just an extraction of safety-related
requirements imposed on the software (from
SR001.1). Requirements regarding e.g. deterministic
behavior will evolve from required fail-safe concept
(SR001.2 and SR001.3), such as watchdog
monitoring of software execution.

Step-3 is finalized when all sub-system safety
requirements are decomposed and allocated HW
and/or SW items. Note that the allocation trees might
generate redundant requirements, which must not be
fed into the hardware or software requirement
specifications.

Example Step-4
Similar to Step-2. Validation is performed using

all the allocation trees from Step-3, this way
overlapping parts will be caught.

Conclusion and future work
In this paper we have presented a new approach,

called RAP, aimed at systematically guiding (safety)
requirements engineers in managing requirements in
compliance with ARP4754A. RAP guides the
refinement, decomposition and allocation by
providing a hands-on method to break down safety
requirements based on FTA combined with a
validation process, enforced by a series of tagging
possibilities suitable for DOORS requirement
structure.

In the future, we plan to enhance the method to
include a decomposition step for high-level to low-
level software/hardware requirements. Currently the
scope of RAP stops at the item (HRS/SRS) level.
Further we plan to apply RAP to a wider set of
requirements, in this paper we elaborate on those
safety requirements that are classified as catastrophic
(CAT).

References
[1] ARP4754A, 2010, Guidelines for Development of
Civil Aircraft and Systems, SAE International.

[2] AC20-174, September 30, 2011, Development of
Civil Aircraft and Systems, U.S. Department of
Transportation Federal Aviation Administration.

[3] Kondeva, Antoaneta, Martin Wassmuth, Andreas
Mitschke, 2012, A Systematic Elaboration of Safety
Requirements in the Avionic Domain, SAFECOMP
Workshops, LNCS 7613, pp. 400–408.

[4] Certification Specifications for Large Aeroplanes
CS25, 27 December 2007 - European Aviation Safety
Agency.

[5] DO-178C, November 2011, Software
Considerations in Airborne Systems and Equipment
Certification, RTCA.

[6] DO-254, 2000, Design Assurance Guidance for
Airborne Electronic Hardware, RTCA.

[7] J.C. Knight and N.G. Leveson, 1986, An
Experimental Evaluation of the Assumption of
Independence in Multi-version Programming, IEEE
Transactions on Software Engineering, Vol. SE-12,
No. 1, pp. 96-109.

[8] J.C. Knight and N.G. Leveson, 1985, A Large
Scale Experiment In N-Version Programming, Digest

of Papers FTCS-15: Fifteenth International
Symposium on Fault-Tolerant Computing, Ann
Arbor, MI. pp. 135-139.

[9] Telelogic DOORS.

http://www.telelogic.com/products/doorsers/doors/.

[10] ARP-4761, 1996, Guidlines and Methods for
Conducting the Safety Assessment process on Civil
Airbone Systems And Equipement.

[11] SYNOPSIS-SSF-RIT10-0070: Safety Analysis
for Predictable Software Intensive Systems. Swedish
Foundation for Strategic Research.

Acknowledgements
This work has been partially supported by the

Swedish SSF SYNOPSIS project [11].

32nd Digital Avionics Systems Conference
October 6-10, 2013

