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Abstract 
According to the aircraft standard ARP4754A, 

requirements should be carefully traced and 
validated. A systematic methodology for safety 
requirements elaboration (refinement/decomposition 
as well as allocation management) is lacking. To 
overcome this lack, an ARP-aligned and DOORS 
implementable approach called RAP (Requirements 
Allocation Process) is proposed. RAP offers a textual 
as well as graphical means for managing safety 
requirements. Besides supporting requirements 
decomposition and allocation, RAP also supports 
design decisions. The usefulness of RAP is illustrated 
by an example, applying the approach to a High Lift 
System. 

Introduction 
The increasing number of requirements, coming 

from the possibility to integrate and combine 
functions, has increased the complexity level of 
avionics systems, to a point where it is troublesome 
to validate the requirements. In particular integration 
and increased complexity is problematic regarding 
safety requirements since integrated software 
intensive systems have made it harder to assess 
dependencies and fault propagation.  

ARP4754A [1] plays a crucial role when 
developing avionics systems. This is a preferred 
guideline and recognized by FAA as an acceptable 
method for establishing a development assurance 
process [2]. ARP4754A prescribes close interactions 
between the safety assessment process and the system 
development process (see Figure 1), in order to 
capture safety requirements imposed on the design. 
However, more “What” than “How” is discussed in 
ARP4754A. Therefore, in this paper, we elaborate on 
hands-on methods to refine, decompose and validate 
safety requirements. The lack of a systematic method 
to refine system safety requirements is also 
recognized by EADS Germany in [3] where an 
approach that explicitly specifies the transition from 
abstract system requirements to concrete item 

requirements is presented. This transition is based on 
domain knowledge and properties, while our method 
is based on safety assessment methods targeting fault 
tolerance concepts and properties. The gray box in 
Figure 1 shows the focus of this paper. 

Safety objectives are defined at aircraft level and 
often expressed as “loss of function” or “erroneous 
function”. This high-level abstraction makes safety 
requirements differ from functional requirements in 
the sense that they are not measurable or testable. 
Since safety is a property of a system in use the 
safety objectives are not easily visible at the item 
(hardware/software) level. However, safety 
requirements are met by making the functional 
architecture evolve, by incorporating and combining 
fault-tolerant redundant items aimed at achieving the 
objectives. This incorporation is highlighted in the 
development process described in ARP4754A. 
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Figure 1. Safety assessment and development 
processes 

The alignment between the safety assessment 
process and the system development process can be 



seen in Figure 1. The left side (dotted) comprises the 
safety assessment processes: 

• FHA (Functional Hazard Assessment): Examines 
aircraft and system functions to identify potential 
functional failures and classifies the hazards. 

• PASA/PSSA (Preliminary Aircraft Safety 
Assessment/Preliminary System Safety 
Assessment): Establishes the aircraft (A/C) or 
specific system safety requirements and provides 
a preliminary indication that the anticipated 
aircraft or system architectures can meet those 
safety requirements.  

• ASA/SSA (Aircraft Safety Assessment/System 
Safety Assessment): Evaluates systematically and 
comprehensively the implemented A/C and 
systems to show that relevant safety requirements 
are satisfied.  

• CCA (Common Cause Analysis): Provides the 
tools to verify required independence, or to 
identify specific dependencies. 

These safety assessment processes should be 
interleaved with the development phases, see Figure 
1. However, operational guidelines to support safety 
managers during the evolution (carried out via e.g., 
decomposition/refinement) of safety requirements are 
missing. The contribution of this paper is a proposed 
method that details the interaction between the safety 
assessment process and the system development 
process. This alignment is called RAP (Requirements 
Allocation Process). 

To develop RAP, we use the lessons learned 
from a previously developed safety critical system 
where refinement and decomposition of safety 
requirements was done late in the program. That is, 
the alignment between the two processes (see Figure 
1) was not fully in place. As a result validation of 
assumptions on software integrity was overseen in 
the PSSA phase. This lead to a common mode 
problem, which was captured later on during the SSA 
process by safety engineers. 

The rest of the paper is organized as follows. In 
the background section, some fundamental 
information onto which presented work is based. The 
core sections present the proposed method RAP for 
tracing and validating safety requirements; followed 
by showing RAP in usage by applying it to a high lift 
system and discussing its usefulness. Finally, some 

concluding remarks and suggestions for future work 
are presented. 

Background 
This section recalls the essential background on 

which the presented work is based: typical 
characteristics of safety-critical avionics systems, 
requirements traceability and main characteristics of 
a high lift system. 

Safety-critical Avionics systems 
Airplane safety is based on principles and 

techniques of the fail-safe design concept, which 
considers the effects of failures and combinations of 
failures in defining a safe design. Critical systems 
must be designed such that they will not fail in 
unknown ways. Thus, designers are expected to take 
into account all types of faults, e.g., random hardware 
faults and design faults in both hardware and 
software, together with the causality relationships 
that may lead to severe failures. 

For avionics systems, an aircraft-level safety 
assessment establishes how critical a given function 
is depending on how severe a failure would be. From 
that criticality safety objectives are derived taking 
into account the aircraft-level architecture 
implementing the function. The key safety objectives 
placed on any equipment or system installed in an 
aeroplane is derived from CS-25 [4]. The paragraph 
25.1309(b) in [4] requires that the aeroplane systems 
and associated components considered separately and 
in relation to other systems, must be designed so that:  

1. Any catastrophic failure condition (i) is 
extremely improbable; and (ii) does not result 
from a single failure; and  

2. any hazardous failure condition is extremely 
remote; and  

3. any major failure condition is remote. 

The corresponding numerical values of 
extremely improbable and/or remote are also found in 
[4], e.g., 

“Extremely Improbable Failure Conditions are 
those so unlikely that they are not anticipated to 
occur during the entire operational life of all 
aeroplanes of one type, and have a probability of the 
order of 1 x 10–9 or less. Catastrophic Failure 



Conditions must be shown to be Extremely 
Improbable.” [4]. 

The reliability objective of one computing lane 
can reach the order of 10-5 failures per flight hour, for 
loss of function, thus at least two redundant lanes are 
required to achieve this high safety objective. 
However, for integrity level there is no known 
methodology to calculate failure rate of design faults 
or to mathematically prove the absence of design 
faults thus fail-safe behavior is demonstrated through 
a combination of development assurance and 
independence and dissimilarity of redundant 
items/functions.  

The safety objectives for Software and Complex 
Electronic Hardware (CEH) are not addressed by 
quantitative failure rate analyses so a development 
assurance approach is used in accordance with 
RTCA/DO-178C [5] and RTCA/DO-254 [6]. The 
development assurance approach is fundamentally 
different than hardware failure rate analysis. The 
applicable Development Assurance Level (DAL) for 
a given function, as determined by the worst case 
failure effect, are not considered independent and 
must be maintained throughout all elements of the 
system that contribute to that function. Five levels are 
used, A to E. These levels span from negligible (DAL 
E) to catastrophic (DAL A) hazards. For example, the 
display of attitude is a critical function. The loss of 
all attitude information is considered a catastrophic 
event. The safety objective for a catastrophic event is 
10–9. In a system that includes three similar attitude 
sensors, each with a hardware probability of 10–3 for 
loss of attitude data, the probabilities may be 
logically AND’d as the hardware failures of each 
sensor are considered independent. Therefore the 
safety objective can be achieved. Failures are 
considered common cause for both software and 
CEH, and the DAL for each of the three sensors must 
be Level A as determined by the catastrophic effect 
of the worst-case failure. 

Safety requirements drive the architecture where 
several options are available for combining 
redundancy and diversity. It must be noted that 
software diversity designed by using N-version 
programming, as discussed in [7,8], cannot be proved 
to guarantee statistical independence and thus its 
claimed effectiveness for increasing reliability should 
be taken with caution and considered as an unproved 
hypothesis. 

Requirements traceability 
To keep track of the requirements evolution 

(e.g., decomposition and refinement), various 
approaches can be adopted (e.g., tabular formats and 
tree structures) and several tools, which implement 
those approaches, are at disposal. DOORS (Dynamic 
Object-Oriented Requirements System) [9] is one of 
them. DOORS is a commercial tool for requirements 
management and it offers a rather powerful support 
for tracing requirements as well as filtering. 
Requirements may be categorized as well as linked 
showing one-to-one, one-to-many relationships. 
Categories may be used to filter desired subsets. 

Our approach is based on DOORS. Figure 2 
shows a typical requirement tree where arrows 
(inlinks and outlinks) illustrate trace between 
DOORS modules. A requirement trace, for instance, 
relates the safety requirement SRz with its 
decomposed requirements SRz’ and SRz’’. 
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Figure 2. Requirement Tree System to Item level 

How a system level safety requirement is 
decomposed/met by a design is shown in the 
requirements tree, characterizing requirements 
traceability.  

In this paper we use refinement to denote the 
evolution of a high-level safety requirement from 
system to sub-system level. As the design develops, 
the safety requirement needs to be refined to address 
the design. Refined requirements are fed back to the 
system specification.  

We use decomposition if a requirement is broken 
down from higher to lower level, e.g., sub-system to 
item SRS/HRS (SW/HW Requirements 
Specifications). 



Refinement or decomposition is needed to split a 
complex requirement into a set of simpler more 
manageable, readable and more suitable requirements 
e.g., for allocation, implementation as well as 
verification (testability) purposes.  

In the context of ARP4754A, safety 
requirements exist at the aircraft, system, and item 
level. Moreover, within this de-facto standard only 
decomposition is mentioned. Thus refinement is 
treated as a special case of decomposition, i.e., a 
requirement is decomposed into a set of simpler 
requirements.  

High Lift System 
The system under examination in this paper is a 

High Lift System (HLS). HLS extends and retracts 
trailing edge flap used to increase lift during slow 
flight. A flap is a movable portion of the wing that 
can be lowered into the airflow to produce extra lift 
to limit take-off and landing speeds. High lift control 
systems can be driven hydraulically, electrically or 
with hybrid technology. HLS consists of a set of 
components that are installed along the wing (shaft, 
actuators, sensors) in cockpit (Flap Lever) and 
avionic bays (control and monitoring computers, 
CMC). The main HLS functions are: 

• Position the flap surfaces according to the pilot’s 
command. 

• Automatic control. Modify the input command 
for aircraft safety reasons (to protect the structure 
against outsized loads and avoid structural 
damage).  

• Ensure fail-safe operation. 

• Provide actual flap surface angle of the HLS to 
other A/C systems via output buses.  

The pilot’s control commands are sent from a 
single flaps lever located on the center console in the 
cockpit. The CMCs receive and process the 
commanded flap position and output corresponding 
control signals to a power control unit. A mechanical 
shaft transmission transmits the output torque to 
actuators, illustrated in Figure 3. Brakes are located 
at each motor output shaft and between drive stations 
of the transmission system.  
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Figure 3. Overview of the High Lift System 

The HLS in our example incorporates two 
CMCs for availability only (“loss of function” is 
classified as major). The high integrity safety 
requirements are allocated on each CMC. 

Requirements Allocation Process 
As mentioned in the introduction, ARP4754A 

prescribes the interaction between the safety 
assessment and system development processes. Here 
we present our method Requirements Allocation 
Process, called RAP, for implementing the 
interaction between PSSA work and the system 
design development see Figure 4 (extracted from 
Figure 1). RAP is performed in four steps comprising 
the evolution (step-1 and step-3) and validation (step-
2 and step-4) of safety requirements. The Fault Tree 
Analysis (FTA) [10] method is used to provide a 
systematic support for requirements break down 
combined with a requirement traceability tool such as 
DOORS for safety requirements traceability and 
validation.  
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Figure 4. RAP Process Interaction Focus 

This alignment process can easily be managed if 
implemented in a DOORS requirement tree, see a 
layout example in Table 1. 

 



 

Table 1. RAP Usage for System Specification 

ID Object	
  text Object	
  Type	
  

Link	
  
Design	
  
Descr. Allocation Validation

SR001
"High-­‐level	
  
requirement" Safety	
  Req. IN

System	
  
Specification	
  	
  
(RAP	
  Step-­‐1) (RAP	
  Step-­‐2)

SR001.1
"Fed-­‐back	
  
refined	
  SR" Safety	
  Req. OUT

HRS	
  /	
  SRS	
  
(RAP	
  Step-­‐3) (RAP	
  Step-­‐4)

SR001.2
"Fed-­‐back	
  
refined	
  SR" Safety	
  Req. OUT

HRS	
  /	
  SRS	
  
(RAP	
  Step-­‐3) (RAP	
  Step-­‐4)

SR001.3
"Fed-­‐back	
  
refined	
  SR" Safety	
  Req. OUT

HRS	
  /	
  SRS	
  
(RAP	
  Step-­‐3) (RAP	
  Step-­‐4)

…

SR001.X
"Fed-­‐back	
  
refined	
  SR" Safety	
  Req. OUT

HRS	
  /	
  SRS	
  
(RAP	
  Step-­‐3) (RAP	
  Step-­‐4)  

RAP consists of four steps. The first step is to 
refine the high-level safety requirement (SR) 
allocated to a system (black box view), in parallel 
with the system architecture development (white box 
view). For the refinement step we use Design trees to 
capture and identify the refined requirements. The 
new set of safety requirements (refined requirements) 
shall then be fed back into the requirement tree 
(pictured in Figure 2 and Figure 5). The second step 
is to validate the set of refined requirements against 
the high-level safety requirement by using design 
trace, links between requirement module and design 
module. The third step is then to decompose (system-
to-item level) the set of safety requirements and 
allocate to HW and/or SW items. For the 
decomposition step we use Allocation trees. The 
fourth step is to validate that the requirements have 
been correctly decomposed and allocated.  

Step-1 Refinement 
In the design description module architectural 

principles and design choices are described. As stated 
previously we use the FTA method to refine the high-
level safety requirements imposed on the design.  

Following symbols are used in the FTA 
diagrams: 

The OR-gate indicates that the output occurs 
if and only if at least one of the input events occur.

The AND-gate indicates that the output occurs if 
and only if all the input events occur.

The Undeveloped event is used to terminate the 
tree without reaching the lowest level.  

The design trees developed in this step give a 
graphical view of how the top event might occur, and 
which parts/items of the design that might contribute. 
The gates in the tree clearly show where 
independence is required or assumed. 

Step-2 Validation of High-Level Safety 
Requirements  

The enhanced set of detailed architectural safety 
requirements shall implement the higher-level safety 
requirement, see Figure 5. The set of refined 
requirements shall capture dependencies, 
assumptions, safety objectives imposed on the 
architecture. Validation is performed by assessing the 
design concept and the corresponding gates in the 
design tree which should be covered by the refined 
requirements.  
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Refined SRy

Step-2  

Figure 5. Design trace set for validation 

Validation includes correctness and 
completeness. To check the correctness we propose 
to assess that the requirement is unambiguous and 
verifiable. For completeness we propose to assess 
that the resulting requirements (in the system 
specification module) capture dependencies and 
assumptions expressed in the design tree and the 
design concept (in the design description module).  
Equally important is to capture the rationales of the 
design choices. Here Rationale is a suggested key-
textual means to support safety managers by forcing 
them to state the rationale behind their choices. 



Step-3 Decomposition System-to-Item 
The resulting safety requirements from step-1 

express which constraints and fault tolerance 
mechanisms should be implemented. The system 
level requirements need to be decomposed (broken 
down) such that allocation to HW and SW items can 
be performed. Decomposed requirements are linked 
to the parent requirement. Also here we use FTA by 
constructing allocation trees. Developing the tree is 
done by combining the preliminary SW and HW 
items using AND and OR gates to illustrate how the 
components should interact to prevent or mitigate the 
top event. 

Assessing the tree structure is an easy and 
straightforward way to identify and pin-point 
independence requirements imposed on specific 
hardware and software items. 

Step-4 Validation of the refined Safety 
Requirements  

This step validates that all safety requirements 
are properly broken down and allocated by checking 
that the decomposed requirements capture the 
connection between items seen in the allocation trees 
(see example in Figure 7). The decomposed 
requirements must be added into applicable HRS 
and/or SRS, traced via DOORS links that enable 
validation, see Figure 6.  
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Figure 6. Traced requirements for validation 

Applying RAP to HLS 
The purpose of this section is to show how RAP 

is applied to HLS (which was briefly introduced in 
the background section). HLS is a safety critical 
system and is classified as DAL A. 

When applying RAP we start with the safety 
requirements with highest criticality, since these 
typically drive the design. In our example we start 
with the safety requirements classified as CAT. HLS 
has 5 CAT events with required safety objective of 
less than 10-10 failures/flight hour, e.g.: 

Wrong flap control function 

Output not switched as required 

Wrong auto-function 

As stated earlier, the high integrity level of 10-10 

requires (at least) two independent processing lanes, 
which must agree on correct output in order to move 
the Flaps. Two design principles of the processing 
lanes are: one command lane and one monitor lane 
(COM-MON) or two command lanes (COM-COM).  

We now limit our attention to the first CAT 
event and we apply RAP, by executing its four steps. 

Example Step-1  
Refinement of the safety requirement, labeled 

SR001-Wrong flap control function.  

Design concept: In our example the COM-MON 
design was chosen and the following design 
constraints /assumptions were made: 

• COM and MON shall be developed to DAL A 

• No CEH (FPGA, CPU) dissimilarity 

• No multiple version dissimilar software. 

• No resource sharing between the COM and MON 
processors 

Integrity and independence principles used in 
the design process are: 

I. Experience data w.r.t. CEH 
II. Allocation of functions, monitors, sensor 

interfaces etc, to achieve independence 
between functions and their monitors (the 
COM and MON lanes). 

III. Functional diversity between COM and MON. 
 



Design Tree: The tree in Figure 7 shows the 
COM-MON design concept. The AND-gate imposes 
independence between COM and MON lanes to 
mitigate CAT events i.e., prevent an erroneous 
command from propagating. 

 
 

 

Figure 7. COM-MON concept 

The CAT event “wrong flap control function” 
may occur when the command processing lane 
(COM) fails in a way that requires that the CMC 
shall be shut-down and both the COM and the 
monitoring processing lane (MON) fail to shut-down 
the servo command or arrest the flaps (deenergize 
brake solenoids). The possibility for wrong flap 
control function is a product between COM and 
MON, where the former one controls and the latter 
one monitors. 

Resulting refined requirements:  

1. SR001.1 Flap position shall be controlled by 
COM and MON independently. Rationale: 
to prevent undetected development errors 
and hardware failures leading to wrong Flap 
position. 

2. SR001.2 COM shall be able to put CMC in 
failsafe state independent from MON. 
Rationale: The fail-safe behavior must be 
enforced by all independent members 
contributing to the undesired event. 

3. SR001.3 MON shall be able to put CMC in 
failsafe state independent from COM. 
Rationale: The fail-safe behavior must be 
enforced by all independent members 
contributing to the undesired event. 

4. SR001.4 Communication between COM and 
MON must not jeopardize required 
independence between COM and MON. 
Rationale: If communication is implemented 
(e.g., for fault detection) no single point of 
failure should be introduced. 

5. SR001.5 COM lane shall be developed to 
DAL A. 

6. SR001.6 MON lane shall be developed to 
DAL A. 

Continue with next high-level “CAT” safety 
requirement and examine if the design concept and 
design tree capture the requirement or if the concept 
needs to be changed or modified.  

Step-1 is finalized when all CAT-events are 
covered. After this step a handful of design trees are 
produced.  

Example Step-2 
Validation is performed using all the design 

trees from Step-1. These represent the most critical 
quantitative safety requirements and should be 
examined having the qualitative safety requirements 
in mind in order not to oversee constraints or 
assumptions imposed on the design. The refined 
requirements should capture both gate properties and 
design assumptions. Step-2 should be finalized before 
decomposition and allocation to HW and SW starts 
(Step-3). 

Example Step-3 
HW/SW Design concept: Software; Multiple 

version/dissimilar software is not anticipated 
Software integrity between COM and MON is 
assumed to be achieved by development assurance 
level A combined with functional diversity between 
COM and MON. This way COM and MON will not 
experience the same design fault simultaneously, thus 
the AND-gate is true. However, if the same function 
needs to be implemented in both COM and MON 
then correctness must be proven, i.e., the function 
must be fully testable or this “common” function 
must be dissimilar implemented between COM and 
MON.  

Allocation Tree: Figure 8 pictures an early view 
of an allocation tree, not all events are developed. 



Our example focuses on the software, thus the 
hardware specific events are left undeveloped. 

 

Figure 8. Decomposition of SR001.1 
 

Resulting decomposed SW requirements: 

Example of software requirements to be 
allocated to the applicable SRS from assessment of 
the AND-gates in Figure 8: 

1. COM shall validate its input values. 
Rationale: To ensure that the Flap position 
command is based on correct values, taking 
into account that sensor inputs are sufficient 
w.r.t. their integrity and reliability.  

2. MON shall validate its input values. 
Rationale: To ensure that the Flap position 
command is based on correct values, taking 
into account that sensor inputs are sufficient 
w.r.t. their integrity and reliability. 

3. MON’s input monitors shall be fully 
verifiable (testable) or dissimilar from 
COM’s input monitors. Rationale: To 
mitigate SW development errors in COM or 
MON input monitors. Integrity based on 
DAL A SW alone is not sufficient since an 
error might propagate to a CAT event. 

4. COM shall calculate the Flap position 
command based on its own data. Rationale: 
Important to enforce independence between 
COM and MON. 

5. MON shall calculate the Flap position 
command based on its own data. Rationale: 
Important to enforce independence between 
COM and MON. 

6. MON’s calculation of Flap position 
command shall be fully verifiable (testable) 
or use dissimilar algorithms from COM. 
Rationale: To mitigate SW development 
errors in COM. 

Note: this is just an extraction of safety-related 
requirements imposed on the software (from 
SR001.1). Requirements regarding e.g. deterministic 
behavior will evolve from required fail-safe concept 
(SR001.2 and SR001.3), such as watchdog 
monitoring of software execution.  

Step-3 is finalized when all sub-system safety 
requirements are decomposed and allocated HW 
and/or SW items. Note that the allocation trees might 
generate redundant requirements, which must not be 
fed into the hardware or software requirement 
specifications.  

Example Step-4 
Similar to Step-2. Validation is performed using 

all the allocation trees from Step-3, this way 
overlapping parts will be caught. 

Conclusion and future work 
In this paper we have presented a new approach, 

called RAP, aimed at systematically guiding (safety) 
requirements engineers in managing requirements in 
compliance with ARP4754A. RAP guides the 
refinement, decomposition and allocation by 
providing a hands-on method to break down safety 
requirements based on FTA combined with a 
validation process, enforced by a series of tagging 
possibilities suitable for DOORS requirement 
structure. 

In the future, we plan to enhance the method to 
include a decomposition step for high-level to low-
level software/hardware requirements. Currently the 
scope of RAP stops at the item (HRS/SRS) level. 
Further we plan to apply RAP to a wider set of 
requirements, in this paper we elaborate on those 
safety requirements that are classified as catastrophic 
(CAT).  
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