
Mälardalen University Licentiate Thesis
No.???

Static Timing Analysis of
Parallel Software Using

Abstract Execution
– DRAFT –

Andreas Gustavsson

month year

School of Innovation, Design and Engineering
Mälardalen University

Västerås, Sweden

Copyright c©Andreas Gustavsson, year
ISSN ????-????
ISBN ??-?????-??-?
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press

Abstract

The Power Wall has stopped the past trend of increasing processor through-
put by increasing the clock frequency and the instruction level parallelism.
Therefore, the current trend in computer hardware design is to expose explicit
parallelism to the software level. This is most often done using multiple pro-
cessing cores situated on a single processor chip. The cores usually share some
resources on the chip, such as some level of cache memory (which means that
they also share the interconnect, e.g., a bus, to that memory and also all higher
levels of memory), and to fully exploit this type of parallel processor chip,
programs running on it will have to be parallel as well. Since multi-core pro-
cessors are the new standard, even embedded real-time systems will (and some
already do) incorporate this kind of processor and parallel code.

A real-time system is any system whose correctness is dependent both on
its functional and temporal output. For some real-time systems, a failure to
meet the temporal requirements can have catastrophic consequences. There-
fore, it is of utmost importance that methods to analyze and derive safe estima-
tions on the timing properties of parallel computer systems are developed.

This thesis presents an analysis that derives safe (lower and upper) bounds
on the execution time of a given parallel program. The interface to the ana-
lysis is a rudimentary parallel programming language that is formally (both
syntactically and semantically) defined in the thesis. The analysis is based on
abstract execution, which is itself based on abstract interpretation techniques
that have been commonly used within the field of timing analysis of single-
core computer systems, to derive safe timing bounds in an efficient (although,
over-approximative) way. Basically, abstract execution simulates the execution
of several real executions of the analyzed program in one go.

The thesis proves the soundness of the presented analysis (i.e., that the
estimated timing bounds are indeed safe) and also includes three case studies,
each showing an important feature or characteristic of the analysis.

i

Acknowledgment

Thanks!

Andreas Gustavsson
Västerås, January 1, 2004 ??????????????

iii

Contents

1 Introduction 1
1.1 Real-Time Systems . 1
1.2 Timing Analysis of Real-Time Systems 3
1.3 Research Questions . 5
1.4 Pilot Study . 5
1.5 Approach . 6
1.6 Contribution . 7
1.7 Included Publications . 8
1.8 Thesis Outline . 9

2 Related Work 11
2.1 Static Timing Analysis . 11
2.2 Multi-Core Analyzability . 13

3 Preliminaries 15
3.1 Partially Ordered Sets & Complete Lattices 15
3.2 Constructing Complete Lattices 18
3.3 Galois Connections & Galois Insertions 20
3.4 Constructing Galois Connections 23
3.5 Constructing Galois Insertions 31
3.6 The Interval Domain . 33

4 PPL: A Parallel Programming Language 37
4.1 States & Configurations . 38
4.2 Semantics . 40
4.3 Collecting Semantics . 52

v

vi Contents

5 Abstractly Interpreting PPL 53
5.1 Arithmetical Operators for Intervals 54
5.2 Abstract Register States . 54
5.3 Abstract Evaluation of Arithmetical Expressions 56
5.4 Boolean Restriction . 57
5.5 Abstract Variable States . 58
5.6 Abstract Lock States . 74
5.7 Abstract Configurations . 78
5.8 Abstract Semantics . 85

6 Safe Timing Analysis by Abstract Execution 137
6.1 Abstract Execution . 137
6.2 Timing Analysis . 158

7 Examples 161
7.1 Communication . 161
7.2 Synchronization – Deadlocks 166
7.3 Synchronization – Deadline Miss 169

8 Conclusions 171
8.1 The Underlying Architecture 171
8.2 Algorithmic Structure & Complexity 172
8.3 Non-terminating Transition Sequences 175
8.4 The Research Questions . 176
8.5 Other Applications of the Analysis 177
8.6 Future Work . 178

Bibliography 179

A Notation & Nomenclature 189

B List of Assumptions 193

C List of Definitions 195

D List of Figures 197

E List of Tables 199

F List of Algorithms 201

Contents vii

G List of Lemmas 203

H List of Theorems 205

Index 207

Chapter 1

Introduction

This chapter starts by introducing the fundamental concepts used within the
field of the thesis. It also states the asked research questions, the approach
used to answer the questions and the resulting contributions of the thesis. This
chapter also presents the papers included in the thesis and a pilot study on using
model-checking for timing analysis of parallel real-time systems.

1.1 Real-Time Systems
As computers have become smaller, faster, cheaper and more reliable, their
range of use has rapidly increased. Today, everything from wrist watches to
airplanes are computer-controlled. These types of systems are commonly re-
ferred to as embedded systems; i.e., one or more controller chips with accom-
panying software are embedded within the product. It has been approximated
that over 99 percent of the worldwide production of computer chips are des-
tined for embedded systems [9].

A real-time system is often an embedded system for which the timing be-
havior is of great importance. More formally, the Oxford Dictionary of Com-
puting gives the following definition of a real-time system [40].

“Any system in which the time at which output is produced is
significant. This is usually because the input corresponds to some
movement in the physical world, and the output has to relate to
that same movement. The lag from input time to output time must
be sufficiently small for acceptable timeliness.”

1

2 Chapter 1. Introduction

The word “timeliness” refers to the total system and can be dependent on me-
chanical properties like inertia. One example is the compensation of temporary
deviations in the supporting structure (e.g., a twisting frame) when firing a mis-
sile to keep the missile’s exit path constant throughout the process. Another
example is to fire the airbag in a colliding car. This should not be done too
soon, or the airbag will have lost too much pressure upon the human impact,
and not too late, or the airbag could cause additional damage upon impact;
i.e., the inertia of the human body and the retardation of the colliding car both
impact on the timeliness of the airbag system. It should thus be apparent that
the correctness of a real-time system depends both on the logical result of the
performed computations and the time at which the result is produced.

Real-time systems can be divided into two categories: hard and soft real-
time systems. Hard real-time systems are such that failure to produce the com-
putational result within certain timing bounds could have catastrophic con-
sequences. One example of a hard real-time system is the above-mentioned
airbag system. Soft real-time systems, on the other hand, can tolerate missing
these deadlines to some extent and still function properly. One example of a
soft real-time system is a video displaying device. Missing to display a video
frame within the given bounds will not be catastrophic (but perhaps annoying
to the viewer if it occurs too often). The video will still continue to play (al-
though, perhaps with reduced displaying quality), assuming that the system is
not overloaded in general.

The current trend in computer hardware design is to make parallelism ex-
plicitly available to the programmer, often in the form of multiple processing
cores on the same chip. This strategy helps increasing the chip’s through-
put without hitting the power wall since the individual processing cores on
the multi-core chip are usually simpler than a single core implemented on the
equivalent chip area [70]. The cores typically share some resources, such as
some level of on-chip cache memory, which introduces dependencies and con-
flicts between the cores; e.g., simultaneous accesses from two or more cores to
shared resources will introduce delays for some of the cores. Processor chips
of this kind of multi-core architecture are currently being used in real-time sys-
tems within, for example, the automotive industry.

To fully utilize the multi-core architecture, algorithms will have to be par-
allelized over multiple tasks (e.g., threads). This means that the tasks will have
to share resources and communicate and synchronize with each other. There
already exist software libraries for explicitly parallelizing sequential code auto-
matically. One example of such a library available for C/C++ and Fortran code
running on shared-memory machines is OpenMP [64]. The conclusion is that

1.2 Timing Analysis of Real-Time Systems 3

parallel software running on parallel hardware is already available today and
will probably be the standard way of computing in the future, also for real-time
systems.

When proving the correctness of, and/or the schedulability of the tasks in,
a real-time system, it is, as far as the author knows, always assumed that safe
(i.e., not under-approximated) bounds on the timing behavior of all tasks in
the system are known. The timing bounds are, for example, used as input
to algorithms that prove or falsify the schedulability of the tasks in the system
[4, 22, 54]. Therefore, it is of crucial importance that methods for deriving safe
timing bounds (referred to as estimates) for this type of parallel computational
systems are defined.

This thesis presents a method that derives safe estimates on the timing
bounds for the described type of systems. The method mainly targets hard
real-time systems. However, it can be applied to any computer system fitting
the assumptions made in the upcoming chapters.

1.2 Timing Analysis of Real-Time Systems

A program’s execution time (i.e., the amount of time it takes to execute the en-
tire program from its entry point to its exit point) is not constant; it is dependent
on the initial system state. This state includes the input to the program (i.e., the
values of its arguments), the hardware state (e.g., cache memory contents) and
the state of any other software that is executing on the same hardware. How-
ever, for any program and any set of initial states, at least one of the resulting
execution times will be equal to the shortest execution time for the given pro-
gram and set of initial states. The shortest execution time is referred to as
the Best-Case Execution Time (BCET). Likewise, at least one of the resulting
execution times will be equal to the longest execution time for the given pro-
gram and set of initial states. The longest execution time is referred to as the
Worst-Case Execution Time (WCET).

Traditionally, when computers were purely sequential, the main focus of
timing analysis only targeted estimations of the WCET. This was possible be-
cause the analyzed systems did not suffer from any timing anomalies, which
meant that the local worst-case scenario (i.e., the longest possible execution
time for a single instruction, or a block of instructions) always resulted in the
global worst-case. However, when introducing multi-core architectures with
shared memory, this is no longer the case [1, 56, 76]. This means that the only
safe option is to take all the possible execution times between, and including,

4 Chapter 1. Introduction

the local BCET and WCET into account when deriving the global (BCET and)
WCET.

Today, there exist several algorithms and tools that strive to derive a safe
and tight (i.e., not too over-approximate) estimate of the WCET of a sequential
task targeted for sequential hardware. Some examples of such tools are aiT [20,
91], Bound-T [37, 91], Chronos [49, 91], Heptane [91], OTAWA [6], RapiTime
[75, 91], SWEET [17, 91], SymTA/P [91] and TuBound [72, 91]. aiT, Bound-
T and RapiTime are commercial tools while the others are primarily research
prototypes. aiT, Bound-T, Chronos, Heptane, OTAWA and TuBound are purely
static tools while SWEET and SymTA/P mainly use static WCET analysis
techniques, but also dynamic techniques to some extent. RapiTime is heav-
ily based on dynamic techniques.

In dynamic WCET analysis, measurements of the actual execution time of
the software running on the target hardware are performed. This method is
not guaranteed to execute the program’s worst-case path, though, which could,
for example, include some error-handling routine that is only rarely executed.
Thus, the WCET might be gravely under-estimated; i.e., there might exist paths
through the code with considerably worse (longer) execution times than the
worst execution time detected by the measurements.

In static WCET analysis, the program code and the properties of the target
hardware are analyzed without actually executing the program. Instead, the
analysis is based on the semantics of the programming language constructs
used to define the program and a (timing) model of the target hardware. Static
methods usually try to find a tight estimation of the WCET, but always safely
over-estimate it.

Static WCET analyses are normally split into three subtasks: the low-level
analysis, which attempts to find safe timing estimates for executions of code
sequences, the flow analysis, which constrains the possible paths through the
code, and the calculation, where the most time-consuming path is found, using
information derived in the first two phases. This traditional approach assumes
that the analyzed program consists of a single flow of control; i.e., is sequen-
tial. In a parallel program, there are several flows of control, possibly with
dependencies among them. The consequence is that the traditional three-phase
approach is not directly applicable when analyzing arbitrary parallel programs
executing on parallel shared-memory architectures.

This thesis presents a static method that derives safe estimations of the
BCET and WCET of a parallel program by combining the three phases into
one single phase; i.e., the method directly calculates the timing bound estimates
while analyzing the semantic behavior of the program, based on a (safe) timing

1.3 Research Questions 5

model of the underlying architecture.
Note that solving the problem of finding the actual WCET in the gen-

eral case is comparable to solving the halting-problem (i.e., determining
whether the program will terminate), which is an undecidable problem (c.f.,
[45]). Thus, the space of possible system states that a WCET analysis must
search through could be extremely large, or even infinite, in the general case.
This means that the analysis itself might not terminate in the general case.
Therefore, techniques to increase the probability of, or even more desirable,
guarantee, analysis termination must be derived. For many of the traditional
methods for analyzing sequential programs, there are ways to guarantee
termination using widening/narrowing techniques [62]. These techniques are
not directly applicable to the method presented in this thesis, though.

1.3 Research Questions
This thesis mainly tries to answer the following questions.

Question 1: “What are the distinguishing features of a parallel computer sys-
tem (i.e., the hardware and software combination) that must be taken
into account in a timing analysis on the code level?”

Question 2: “How can a parallel computer system be analyzed to derive safe
and tight estimations on its timing bounds?”

Question 3: “How can analysis termination be guaranteed?”

1.4 Pilot Study
Model-checking is a technique for verifying properties of a model of some
system. The idea of using model-checking to perform WCET analysis has
been investigated and shown to be adequate for analyzing parts of a single-
core system [38, 60].

Timed automata1 can be used to model real-time systems [3]. An automa-
ton can be viewed as a state machine with locations and edges [43]. A state
represents certain values of the variables in the system and which location of
an automaton is active, while the edges represent the possible transitions from
one state to another [43]. (Continuous) time is expressed as a set of real-valued

1The formal syntax and semantics of timed automata can be found in [2] and [43].

6 Chapter 1. Introduction

variables called clocks. UPPAAL2 [7, 47, 89] is a tool used to model, simulate
and verify networks of timed automata [7, 8, 43].

Preceding the work presented in this thesis, an initial study [30] in which
UPPAAL was used to model, and derive high precision estimates on the timing
bounds of, a small parallel real-time system was performed. The paper shows
that timing analysis of parallel real-time systems can be performed using the
model-checking techniques available in for example UPPAAL. However, the
proposed method (i.e., the way the system was modeled and analyzed) did not
scale very well, for example with respect to the number of threads in the ana-
lyzed program. Therefore, it was decided not to continue on the pure model-
checking path (although, there might be other ways to model the system that
would succeed better).

1.5 Approach
The approach used in this thesis is to statically calculate safe BCET and WCET
estimations by abstractly executing the analyzed program (c.f., [23, 28]) using
a safe timing model of the underlying hardware. As previously discussed, stat-
ically computing the exact set of possible semantic states for an arbitrary pro-
gram is an extremely complex task. Using abstract execution (which is based
on abstract interpretation techniques), at least all the possible semantic states,
given some set of initial system states, are considered, but in a less complex
way.

Abstract interpretation [14, 23, 62] is a method for safely approximating
the program semantics and can be used to obtain a set of possible abstract
states for each point in a program. An abstract state collects, and most often
over-approximates, the information given by a set of concrete semantic states.
This means that an analysis based on abstractly interpreting the semantics of
a program can become less complex and more efficient, but might suffer from
imprecision, compared to an analysis based on the concrete semantics.

The concrete semantics of an arbitrary programming language can be ab-
stracted in many different ways. The choice of abstraction is done by defining
an abstract domain. An abstract domain is essentially the set of all possible
abstract states that fit the definition of the domain.

An example of an abstract domain is Intv, defined as {[z1,z2] | −∞≤ z1 ≤
z2 ≤ ∞∧ z1,z2 ∈ Z∪ {−∞,∞}}; i.e., the set of all intervals that “fit inside”

2An introduction to UPPAAL and the formal semantics of networks of timed automata are
given in [7] and [43], respectively.

1.6 Contribution 7

[−∞,∞]. (Note that the domain Intv is completely defined in Section 3.6.)
This domain can be used to over-approximate the concrete domain {z ∈ Z∪
{−∞,∞} | −∞ ≤ z ≤ ∞} = Z∪{−∞,∞}; i.e., the set of all integers between
(and including) −∞ and ∞.

Assume that the program variable x can have the value v, such that v ∈
{1,2,5,8}, in a given point of the program according to the concrete semantics
(i.e., x has four possible values in the given program point). In the abstract
domain, the value of x could safely be represented by [1,8]. This is an over-
approximation since turning the abstract value into a set of concrete values
yields [1,8]→ {1,2,3,4,5,6,7,8} ⊇ {1,2,5,8}. It can be noted that [1,8] is
the best (tightest) approximation of the values of x, since [1,8] is the smallest
interval containing all the possible concrete values of x.

Abstract execution is simply a way to abstractly simulate the execution of
the analyzed program. This is done by collecting several concrete states into
one (or, for some situations, several) abstract states using abstract interpreta-
tion, as discussed above. The existence of a timing model (of the underlying
architecture) that provides safe information on the timing properties of indi-
vidual operations within the analyzed program when executed in a particular
system state allows the BCET and WCET of the analyzed program to be safely
estimated.

Basically, the only assumption made on the underlying architecture is that
it provides (or can simulate) a shared memory address space, that can be used
for communication, and shared resources, that can be used for synchronization.
One example of such an architecture is a multi-core CPU. Another example is a
virtualization environment that runs on top of a distributed system and provides
a shared memory view. Yet another example is any real-time operating system;
e.g., VxWorks [92].

1.6 Contribution
The main contributions of this thesis are the following.

1. PPL: a formally defined, rudimentary, parallel programming language
for real-time systems. The semantics of PPL includes timing behavior
and is defined based on the familiar notation of operational semantics
(c.f., [63]).

2. An abstraction of the PPL semantics where concrete points in time are
abstracted using intervals.

8 Chapter 1. Introduction

3. A safe timing analysis based on the abstract semantics of PPL. A com-
plete correctness/soundness proof is provided.

1.7 Included Publications
This thesis includes the material presented in the following papers. Andreas
Gustavsson is the main author of all the listed publications and has alone con-
tributed with all the technical material presented in them.

Paper A

Worst-Case Execution Time Analysis of Parallel Systems
Andreas Gustavsson.
Presented at the RTiS workshop, 2011.

This Paper addresses contribution 1 and presents the first definition of the paral-
lel programming language and a very simple (non-generalized) hardware tim-
ing model.

Paper B

Toward Static Timing Analysis of Parallel Software
Andreas Gustavsson, Jan Gustafsson and Björn Lisper.
Presented at the WCET workshop, 2012.

This Paper addresses contributions 2 and 3 and presents a work-in-progress
timing analysis that can analyze all aspects of a parallel program, except syn-
chronization. The presented analysis uses abstract execution to derive safe
estimations of the BCET and WCET of the analyzed program.

Paper C

Toward Static Timing Analysis of Parallel Software - Technical Report
Andreas Gustavsson, Jan Gustafsson and Björn Lisper.
Technical report, 2012.

This Paper addresses contributions 2 and 3 and is an extended version of Paper
B. The Paper includes all the mathematical details and a sketch for the correct-
ness/soundness proof.

1.8 Thesis Outline 9

Paper D

Timing Analysis of Parallel Software Using Abstract Execution
Andreas Gustavsson, Jan Gustafsson and Björn Lisper.
Submitted to the VMCAI conference, 2014.

This paper addresses contributions 1, 2 and 3 and summarizes the work pre-
sented in this thesis. It presents a timing analysis that is based on the analysis
defined in Papers B and C. The presented analysis derives safe estimations of
the BCET and WCET for any program defined using a slightly modified ver-
sion of the language presented in Paper A (i.e., PPL), given some (safe) timing
model of the underlying architecture.

1.8 Thesis Outline
The rest of this thesis is organized as follows.

Chapter 2 presents some research that is closely related to the material pre-
sented in this thesis.

Chapter 3 introduces the reader to the fundamental concepts and theories
needed to understand the contents of the following chapters.

Chapter 4 formally defines PPL, a parallel programming language.

Chapter 5 presents a semi-safe abstraction of the PPL semantics. Note that
the abstraction is not safe for arbitrary PPL programs and that special
care must be taken if using it (c.f., Chapter 6).

Chapter 6 defines a safe timing analysis using abstract execution based on the
abstraction made in Chapter 5.

Chapter 7 presents some examples that show how the analysis presented
in Chapter 6 handles communication and synchronization in PPL
programs.

Chapter 8 discusses the research questions and the analysis presented in
Chapter 6. The chapter also gives pointers to future work.

For the reader’s convenience, the following appendices are provided.

Appendix A summarizes the notations and nomenclature used in this thesis.

10 Chapter 1. Introduction

Appendices B-H present listings of the assumptions, definitions, figures, ta-
bles, algorithms, lemmas and theorems defined in this thesis, respec-
tively.

Chapter 2

Related Work

WCET-related research started with the introduction of timing schemas by
Shaw in 1989 [82]. Shaw presents rules to collapse the CFG (Control Flow
Graph) of a program until a final single value represents the WCET. Excellent
overviews of the WCET research from the years 2000 and 2008 can be found
in [73] and [91] respectively. The field of WCET analysis for parallel systems
is quite new, so there is no solid foundation of previous research to stand on.

2.1 Static Timing Analysis

The field of static WCET analysis has, just until recently, mainly been focusing
on single-processor systems. In the field of low-level analysis, most research
efforts have been dedicated to analyzing the effects of different hardware fea-
tures, including pipelines [16, 35, 52, 83, 88], caches [50, 52, 88, 90], branch
predictors [13], and super-scalar CPUs [51, 80].

Within flow analysis, most research has been dedicated to loop bound ana-
lysis. Flow analysis can also identify infeasible paths, i.e., paths which are
executable according to the program control-flow graph structure, but not fea-
sible when considering the semantics of the program and possible input data
values. There are a number of approaches to flow analysis, using e.g., ab-
stract interpretation, symbolic execution, Presburger arithmetics, specialized
data flow analyses, and syntactical analysis of parse trees [28, 36, 37, 55, 88].

There is also some research on data flow analysis for parallel programs
[15, 21, 46], which is of relevance to WCET analysis. Constant propagation

11

12 Chapter 2. Related Work

has also been considered [48]. A survey of analyses for concurrent and parallel
programs is found in [77].

Three main methods exist for the WCET calculation: The tree-based
method [12, 13, 52], originating from Park’s timing schemas [68]; the path-
based method [35, 84]; and the Implicit Path Enumeration Technique (IPET)
[17, 37, 50, 74, 88], where the WCET calculation problem is formulated as an
Integer Linear Programming (ILP) problem, and the set of execution paths is
restricted by linear constraints.

An alternative way of computing the ILP problem is by using a graph-
based approach [74]. A comparison of the graph-based and IPET approaches
is performed in [38]. The graph-based approach is conducted using model-
checking in UPPAAL [7, 47, 89]. It is shown that IPET outperforms the model-
checking-based approach, but that model-checking allows for calculating tight
WCET bounds and easy integration of complex hardware models. A combined
approach is proposed, where model-checking is used to analyze local regions
of the code, while IPET is used to solve the global analysis. Another motivation
to why model-checking could be useful in WCET analysis can be found in [60].

For analyses based on abstract execution, it is possible to calculate the
BCET and WCET estimates of sequential programs during the abstract exe-
cution, without first generating flow facts [18, 28]. This thesis uses basically
the same approach, but applies it to explicitly parallel programs.

Some research has been conducted within the field of static WCET analysis
for multi-core and other types of multi-processor systems. A static method for
analyzing multi-core processors with a shared L2 instruction cache has been
presented [94]. A limitation of this analysis is that the L1 data cache is assumed
to be perfect (i.e., all accesses are assumed to be hits, which is generally not the
case) and thus does not affect the contents of the L2 cache. Based on this work,
the same authors also address the same problem for the case that the shared L2
cache is direct-mapped [95].

There is also an approach for analyzing multi-cores with a shared L2 in-
struction cache (that still assumes a perfect L1 data cache) that takes effects
from timing anomaly influenced pipelines into account [11].

Staschulat et al. [85] consider an integrated task- and system-level analysis
to estimate memory access times for sequential tasks running in parallel with
tasks executing on other processors. Their approach requires full information
about all tasks running in the system, and it makes quite strong assumptions
about the task model.

Mittermayr and Blieberger [61] use a graph based approach and Kronecker
algebra to calculate an estimation of the WCET of a concurrent program. The

2.2 Multi-Core Analyzability 13

graph is referred to as CPG (Concurrent Program Graph) and plays a role sim-
ilar to the CFG for sequential programs.

Potop-Butucaru and Puaut [71] target static timing analysis of parallel pro-
cessors where “channels” are used to communicate between, and synchronize,
the parallel tasks. Additional edges representing such communication and syn-
chronization are then used to connect the CFGs of the individual tasks. The
goal of this approach is to enable the use of the traditional three-phase analysis
when analyzing parallel systems.

Ozaktas et al. [65] focus on analyzing synchronization delays experienced
by tasks executing on time-predictable shared-memory multi-core architec-
tures.

Lv et al. [57] and Wu and Zhang [93] use model-checking of timed au-
tomata to perform WCET analysis. In this approach, a timed automata-model
of the system to be analyzed is created. Then, specific properties of the model
are verified to find a WCET estimate for the analyzed system. The achievable
tightness of the WCET estimate depends on the level of details in the timed
automata-model.

Both papers mainly propose methods for reducing the size of the state space
by altering the program model without affecting the true WCET of the model.
This is a very important aspect when using model-checking overall. If the
model is too large and complex, the state space will “explode”, which means
that the number of possible states is very large and analyzing the model be-
comes infeasible.

Lv et al. [58] have also combined abstract interpretation with model-
checking to avoid the scalability problems found in, e.g., [30]. This work does
not focus on explicitly parallel software, though.

2.2 Multi-Core Analyzability

Some other research addresses the problem of (low) predictability in multi-
core processors. This work mostly gives multi-core design guidelines and sug-
gestions on how to use additional or modified hardware to increase the pre-
dictability, and thus, the analyzability. In an extension to the method found
in [94], memory bits for each instruction is used to determine whether the in-
struction should be cached or not [34]. E.g., to avoid pollution of the shared
cache, “Static Single Usage” instructions (i.e., instructions in the program that
are only referenced/executed once) should not be cached. This generates the
possibility to determine a tighter WCET estimate.

14 Chapter 2. Related Work

Arbiters (hardware circuits) can be added to a shared memory multi-core
processor to synchronize the memory accesses from different cores in order to
increase the timing predictability of the system [66]. The result is a multi-core
architecture that can be analyzed with existing single-core (and single-task)
WCET analysis tools.

GAMC [67] is an SDRAM controller which upper bounds the delay a core
can suffer from memory-access interferences from other cores. This is an im-
portant approach since the largest memory access latency will occur when ac-
cessing the main memory. The result is tight WCET approximations which
only differ a few percent from the largest measured execution times, for a spe-
cific analyzed program suite.

Time Division Multiple Access (TDMA)-based memory bus access poli-
cies can also be introduced to make all memory accesses predictable, regarding
the WCET [4, 79]. The problem with this approach is that the performance of
the processor will be seriously degraded since, in the average case, a memory
access from any core will be stalled for half the TDMA period (and the whole
period in the worst case).

Kelter et al. [44] suggest to use the Priority Division (PD) protocol instead
of the TDMA protocol. They show that PD is a very promising replacement
for TDMA that provides predictability while not degrading the performance as
severely as TDMA.

The MERASA project [59, 78] strives towards providing a timing analyz-
able multi-core CPU with a system level software (c.f., operating system). A
case study [78] has been performed, in which an estimation of the WCET of a
parallel 3D multi-grid solver, executing on the MERASA multi-core platform,
is derived. The parMERASA project [69] is a continuation of the MERASA
project.

Chapter 3

Preliminaries

In general, basing a timing analysis on the concrete semantics of a program
is infeasible due to the enormous number of states that must be explored. As
discussed in Section 1.5, abstract interpretation [14, 23, 62] is a method for
safely approximating the concrete program semantics and can be used to ob-
tain a set of possible abstract states for each point in a program. An abstract
state collects, and most often over-approximates, the information given by a
set of concrete semantic states. This means that an analysis based on abstractly
interpreting the semantics of a program can become less complex and more
efficient compared to an analysis based on the concrete semantics. The ana-
lysis presented in this thesis is based on abstract interpretation. Therefore, this
chapter introduces the foundations used by abstract interpretation techniques.

NOTE. A summary of the notation and nomenclature used in this thesis can be
found in Appendix A.

3.1 Partially Ordered Sets & Complete Lattices1

The relation, as described by R: A×B→ {true,false} where A×B is the
Cartesian product of the two sets A and B, between two elements a ∈ A and

1Extensive introductions to complete lattices can be found in many textbooks, e.g., [62].

15

16 Chapter 3. Preliminaries

b ∈ B is denoted by a R b. Given that for every a ∈ A, there is at most one
element, b ∈ B, such that a R b, then R is said to be a partial function from A
to B. Given that for every a ∈ A, there is exactly one element, b ∈ B, such that
a R b, then R is said to be a total function from A to B.

A partial ordering is a relationv: A×A→{true,false} that is reflexive
(i.e., ∀a ∈ A : av a), transitive (i.e., ∀a,a′,a′′ ∈ A : ((av a′∧a′ v a′′)⇒ av
a′′)) and anti-symmetric (i.e., ∀a,a′ ∈ A : ((a v a′ ∧ a′ v a)⇒ a = a′)). The
pair (A,R) is a partially ordered set if R: A×A→{true,false} is a partial
ordering on A.

A subset A′ of A has a ∈ A as an upper bound if ∀a′ ∈ A′ : a′ v a and as a
lower bound if ∀a′ ∈ A′ : a v a′. The element a ∈ A is the least upper bound
of A′ if a is an upper bound of A′ and for all other upper bounds, a′ ∈ A, of A′,
a v a′ (c.f., Definition 3.28). The element a ∈ A is the greatest lower bound
of A′ if a is a lower bound of A′ and for all other lower bounds, a′ ∈ A, of A′,
a′ v a (c.f., Definition 3.27). Note that a greatest lower bound and/or a least
upper bound might not exist for all subsets of a partially ordered set. When they
do exist, they are unique (since v is anti-symmetric) and will be denoted ⊔A′
and

⊔
A′, respectively. The shorthand au a′ will be used to denote ⊔{a,a′}.

Likewise, ata′ will be used to denote
⊔
{a,a′}.

A complete lattice, V = 〈V,v,
⊔
, ⊔,⊥,>〉, is a partially ordered set, (V,v),

such that all subsets have greatest lower bounds and least upper bounds. The
least element of V is denoted ⊥ (the bottom element) and is defined as ⊥ =⊔

/0 = ⊔V . The greatest element of V is denoted > (the top element) and is
defined as >=

⊔
V = ⊔/0.

The properties of monotone, completely additive and completely multi-
plicative functions are given in Definitions 3.1, 3.2 and 3.3, respectively. Note
that when V1 and V2 are complete lattices, all subsets of these sets have least
upper bounds and greatest lower bounds. Lemma 3.4 states some specific prop-
erties of a completely multiplicative function.

Definition 3.1 (Monotone function):
A function, f : V1 → V2, between the partially ordered sets V1 = (V1,v1) and
V2 = (V2,v2) is monotone if:

∀v1,v′1 ∈V1 : v1 v1 v′1⇒ f (v1)v2 f (v′1) 2

Definition 3.2 (Completely additive function):
A function, f : V1 → V2, between the partially ordered sets V1 = (V1,v1) and
V2 = (V2,v2) is completely additive if for all V ′1 ⊆V1

f (
⊔

1 V ′1) =
⊔

2{ f (v) | v ∈V ′1}

3.1 Partially Ordered Sets & Complete Lattices 17

whenever
⊔

1 V ′1 and
⊔

2{ f (v) | v ∈V ′1} exist. 2

Definition 3.3 (Completely multiplicative function):
A function, f : V1 → V2, between the partially ordered sets V1 = (V1,v1) and
V2 = (V2,v2) is completely multiplicative if for all V ′1 ⊆V1

f (⊔1 V ′1) = ⊔2{ f (v) | v ∈V ′1}

whenever ⊔1 V ′1 and ⊔2{ f (v) | v ∈V ′1} exist. 2

Lemma 3.4 (Completely multiplicative functions):
If V = 〈V,v,

⊔
, ⊔,⊥,>〉 and Ṽ = 〈Ṽ ,ṽ,

⊔̃
, ˜⊔,⊥̃,>̃〉 are complete lattices and

Ṽ is finite, then the three conditions

1. γ : Ṽ →V is monotone,

2. γ(>̃) =>, and

3. γ(ṽ ũ ṽ′) = γ(ṽ)u γ(ṽ′), whenever ṽ 6ṽ ṽ′∧ ṽ′ 6ṽ ṽ, where ṽ, ṽ′ ∈ Ṽ

are jointly equivalent to γ : Ṽ →V being completely multiplicative. 2

PROOF (c.f., [62]). Assume that V = 〈V,v,
⊔
, ⊔,⊥,>〉 and Ṽ = 〈Ṽ ,ṽ,

⊔̃
, ˜⊔,

⊥̃,>̃〉 are complete lattices and that Ṽ is finite.
First note that if γ : Ṽ → V is completely multiplicative, then the three

conditions trivially hold. Next, assuming that the three conditions are fulfilled,
it will be proven that

γ(˜⊔Ṽ ′) = ⊔{γ(ṽ) | ṽ ∈ Ṽ ′}

where Ṽ ′ ⊆ Ṽ , using induction on the finite cardinality of Ṽ ′ ⊆ Ṽ .
If the cardinality of Ṽ ′ is 0, then γ(˜⊔Ṽ ′) = ⊔{γ(ṽ) | ṽ ∈ Ṽ ′} follows from

condition 2. This proves the base case of the induction.
If the cardinality of Ṽ ′ is larger than 0, then Ṽ ′ = Ṽ ′′∪{ṽ′′} where ṽ′′ 6∈ Ṽ ′′;

which ensures that the cardinality of Ṽ ′′ is strictly less than that of Ṽ ′. Note that
by condition 1, γ(ṽ ũ ṽ′) = γ(ṽ)u γ(ṽ′) also when ṽ ṽ ṽ′ ∨ ṽ′ ṽ ṽ. Hence, by
assuming that γ(˜⊔Ṽ ′′) = ⊔{γ(ṽ) | ṽ ∈ Ṽ ′′} (this is the induction assumption),

γ(˜⊔Ṽ ′) calc.
= γ((˜⊔Ṽ ′′) ũ ṽ′′)

cond. 1 and 3
= γ(˜⊔Ṽ ′′)u γ(ṽ′′)

ind. ass.
= (⊔{γ(ṽ) | ṽ ∈ Ṽ ′′})u γ(ṽ′′)

calc.
= ⊔({γ(ṽ) | ṽ ∈ Ṽ ′′}∪{γ(ṽ′′)})

calc.
= ⊔{γ(ṽ) | ṽ ∈ Ṽ ′}

which proves the lemma. �

18 Chapter 3. Preliminaries

3.2 Constructing Complete Lattices
There are several different ways to construct complete lattices. Any given set
can be lifted into a complete lattice (Theorem 3.5).

Theorem 3.5 (Complete lattice – Lifting):
If S is a set, then 〈P(S),⊆,

⋃
,
⋂
, /0,S〉 is a complete lattice. 2

PROOF. Assume that S is a set and let SP ⊆P(S). It is then trivially the case
that

⊔
SP =

⋃
SP , ⊔SP =

⋂
SP , ⊥= /0 and >= S if v =⊆ (note that ⊆ is

reflexive, transitive and anti-symmetric by definition). �

The Cartesian product of two complete lattices is a complete lattice (The-
orem 3.6).
Theorem 3.6 (Complete lattice – Cartesian product):
If 〈V1,v1,

⊔
1, ⊔1,⊥1,>1〉 and 〈V2,v2,

⊔
2, ⊔2,⊥2,>2〉 are complete lattices,

then so is 〈V,v,
⊔
, ⊔,⊥,>〉 where (let V ′ ⊆V):

V =V1×V2 = {(v1,v2) | v1 ∈V1∧ v2 ∈V2}
(v1,v2)v (v′1,v

′
2)⇐⇒ v1 v1 v′1∧ v2 v2 v′2 where v1,v′1 ∈V1 and v2,v′2 ∈V2⊔

V ′ = (
⊔

1{v1 ∈V1 | ∃v2 ∈V2 : (v1,v2) ∈V ′},⊔
2{v2 ∈V2 | ∃v1 ∈V1 : (v1,v2) ∈V ′})⊔V ′ = (⊔1{v1 ∈V1 | ∃v2 ∈V2 : (v1,v2) ∈V ′},⊔2{v2 ∈V2 | ∃v1 ∈V1 : (v1,v2) ∈V ′})

⊥= (⊥1,⊥2)

>= (>1,>2) 2

PROOF. Assume that 〈V1,v1,
⊔

1, ⊔1,⊥1,>1〉 and 〈V2,v2,
⊔

2, ⊔2,⊥2,>2〉
are complete lattices and let V = {(v1,v2) | v1 ∈ V1 ∧ v2 ∈ V2} and (v1,v2) v
(v′1,v

′
2)⇐⇒ v1 v1 v′1 ∧ v2 v2 v′2 where v1,v′1 ∈ V1 and v2,v′2 ∈ V2. (Note that

it is straightforward to verify that (V,v) is a partially ordered set since v1 and
v2 are partial orders.) Also assume that V ′ ⊆V .

Since
⊔

1{v1 ∈V1 | ∃v2 ∈V2 : (v1,v2) ∈V ′} v1 vu
1 for all upper bounds, vu

1,
of {v1 ∈ V1 | ∃v2 ∈ V2 : (v1,v2) ∈ V ′} and

⊔
2{v2 ∈ V2 | ∃v1 ∈ V1 : (v1,v2) ∈

V ′} v2 vu
2 for all upper bounds, vu

2, of {v2 ∈ V2 | ∃v1 ∈ V1 : (v1,v2) ∈ V ′}, it
is easy to see that

⊔
V ′ = (

⊔
1{v1 ∈V1 | ∃v2 ∈V2 : (v1,v2) ∈V ′},

⊔
2{v2 ∈V2 |

∃v1 ∈ V1 : (v1,v2) ∈ V ′}) v (vu
1,v

u
2) (c.f., the definition of v above). ⊔V ′ is

shown in a similar manner.
Since ⊥1 =

⊔
1 /0 and ⊥2 =

⊔
2 /0, it is easy to see that ⊥ = (

⊔
1 /0,
⊔

2 /0) =
(⊥1,⊥2). > is shown in a similar manner. �

3.2 Constructing Complete Lattices 19

A space of total functions where the domain of the functions is a set and
the range is a complete lattice is itself a complete lattice (Theorem 3.7).

Theorem 3.7 (Complete lattice – Total function space):
If S is a set and 〈V1,v1,

⊔
1, ⊔1,⊥1,>1〉 is a complete lattice, then 〈V,v,⊔

, ⊔,⊥,>〉 where (let V ′ ⊆V)

V = S→V1 = { f : S→V1 | f is a total function}
f v f ′⇐⇒∀s ∈ S : f (s)v1 f ′(s) where f , f ′ ∈V⊔

V ′ = λ s ∈ S.
⊔

1{ f (s) | f ∈V ′},⊔V ′ = λ s ∈ S. ⊔1{ f (s) | f ∈V ′},
⊥= λ s ∈ S.⊥1

>= λ s ∈ S.>1

is also a complete lattice. 2

PROOF. Assume that S is a set and 〈V1,v1,
⊔

1, ⊔1,⊥1,>1〉 is a complete lat-
tice, V = S→ V1 = { f : S→ V1 | f is a total function} and f v f ′ ⇐⇒ ∀s ∈
S : f (s) v1 f ′(s) where f , f ′ ∈ V . (Note that it is straightforward to verify
that (V,v) is a partially ordered set.) Also assume that V ′ ⊆ V . Note that the
totality of f ∈V will be implicitly used.

It is easy to see that ∀s ∈ S : ∀ f ′ ∈V ′ : f ′(s)v1
⊔

1{ f (s) | f ∈V ′} and that
∀s ∈ S :

⊔
1{ f (s) | f ∈V ′} v1 f ′′(s) for any f ′′ ∈V such that ∀s ∈ S : ∀ f ′ ∈V ′ :

f ′(s)v1 f ′′(s) since 〈V1,v1,
⊔

1, ⊔1,⊥1,>1〉 is a complete lattice. But, then it
must be that

⊔
V ′ = λ s ∈ S.

⊔
1{ f (s) | f ∈V ′} (c.f., the definition of v above).⊔V ′ is shown in a similar manner.

Since ⊥1 =
⊔

1 /0, it is easy to see that ⊥= λ s ∈ S.
⊔

1 /0 = λ s ∈ S.⊥1. > is
shown in a similar manner. �

A space of monotone functions where both the domain and the range of the
functions are complete lattices is itself a complete lattice (Theorem 3.8).

Theorem 3.8 (Complete lattice – Monotone function space):
If 〈V1,v1,

⊔
1, ⊔1,⊥1,>1〉 and 〈V2,v2,

⊔
2, ⊔2,⊥2,>2〉 are complete lattices,

20 Chapter 3. Preliminaries

then so is 〈V,v,
⊔
, ⊔,⊥,>〉 where (let V ′ ⊆V):

V =V1→V2 = { f : V1→V2 | f is a monotone function}
f v f ′⇐⇒∀v1 ∈V1 : f (v1)v2 f ′(v1) where f , f ′ ∈V⊔

V ′ = λv1 ∈V1.
⊔

2{ f (v1) | f ∈V ′},⊔V ′ = λv1 ∈V1. ⊔2{ f (v1) | f ∈V ′},
⊥= λv1 ∈V1.⊥2

>= λv1 ∈V1.>2 2

PROOF. Similar to the proof of Theorem 3.7 with the addition that the mono-
tonicity of f ∈ V gives that ∀v1,v′1 ∈ V1 : v1 v1 v′1 ⇒ f (v1) v2 f (v′1) (c.f.,
Definition 3.1). �

3.3 Galois Connections & Galois Insertions
The concrete semantics of a programming language can be abstracted in many
different ways. The choice of abstraction is done by defining an abstract do-
main. A domain is, in general, a complete lattice, and an abstract domain is
essentially the set of all possible abstract states that fit the definition of the do-
main. It is often shown that the abstract domain is a safe over-approximation of
the concrete domain by deriving a Galois connection between the two domains
[62]. A Galois connection between two domains (i.e., complete lattices), V and
D, is described by an abstraction function, α , and a concretization function, γ ,
which must fulfill the criterion in Definition 3.9.

Definition 3.9 (Galois connection):
〈α : V → D,γ : D→V 〉 is a Galois connection iff α and γ are monotone func-
tions that fulfill {

α ◦ γ vD λd.d
γ ◦α wV λv.v

for all v ∈ V and d ∈ D, where V is the concrete domain and D is the abstract
domain. 2

An often useful special case of a Galois connection is called a Galois in-
sertion; c.f., Definition 3.10.

3.3 Galois Connections & Galois Insertions 21

Definition 3.10 (Galois insertion):
〈α : V →D,γ : D→V 〉 is a Galois insertion iff α and γ are monotone functions
that fulfill {

α ◦ γ = λd.d
γ ◦α wV λv.v

for all v ∈ V and d ∈ D, where V is the concrete domain and D is the abstract
domain. 2

A function in the concrete domain, f : V →V , can be safely approximated
by a function in the abstract domain, f̃ : D→D, iff ∀d ∈D : f (γ(d))v γ(f̃ (d)).
The best approximation is achieved by inducing f along α [62]; c.f., Definition
3.11.

Definition 3.11 (Induced function):
Assuming that 〈α : V →D,γ : D→V 〉 is a Galois connection, the best approx-
imation, f̃ , of f : V →V in D→ D is given by:

f̃ = α ◦ f ◦ γ 2

Sometimes, it is more convenient to work with adjunctions (c.f., Definition
3.12) instead of Galois connections.

Definition 3.12 (Adjunction):
〈α :V→D,γ : D→V 〉 is said to be an adjunction between the complete lattices
V = 〈V,vV ,

⊔
V , ⊔V ,⊥V ,>V 〉 and D= 〈D,vD,

⊔
D, ⊔D,⊥D,>D〉 iff α and γ are

total functions that satisfy

α(v)vD d⇐⇒ vvV γ(d)

for all v ∈V and d ∈ D. 2

In fact, adjunctions are Galois connections (Theorem 3.13).

Theorem 3.13 (Adjunctions and Galois connections):
〈α : V → D,γ : D→V 〉 is an adjunction iff it is a Galois connection. 2

PROOF (c.f., [62]). First assume that 〈α : V →D,γ : D→V 〉 is an adjunction.
It will be proven that it also is a Galois connection by showing that γ ◦α wV
λv.v and α ◦ γ vD λd.d. For any v ∈ V , trivially α(v) vD α(v). Using that
α(v)vD d⇒ vvV γ(d), it can be established that vvV γ(α(v)). Similarly, for
any d ∈ D, trivially γ(d) vV γ(d). Using that v vV γ(d)⇒ α(v) vD d, it can

22 Chapter 3. Preliminaries

be established that α(γ(d)) vD d. Thus, 〈α : V → D,γ : D→ V 〉 is a Galois
connection.

Next assume that 〈α : V →D,γ : D→V 〉 is a Galois connection. It will be
proven that it also is an adjunction by showing that α(v) vD d ⇒ v vV γ(d)
and v vV γ(d)⇒ α(v) vD d. So, first assume that α(v) vD d. Then, since γ

is monotone, γ(α(v))vV γ(d). Using that γ ◦α wV λv.v, it can be established
that vvV γ(α(v))vV γ(d) as required. For the second part of the proof, assume
that v vV γ(d). Then, since α is monotone, α(v) vD α(γ(d)). Using that
α ◦ γ vD λd.d, it can be established that α(v)vD α(γ(d))vD d as required.�

The abstraction and concretization functions are strictly related as de-
scribed by Lemma 3.14.

Lemma 3.14 (Relation between α and γ):
If V = 〈V,v,

⊔
, ⊔,⊥,>〉 and Ṽ = 〈Ṽ ,ṽ,

⊔̃
, ˜⊔,⊥̃,>̃〉 are complete lattices, and

〈α : V → Ṽ ,γ : Ṽ → V 〉 is a Galois connection between these lattices, then
(v ∈V and ṽ ∈ Ṽ):

1. α uniquely determines γ by γ(ṽ) =
⊔
{v | α(v) ṽ ṽ} and γ uniquely de-

termines α by α(v) = ˜⊔{ṽ | vv γ(ṽ)}.

2. α is completely additive and γ is completely multiplicative.

In particular, α(⊥) = ⊥̃ and γ(>̃) =>. 2

PROOF (c.f., [62]). Assume that V = 〈V,v,
⊔
, ⊔,⊥,>〉 and Ṽ = 〈Ṽ ,ṽ,

⊔̃
, ˜⊔,

⊥̃,>̃〉 are complete lattices, 〈α : V → Ṽ ,γ : Ṽ → V 〉 is a Galois connection
between these lattices, v ∈V and ṽ ∈ Ṽ .

To show 1, it will first be shown that γ is determined by α . Since 〈α :
V → Ṽ ,γ : Ṽ → V 〉 is an adjunction (Theorem 3.13), it must be that γ(ṽ) =⊔
{v | v v γ(ṽ)} =

⊔
{v | α(v) v ṽ}. Assume that both 〈α,γ1〉 and 〈α,γ2〉 are

Galois connections, then γ1(ṽ) =
⊔
{v | vv γ1(ṽ)}=

⊔
{v | α(v)v ṽ}=

⊔
{v |

vv γ2(ṽ)}= γ2(ṽ), and thus, γ1 = γ2. This shows that α uniquely determines
γ . Similarly, it must be that α(v) = ˜⊔{ṽ | α(v) ṽ ṽ} = ˜⊔{ṽ | v ṽ γ(ṽ)}. This
shows that γ uniquely determines α .

To show 2, consider V ′ ⊆V , then

α(
⊔

V ′) ṽ ṽ Th. 3.13⇐⇒
⊔

V ′ v γ(ṽ)
calc.⇐⇒ ∀v ∈V ′ : vv γ(ṽ)

Th. 3.13⇐⇒ ∀v ∈V ′ : α(v)v ṽ
calc.⇐⇒

⊔̃
{α(v) | v ∈V ′} v ṽ

3.4 Constructing Galois Connections 23

and it follows that α(
⊔

V ′) =
⊔̃
{α(v) | v ∈V ′}.

The proof that γ(˜⊔Ṽ ′) = ⊔{γ(ṽ) | ṽ ∈ Ṽ ′} is analogous. �

Thus, by Lemma 3.15, it suffices to specify either a completely additive
abstraction function or a completely multiplicative concretization function in
order to obtain a Galois connection.
Lemma 3.15 (Galois connection – Existence):
If V = 〈V,v,

⊔
, ⊔,⊥,>〉 and Ṽ = 〈Ṽ ,ṽ,

⊔̃
, ˜⊔,⊥̃,>̃〉 are complete lattices, and

1. α : V → Ṽ is completely additive, then there exists a γ : Ṽ →V such that
〈α,γ〉 is a Galois connection.

2. γ : Ṽ → V is completely multiplicative, then there exists an α : V → Ṽ
such that 〈α,γ〉 is a Galois connection. 2

PROOF (c.f., [62]). Assume that V = 〈V,v,
⊔
, ⊔,⊥,>〉 and Ṽ = 〈Ṽ ,ṽ,

⊔̃
, ˜⊔,

⊥̃,>̃〉 are complete lattices, v ∈V and ṽ ∈ Ṽ .
To show 1, assume that α is completely additive and define γ by:

γ(ṽ) =
⊔
{v′ | α(v′) ṽ ṽ}

Then it must be that α(v) ṽ ṽ⇒ v ∈ {v′ | α(v′) ṽ ṽ} ⇒ v v γ(ṽ), where the
last implication follows from the definition of γ . For the other direction, first
observe that v v γ(ṽ)⇒ α(v) ṽ α(γ(ṽ)) since α is completely additive and
thus monotone. Then,

α(γ(ṽ)) = α(
⊔
{v′ | α(v′) ṽ ṽ})

=
⊔̃
{α(v′) | α(v′) ṽ ṽ}

ṽ ṽ

and so v v γ(ṽ)⇒ α(v) ṽ ṽ. Thus, 〈α,γ〉 is a Galois connection (Theorem
3.13).

The proof of 2 is similar. �

3.4 Constructing Galois Connections
A Galois connection can be constructed in several ways. The following theo-
rems (except Theorem 3.21) specify some of them.

The Cartesian product can be used to combine two existing Galois connec-
tions (Theorem 3.16).

24 Chapter 3. Preliminaries

Theorem 3.16 (Galois connection – Independent attribute method):
If 〈α1 : V1 → D1,γ1 : D1 → V1〉 and 〈α2 : V2 → D2,γ2 : D2 → V2〉 are Galois
connections, then so is 〈α : (V1×V2)→ (D1×D2),γ : (D1×D2)→ (V1×V2)〉,
where {

α((v1,v2)) = (α1(v1),α2(v2))

γ((d1,d2)) = (γ1(d1),γ2(d2))

and (v1,v2) ∈V1×V2 and (d1,d2) ∈ D1×D2. 2

PROOF (c.f., [62]). Assume that 〈α1 : V1→D1,γ1 : D1→V1〉 and 〈α2 : V2→
D2,γ2 : D2 → V2〉 are Galois connections, (v1,v2) ∈ V1 ×V2 and (d1,d2) ∈
D1×D2. Note that V1×V2 and D1×D2 are complete lattices (Theorem 3.6).

First calculate the following.

α((v1,v2))vD (d1,d2)
Def. α⇐⇒ (α1(v1),α2(v2))vD (d1,d2)
calc.⇐⇒ α1(v1)vD1 d1∧α2(v2)vD2 d2

Th. 3.13⇐⇒ v1 vV1 γ1(d1)∧ v2 vV2 γ2(d2)
calc.⇐⇒ (v1,v2)vV (γ1(d1),γ2(d2))

Def. γ⇐⇒ (v1,v2)vV γ((d1,d2))

Then, using Theorem 3.13, the result follows. �

The Cartesian product can also be used on lifted sets (Theorem 3.17).

Theorem 3.17 (Galois connection – Lifted independent attribute method):
If 〈α1 : P(V1)→ D1,γ1 : D1 →P(V1)〉 and 〈α2 : P(V2)→ D2,γ2 : D2 →
P(V2)〉 are Galois connections, then so is 〈α : P(V1×V2)→ (D1×D2),γ :
(D1×D2)→P(V1×V2)〉, whereα(V) = (α1({v1 ∈V1 | ∃v2 ∈V2 : (v1,v2) ∈V}),

α2({v2 ∈V2 | ∃v1 ∈V1 : (v1,v2) ∈V}))
γ((d1,d2)) = γ1(d1)× γ2(d2)

and V ⊆V1×V2 and (d1,d2) ∈ D1×D2. 2

PROOF. Assume that 〈α1 : P(V1) → D1,γ1 : D1 → P(V1)〉 and 〈α2 :
P(V2) → D2,γ2 : D2 → P(V2)〉 are Galois connections, V ⊆ V1 ×V2 and
(d1,d2) ∈ D1×D2. Note that P(V1×V2) and D1×D2 are complete lattices
(Theorems 3.5 and 3.6).

3.4 Constructing Galois Connections 25

First, calculate

α(V)v (d1,d2)
Def. α⇐⇒ (α1(V ′1),α2(V ′2))v (d1,d2)
calc.⇐⇒ α1(V ′1)v1 d1∧α2(V ′2)v2 d2

Th. 3.13⇐⇒ V ′1 ⊆ γ1(d1)∧V ′2 ⊆ γ2(d2)
calc.⇐⇒ V ′1×V ′2 ⊆ γ1(d1)× γ2(d2)

Def. γ⇐⇒ V ′1×V ′2 ⊆ γ((d1,d2))
V⊆V ′1×V ′2⇐⇒ V ⊆ γ((d1,d2))

where V ′1 = {v1 ∈ V1 | ∃v2 ∈ V2 : (v1,v2) ∈ V} and V ′2 = {v2 ∈ V2 | ∃v1 ∈ V1 :
(v1,v2) ∈V}. Then, using Theorem 3.13, the result follows. �

Both the concrete and abstract domains of an existing Galois connection
can be lifted to derive a new Galois connection (Theorem 3.20). Note that
Lemmas 3.18 and 3.19 give that the specified abstraction and concretization
functions are monotone.

Lemma 3.18 (Monotonicity of αP):
The function αP : P(V)→P(D), defined as

αP(V ′) = {α(v) | v ∈V ′}

where V ′ ⊆V , α is monotone and α : V → D, is monotone. 2

PROOF. This proof amounts to showing that ∀V ′,V ′′ ∈P(V) : (V ′ ⊆ V ′′ ⇒
αP(V ′)⊆ αP(V ′′)).

Assume that V ′,V ′′ ∈P(V) and that V ′ ⊆V ′′. Then, by definition:

αP(V ′′)
Def. αP= {α(v) | v ∈V ′′}

calc.
= {α(v) | v ∈V ′∪ (V ′′ \V ′)}

calc.
= {α(v) | v ∈V ′}∪{α(v) | v ∈V ′′ \V ′}

calc.
⊇ {α(v) | v ∈V ′}

Def. αP= αP(V ′)

where the rewriting of α(V ′′) and the set splitting are possible since V ′ ⊆ V ′′

and α is monotone.
Thus, it has been shown that αP is monotone. �

26 Chapter 3. Preliminaries

Lemma 3.19 (Monotonicity of γP):
The function γP : P(D)→P(V), defined as

γP(D′) = {v ∈V | α(v) ∈ D′}

where D′ ⊆ D, α is monotone and γ : D→V , is monotone. 2

PROOF. This proof amounts to showing that ∀D′,D′′ ∈P(D) : (D′ ⊆ D′′ ⇒
γP(D′)⊆ γP(D′′)).

Assume that D′,D′′ ∈P(D) and that D′ ⊆ D′′. Then, by definition:

γP(D′′)
Def. γP= {v ∈V | α(v) ∈ D′′}

calc.
= {v ∈V | α(v) ∈ D′∪ (D′′ \D′)}

calc.
= {v ∈V | α(v) ∈ D′}∪{v ∈V | α(v) ∈ D′′ \D′}

calc.
⊇ {v ∈V | α(v) ∈ D′}

Def. γP= γP(D′)

where the rewriting of D′′ and the set splitting are possible since D′ ⊆ D′′ and
α is monotone.

Thus, γP(D′) ⊆ γP(D′′), and hence it has been shown that γP is mono-
tone. �

Theorem 3.20 (Galois connection – Double lifting):
If 〈α : V → D,γ : D→ V 〉 is a Galois connection, then so is 〈αP : P(V)→
P(D),γP : P(D)→P(V)〉, where{

αP(V ′) = {α(v) | v ∈V ′}
γP(D′) = {v ∈V | α(v) ∈ D′}

and V ′ ⊆V and D′ ⊆ D. 2

PROOF. Assume that 〈α : V →D,γ : D→V 〉 is a Galois connection. Note that
P(V) and P(D) are complete lattices (Theorem 3.5).

Since αP and γP are monotone (Lemmas 3.18 and 3.19, respectively), this
proof amounts to showing that (c.f., Definition 3.9)

1. γP(αP(V ′)⊇V ′

2. αP(γP(D′))⊆ D′

3.4 Constructing Galois Connections 27

where V ′ ⊆V and D′ ⊆D. Note that both cases trivially hold if V ′ = /0 or D′ =
/0, which corresponds to the bottom elements in the two lattices. Therefore,
assume that V ′ 6= /0 and D′ 6= /0.

For case 1, assume that V ′ ⊆V . Then, by definition:

γP(αP(V ′)) = {v ∈V | α(v) ∈ {α(v′) | v′ ∈V ′}}

Assume that v′′ ∈V ′, then it must be that α(v′′) ∈ {α(v′) | v′ ∈V ′}. But, then
v′′ ∈ γP(αP(V ′)) and thus γP(αP(V ′))⊇V ′.

For case 2, assume that D′ ⊆ D. Then, by definition:

αP(γP(D′)) = {α(v) | v ∈ {v′ ∈V | α(v′) ∈ D′}}

Assume that d ∈αP(γP(D′)). Then it must be that ∃v∈ {v′ ∈V |α(v′)∈D′} :
d = α(v). Hence, for that v, it must be that α(v) ∈ D′, and therefore, d ∈ D′.
Thus, αP(γP(D′))⊆ D′. �

It might be tempting to use the definition of αP and γP as given in Theorem
3.21, but as the theorem shows, this does not result in a Galois connection.

Theorem 3.21 (Not a Galois connection – Double lifting):
If 〈α : V → D,γ : D → V 〉 is a Galois connection, then 〈α ′P : P(V) →
P(D),γ ′P : P(D)→P(V)〉 is not a Galois connection, where{

α ′P(V ′) = {α(v) | v ∈V ′}
γ ′P(D′) = {γ(d) | d ∈ D′}

and V ′ ⊆V and D′ ⊆ D. 2

PROOF. Assume that 〈α : V →D,γ : D→V 〉 is a Galois connection. From the
definition of α ′P and γ ′P , it clearly follows that they are monotone since α and
γ are (c.f., Lemma 3.18).

By way of contradiction, assume that 〈α ′P ,γ ′P〉 is a Galois connection.
Then, by Definition 3.9, γ ′P(α ′P(V ′)) ⊇ V ′. A closer look at γ ′P(α ′P(V ′)) re-
veals that:

γ
′

P(α ′P(V ′)) = {γ(d) | d ∈ {α(v) | v ∈V ′}}
Assume that v′ ∈ V ′, then v′ ∈ γ ′P(α ′P(V ′)) since γ ′P(α ′P(V ′)) ⊇ V ′. This
means that ∃d′ ∈ {α(v) | v ∈ V ′} : d′ = α(v′) and hence, for this d′, ∃v′′ ∈
{γ(d) | d ∈ {α(v) | v ∈V ′}} : v′ = v′′ = γ(d′) = γ(α(v′)).

But, since 〈α,γ〉 is a Galois connection, γ(α(v′)) w v′. This means that
it could be the case that γ(α(v′)) A v′, and thus v′ 6= v′′, which means that
γ ′P(α ′P(V ′)) 6⊇V ′ is possible. Thus, 〈α ′P ,γ ′P〉 is not a Galois connection. �

28 Chapter 3. Preliminaries

The domains of a Galois connection can be extended to spaces of (total or
monotone) functions (Theorem 3.22).

Theorem 3.22 (Galois connection – Function space):
If 〈α : V → D,γ : D→ V 〉 is a Galois connection, then so is 〈α ′ : (S→ V)→
(S→ D),γ ′ : (S→ D)→ (S→V)〉 for some set, S, where:{

α ′(f) = α ◦ f
γ ′(g) = γ ◦g

2

PROOF (c.f., [62]). Assume that 〈α :V→D,γ : D→V 〉 is a Galois connection
and that S is a set. Note that S→V and S→D are complete lattices (Theorems
3.7 and 3.8).

First note that α ′ and γ ′ are monotone since α and γ are. Furthermore,
since 〈α,γ〉 is a Galois connection,

γ
′(α ′(f)) = γ ◦α ◦ f w f

and
α
′(γ ′(g)) = α ◦ γ ◦gv g

and, thus, the theorem holds. �

A lifted concrete domain of a Galois connection can be extended to a lifted
space of (total or monotone) functions when also extending the abstract domain
(Theorem 3.24). Note that Lemma 3.23 gives that the concretization function
is monotone.

Lemma 3.23 (Monotonicity of γs):
The function γs : (S→ D)→P(S→V), defined as

γs(d) =

S→V if d = >̃
/0 if d = ⊥̃
{λ s ∈ S.v | v ∈ γ(d s)} otherwise

for some set S and complete lattices V and D, is monotone, given that γ : D→
P(V) is a monotone function and d ∈ S→ D. 2

PROOF. This proof amounts to showing that ∀d′,d′′ ∈ S→ D : (d′ v d′′ ⇒
γs(d′)⊆ γs(d′′)), which is trivially the case if d′ = ⊥̃ or d′′ = >̃.

3.4 Constructing Galois Connections 29

Assume that γ : D→P(V) is a monotone function, d′,d′′ ∈ S→ D and
that d′ v d′′∧d′ 6= ⊥̃∧d′′ 6= >̃. Then, by definition:{

γs(d′) = {λ s ∈ S.v | v ∈ γ(d′ s)}
γs(d′′) = {λ s ∈ S.v | v ∈ γ(d′′ s)}

Since γ is monotone, it must be that ∀s ∈ S : γ(d′ s)⊆ γ(d′′ s). This means that

γs(d′′) = {λ s ∈ S.v | v ∈ γ(d′ s)∪ (γ(d′′ s)\ γ(d′ s))}
⊇ {λ s ∈ S.v | v ∈ γ(d′ s)}∪{λ s ∈ S.v | v ∈ (γ(d′′ s)\ γ(d′ s))}
= γs(d′)∪{λ s ∈ S.v | v ∈ (γ(d′′ s)\ γ(d′ s))}

and thus, trivially, γs(d′)⊆ γs(d′′). �

Theorem 3.24 (Galois connection – Lifted function space):
If 〈α : P(V)→ D,γ : D→P(V)〉 is a Galois connection, then so is 〈αs :
P(S→V)→ (S→ D),γs : (S→ D)→P(S→V)〉, for some set S, where

αs(V ′) =

>̃ if V ′ = S→V
⊥̃ if V ′ = /0
λ s ∈ S.α({v′ s | v′ ∈V ′}) otherwise

γs(d) =

S→V if d = >̃
/0 if d = ⊥̃
{λ s ∈ S.v | v ∈ γ(d s)} otherwise

and V ′ ⊆ S→V and d ∈ S→ D. 2

PROOF. Assume that 〈α : P(V)→D,γ : D→P(V)〉 is a Galois connection,
S is a set, V ′ ⊆ S→ V and d ∈ S→ D. Note that P(S→ V) and S→ D are
complete lattices (Theorems 3.5, 3.7 and 3.8).

First note that:

γs(αs(S→V)) = γs(>̃) = S→V ⊇ S→V
γs(αs(/0)) = γs(⊥̃) = /0⊇ /0
αs(γs(>̃)) = αs(S→V) = >̃ v >̃
αs(γs(⊥̃)) = αs(/0) = ⊥̃ v ⊥̃

30 Chapter 3. Preliminaries

Then note that γs is monotone (Lemma 3.23) and calculate the following.

αs(V ′)v d
Def. αs⇐⇒ λ s ∈ S.α({v′ s | v′ ∈V ′})v d
γs mon.⇐⇒ γs(λ s ∈ S.α({v′ s | v′ ∈V ′}))⊆ γs(d)
Def. γs⇐⇒ {λ s ∈ S.v | v ∈ γ((λ s′ ∈ S.α({v′ s′ | v′ ∈V ′})) s)} ⊆ γs(d)
calc.⇐⇒ {λ s ∈ S.v | v ∈ γ(α({v′ s | v′ ∈V ′}))} ⊆ γs(d)

λv.vvγ◦α⇐⇒ {λ s ∈ S.v | v ∈ {v′ s | v′ ∈V ′}} ⊆
{λ s ∈ S.v | v ∈ γ(α({v′ s | v′ ∈V ′}))} ⊆ γs(d)

calc.⇐⇒ {λ s ∈ S.v | v ∈ {v′ s | v′ ∈V ′}} ⊆ γs(d)
calc.⇐⇒ {λ s ∈ S.(v′ s) | v′ ∈V ′} ⊆ γs(d)
calc.⇐⇒ {v′ | v′ ∈V ′} ⊆ {λ s ∈ S.(v′ s) | v′ ∈V ′} ⊆ γs(d)
calc.⇐⇒ {v′ | v′ ∈V ′} ⊆ γs(d)
calc.⇐⇒ V ′ ⊆ γs(d)

Then, using Theorem 3.13, the result follows. �

The domains of a Galois connection can be indexed with the elements from
some set (Theorem 3.25).

Theorem 3.25 (Galois connection – Indexing):
If 〈α : V → D,γ : D→ V 〉 is a Galois connection, then so is 〈α ′ : (S×V)→
(S×D),γ ′ : (S×D)→ (S×V)〉, for some set S 3 s (with the partial order =),
where {

α ′((s,v)) = (s,α(v))
γ ′((s′,d)) = (s′,γ(d))

and (s,v) ∈ S×V and (s′,d) ∈ S×D. The top elements, >′V and >′D, cor-
respond to the elements (s,v) and (s,d) for some s ∈ S, respectively, where
α(v) =>D and γ(d) =>V . The bottom elements are defined in a correspond-
ing manner.

α ′ and γ ′ for 〈α ′ : (V ×S)→ (D×S),γ ′ : (D×S)→ (V ×S)〉 are defined
similarly. 2

PROOF. Assume that 〈α : V →D,γ : D→V 〉 is a Galois connection, S is a set,
(s,v) ∈ S×V and (s′,d) ∈ S×D.

3.5 Constructing Galois Insertions 31

First note that:

γ ′(α ′(>′V)) = γ ′(>̃′D) =>′V w′V >′V
γ ′(α ′(⊥′V)) = γ ′(⊥̃′D) =⊥′V w′V ⊥′V
α ′(γ ′(>̃′D)) = α ′(>′V) = >̃′D v′D >̃′D
α ′(γ ′(⊥̃′D)) = α ′(⊥′V) = ⊥̃′D v′D ⊥̃′D

Then, calculate the following.

α ′((s,v))vSD (s′,d)
Def. α ′⇐⇒ (s,α(v))vSD (s′,d)

calc.⇐⇒ s = s′∧α(v)vD d
Th. 3.13⇐⇒ s = s′∧ vvV γ(d)

calc.⇐⇒ (s,v)vSV (s′,γ(d))
Def. γ ′⇐⇒ (s,v)vSV γ ′((s′,d))

Now, using Theorem 3.13, the result follows.
The proof for 〈α ′ : (V × S)→ (D× S),γ ′ : (D× S)→ (V × S)〉 being a

Galois connection is conducted analogously. �

3.5 Constructing Galois Insertions
A Galois insertion 〈α,γ〉 between two domains, D and D̃, can be constructed
by following steps 1-5 below [23].

1. A domain, D, with a partial order, v, a least (bottom) element, ⊥, a
greatest (top) element, >, a greatest lower bound, ⊔, and a least upper
bound,

⊔
, so that 〈D,v,

⊔
, ⊔,⊥,>〉 is a complete lattice must be given.

2. Define a domain D̃ and a monotone concretization function γ : D̃→ D.

3. Define the partial order ṽ for D̃.

4. The greatest lower bound ˜⊔and the least upper bound
⊔̃

must exist for
all subsets of D̃. Then, by definition, 〈D̃,ṽ,

⊔̃
, ˜⊔,⊥̃,>̃〉 is a complete

lattice.

5. Define the abstraction function α : D→ D̃, which must be monotone.

Assuming that the domains D and D̃ and the monotone concretization func-
tion, γ , are defined, the partial ordering ṽ can easily be defined as given by
Definition 3.26 [23].

32 Chapter 3. Preliminaries

Definition 3.26 (Partial order):
ṽ is a partial order for the domain D̃ iff ∀d̃1, d̃2 ∈ D̃ : (d̃1 ṽ d̃2 ⇐⇒ γ(d̃1) v
γ(d̃2)). 2

Based on this definition of the partial order, the greatest lower bound and
least upper bound can be defined as given by Definitions 3.27 and 3.28, respec-
tively [23].

Definition 3.27 (Greatest lower bound):
The element d̃ ∈ D̃ is a lower bound of D̃′ ⊆ D̃ iff ∀d̃′ ∈ D̃′ : d̃ ṽ d̃′. The
element d̃ ∈ D̃ is the greatest lower bound of D̃′ ⊆ D̃ (d̃ = ˜⊔D̃′) iff d̃ is a lower
bound of D̃′ and for all other lower bounds d̃′ of D̃′, d̃′ ṽ d̃. 2

Definition 3.28 (Least upper bound):
The element d̃ ∈ D̃ is an upper bound of D̃′ ⊆ D̃ iff ∀d̃′ ∈ D̃′ : d̃′ ṽ d̃. The
element d̃ ∈ D̃ is the least upper bound of D̃′ ⊆ D̃ (d̃ =

⊔̃
D̃′) iff d̃ is an upper

bound of D̃′ and for all other upper bounds d̃′ of D̃′, d̃ ṽ d̃′. 2

The abstraction function α can be defined based on the definition of the
greatest lower bound operator as given by Definition 3.29 [23].

Definition 3.29 (Abstraction function, α):
Given two domains D and D̃ and a monotone concretization function γ : D̃→D,
the abstraction function α : D→ D̃ is defined by:

α(d) = ˜⊔{d̃ | d v γ(d̃)}

where d ∈ D and d̃ ∈ D̃. 2

Alternatively, assuming that two domains and a monotone abstraction func-
tion have been defined, the concretization function γ can be defined based on
the least upper bound operator as given by Definition 3.30 [23].

Definition 3.30 (Alternative definition – Concretization function, γ):
Given two domains D and D̃ and a monotone abstraction function α : D→ D̃,
the concretization function γ : D̃→ D is defined by:

γ(d̃) =
⊔
{d | α(d) ṽ d̃}

where d ∈ D and d̃ ∈ D̃. 2

3.6 The Interval Domain 33

3.6 The Interval Domain
One example of an abstract domain for values is the interval domain [19, 23,
62]. The definition of an interval is given in Definition 3.31.
Definition 3.31 (Interval):
An interval is defined as [n1,n2], where n1,n2 ∈ Val = Z ∪{−∞,∞} are the
lower and upper bounds of the interval, respectively, and n1≤ n2. Formally, the
set of all intervals is defined as Intv= {⊥int,>int}∪{[n1,n2] | n1≤ n2∧n1,n2 ∈
Val}, where ⊥int denotes an invalid interval and >int is greater than any other
element of Intv. 2

A Galois insertion will now be created between P(Val) and Intv, using
the steps of Section 3.5. The concretization function γ int : Intv→P(Val) is
given by Definition 3.32.
Definition 3.32 (concretization of intervals):

γ int(i) =

Z∪{−∞,∞} if i =>int

/0 if i =⊥int

{n ∈ Val | n1 ≤ n≤ n2} otherwise (i.e., i = [n1,n2]) 2

The partial order relation for intervals, vint, is given by Definition 3.33
(using Definition 3.26).
Definition 3.33 (Partial order for intervals):

ivint >int

⊥int vint i
[n1,n2]vint [n′1,n

′
2]⇐⇒ n′1 ≤ n1∧n2 ≤ n′2 2

The greatest lower bound operator for intervals ⊔int is defined as given by
Definition 3.34 (using Definition 3.27).
Definition 3.34 (Greatest lower bound for intervals):

iuint>int =>intuint i = i
iuint⊥int =⊥intuint i =⊥int
[n1,n2]uint [n′1,n

′
2] ={

[max({n1,n′1}),min({n2,n′2})] if max({n1,n′1})≤min({n2,n′2})
⊥int otherwise

2

34 Chapter 3. Preliminaries

The least upper bound operator for intervals
⊔

int is defined as given by
Definition 3.35 (using Definition 3.28).

Definition 3.35 (Least upper bound for intervals):
itint>int =>inttint i =>int

itint⊥int =⊥inttint i = i
[n1,n2]tint [n′1,n

′
2] = [min({n1,n′1}),max({n2,n′2})] 2

The abstraction function αint : P(Val)→ Intv is defined as given by Defi-
nition 3.36 (using Definition 3.29).

Definition 3.36 (Abstraction to interval):

αint(V) =

>int if V = Z∪{−∞,∞}
⊥int if V = /0
[min(V),max(V)] otherwise

2

To show that 〈αint,γ int〉 is a Galois insertion, it would suffice to show that
γ int is monotone, since the steps of Section 3.5 have been used. However,
for clarity, the entire proof is given in the proof of Theorem 3.39. Note that
Lemmas 3.37 and 3.38 give that γ int and αint, respectively, are monotone.

Lemma 3.37 (Monotonicity of γ int):
The function γ int : Intv→P(Val) is monotone. 2

PROOF. It should be shown that ∀i, i′ ∈ Intv : (i vint i′ ⇒ γ int(i) ⊆ γ int(i′)).
Note that the proof is trivial for the case that i =⊥int or i′ =>int.

Assume that i = [n1,n2] ∈ Intv and i′ = [n′1,n
′
2] ∈ Intv, such that i vint

i′. Further assume that n ∈ γ int(i). Then it must be the case that n1 ≤ n ≤ n2
(Definition 3.32). Since ivint i′, it must be the case that n′1 ≤ n1 ≤ n≤ n2 ≤ n′2
(Definition 3.33). But, then it must be that n ∈ γ int(i′) (Definition 3.32), and
thus, γ int(i)⊆ γ int(i′). �

Lemma 3.38 (Monotonicity of αint):
The function αint : P(Val)→ Intv is monotone. 2

PROOF. It should be shown that ∀V,V ′ ∈P(Val) : (V ⊆ V ′ ⇒ αint(V) vint
αint(V ′)). Note that the proof is trivial for the case that V = /0 or V ′ = Z∪
{−∞,∞}.

3.6 The Interval Domain 35

Assume that V,V ′ ∈ P(Val), such that V ⊆ V ′. Further assume that
αint(V) = [n1,n2] and αint(V ′) = [n′1,n

′
2]. Since V ⊆ V ′, it must be that

∀v ∈ V : {v} ⊆ V ′, and hence, {n1,n2} ⊆ V ′. But then, it must be that
min(V ′) = n′1 ≤ n1 = min(V) and max(V) = n2 ≤ n′2 = max(V ′), and thus,
[n1,n2]vint [n′1,n

′
2] (Definition 3.33), which means that αint(V)vint αint(V ′).�

Theorem 3.39 (Galois insertion – Intervals):
〈αint : P(Val)→ Intv,γ int : Intv→P(Val)〉 is a Galois insertion. 2

PROOF. The proof amounts to showing that the constraints in Definition 3.10
are fulfilled by 〈αint,γ int〉. Note that P(Val) and Intv are complete lattices
[62].

According to Lemmas 3.37 and 3.38, γ int and αint are monotone. To show
that αint(γ int(i)) = i, assume that i ∈ Intv.

• If i = >int, then γ int(i) = Z∪ {−∞,∞}. Thus, αint(γ int(i)) = αint(Z∪
{−∞,∞}) =>int = i.

• If i =⊥int, then γ int(i) = /0. Thus, αint(γ int(i)) = αint(/0) =⊥int = i.

• Otherwise (i.e., if i = [n1,n2]) then γ int(i) = {n ∈ Val | n1 ≤ n ≤ n2}.
Thus, αint(γ int(i)) = αint({n ∈ Val | n1 ≤ n≤ n2}) = [n1,n2] = i.

To show that γ int(αint(V))⊇V , assume that V ∈P(Val).

• If V = Z ∪ {−∞,∞}, then αint(V) = >int. Thus, γ int(αint(V)) =
γ int(>int) = Z∪{−∞,∞} ⊇ Z∪{−∞,∞}=V .

• If V = /0, then αint(V) =⊥int. Thus, γ int(αint(V)) = γ int(⊥int) = /0⊇ /0 =
V .

• Otherwise, αint(V) = [min(V),max(V)]. Thus, γ int(αint(V)) =
γ int([min(V),max(V)]) = {n ∈ Val |min(V)≤ n≤max(V)} ⊇V . �

Chapter 4

PPL: A Parallel
Programming Language

In this chapter, PPL, a parallel programming language will be defined. The
parallel entity of execution is referred to as a thread.

PPL provides both thread-private and globally shared memory, referred to
as registers, r ∈ Reg, and variables, x ∈ Var, respectively, and arithmetical op-
erations etc. within a thread can be performed using the values of the thread’s
registers. PPL also provides shared resources, referred to as locks, lck ∈ Lck,
that can be acquired in a mutually exclusive manner by the threads. The opera-
tions (statements) provided by the instruction set may have variable execution
times. (C.f., multi-core CPUs, which have both local and global memory, a
shared memory bus and atomic, i.e., mutually exclusive, operations.)

NOTE. A summary of the notation and nomenclature used in this thesis can be
found in Appendix A.

The syntax of PPL, which is a set of operations using the discussed archi-
tectural features, is defined in Table 4.1. Π ∈ Prg denotes a program, which
simply is a set of threads, i.e., Π = Thrd ∈P(ThrdID×Stm) = Prg, where
each thread, T∈Thrd, is a pair of a unique identifier, d ∈ThrdID, and a state-
ment, s ∈ Stm. This makes every thread unique and distinguishable from other

37

38 Chapter 4. PPL: A Parallel Programming Language

Π ::= {T1, . . . ,Tm}

T ::= (d,s)

s ::= [halt]l
∣∣ [skip]l ∣∣ [r := a]l

∣∣ [if b goto l′]l
∣∣ [load r from x]l

∣∣
[store r to x]l

∣∣ [lock lck]l
∣∣ [unlock lck]l

∣∣ s1;s2

a ::= n
∣∣ r
∣∣ a1+a2

∣∣ a1-a2
∣∣ a1*a2

∣∣ a1/a2

b ::= true
∣∣ false ∣∣ !b

∣∣ b1&&b2
∣∣ a1 == a2

∣∣ a1 <= a2

Table 4.1: The Syntax of PPL.

threads, even if several threads consist of the same statement. To increase the
readability of the semantics, it will be assumed that the axiom-statements (all
statements except the sequentially composed statement, s1;s2) of each thread
are uniquely labeled with consecutive labels, l ∈ Lbl, and stored in an array-
like fashion in ascending order of their labels. a ∈ Aexp and b ∈ Bexp denote
an arithmetic and a boolean expression, respectively, and n ∈ Val is an integer
value.

Locks can be acquired in a mutually exclusive manner using lock and re-
leased using unlock. Values can be transferred between variables and registers
using load and store. Conditional branching is performed using if. A regis-
ter is assigned a value using :=. A no-operation is performed using skip. And,
halt stops the execution of the issuing thread. halt must be the last statement
of each thread in the program, but it could also occur anywhere “within” a
thread. The semantics of PPL is formally defined in Section 4.2.

4.1 States & Configurations
A number of sub-states will be used when expressing how a set of given state-
ments affects the state of the entire system when the statements are executed
in parallel; i.e., when expressing the semantics of PPL. For each thread, T, of
a program, there is an instance of the following states.

pcT : LblT – a program counter that keeps track of which statement within the
thread T that is active.

4.1 States & Configurations 39

NOTE. The tuple 〈pcT1
, . . . ,pcTm〉, assuming that Thrd = {T1, . . . ,Tm},

defines a unique program point.

rT : RegT→ Val – a mapping from T’s registers to their values.

ta
T : Time – an absolute point in discrete time when the previous statement

in T was executed.

For the program as such, there is an instance of the following states.

x : Var→ Thrd→P(Val×Time) – a mapping from variables to a set of
writes; i.e., a pair of a value and an absolute point in time.

l : Lck→ (Lckstt×Thrd⊥×Time×Thrd⊥×Time) – a mapping from
locks to their values; i.e., a state (Lckstt = {unlocked, locked}), a current
owner (Thrd⊥ = Thrd∪{⊥thrd}), an absolute point in time when the
lock must be taken by the current owner, a previous owner, and an abso-
lute point in time when the lock was last released. For the case that no
thread owns the lock, the owner is ⊥thrd.

NOTE. The only information about locks that is needed in the concrete
case is the current owner of each lock (c.f., Tables 4.2 and 4.3). The
rest of the information is only necessary when expressing the abstract
semantics (c.f., Chapter 5). However, the soundness of the abstract se-
mantics is easier proven if this information is included in the concrete
case as well.

The types of the states x and l might look a bit peculiar at first glance; the need
for their definitions will become apparent when defining an abstract interpreta-
tion of the PPL semantics in Section 5.8.

The above listed states, together with the threads of the program, will be
referred to as a program state or configuration, c ∈ Conf. Conf and c are
defined as follows.

Conf ::= PT∈Thrd({T}×LblT× (RegT→ Val)×Time)×
(Var→ Thrd→P(Val×Time))×
(Lck→ (Lckstt×Thrd⊥×Time×Thrd⊥×Time))

40 Chapter 4. PPL: A Parallel Programming Language

c ::= 〈[T,pcT,rT, ta
T]T∈Thrd,x,l〉

Since it is not possible to beforehand determine the number of threads specified
by a program, PT∈Thrd(. . .) is defined to expand to |Thrd| instances (i.e., one
instance for each thread, T, in a given program) of type {T}×LblT×(RegT→
Val)×Time. Likewise, [. . .]T∈Thrd is defined to expand in the corresponding
manner. This way, c∈Conf can be regarded as a tuple with a known size when
the number of threads in a program is known.

Sub-components of a configuration will also be of interest when consider-
ing single threads (see Table 4.2). Therefore, the following “smaller” configu-
rations, cax

in ∈ Confax
in and cax

out ∈ Confax
out, are defined for T ∈ Thrd.

Confax
in = {T}×LblT× (RegT→ Val)×

(Var→ Thrd→P(Val×Time))×
(Lck→ (Lckstt×Thrd⊥×Time×Thrd⊥×Time))
×Time

cax
in ::= 〈T,pc,r,x,l, t〉

Confax
out = LblT× (RegT→ Val)×

(Var→ Thrd→P(Val×Time))×
(Lck→ (Lckstt×Thrd⊥×Time×Thrd⊥×Time))

cax
out ::= 〈pc,r,x,l〉

4.2 Semantics
The semantic rules for individual statements within a thread, the language ax-
ioms, are described by the relation −→ax : Confax

in ×Confax
out→ {true,false},

which is formally defined in Table 4.2. The semantic rule for a set of
threads (i.e., the program) is described by the relation −→prg : Conf×Conf→
{true,false}, which is defined based on −→ax as given in Table 4.3. Note that
the functions STM and STT, OWN, DL, POWN and REL are defined in Tables
4.4 and 4.5, respectively. Note that STM is a total function.
−→
ax and −→prg are relations, not functions, because one single input configu-

ration can have several outputs; e.g., if two or more threads execute lock lck,
where STT(l lck) = unlocked, then lck is assigned to one of these threads by

4.2 Semantics 41

−→
prg in a non-deterministic fashion. −→ax , −→prg and the semantic behavior of each
statement in PPL are further described below.

To execute a program, or rather, to derive some possible execution trace for
a given initial configuration, c ∈ Conf, a succeeding configuration is given by
any c′ ∈Conf, such that c−→prg c′. Then, a succeeding configuration, c′′ ∈Conf,
to c′ is given by c′−→prg c′′, and so on.

42
C

hapter
4.

PPL
:A

ParallelProgram
m

ing
L

anguage
STM(T,pc) 〈pc′,r′,x′,l′〉 If

[halt]pc 〈pc,r,x,l〉
[skip]pc 〈pc+1,r,x,l〉
[r := a]pc 〈pc+1,r[r 7→A [[a]]r],x,l〉

[if b goto l]pc 〈pc+1,r,x,l〉 ¬B[[b]]r
[if b goto l]pc 〈l,r,x,l〉 B[[b]]r
[store r to x]pc 〈pc+1,r,x[x 7→ (x x)[T 7→{(r r, t)}]],l〉
[load r from x]pc 〈pc+1,R(r,r,x,x),x,l〉

[lock lck]pc 〈pc+1,r,x,l[lck 7→ (locked,T,DL(l lck), POWN(l lck),REL(l lck)]〉 OWN(l lck) = T
[lock lck]pc 〈pc,r,x,l〉 OWN(l lck) 6= T

[unlock lck]pc 〈pc+1,r,x,l[lck 7→ (unlocked,⊥thrd,DL(l lck),T, t)]〉 OWN(l lck) = T
[unlock lck]pc 〈pc+1,r,x,l〉 OWN(l lck) 6= T

where R(r,r,x,x) = r[r 7→ v] for some v, such that

∃t
′ ∈ Time : (v, t′) ∈

⋃
T′∈Thrd

((x x) T′) if
⋃

T′∈Thrd
((x x) T′) 6= /0

v ∈ γ int([−∞,∞]) otherwise

Table 4.2: 〈T,pc,r,x,l, t〉−→ax 〈pc′,r′,x′,l′〉, the semantics of concrete axiom transitions.

4.2
Sem

antics
43

Thrdexe 6= /0∧∀T ∈ Thrdexe : 〈T,pcT,rT,x,l
′′, ta′T 〉−→ax 〈pc′T,r

′
T,x

′
T,l
′
T〉

c@〈[T,pcT,rT, ta
T]T∈Thrd,x,l〉−→prg c′@〈[T,(T ∈ Thrdexe ? pc′T : pcT),(T ∈ Thrdexe ? r′T : rT), ta′T]T∈Thrd,x

′,l′〉
where

t = min({ta
T + TIME(c,T) | T ∈ Thrd∧ STM(T,pcT) 6= [halt]pcT})

Thrdexe = {T ∈ Thrd | t = ta
T + TIME(c,T)∧ STM(T,pcT) 6= [halt]pcT}

ta′T =

{
ta
T + TIME(c,T) if T ∈ Thrdexe

ta
T otherwise

x
′ x =

x x if Thrdx = /0
λT ∈ Thrd.(T = T′ ? (x′T′ x) T′ : /0) otherwise

where T′ is one of the threads in Thrdx = {T ∈ Thrdexe | ∃r ∈ RegT : STM(T,pcT) = [store r to x]pcT}

l
′′ lck =

(unlocked,T′, t, POWN(l lck),REL(l lck)) for some T′ ∈ {T ∈ Thrdexe | STM(T,pcT) = [lock lck]pcT},

if {T ∈ Thrdexe | STM(T,pcT) = [lock lck]pcT} 6= /0∧
OWN(l lck) =⊥thrd

l lck otherwise

l
′ lck =

{
l
′
OWN(l′′ lck) lck if OWN(l′′ lck) ∈ Thrdexe

l lck otherwise

Table 4.3: c−→prg c′, the semantics of concrete program transitions.

44 Chapter 4. PPL: A Parallel Programming Language

STM : (Thrd×Lbl)→ Stm = ((ThrdID×Stm)×Lbl)→ Stm

STM((d,s),pc) =

s if s = [skip]pc∨
s = [r := a]pc∨
s = [if b goto l′]pc∨
s = [load r from x]pc∨
s = [store r to x]pc∨
s = [lock lck]pc∨
s = [unlock lck]pc∨
s = [halt]pc

STM((d,s′),pc) if s = s′;s′′∧pc ∈ LABELS(s′)
STM((d,s′′),pc) if s = s′;s′′∧pc ∈ LABELS(s′′)

LABELS : Stm→P(Lbl)

LABELS(s) =

{l} if s = [skip]l ∨
s = [r := a]l ∨
s = [if b goto l′]l ∨
s = [load r from x]l ∨
s = [store r to x]l ∨
s = [lock lck]l ∨
s = [unlock lck]l ∨
s = [halt]l

LABELS(s′)∪ LABELS(s′′) if s = s′;s′′

Table 4.4: Definition of STM and LABELS.

4.2 Semantics 45

STT : (Lckstt×Thrd⊥×Time×Thrd⊥×Time)→ Lckstt
STT((u,T, t,T′, t′)) = u

OWN : (Lckstt×Thrd⊥×Time×Thrd⊥×Time)→ Thrd⊥
OWN((u,T, t,T′, t′)) = T

DL : (Lckstt×Thrd⊥×Time×Thrd⊥×Time)→ Time
DL((u,T, t,T′, t′)) = t

POWN : (Lckstt×Thrd⊥×Time×Thrd⊥×Time)→ Thrd⊥
POWN((u,T, t,T′, t′)) = T′

REL : (Lckstt×Thrd⊥×Time×Thrd⊥×Time)→ Time
REL((u,T, t,T′, t′)) = t′

Table 4.5: Definition of STT, OWN, DL, POWN and REL.

46 Chapter 4. PPL: A Parallel Programming Language

T1

T2

T3

4 8 12 timet t ′

t a
T3

t a
T2

t a
T1

t a
T3

+ time(c1,T3)

t a
T2

+ time(c1,T2)

t a
T1

+ time(c1,T1)

(a) c1: Thrdexe = {T2,T3}

T1

T2

T3

4 8 12 timet t ′

t a
T3

t a
T2

t a
T1

t a
T3

+ time(c2,T3)

t a
T2

+ time(c2,T2)

t a
T1

+ time(c2,T1)

(b) c2: Thrdexe = {T1,T3}

Figure 4.6: Illustration of how Thrdexe is determined (c1−→prg c2).

TIME and Thrdexe

TIME is assumed to be provided by a timing model of the underlying architec-
ture. It should return a relative execution time for the active statement of thread
T, i.e., STM(T,pcT), based on the current system state. Given Assumption 4.1,
time is guaranteed to move forward when using −→prg for a given configuration
(Lemma 4.2). Assumption 4.3 gives that a thread that is waiting to acquire
some lock cannot spin an infinite number of times in zero amount of time.

The set of threads to execute, Thrdexe, in a given configuration, c@
〈[T,pcT,rT, ta

T]T∈Thrd,x,l〉 ∈ Conf, is determined based on ta
T and TIME(c,T),

for each thread, T ∈ Thrd. It simply consists of the threads that will execute
their active statements at the nearest point in time, denoted by t in Table
4.3. An illustration of how Thrdexe is determined is given in Figure 4.6.
For c1 in Figure 4.6a, t = ta

T2
+ TIME(c1,T2) = ta

T3
+ TIME(c1,T3) = 6 and

4.2 Semantics 47

ta
T1

+ TIME(c1,T1) = 10. Thus, Thrdexe = {T2,T3} and ta′
T2

= ta′
T3

= 6, while
ta′
T1

= ta
T1

= 7. For c2 in Figure 4.6b, Thrdexe is determined in a similar manner
(note that c1−→prg c2).

Assumption 4.1 (TIME is non-negative):
It is assumed that ∀c ∈ Conf : ∀T ∈ Thrd : 0≤ TIME(c,T). 2

Lemma 4.2 (Time only moves forward):
Given that the two configurations c@〈[T,pcT,rT, ta

T]T∈Thrd,x,l〉 ∈ Conf and
c′@〈[T,pc′T,r

′
T, t

a′
T]T∈Thrd,x

′,l′〉 ∈ Conf are such that c−→prg c′, ∀T ∈ Thrd :

ta
T ≤ ta′

T . 2

PROOF. Assume that c@〈[T,pcT,rT, ta
T]T∈Thrd,x,l〉 ∈ Conf and c′@

〈[T,pc′T,r
′
T, t

a′
T]T∈Thrd,x

′,l′〉 ∈ Conf are such that c−→prg c′. From Table 4.3, it

is apparent that there are two possibilities for the value of ta′
T .

If ta
T +TIME(c,T) = min({ta

T′+TIME(c,T′) | T′ ∈Thrd})∧STM(T,pcT) 6=
[halt]pcT , then ta′

T = ta
T + TIME(c,T). Thus, ta′

T ≥ ta
T (Assumption 4.1).

If ta
T +TIME(c,T) 6= min({ta

T′+TIME(c,T′) | T′ ∈Thrd})∨STM(T,pcT) =
[halt]pcT , then ta′

T = ta
T.

Thus, it must be that ∀T ∈ Thrd : ta
T ≤ ta′

T . �

Assumption 4.3 (TIME is non-zero when spin-locking):
It is assumed that ∀c@〈[T,pcT,rT, ta

T]T∈Thrd,x,l〉 ∈ Conf : ∀T ∈ Thrd :
((∃lck ∈ Lck : (STM(T,pcT) = [lock lck]pcT ∧ OWN(l lck) 6∈ {⊥thrd,T}))⇒
0< TIME(c,T)). 2

halt and skip

As previously discussed, halt stops the execution of a thread and skip is a no-
operation. This is implemented by letting the semantic rule for halt return the
input state without modifying it, which means that the issuing thread will still
be executing the same halt-statement in the next iterative step; thus the thread
halts. Note that threads issuing a halt-statement are not included in Thrdexe,
however. The rule for the skip-statement only increments the thread’s program
counter, pc, and thus advances the thread to execute its subsequent statement
in the next iterative step.

:= and A

The statement r := a returns a register state in which the register r has the
value of the arithmetic expression a. The value of a is, in the general case,

48 Chapter 4. PPL: A Parallel Programming Language

A [[n]]r= n

A [[r]]r= r r

A [[a1+a2]]r= A [[a1]]r+A [[a2]]r

A [[a1-a2]]r= A [[a1]]r−A [[a2]]r

A [[a1*a2]]r= A [[a1]]r ·A [[a2]]r

A [[a1/a2]]r=
⌊

A [[a1]]r
A [[a2]]r

⌋

Table 4.7: Semantics of concrete evaluation of arithmetic expressions.

B[[true]]r⇐⇒ true

B[[false]]r⇐⇒ false

B[[!b]]r⇐⇒¬B[[b]]r

B[[b1&&b2]]r⇐⇒B[[b1]]r∧B[[b2]]r

B[[a1 == a2]]r⇐⇒A [[a1]]r= A [[a2]]r

B[[a1 <= a2]]r⇐⇒A [[a1]]r≤A [[a2]]r

Table 4.8: Semantics of concrete evaluation of boolean expressions.

dependent on the register values in the input register state and is determined
using the function A : Aexp→ (Reg→ Val)→ Val. A evaluates arithmetic
expressions based on a given register state as defined in Table 4.7.

if and B

The statement if b goto l performs conditional branching. If the boolean ex-
pression b evaluates to true, the issuing thread’s pc is set to l. If b evaluates
to false, then if acts like the skip-statement. The value of b is, in the gen-
eral case, dependent on the register values in the input register state and is
determined using the function B : Bexp→ (Reg→Val)→Bool. B evaluates
boolean expressions based on a given register state as defined in Table 4.8.

store and load

To achieve a high precision in the analysis (see Chapters 5 and 6), the abstrac-
tion of the state for variables will need to save write history; i.e., what abstract

4.2 Semantics 49

writes (each write being a pair of value and time) have been performed by each
thread on each variable (see Chapter 5). Therefore, to derive a Galois connec-
tion between the concrete and abstract domains for variable states, the concrete
state, x, has to be defined accordingly. This is why the definition of x might
look a bit peculiar at first glance. In the concrete semantics, only one single
write is saved for each variable, though, since this is all the information that
is needed in the concrete case. If several threads write to a variable (using
the store-statement) at the same time, there is a race on that variable and the
resulting state will contain one of the writes; i.e., one of the threads will win
the race. The winning thread is non-deterministically chosen from one of the
threads writing the variable at the given point in time.

load is defined to put the value of the saved write (or rather, the value of
one of the saved writes in the general case) in the given register.

lock and unlock

As the observant reader might have noticed already, the only information that
should be needed in order to successfully express the semantic behavior of
locks is what thread is currently assigned (i.e., is currently the owner of) a lock.
This is truly the case. However, the extra information given in the concrete state
for locks, l, will ease the deriving of an approximation of the concrete seman-
tics (see Chapter 5) and achieve a high precision in the analysis (see Chapter
6). This is why the definition of l might look a bit peculiar at first glance. Here,
the state of locks, i.e., locked or unlocked, is only used to increase the readabil-
ity of the rules in Tables 4.2 and 4.3. Note that a consequence of this is that,
in a given configuration, c@〈[T,pcT,rT, ta

T]T∈Thrd,x,l〉, STT(l lck) = locked
whenever OWN(l lck) 6=⊥thrd (c.f., Lemma 4.5). Also note that (STT(l lck) =
locked∧OWN(l lck) =⊥thrd)∨∃T ∈ Thrd : ta

T + TIME(c,T)< REL(l lck) im-
plies that the given configuration is actually not valid (c.f., Definition 4.4).

The lock-statement has the same behavior as the halt-statement as long
as the issuing thread is not assigned the given lock; i.e., the issuing thread will
wait for its turn to acquire the lock. If the issuing thread is assigned the given
lock (within −→prg , using l

′′), lock is defined to basically take the lock (i.e., set
its state to locked) and advance the thread’s pc. Only one single thread can be
assigned a given lock at any point in time.

The unlock-statement has the same behavior as the skip-statement if the
given lock is not assigned to the issuing thread. If the issuing thread is as-
signed the given lock, unlock is defined to release the lock so that it can be
re-assigned in the next iterative step to some thread, if any, issuing lock on it.

50 Chapter 4. PPL: A Parallel Programming Language

Note that a thread can repeatedly acquire a lock that is assigned to, and
taken by, it, without first releasing it.

Definition 4.4 (Valid concrete configuration):
A concrete configuration, c@〈[T,pcT,rT, ta

T]T∈Thrd,x,l〉 ∈ Conf, is valid with
respect to the lock state, l, iff

∀lck ∈ Lck : ((STT(l lck) = locked⇔ OWN(l lck) 6=⊥thrd)∧
(STT(l lck) = unlocked⇔ OWN(l lck) =⊥thrd)∧
∀T ∈ Thrd : REL(l lck)≤ ta

T + TIME(c,T)) 2

Lemma 4.5 (−→prg preserves lock state validity):

Given that the configuration c@〈[T,pcT,rT, ta
T]T∈Thrd,x,l〉 ∈ Conf is valid

(c.f., Definition 4.4), then so is c′@〈[T,pc′T,r
′
T, t

a′
T]T∈Thrd,x

′,l′〉 ∈Conf, when-
ever c−→prg c′. 2

PROOF. From Table 4.2, it is apparent that the possible axiom output lock
states, called l

′
T in Table 4.3, given an input lock state, called l

′′ in Table 4.3,
are

1. l
′′[lck 7→ (locked,T,DL(l′′ lck), POWN(l′′ lck),REL(l′′ lck)], whenever

STM(T,pcT) = [lock lck]pcT ∧OWN(l′′ lck) = T,

2. l
′′[lck 7→ (unlocked,⊥thrd,DL(l′′ lck),T, ta′

T)], whenever STM(T,pcT) =
[unlock lck]pcT ∧OWN(l′′ lck) = T, and

3. l
′′, otherwise.

Assume that the configurations c@〈[T,pcT,rT, ta
T]T∈Thrd,x,l〉 ∈ Conf and

c′@〈[T,pc′T,r
′
T, t

a′
T]T∈Thrd,x

′,l′〉 ∈ Conf are such that c is valid and c−→prg c′.
From Table 4.3, it is apparent that −→ax is only applied to axiom input con-

figurations in which l
′′ is such that

1. l
′′ lck = l lck, or

2. l
′′ lck = (unlocked,T, ta′

T , POWN(l lck),REL(l lck)).

For the first case, it is easy to see that all the three possible output lock states
result in a valid configuration since c is valid.

The second case only occurs when ∃T′ ∈ Thrdexe : (STM(T′,pcT′) =
[lock lck]pcT′ ∧ OWN(l lck) = ⊥thrd). Note that the assigned owner,

4.2 Semantics 51

T ∈ Thrdexe, is one of the threads executing lock lck. For thread T, the
output lock state is l′′[lck 7→ (locked,T,DL(l′′ lck), POWN(l′′ lck),REL(l′′ lck)],
since STM(T,pcT) = [lock lck]pcT ∧ OWN(l′′ lck) = T. Hence, l

′ lck =
l[lck 7→ (locked,T, ta′

T , POWN(l lck),REL(l lck)].
Since time moves forward for each thread (Lemma 4.2), it is easy to see

that c′ is valid. �

Lemma 4.6 gives some important properties of the “intermediate” lock
state, l′′, defined in Table 4.3, which is used as a means of assigning a lock
to a specific thread. These properties will be used when proving the correct-
ness of the abstract semantics in Tables 5.5 and 5.6.

Lemma 4.6 (Properties of l′′):
If for some valid configuration, c@〈[T,pcT,rT, ta

T]T∈Thrd,x,l〉 ∈ Conf, and
lock, lck ∈ Lck, OWN(l lck) = ⊥thrd ∧∃T′ ∈ {T ∈ Thrdexe | STM(T,pcT) =
[lock lck]pcT} : OWN(l′′ lck) = T′, where l′′ and Thrdexe are as defined in Ta-
ble 4.3, then

1. STT(l′′ lck) = unlocked,

2. DL(l′′ lck) 6< ta′
T′ , and

3. ta′
T′ 6< REL(l′′ lck). 2

PROOF. For this proof, each of the properties above will be shown based on
the definition of −→ax and −→prg , defined in Tables 4.2 and 4.3, respectively.

Assume that for the valid configuration c@〈[T,pcT,rT, ta
T]T∈Thrd,x,l〉 ∈

Conf (c.f., Definition 4.4) and some lock, lck ∈ Lck, OWN(l lck) = ⊥thrd ∧
∃T′ ∈ {T ∈ Thrdexe | STM(T,pcT) = [lock lck]pcT} : OWN(l′′ lck) = T′.

1 follows directly from the definition of l′′ in Table 4.3.
Table 4.3 also gives that DL(l′′ lck) = t and that ta′

T′ = t, since T′ ∈Thrdexe∧
STM(T,pcT) = [lock lck]pcT . Thus, DL(l′′ lck) = ta′

T′ , and hence, 2 has been
shown.

For 3, Assumption 4.1 gives that time moves forward when using −→prg

(Lemma 4.2). Thus, it must be that ta′
T′ = t ≥ REL(l lck) = REL(l′′ lck) (c.f.,

Table 4.3), which concludes the proof. �

52 Chapter 4. PPL: A Parallel Programming Language

4.3 Collecting Semantics
This section defines the collecting semantics, C (C), of a program; i.e., the set
of all possible semantic configurations given an initial set of configurations, C,
(c.f., Definition 4.7).

Definition 4.7 (Collecting semantics):
The collecting semantics, C (C), of an initial set of configurations, C, is defined
as:

C (C) =
⋃
i≥0

Ci where

{
C0 =C
Ci+1 = {c′ ∈ Conf | ∃c ∈Ci : c−→prg c′}

2

As can be seen, the collecting semantics will include all possible configurations
that a given initial configuration can ever reach. Note that the collecting seman-
tics might be of infinite size in the case of a non-terminating program; i.e., the
accumulated time, ta

T, for some thread, T ∈ Thrd, could increase indefinitely.

Chapter 5

Abstractly Interpreting PPL

In this chapter, the semantics of PPL, defined in Chapter 4, will be abstracted.
First it must be decided what parts of the system state to interpret in an abstract
way. Abstract states will be crowned with ‘˜’.

To allow for the hardware timing model to be approximated as well, Time
will be abstracted using the interval domain, i.e., Tim̃e = Intv. This approach
is also taken by Chattopadhyay et al. [11] to approximate the execution time of
pipeline stages in order to deal with timing anomalies in multi-core platforms.
Val will also be abstracted using intervals, i.e., Vãl = Intv, to allow for an
efficient handling of data flow (note that many other domains could be used as
well). Since Thrd, Lbl, Var, Reg, Lck, Aexp and Bexp are defined by the
software, and the elements of them are used as identifiers, it does not make
much sense to abstract them for the defined analysis (see Chapter 6). And,
since Lckstt is comparable to Bool, an abstraction of it would most probably
not be very beneficial. The states affected by the abstractions of Time and Val
are r, x, ta, l and c. The abstraction of these will be referred to as r̃, x̃, t̃a, l̃
and c̃, respectively.

NOTE. A summary of the notation and nomenclature used in this thesis can be
found in Appendix A.

53

54 Chapter 5. Abstractly Interpreting PPL

5.1 Arithmetical Operators for Intervals

Since values and time are abstracted using the interval domain, the operators of
PPL must be extended to act on intervals. This is done in Table 5.1; note that
∞/∞, 0/0, 0∗∞ and ∞−∞ need not be defined – they all result in [−∞,∞].

NOTE. In the following, +̃t and +̃val both refer to +int, and similarly for the
rest of the operators.

5.2 Abstract Register States

Using Theorems 3.24 and 3.39, it is easy to see that there is indeed a Galois
connection, 〈αreg,γreg〉, between the concrete domain P(Reg→ Val) and the
abstract domain (Reg→Vãl)∪{⊥̃reg,>̃reg} (Theorem 5.6). The concretization
function, γreg, partial order, ṽreg, greatest lower bound, ˜⊔reg, least upper bound,⊔̃

reg, and abstraction function, αreg, are given by Definitions 5.1, 5.2, 5.3, 5.4
and 5.5, respectively. r̃ is the bottom element, ⊥̃reg, if ∃r ∈ Reg : r̃ r = ⊥̃val;
i.e., if r̃ maps some register to ⊥̃val. The top element, >̃reg, corresponds to an
abstract mapping for which all registers map to >̃val.

Definition 5.1 (Concretization of an abstract register state):

γreg(r̃) =

Reg→ Val if r̃= >̃reg
/0 if r̃= ⊥̃reg
{λ r ∈ Reg.v | v ∈ γval(r̃ r)} otherwise 2

Definition 5.2 (Partial order for abstract register states):

r̃ ṽreg >̃reg
⊥̃reg ṽreg r̃

r̃ ṽreg r̃
′⇐⇒∀r ∈ Reg : r̃ r ṽval r̃

′ r 2

5.2 Abstract Register States 55

>int opint i = i opint >int =>int

⊥int opint i = i opint ⊥int =⊥int
where opint∈ {+int,−int,∗int,/int}

[n1,n2]+int[n′1,n
′
2] =

[n1 +n′1,n2 +n′2] if −∞< n1,n′1,n2,n′2 < ∞

[n1 +n′1,∞] if (n2 = ∞∨n′2 = ∞)∧
¬((n1 =−∞∧n′1 = ∞)∨

(n1 = ∞∧n′1 =−∞))

[−∞,n2 +n′2] if (n1 =−∞∨n′1 =−∞)∧
¬((n2 =−∞∧n′2 = ∞)∨

(n2 = ∞∧n′2 =−∞))

[−∞,∞] otherwise

[n1,n2]−int[n′1,n
′
2] =

[n1−n′2,n2−n′1] if −∞< n1,n′1,n2,n′2 < ∞

[n1−n′2,∞] if (n2 = ∞∨n′1 =−∞)∧
¬((n1 = ∞∧n′2 = ∞)∨

(n1 =−∞∧n′2 =−∞))

[−∞,n2−n′1] if (n1 =−∞∨n′2 = ∞)∧
¬((n2 = ∞∧n′1 = ∞)∨

(n2 =−∞∧n′1 =−∞))

[−∞,∞] otherwise

[n1,n2]∗int[n′1,n
′
2] =

[min(V),max(V)] if (n2 < 0∧n′1 > 0)∨
(n2 < 0∧n′2 < 0)∨
(n1 > 0∧n′1 > 0)∨
(n1 > 0∧n′2 < 0)∨
(−∞< n1,n′1,n2,n′2 < ∞)

where V = {n1 ∗n′1,n1 ∗n′2,n2 ∗n′1,n2 ∗n′2}
[−∞,∞] otherwise

[n1,n2]/int[n′1,n
′
2] =

[bmin(V)c,dmax(V)e] if (−∞< n′1∧n′2 < 0)∨
(0< n′1∧n′2 < ∞)

where V = {n1/n′1,n1/n′2,n2/n′1,n2/n′2}
[−∞,−n1] if n′1 ≤ 0≤ n′2∧n2 < 0
[−n2,∞] if n′1 ≤ 0≤ n′2∧0< n1

[−∞,∞] otherwise

Table 5.1: PPL operators defined for interval arguments.

56 Chapter 5. Abstractly Interpreting PPL

Definition 5.3 (Greatest lower bound of abstract register states):>̃reg ũreg r̃= r̃ ũreg >̃reg = r̃

⊥̃reg ũreg r̃= r̃ ũreg ⊥̃reg = ⊥̃reg
(r̃ ũreg r̃

′) r = (r̃ r) ũval(r̃
′ r) 2

Definition 5.4 (Least upper bound of abstract register states):>̃reg t̃reg r̃= r̃ t̃reg >̃reg = >̃reg
⊥̃reg t̃reg r̃= r̃ t̃reg ⊥̃reg = r̃

(r̃ t̃reg r̃
′) r = (r̃ r) t̃val(r̃

′ r) 2

Definition 5.5 (Abstraction of a set of register states):

αreg(R) =

>̃reg if R= Reg→ Val
⊥̃reg if R= /0
λ r ∈ Reg.αval({r r | r ∈ R}) otherwise 2

Theorem 5.6 (Galois connection – Register states):
〈αreg,γreg〉, where γreg and αreg are defined as in Definitions 5.1 and 5.5, re-
spectively, is a Galois connection. 2

PROOF. Since αval = αint and γval = γ int, 〈αval,γval〉 is a Galois insertion be-
tween P(Val) and Vãl (Theorem 3.39).

By Theorem 3.24, 〈αreg : P(Reg→Val)→ ((Reg→Vãl)∪{⊥̃reg,>̃reg}),
γreg : ((Reg→Vãl)∪{⊥̃reg,>̃reg})→P(Reg→Val)〉, where γreg and αreg are
as presented in Definitions 5.1 and 5.5, respectively, is a Galois connection. �

5.3 Abstract Evaluation of Arithmetical Expres-
sions

The function evaluating arithmetic expressions, A, must be abstracted since
values and register states are abstracted. The abstraction will be ˜A : Aexp→
(Reg→ Vãl)→ Vãl, which is equivalent to ˜A : Aexp→ (Reg→ Intv)→

5.4 Boolean Restriction 57

˜A [[n]]r̃= αval({n})

˜A [[r]]r̃= r̃ r

˜A [[a1+a2]]r̃= ˜A [[a1]]r̃ +̃val ˜A [[a2]]r̃

˜A [[a1-a2]]r̃= ˜A [[a1]]r̃ −̃val ˜A [[a2]]r̃

˜A [[a1*a2]]r̃= ˜A [[a1]]r̃ ∗̃val ˜A [[a2]]r̃

˜A [[a1/a2]]r̃= ˜A [[a1]]r̃ /̃val ˜A [[a2]]r̃

Table 5.2: The abstract function evaluating arithmetic expressions.

Intv, and can be derived using Definition 3.11 to induce A. To do this, A must
first be lifted to sets of concrete register mappings:

AP [[a]]R= {A [[a]]r | r ∈ R}

The abstract evaluation function can then be derived as:

˜A [[a]] = αval ◦AP [[a]]◦ γreg

The details of this function can be found in Table 5.2.

5.4 Boolean Restriction

The function B̃R , defined in Definition 5.7, will be used in the abstract axiom
transition rules (see Table 5.5 on page 84). This function is safely induced
from B, using Definition 3.11, so that the concretization of B̃R [[b]]r̃, where
b ∈ Bexp, always contains (at least) the concrete register states, derived from
r̃, for which b evaluates to true.

Definition 5.7 (Boolean restriction):

B̃R [[b]]r̃= αreg({r ∈ γreg(r̃) |B[[b]]r}) 2

58 Chapter 5. Abstractly Interpreting PPL

5.5 Abstract Variable States
Using Theorems 3.17, 3.20, 3.24 and 3.39, a Galois connection, 〈αvar,γvar〉,
between the concrete domain P(Var→ Thrd→P(Val×Time)) and the
abstract domain (Var→ Thrd→P(Vãl×Tim̃e))∪{⊥̃var,>̃var} can be es-
tablished. The concretization function, γvar, abstraction function, αvar, partial
order, ṽvar, greatest lower bound, ˜⊔var, and least upper bound,

⊔̃
var, are given

by Definitions 5.8, 5.9, 5.14, 5.15 and 5.16, respectively.
x̃ is the bottom element, ⊥̃var, if ∃x∈Var : ∃T∈Thrd : ((x̃ x) T) = /0; i.e.,

some variable and thread combination maps to the empty set (there is no write-
history available for that combination). Note that such an abstract variable state
has no concrete counterparts (γvar(⊥̃var) = /0). Therefore, an abstract variable
state, x̃, that actually contains no history for thread T on variable x, should
have ((x̃ x) T) = {(⊥̃val,⊥̃t)} to make x̃ 6= ⊥̃var. Note that γvar(x̃), where
((x̃ x) T) = {(⊥̃val,⊥̃t)} for some variable, x, and thread, T, is a set of concrete
states, X, for which all x ∈ X are such that ((x x) T) = /0.

The top element, >̃var, corresponds to a state where all variable and thread
combinations are mapped to Vãl×Tim̃e.

Definition 5.8 (Concretization of an abstract variable state):

γvar(>̃var) = Var→ Thrd→ (Val×Time)
γvar(⊥̃var) = /0
γvar(x̃) = {λx ∈ Var. f | f ∈ {λT ∈ Thrd.W |W ∈

{W ′ | (αval({v ∈ Val | ∃t ∈ Time : (v, t) ∈W ′}),
α t({t ∈ Time | ∃v ∈ Val : (v, t) ∈W ′})) ∈

((x̃ x) T)}}}
2

Definition 5.9 (Abstraction of a set of variable states):

αvar(Var→ Thrd→ (Val×Time)) = >̃var

αvar(/0) = ⊥̃var

αvar(X) = λx ∈ Var.λT ∈ Thrd.{(αval({v | ∃t ∈ Time : (v, t) ∈W}),
α t({t | ∃v ∈ Val : (v, t) ∈W})) |

W ∈ {(x x) T | x ∈ X}}
2

5.5 Abstract Variable States 59

Theorem 5.10 (Galois connection – Variable states):
〈αvar,γvar〉, where γvar and αvar are defined as in Definitions 5.8 and 5.9, re-
spectively, defines a Galois connection.

PROOF. Since 〈αint,γ int〉 is a Galois insertion (Theorem 3.39) and thus a Ga-
lois connection, so are 〈αval,γval〉 and 〈α t,γ t〉 (since αval = α t = αint and
γval = γ t = γ int). Using Theorems 3.17, 3.20 and 3.24 to derive αvar and
γvar, the result follows (note that the cases γvar(>̃var), γvar(⊥̃var), αvar(Var→
Thrd→ (Val×Time)) and αvar(/0) follow trivially):

γvar(x̃)
Th. 3.24
= {λx ∈ Var. f | f ∈ γ ′(x̃ x)}

Th. 3.24
= {λx ∈ Var. f | f ∈ {λT ∈ Thrd.W |W ∈ γ ′′((x̃ x) T)}}

Th. 3.20
= {λx ∈ Var. f | f ∈ {λT ∈ Thrd.W |W ∈

{W ′ | α ′′′(W ′) ∈ ((x̃ x) T)}}}
Th. 3.17
= {λx ∈ Var. f | f ∈ {λT ∈ Thrd.W |W ∈

{W ′ | (αval({v ∈ Val | ∃t ∈ Time : (v, t) ∈W ′}),
α t({t ∈ Time | ∃v ∈ Val : (v, t) ∈W ′})) ∈

((x̃ x) T)}}}

αvar(X)
Th. 3.24
= λx ∈ Var.α ′({x x | x ∈ X})

Th. 3.24
= λx ∈ Var.λT ∈ Thrd.α ′′({ f T | f ∈ {x x | x ∈ X}})

calc.
= λx ∈ Var.λT ∈ Thrd.α ′′({(x x) T | x ∈ X})

Th. 3.20
= λx ∈ Var.λT ∈ Thrd.{α ′′′(W) |W ∈ {(x x) T | x ∈ X}}

Th. 3.17
= λx ∈ Var.λT ∈ Thrd.{(αval({v | ∃t ∈ Time : (v, t) ∈W}),

α t({t | ∃v ∈ Val : (v, t) ∈W})) |
W ∈ {(x x) T | x ∈ X}}

�

The state x̃ ∈ (Var→ Thrd→P(Vãl×Tim̃e))∪{⊥̃var,>̃var} can save
any number (i.e., history) of abstract writes, w̃ ∈ Vãl×Tim̃e, for each thread
that occur on some variable. This is done to counteract the precision loss due
to approximating points in time with intervals. The information available in
such history makes it possible to use sequence information (within each thread)
and timing information (between threads) to get a reasonably tight value when
reading a variable.

For convenience in expressing, and increased readability of, the upcoming
algorithms, some relations for abstract writes, w̃ ::= (ṽ, t̃), will be defined. The

60 Chapter 5. Abstractly Interpreting PPL

partial order, ṽw, and least upper bound operator,
⊔̃

w, for writes follow nat-
urally (c.f., Definitions 3.26 and 3.28) from the partial orders and least upper
bound operators for values, ṽval and

⊔̃
val, and time, ṽt and

⊔̃
t . ṽw and

⊔̃
w are

given by Definitions 5.11 and 5.12, respectively.

NOTE. The notations “w̃” and “(ṽ, t̃)” for abstract writes will from here on be
used interchangeably.

Definition 5.11 (Partial order of writes, ṽw):w̃ ṽw >̃w
⊥̃w ṽw w̃
(ṽ1, t̃1) ṽw (ṽ2, t̃2)⇐⇒ ṽ1 ṽval ṽ2∧ t̃1 ṽt t̃2 2

Definition 5.12 (Least upper bound of writes,
⊔̃

w):w̃ t̃w >̃w = >̃w t̃w w̃ = >̃w
⊥̃w t̃w w̃ = w̃ t̃w ⊥̃w = w̃
(ṽ1, t̃1) t̃w(ṽ2, t̃2) = (ṽ1 t̃val ṽ2, t̃1 t̃t t̃2) 2

The precedence relation, <̃t , on abstract times given by Definition 5.13 will
be useful to determine whether two writes are performed at disjoint times, or
the order two arbitrary events.

Definition 5.13 (Time precedence, <̃t):
t̃ <̃t >̃t if t̃ 6= >̃t

⊥̃t <̃t t̃ if t̃ 6= ⊥̃t

t̃1 <̃t t̃2⇐⇒max(γ t(t̃1))<min(γ t(t̃2)) if t̃1, t̃2 6∈ {⊥̃t ,>̃t} 2

The definitions of ṽvar, ˜⊔var and
⊔̃

var follow naturally from the definition
of the domain (c.f., Definitions 3.26, 3.27 and 3.28) and are presented in Defini-
tions 5.14, 5.15 and 5.16, respectively. However, these relations and operators
cannot be used directly within the analysis to, e.g., join (merge) the histories
of writes in several variable states. This is due to the fact that the history in
the states might have different sequence information (i.e., traces), that would

5.5 Abstract Variable States 61

be lost if merging the two states. Reading a safe and tight value for a variable
requires the sequence information to be available. Therefore, the operations to
be used within the analysis should instead be defined based on Definition 5.18
to ensure that all threads see safe values (see Definition 5.19) at all times. Note
that Definition 5.17 defines the uniquely most recent write in a set of writes.
This definition defines the most recent write both among several threads (glob-
ally) and for single threads (locally).

Definition 5.14 (Partial order for abstract variable states):

x̃ ṽvar >̃var
⊥̃var ṽvar x̃

x̃ ṽvar x̃
′⇐⇒∀x ∈ Var : ∀T ∈ Thrd : (x̃ x) T⊆ (x̃′ x) T 2

Definition 5.15 (Greatest lower bound of abstract variable states):

>̃var ũvar x̃= x̃ ũvar >̃var = x̃

⊥̃var ũvar x̃= x̃ ũvar ⊥̃var = ⊥̃var
(((x̃ ũvar x̃

′) x) T) = ((x̃ x) T)∩ ((x̃′ x) T) 2

Definition 5.16 (Least upper bound of abstract variable states):

>̃var t̃var x̃= x̃ t̃var >̃var = >̃var
⊥̃var t̃var x̃= x̃ t̃var ⊥̃var = x̃

(((x̃ t̃var x̃
′) x) T) = ((x̃ x) T)∪ ((x̃′ x) T) 2

Definition 5.17 (Time of most recent write):
The most recent write(s), (ṽ, t̃), in a set of writes is defined such that
min(γ t(t̃)) ≥ min(γ t(t̃′)), for all other writes, (ṽ′, t̃′). If several writes,
(ṽ′, t̃′), are such that min(γ t(t̃)) = min(γ t(t̃′)), the time of the most re-
cent write, t̃, is uniquely determined from the write(s) with max(γ t(t̃)) =
max({max(γ t(t̃′)) | t̃′ ranges over the time-stamps of the writes such that
min(γ t(t̃)) = min(γ t(t̃′))}). 2

62 Chapter 5. Abstractly Interpreting PPL

NOTE. The definition of the “time of the most recent write” and many of the
upcoming algorithms could be very much simplified if the notion of lists were
known. The positions of the writes in a list could simply correspond to the
sequential order in which they occurred within a thread. Therefore, implemen-
tations of the upcoming algorithms could look very different from how they
are defined here.

Definition 5.18 (Safe write history):
An abstract variable state, x̃, is safe at time t̃ if γvar(x̃) represents at least all
the possible concrete variable states that can be valid at time t ∈ γ t(t̃) for the
given thread trace(s).

Thus, to be safe at time t̃, x̃ must, for each variable, x ∈ Var and each
thread, T ∈ Thrd, be such that ((x̃ x) T) contains at least

1. all writes, (ṽ, t̃′), by T on x, such that t̃′ 6<̃t t̃∧ t̃ 6<̃t t̃′, and

2. the latest (most recent) write(s), (ṽ, t̃′), by T on x, such that t̃′ <̃t t̃, if t̃′ ũt
t̃mrw 6= ⊥̃t , where t̃mrw is the time of the globally most recent write,

or,

3. (⊥̃val,⊥̃t), otherwise (i.e., if there are no writes that fit 1 or 2 above), or
if no writes have occurred by T on x.

From how the concrete and abstract domains (c.f., Section 4.1 and this section)
and transition rules (c.f., Section 4.2) are defined, it is apparent that x̃ is a safe
approximation of x (i.e., x̃ contains safe write history) iff ∃x′ ∈ γvar(x̃) : ∀x ∈
Var : ∀T ∈ Thrd : ((x x) T)⊆ ((x′ x) T). 2

Definition 5.19 (Safe value of x as seen by thread T):
Assuming that x̃ contains safe write history for all threads on variable x, ac-
cording to Definition 5.18, then a safe value of x, as seen by thread T, at time t̃
is the least upper bound,

⊔̃
val, of the values of at least the following writes on

x.

1. All writes, w̃T′ = (ṽT′ , t̃T′), for threads T′ ∈ Thrd \ {T} on x such that
t̃T′ 6<̃t t̃∧ t̃ 6<̃t t̃T′ .

2. The most recent write in {(ṽ′T′ , t̃
′
T′) ∈ (x̃ x) T′ | t̃′T′ <̃t t̃ ∧ t̃′T′ ũt

t̃mrw 6= ⊥̃t} for each thread T′ ∈ Thrd \ {T}, and the most recent

5.5 Abstract Variable States 63

write, (ṽ′T, t̃
′
T) ∈ (x̃ x) T, such that min(γ t(t̃′T)) ≤ min(γ t(t̃)), if t̃′T ũt

t̃mrw 6= ⊥̃t , where t̃mrw is the time of the (globally) most recent write in
{(ṽ′T, t̃′T)}∪

⋃
T′∈Thrd\{T}{(ṽ′T′ , t̃

′
T′) ∈ (x̃ x) T′ | t̃′T′ <̃t t̃}. 2

Algorithm 5.1 Partial Order of Abstract Variable States

1: function PARTIALORDERVAR(x̃, x̃′)
2: for all x ∈ Var do
3: for all T ∈ Thrd do
4: W̃ ← ((x̃ x) T)
5: W̃ ′← ((x̃′ x) T)
6: while W̃ 6= /0∧W̃ ′ 6= /0 do
7: w̃← EARLIESTWRITETHREAD(W̃)
8: w̃′← EARLIESTWRITETHREAD(W̃ ′)
9: W̃ ← W̃ \{w̃}

10: W̃ ′← W̃ ′ \{w̃′}
11: if w̃ 6= w̃′ then
12: if W̃ ′ = /0 then
13: for all w̃′′ ∈ W̃ ∪{w̃} do
14: if w̃′′ 6ṽw w̃′ then
15: return false

16: end if
17: end for
18: W̃ ← /0
19: else
20: return false

21: end if
22: end if
23: end while
24: if W̃ 6= /0 then
25: return false

26: end if
27: end for
28: end for
29: return true

30: end function

The partial order for abstract variable states to be used within the analysis,
ṽ′var, is given by Definition 5.20 based on PARTIALORDERVAR, defined in
Algorithm 5.1, taking the safety of write history (Definition 5.18) into account.
Note that EARLIESTWRITETHREAD, as defined in Algorithm 5.2, returns a

64 Chapter 5. Abstractly Interpreting PPL

Algorithm 5.2 Earliest Write for a Thread

1: function EARLIESTWRITETHREAD(W̃)
2: if W̃ = /0 then
3: return ⊥̃w
4: end if
5: t̃min← α t({∞})
6: for all (ṽ, t̃) ∈ W̃ do
7: if min(γ t(t̃))<min(γ t(t̃min)) then
8: t̃min← t̃
9: else if min(γ t(t̃)) = min(γ t(t̃min)) then

10: t̃min← t̃ ũt t̃min
11: end if
12: end for
13: W̃ ′←{(ṽ, t̃) | (ṽ, t̃) ∈ W̃ ∧ t̃ = t̃min}
14: ṽmin← αval({∞})
15: for all (ṽ, t̃) ∈ W̃ ′ do
16: if min(γval(ṽ))<min(γval(ṽmin)) then
17: ṽmin← ṽ
18: else if min(γval(ṽ)) = min(γval(ṽmin)) then
19: ṽmin← ṽ ũval ṽmin
20: end if
21: end for
22: return (ṽmin, t̃min)
23: end function

5.5 Abstract Variable States 65

deterministically defined write. The idea is that the history (trace) for each
thread and variable should be the same in both states for the relation to be true.
However, the histories are allowed to differ somewhat. The greater state could
also contain newer writes than those in the history of the lesser state. It could
also be the case that the newest write in the greater state is an upper bound to
all of the most recent writes in the lesser state that are not part of both histories.

Definition 5.20 (Safe partial order of abstract variable states):
x̃ ṽ′var >̃var

⊥̃var ṽ′var x̃

x̃ ṽ′var x̃
′⇐⇒ PARTIALORDERVAR(x̃, x̃′) 2

Based on this partial order relation, the lower bound and upper bound op-
erators to be used within the analysis, ˜⊔′var and

⊔̃′
var, are given by Definitions

5.21 and 5.22, respectively. Note that MEETVAR is defined in Algorithm 5.3
and JOINVAR is defined in Algorithm 5.4.

Definition 5.21 (Safe lower bound of abstract variable states):>̃var ũ′var x̃= x̃ ũ′var >̃var = x̃

⊥̃var ũ′var x̃= x̃ ũ′var ⊥̃var = ⊥̃var
x̃ ũ′var x̃

′ = MEETVAR(x̃, x̃′) 2

Definition 5.22 (Safe upper bound of abstract variable states):>̃var t̃′var x̃= x̃ t̃′var >̃var = >̃var
⊥̃var t̃′var x̃= x̃ t̃′var ⊥̃var = x̃

x̃ t̃′var x̃
′ = JOINVAR(x̃, x̃′) 2

NOTE. Neither ṽ′var, ˜⊔′var nor
⊔̃′

var is currently used by the analysis (c.f.,
Chapter 6) but are just presented for completeness of the abstraction since the
operators cannot be directly based on the lattice. However, if, e.g., merging
of configurations [25] is introduced to lower the complexity of the analysis, at
least

⊔̃′
var will be needed.

66 Chapter 5. Abstractly Interpreting PPL

Algorithm 5.3 Meeting Two Abstract Variable States

1: function MEETVAR(x̃, x̃′)
2: x̃

′′← ⊥̃var
3: for all x ∈ Var do
4: for all T ∈ Thrd do
5: W̃ ← (x̃ x) T
6: W̃ ′← (x̃′ x) T
7: C← /0
8: while W̃ 6= /0∧W̃ ′ 6= /0 do
9: (ṽ, t̃)← EARLIESTWRITETHREAD(W̃)

10: (ṽ′, t̃′)← EARLIESTWRITETHREAD(W̃ ′)
11: W̃ ← W̃ \ (ṽ, t̃)
12: W̃ ′← W̃ ′ \ (ṽ′, t̃′)
13: if (ṽ, t̃) = (ṽ′, t̃′) then
14: C← C∪{(ṽ, t̃)}
15: else if ṽ ũval ṽ′ 6= ⊥̃val∧ t̃ ũt t̃′ 6= ⊥̃t ∧W̃ = /0∧W̃ ′ = /0 then
16: C← C∪{(ṽ ũval ṽ′, t̃ ũt t̃′)}
17: else
18: W̃ ← /0
19: W̃ ′← /0
20: end if
21: end while
22: if C = /0 then
23: ((x̃′′ x) T)←{(⊥̃var,⊥̃t)}
24: else
25: ((x̃′′ x) T)← C
26: end if
27: end for
28: end for
29: return x̃

′′

30: end function

5.5 Abstract Variable States 67

Algorithm 5.4 Joining Two Abstract Variable States

1: function JOINVAR(x̃, x̃′)
2: x̃

′′← ⊥̃var
3: for all x ∈ Var do
4: for all T ∈ Thrd do
5: W̃ ← (x̃ x) T
6: W̃ ′← (x̃′ x) T
7: C← /0
8: M← (⊥̃val,⊥̃t)
9: while W̃ 6= /0∨W̃ ′ 6= /0 do

10: w̃← EARLIESTWRITETHREAD(W̃)
11: w̃′← EARLIESTWRITETHREAD(W̃ ′)
12: if w̃ = w̃′ then
13: C← C∪{w̃}
14: W̃ ← W̃ \{w̃}
15: W̃ ′← W̃ ′ \{w̃′}
16: else if W̃ = /0 then
17: C← C∪W̃ ′

18: W̃ ′← /0
19: else if W̃ ′ = /0 then
20: C← C∪W̃
21: W̃ ← /0
22: else
23: M← (

⊔̃
w W̃) t̃w(

⊔̃
w W̃ ′)

24: W̃ ← /0
25: W̃ ′← /0
26: end if
27: end while
28: ((x̃′′ x) T)← C
29: if M 6= (⊥̃val,⊥̃t) then
30: ((x̃′′ x) T)← ((x̃′′ x) T)∪{M}
31: end if
32: end for
33: end for
34: return x̃

′′

35: end function

68 Chapter 5. Abstractly Interpreting PPL

Algorithm 5.5 Write to Variable
1: function WRITE(T, x̃,x, w̃)

2: (x̃′ x′) T′←

{
((x̃ x) T)∪{w̃} if x′ = x∧T′ = T
(x̃ x′) T′ otherwise

3: return x̃
′

4: end function

T1

T2

t̃1 t̃2 time

Figure 5.3: The time-stamps of the writes considered by READ(x̃,x,T1, t̃1) and
READ(x̃,x,T2, t̃2).

WRITE(T, x̃,x, w̃), as defined in Algorithm 5.5, safely (Lemma 5.23) adds
the write, w̃, to the set of write-history for thread T, i.e., to ((x̃ x) T).

Lemma 5.23 (Soundness of WRITE):
Assuming that x̃ contains safe write history for variable x and thread T (c.f.,
Definition 5.18) before the write by thread T is performed at time t̃, then so
will WRITE(T, x̃,x,(ṽ, t̃)). 2

PROOF. Since WRITE(T, x̃,x,(ṽ, t̃)) simply adds the write (ṽ, t̃) to the history
of thread T’s writes on variable x in the state x̃, and x̃ is assumed to contain
safe write history for T on x, WRITE(T, x̃,x,(ṽ, t̃)) trivially fulfills the safety
condition in Definition 5.18 with regards to T and x. �

Using the sequence and timing information provided by Definition 5.19,
READ(x̃,x,T, t̃), as defined in Algorithm 5.6, only takes the writes that might
be valid at t̃ (the point in time when T issues the READ) into consideration for its
returned value ṽ ∈Vãl, which is safe (Lemma 5.26). These writes, w̃ = (ṽ′, t̃′),
come from two categories. The first category covers the writes on x for threads
T′ ∈ Thrd\{T} whose “time-stamps” overlap in time with t̃, i.e., t̃ ũt t̃′ 6= ⊥̃t .
The second category covers the most recent write on x for all threads (including
T) such that its time-stamp overlaps with the overall most recent write of any
write, not belonging to the first category. Note that any write for thread T with
a time-stamp that begins after the beginning of t̃ is discarded. So is any write
for T′ ∈ Thrd\{T} such that its time-stamp completely succeeds t̃. This is be-
cause such writes can simply not have occurred at the time of issuing the READ

5.5 Abstract Variable States 69

Algorithm 5.6 Read from Variable
1: function READ(x̃,x,T, t̃)
2: x̃

′← ⊥̃var
3: for all T′ ∈ Thrd\{T} do
4: ((x̃′ x) T′)←{(ṽ′, t̃′) ∈ ((x̃ x) T′) | t̃ 6<̃t t̃′}
5: end for
6: ((x̃′ x) T)←{(ṽ′, t̃′) ∈ ((x̃ x) T) |min(γ t(t̃))≥min(γ t(t̃′))}
7: W̃ ← /0
8: for all T′ ∈ Thrd\{T} do
9: W̃T′ ←{(ṽ′, t̃′) ∈ ((x̃′ x) T′) | t̃′ 6<̃t t̃}

10: ((x̃′ x) T′)← ((x̃′ x) T′)\W̃T′

11: W̃ ← W̃ ∪W̃T′

12: end for
13: t̃mrw← MOSTRECENTWRITETIME(x̃′,x)
14: if t̃mrw 6= ⊥̃t then
15: for all T′ ∈ Thrd do
16: t̃mrw

T′ ← MOSTRECENTWRITETIMETHREAD((x̃′ x) T′)
17: W̃ ← W̃ ∪{(ṽ′, t̃′) ∈ ((x̃′ x) T′) | t̃′ ũt t̃mrw

T′ 6= ⊥̃t ∧ t̃′ ũt t̃mrw 6= ⊥̃t}
18: end for
19: end if

20: ṽ←

{⊔̃
val{ṽ′ | ∃t̃′ ∈ Tim̃e : (ṽ′, t̃′) ∈ W̃} if W̃ 6= /0

[−∞,∞] otherwise
21: return ṽ
22: end function

Algorithm 5.7 Time of Most Recent Write
1: function MOSTRECENTWRITETIME(x̃,x)
2: return MOSTRECENTWRITETIMETHREAD(

⋃
T∈Thrd((x̃ x) T))

3: end function

Algorithm 5.8 Time of Most Recent Write in Thread

1: function MOSTRECENTWRITETIMETHREAD(W̃)
2: if W̃ = /0 then
3: return ⊥̃t
4: end if
5: tmin←max({min(γ t(t̃)) | ∃ṽ ∈ Vãl : (ṽ, t̃) ∈ W̃})
6: tmax←max(

⋃
{γ t(t̃) | ∃ṽ ∈ Vãl : (ṽ, t̃) ∈ W̃ ∧min(γ t(t̃)) = tmin})

7: return α t({tmin, tmax})
8: end function

70 Chapter 5. Abstractly Interpreting PPL

(and will thus usually not be included in x̃ at all). An illustration of the time-
stamps of the writes in T1 and T2 that must be considered by READ(x̃,x,T1, t̃1)
(lines with arrow heads pointing left) and READ(x̃,x,T2, t̃2) (lines with arrow
heads pointing right) is given in Figure 5.3. The returned value, ṽ, is the least
upper bound of the values of the considered writes. Note that MOSTRECEN-
TWRITETIME and MOSTRECENTWRITETIMETHREAD are defined based on
Definition 5.17 in Algorithms 5.7 and 5.8, respectively, and that these func-
tions give the time of the most recent write among the writes in a set of writes
(Lemmas 5.24 and 5.25).

Lemma 5.24 (Soundness of MOSTRECENTWRITETIMETHREAD):
MOSTRECENTWRITETIMETHREAD(W̃), defined in Algorithm 5.8, gives the
time of the most recent write in W̃ . 2

PROOF. This proof will be conducted based on the structure of Algorithm 5.8.
If W̃ = /0, then ⊥̃t is returned. Otherwise, tmin is the greatest lower limit

of the time-stamp of any write in W̃ (max({min(γ t(t̃) | ∃ṽ ∈Vãl : (ṽ, t̃) ∈ W̃}))
and tmax is the greatest upper limit of the time-stamps of the writes in W̃ such
that the lower limit of their time-stamps are equal to tmin (max(

⋃
{γ t(t̃) | ∃ṽ ∈

Vãl : (ṽ, t̃) ∈ W̃ ∧min(γ t(t̃)) = tmin})). Thus, α({tmin, tmax}) is the time of the
most recent write in W̃ , as given by Definition 5.17. �

Lemma 5.25 (Soundness of MOSTRECENTWRITETIME):
MOSTRECENTWRITETIME(x̃,x), defined in Algorithm 5.7, gives the time of
the globally most recent write on x in x̃. 2

PROOF. This proof is trivial since MOSTRECENTWRITETIMETHREAD(W̃) is
the time of the most recent write in W̃ (Lemma 5.24) and the set of writes, W̃ ,
is
⋃

T∈Thrd((x̃ x) T); i.e., W̃ is a set containing the writes by all threads in Thrd
on x. Thus the time of the globally most recent write, as given by Definition
5.17, is returned. �

Lemma 5.26 (Soundness of READ):
Assuming that x̃ contains safe write history at t̃ (Definition 5.18), a safe value
for x at t̃ as seen by thread T (Definition 5.19) is given by READ(x̃,x,T, t̃). 2

PROOF. The proof amounts to showing that READ(x̃,x,T, t̃) is an upper bound
to the values of the writes given by Definition 5.19; i.e., to show that all writes
given by Definition 5.19 are included in W̃ .

On line 4, the new variable state, x̃′, is defined to contain all writes, (ṽ′, t̃′)∈
((x̃ x) T), such that t̃ 6<̃t t̃′, for each T′ ∈Thrd\{T}. On lines 9–11, the writes,

5.5 Abstract Variable States 71

(ṽ′, t̃′)∈ ((x̃′ x) T′), for all T′ ∈Thrd\{T}, such that t̃′ 6<̃t t̃, are extracted (i.e.,
identified and removed) from ((x̃′ x) T′) and put in the set W̃ . Thus, W̃ contains
all the writes specified by 1 in Definition 5.19.

On line 6, ((x̃′ x) T) is defined to contain all writes, (ṽ′, t̃′) ∈ ((x̃ x) T),
such that min(γ t(t̃)) ≥ min(γ t(t̃′)), and ((x̃′ x) T′), for each T′ ∈ Thrd \ {T},
now contains all the writes, (ṽ′, t̃′) ∈ ((x̃ x) T′), such that t̃′ <̃t t̃.

On line 13, the time of the (global) most recent write on x among all
threads, i.e., the most recent write in

⋃
{(x̃′ x) T′ | T′ ∈ Thrd}, is determined

(Lemma 5.25), while at line 16, the time of the most recent write for each
thread is determined (Lemma 5.24). If the time of the most recent write for a
thread overlaps with the time of the global most recent write, then all writes
overlapping in time with the most recent write for that thread are added to W̃
(line 17). Thus, W̃ now also contains (at least) all the writes specified by 2 in
Definition 5.19.

Finally, on line 20, the least upper bound of the values of the writes in W̃
is determined. On the next line, it is returned if W̃ 6= /0. If W̃ = /0, then [−∞,∞]
is returned, which trivially is a safe approximation of the corresponding value
read (i.e., v ∈ γ int([−∞,∞])) in the concrete case (c.f., Table 4.2). �

Since READ(x̃,x,T, t̃) discards writes from thread T′ ∈ Thrd that are too
old to be valid at time t̃ (and writes occurring after t̃) for its returned value,
and since time is assumed to never progress negatively (i.e., backwards; c.f.,
Lemma 4.2), the discarded writes can safely be removed from ((x̃ x) T′).
TRIM, defined in Algorithm 5.9, safely (Lemma 5.27) removes the outdated
writes from ((x̃ x) T′) for all T′ ∈ Thrd. Thus, TRIM can be used to lower
the space complexity of the analysis. Note that SPLITSET(W̃ , t̃), as defined in
Algorithm 5.10, is used to split a set of writes into two sets where the first set
contains all writes, (ṽ, t̃′), such that t̃′ ũt t̃ 6= ⊥̃t , and the second set contains all
other writes.

Lemma 5.27 (Soundness of TRIM):
If x̃ contains safe write history at time t̃ (c.f., Definition 5.18), then so does
TRIM(x̃, t̃). 2

PROOF. Given that x̃ is safe, it must be shown that, for any variable, x ∈ Var,
and any thread, T ∈ Thrd, ((TRIM(x̃, t̃) x) T) contains at least (c.f., Definition
5.18)

1. all writes, (ṽ, t̃′), of ((x̃ x) T) such that t̃′ 6<̃t t̃∧ t̃ 6<̃t t̃′, and

72 Chapter 5. Abstractly Interpreting PPL

Algorithm 5.9 Trim Variable State
1: function TRIM(x̃, t̃)
2: x̃

′← ⊥̃var
3: x̃

′′← ⊥̃var
4: for all x ∈ Var do
5: 〈[FT]T∈Thrd〉 ← 〈[/0]T∈Thrd〉
6: 〈[OT]T∈Thrd〉 ← 〈[/0]T∈Thrd〉
7: 〈[NT]T∈Thrd〉 ← 〈[/0]T∈Thrd〉
8: for all T ∈ Thrd do
9: FT←{(ṽ, t̃′) ∈ (x̃ x) T | t̃ <̃t t̃′}

10: (OT,NT)← SPLITSET((x̃ x) T, t̃)
11: ((x̃′ x) T)← NT \FT
12: end for
13: t̃mrw← MOSTRECENTWRITETIME(x̃′,x)
14: for all T ∈ Thrd do
15: W̃T← /0
16: t̃mrw

T ← MOSTRECENTWRITETIMETHREAD((x̃′ x) T)
17: if t̃mrw

T ũt t̃mrw = ⊥̃t ∧FT = /0∧OT = /0 then
18: W̃T←{(⊥̃val,⊥̃t)}
19: else
20: W̃T←{(ṽ, t̃′) ∈ ((x̃′ x) T) | t̃′ ũt t̃mrw

T 6= ⊥̃t ∧ t̃mrw ũt t̃mrw
T 6= ⊥̃t}

21: end if
22: ((x̃′′ x) T)← FT∪OT∪W̃T
23: end for
24: end for
25: return x̃

′′

26: end function

Algorithm 5.10 Split Set of Writes

1: function SPLITSET(W̃ , t̃)
2: O←{(ṽ, t̃′) ∈ W̃ | t̃ 6<̃t t̃′∧ t̃′ 6<̃t t̃}
3: N←{(ṽ, t̃′) ∈ W̃ | t̃ <̃t t̃′∨ t̃′ <̃t t̃}
4: return (O,N)
5: end function

5.5 Abstract Variable States 73

2. any write, (ṽ, t̃′), of ((x̃ x) T) such that t̃′ <̃t t̃, if t̃′ ũt t̃mrw 6= ⊥̃t , where
t̃mrw is the time of the globally most recent write of the writes preceding
t̃,

or,

3. (⊥̃val,⊥̃t), if there are no writes fitting the definition of the previous two
categories (e.g., if all writes made by T are outdated or no writes have
occurred by T on x; i.e., if ((x̃ x) T) = {(⊥̃val,⊥̃t)}).

Before advancing to the proof procedure, note that ¬(t̃′ 6<̃t t̃∧ t̃ 6<̃t t̃′) when-
ever t̃ or t̃′ is ⊥̃t or >̃t . If they are not, note that (it is implicitly assumed that
Tim̃e = Intv):

t̃′ 6<̃t t̃∧ t̃ 6<̃t t̃′
Def. 5.13⇐⇒ max(γ t(t̃′)) 6<min(γ t(t̃))∧max(γ t(t̃)) 6<min(γ t(t̃′))

calc.⇐⇒ max(γ t(t̃′))≥min(γ t(t̃))∧max(γ t(t̃))≥min(γ t(t̃′))
calc.⇐⇒ min({max(γ t(t̃)),max(γ t(t̃′))})≥

max({min(γ t(t̃)),min(γ t(t̃′))})
Def. 3.34⇐⇒ t̃ ũt t̃′ 6= ⊥̃t

Now, assume that x̃ contains safe write history. The structure of the algo-
rithm gives that for each x ∈ Var:

• For each thread, T ∈ Thrd, the set FT contains the writes, (ṽ, t̃′), by T on
x such that t̃ <̃t t̃′; i.e., writes that occur after t̃. Note that this captures
all writes, (ṽ, t̃′), such that t̃′ = >̃t as long as t̃ 6= >̃t .

• For each thread, T ∈ Thrd, the set OT contains the writes, (ṽ, t̃′), by T
on x such that t̃′ 6<̃t t̃∧ t̃ 6<̃t t̃′.

• For each thread, T∈Thrd, the set NT contains the writes, (ṽ, t̃′), by T on
x such that t̃′ <̃t t̃∨ t̃ <̃t t̃′. Note that this captures all writes, (ṽ, t̃′), such
that t̃′ = >̃t or t̃′ = ⊥̃t .

• t̃mrw is determined from x̃
′, for which all writes, (ṽ, t̃′) ∈ ((x̃′ x) T), on x

by each thread, T ∈ Thrd, are such that t̃′ <̃t t̃.

• For each thread T ∈ Thrd, W̃T = {(⊥̃val,⊥̃t)} whenever t̃mrw
T ũt t̃mrw =

⊥̃t ∧FT = /0∧OT = /0, otherwise, W̃T contains all the writes by T on x
such that t̃′ <̃t t̃∧ t̃′ ũt t̃mrw

T 6= /0 if t̃mrw ũt t̃mrw
T 6= ⊥̃t , where t̃mrw

T is the
time of the most recent write of the writes, (ṽ, t̃′) ∈ ((x̃′ x) T); i.e., the
writes, (ṽ, t̃′) ∈ ((x̃ x) T), such that t̃′ <̃t t̃.

74 Chapter 5. Abstractly Interpreting PPL

Assume that t̃mrw
T ũt t̃mrw 6= ⊥̃t ∨FT 6= /0∨OT 6= /0, then ((x̃′′ x) T) contains

all writes, (ṽ, t̃′), such that t̃ <̃t t̃′∨ (t̃′ 6<̃t t̃∧ t̃ 6<̃t t̃′)∨ (t̃′ ũt t̃mrw
T 6= ⊥̃t ∧ t̃mrw ũt

t̃mrw
T 6= ⊥̃t). Thus conditions 1 and 2 above are fulfilled. Note that all writes,
(ṽ, t̃′), occurring after t̃ (i.e., t̃ <̃t t̃′) are present in x̃

′′; i.e., they are not trimmed
away from x̃.

Next, assume that t̃mrw
T ũt t̃mrw = ⊥̃t ∧FT = /0∧OT = /0, then ((x̃′′ x) T) =

{(⊥̃val,⊥̃t)}. Thus condition 3 above is fulfilled.
Thus, x̃′′ (and hence TRIM(x̃, t̃)) contains safe write history for all vari-

ables, x ∈ Var and threads, T ∈ Thrd. �

5.6 Abstract Lock States
In this section, a Galois connection, 〈α lock,γ lock〉, between the concrete do-
main P(Lck→ (Lckstt×Thrd⊥×Time×Thrd⊥×Time)) and the abstract
domain (Lck→ (Lckstt×Thrd⊥×Tim̃e×Thrd⊥×Tim̃e))∪{⊥̃lock,>̃lock},
for lock states, will be defined (Theorem 5.34). The definitions of γ lock (which
is monotone by Lemma 5.33) and α lock are presented in Definitions 5.28 and
5.29, respectively. Note that ˜STT, ˜OWN, D̃L, ˜POWN and ˜REL are defined in Ta-
ble 5.4, and that STT, OWN, DL, POWN and REL were defined in Table 4.5 on
page 45.

l̃ is the bottom element, ⊥̃lock, if ∃lck ∈ Lck : (l̃ lck = (u,T,⊥̃t ,T′, t̃)∨
l̃ lck = (u,T, t̃,T′,⊥̃t)) for some lock state, u ∈ {unlocked, locked}, owner, T ∈
Thrd, and previous owner, T′ ∈ Thrd. The top element, >̃lock, identifies the
mappings, l̃, such that ∀lck ∈ Lck : l̃ lck = (u,T,>̃t ,T′,>̃t), for any lock state,
u ∈ {unlocked, locked}, owner, T ∈ Thrd, and previous owner, T′ ∈ Thrd.
Definition 5.28 (Concretization of an abstract lock state):

γ lock(>̃lock) = Lck→ (Lckstt×Thrd⊥×Time×Thrd⊥×Time)
γ lock(⊥̃lock) = /0
γ lock(l̃) = γ lock(λ lck ∈ Lck.(ulck,Tlck, t̃lck,T′lck, t̃

′
lck))

= {λ lck ∈ Lck.(ulck,Tlck, tlck,T′lck, t
′
lck) |

tlck ∈ γ t(t̃lck)∧ t′lck ∈ γ t(t̃′lck)} 2

Definition 5.29 (Abstraction of a set of lock states):

α lock(L) = ˜⊔lock{l̃ | L⊆ γ lock(l̃)} 2

5.6 Abstract Lock States 75

˜STT : (Lckstt×Thrd⊥×Tim̃e×Thrd⊥×Tim̃e)→ Lckstt
˜STT((u,T, t̃,T′, t̃′)) = u

˜OWN : (Lckstt×Thrd⊥×Tim̃e×Thrd⊥×Tim̃e)→ Thrd⊥
˜OWN((u,T, t̃,T′, t̃′)) = T

D̃L : (Lckstt×Thrd⊥×Tim̃e×Thrd⊥×Tim̃e)→ Tim̃e
D̃L((u,T, t̃,T′, t̃′)) = t̃

˜POWN : (Lckstt×Thrd⊥×Tim̃e×Thrd⊥×Tim̃e)→ Thrd⊥
˜POWN((u,T, t̃,T′, t̃′)) = T′

˜REL : (Lckstt×Thrd⊥×Tim̃e×Thrd⊥×Tim̃e)→ Tim̃e
˜REL((u,T, t̃,T′, t̃′)) = t̃′

Table 5.4: Definition of ˜STT, ˜OWN, D̃L, ˜POWN and ˜REL – abstract versions of
STT, OWN, DL, POWN and REL.

76 Chapter 5. Abstractly Interpreting PPL

The partial order, ṽlock, greatest lower bound, ˜⊔lock, and least upper bound,⊔̃
lock, for abstract lock states follow naturally from Definitions 3.26, 3.27 and

3.28 and are presented in Definitions 5.30, 5.31 and 5.32, respectively.

Definition 5.30 (Partial order of abstract lock states):

l̃ ṽlock >̃lock

⊥̃lock ṽlock l̃

l̃ ṽlock l̃
′⇐⇒∀lck ∈ Lck : (˜STT(l̃ lck) = ˜STT(l̃′ lck)∧

˜OWN(l̃ lck) = ˜OWN(l̃′ lck)∧
D̃L(l̃ lck) ṽt D̃L(l̃′ lck)∧

˜POWN(l̃ lck) = ˜POWN(l̃′ lck)∧
˜REL(l̃ lck) ṽt ˜REL(l̃′ lck))

2

Definition 5.31 (Greatest lower bound of abstract lock states):

l̃ ũlock >̃lock = >̃lock ũlock l̃= l̃

l̃ ũlock ⊥̃lock = ⊥̃lock ũlock l̃= ⊥̃lock

λ lck ∈ Lck.(ulck
1 ,Tlck

1 , t̃lck
1 ,T′1

lck, t̃′1
lck) ũlock

λ lck ∈ Lck.(ulck
2 ,Tlck

2 , t̃lck
2 ,T′2

lck, t̃′2
lck) =

λ lck ∈ Lck.
(ulck

1 ,Tlck
1 , t̃lck

1 ũt t̃lck
2 ,T′1

lck, t̃′1
lck ũt t̃′2

lck)

if ∀lck ∈ Lck :
(ulck

1 = ulck
2 ∧

Tlck
1 = Tlck

2 ∧
T′1

lck = T′2
lck)

⊥̃lock otherwise
2

5.6 Abstract Lock States 77

Definition 5.32 (Least upper bound of abstract lock states):

l̃ t̃lock >̃lock = >̃lock t̃lock l̃= >̃lock

l̃ t̃lock ⊥̃lock = ⊥̃lock t̃lock l̃= l̃

λ lck ∈ Lck.(ulck
1 ,Tlck

1 , t̃lck
1 ,T′1

lck, t̃′1
lck) t̃lock

λ lck ∈ Lck.(ulck
2 ,Tlck

2 , t̃lck
2 ,T′2

lck, t̃′2
lck) =

λ lck ∈ Lck.
(ulck

1 ,Tlck
1 , t̃lck

1 t̃t t̃lck
2 ,T′1

lck, t̃′1
lck t̃t t̃′2

lck)

if ∀lck ∈ Lck :
(ulck

1 = ulck
2 ∧

Tlck
1 = Tlck

2 ∧
T′1

lck = T′2
lck)

>̃lock otherwise
2

Lemma 5.33 (Monotonicity of γ lock):
γ lock, as given by Definition 5.28, is monotone. 2

PROOF. Assume that l̃ ṽlock l̃
′. If l̃ = ⊥̃lock or l̃

′ = >̃lock, then triv-
ially, γ lock(l̃) ⊆ γ lock(l̃

′). Otherwise, assume that l ∈ γ lock(l̃), l̃ lck =
(ulck,Tlck, t̃lck,T′lck, t̃

′
lck) and l̃

′ lck = (u′lck,T
′′
lck, t̃

′′
lck,T

′′′
lck, t̃

′′′
lck). Since l̃ ṽlock

l̃
′, it must be that ∀lck ∈ Lck : (ulck = u′lck ∧Tlck = T′′lck ∧T′lck = T′′′lck ∧ t̃lck ṽt

t̃′′lck ∧ t̃′lck ṽt t̃′′′lck). But then, since l ∈ γ lock(l̃) and γ t is monotone (Theorem
3.39), it must be that l ∈ γ lock(l̃

′). This proves the lemma. �

Theorem 5.34 (Galois connection – Lock states):
〈α lock,γ lock〉, where γ lock and α lock are given by Definitions 5.28 and 5.29,
respectively, is a Galois connection. 2

PROOF. First it will be shown that γ lock is completely multiplicative. Thus note
that γ lock is monotone (Lemma 5.33). Next observe that γ lock(>̃lock) = Lck→
(Lckstt×Thrd⊥×Time×Thrd⊥×Time) =>lock.

Now, assume that l̃, l̃′ ∈Lck→ (Lckstt×Thrd⊥×Tim̃e×Thrd⊥×Tim̃e)
are such that l̃ 6ṽlock l̃

′ ∧ l̃′ 6ṽlock l̃. From Definition 5.30, it follows that
neither of l̃ and l̃

′ can be ⊥̃lock or >̃lock. Thus, it is safe to assume
that these states can be expressed as l̃ lck = (ulck,Tlck, t̃lck,T′lck, t̃

′
lck) and

l̃
′ lck = (u′lck,T

′′
lck, t̃

′′
lck,T

′′′
lck, t̃

′′′
lck).

Based on the above assumptions, it will be shown that:

γ lock(l̃ ũlock l̃
′) = γ lock(l̃)∩ γ lock(l̃

′)

78 Chapter 5. Abstractly Interpreting PPL

First, assume that ∃lck ∈ Lck : (ulck 6= u′lck ∨Tlck 6= T′′lck ∨T′lck 6= T′′′lck). Then,
l̃ ũlock l̃

′ = ⊥̃lock, and thus the L.H.S. becomes γ lock(l̃ ũlock l̃
′) = γ lock(⊥̃lock) =

/0. The R.H.S. becomes γ lock(l̃)∩ γ lock(l̃
′) = /0, because it must be that ∀l ∈

γ lock(l̃) : ∀l′ ∈ γ lock(l̃
′) : l 6= l

′ since ∃lck ∈ Lck : (ulck 6= u′lck ∨Tlck 6= T′′lck ∨
T′lck 6= T′′′lck). Thus, L.H.S. = R.H.S.

Next, assume that ∀lck ∈ Lck : (ulck = u′lck ∧Tlck = T′′lck ∧T′lck = T′′′lck) and
note that 〈α t,γ t〉 = 〈αint,γ int〉 is a Galois connection (Theorem 3.39). Then,
(l̃ ũlock l̃

′) lck = (ulck,Tlck, t̃lck ũt t̃′′lck,T
′
lck, t̃

′
lck ũt t̃′′′lck)) and

γ lock(l̃ ũlock l̃
′)

Def. 5.28
= {λ lck ∈ Lck.(ulck,Tlck, tlck,T′lck, t

′
lck) |

tlck ∈ γ t(t̃lck ũt t̃′′lck)∧ t′lck ∈ γ t(t̃′lck ũt t̃′′′lck)}
Lem. 3.14

= {λ lck ∈ Lck.(ulck,Tlck, tlck,T′lck, t
′
lck) |

tlck ∈ γ t(t̃lck)∩ γ t(t̃′′lck)∧ t′lck ∈ γ t(t̃′lck)∩ γ t(t̃′′′lck)}
calc.
= {λ lck ∈ Lck.(ulck,Tlck, tlck,T′lck, t

′
lck) |

tlck ∈ γ t(t̃lck)∧ t′lck ∈ γ t(t̃′lck)}∩
{λ lck ∈ Lck.(ulck,Tlck, tlck,T′lck, t

′
lck) |

tlck ∈ γ t(t̃′′lck)∧ tlck ∈ γ t(t̃′′′lck)}
Def. 5.28

= γ lock(l̃)∩ γ lock(l̃
′)

Thus, it has been shown that γ lock(l̃ ũlock l̃
′) = γ lock(l̃)∩ γ lock(l̃

′). Now, all
the three conditions in Lemma 3.4 are fulfilled, which means that γ lock is com-
pletely multiplicative. Then, by Lemma 3.15, it is obvious that an abstraction
function, α , such that 〈α,γ lock〉 is a Galois connection can be defined. Using
Lemma 3.14, the definition of this α is the same as that of α lock in Definition
5.29. Thus, 〈α lock,γ lock〉 is a Galois connection. �

5.7 Abstract Configurations
In this section, a Galois connection (c.f., Theorem 5.41) between the concrete
and abstract domains for configurations, P(Conf) and Cõnf, respectively, will
be defined. Cõnf is defined as:

Cõnf = (PT∈Thrdc̃({T}×LblT× (RegT→ Vãl)×Tim̃e)×
(Var→ Thrd→P(Vãl×Tim̃e))×
(Lck→ (Lckstt×Thrd⊥×Tim̃e×Thrd⊥×Tim̃e)))∪
{⊥̃conf ,>̃conf }

where Thrdc̃ ⊆ Thrd (the reason for this will become apparent when the ana-
lysis is presented in Chapter 6). The abstract configuration, c̃ ∈ Cõnf, will be

5.7 Abstract Configurations 79

denoted in the same manner as concrete configurations:

c̃ ::= 〈[T,pcT, r̃T, t̃a
T]T∈Thrdc̃

, x̃, l̃〉

The concretization function for abstract configurations, γconf : Cõnf →
P(Conf), is given by Definition 5.35.

Definition 5.35 (Concretization of an abstract configuration):

γconf (>̃conf) = Conf
γconf (⊥̃conf) = /0
γconf (〈[T,pcT, r̃T, t̃a

T]T∈Thrdc̃
, x̃, l̃〉) =

{〈[T,pcT,rT, ta
T]T∈Thrdc̃

,x,l〉 |
rT ∈ γreg(r̃T)∧ ta

T ∈ γ t(t̃a
T)∧x ∈ γvar(x̃)∧ l ∈ γ lock(l̃)} 2

The partial ordering of abstract configurations, ṽconf , follows naturally us-
ing Definition 3.26 and is given by Definition 5.36. Note that this relation
cannot be directly used within the analysis since ṽvar cannot. A safe relation,
ṽ′conf , is obtained by replacing ṽvar with ṽ′var in the definition of ṽconf .

Definition 5.36 (Partial ordering of two abstract configurations):

c̃ ṽconf >̃conf
⊥̃conf ṽconf c̃
〈[T,pcT, r̃T, t̃a

T]T∈Thrdc̃
, x̃, l̃〉 ṽconf

〈[T,pc′T, r̃
′
T, t̃

a′
T]T∈Thrdc̃′

, x̃′, l̃′〉
⇐⇒

x̃ ṽvar x̃
′∧ l̃ ṽlock l̃

′∧Thrdc̃ = Thrdc̃′ ∧
∀T ∈ Thrdc̃ : (pcT = pc′T∧ r̃T ṽreg r̃

′
T∧ t̃a

T ṽt t̃a′
T)

2

The function γconf is monotone with respect to ṽconf (Lemma 5.37).

Lemma 5.37 (Monotonicity of γconf):
The function γconf : Cõnf→P(Conf) is monotone with respect to ṽconf . I.e.,
if c̃, c̃′ ∈ Cõnf and c̃ ṽconf c̃′, then γconf (c̃)⊆ γconf (c̃′). 2

PROOF. Assume that c̃, c̃′ ∈ Cõnf such that c̃ ṽconf c̃′. If c̃ = ⊥̃conf or c̃′ =
>̃conf , the lemma holds trivially. Otherwise, c̃ and c̃′ can be expressed as c̃ =

80 Chapter 5. Abstractly Interpreting PPL

〈[T,pcT, r̃T, t̃a
T]T∈Thrdc̃

, x̃, l̃〉 and c̃′ = 〈[T,pc′T, r̃
′
T, t̃

a′
T]T∈Thrdc̃′

, x̃′, l̃′〉. Assume

that c ∈ γconf (c̃). Since c̃ ṽconf c̃′, it must be that:

Thrdc̃ = Thrdc̃′ ∧ l̃ ṽlock l̃
′∧ x̃ ṽvar x̃

′∧
∀T ∈ Thrdc̃ : (pcT = pc′T∧ r̃T ṽreg r̃

′
T∧ t̃a

T ṽt t̃a′
T)

The monotonicity of γ t, γreg, γvar and γ lock (Theorems 3.39, 5.6 and 5.10,
and Lemma 5.33, respectively) then implies that c ∈ γconf (c̃′) as well. Thus,
γconf (c̃)⊆ γconf (c̃′) and the lemma holds. �

The greatest lower bound operator for abstract configurations, ˜⊔conf , fol-
lows naturally using Definition 3.27 and is given by Definition 5.38. Note that
this operator cannot be directly used within the analysis since ˜⊔var cannot. A
safe operator, ˜⊔′conf , is obtained by replacing ˜⊔var by ˜⊔′var in the definition of
˜⊔conf .

Definition 5.38 (Greatest lower bound for two abstract configurations):

c̃ ũconf >̃conf = >̃conf ũconf c̃ = c̃
c̃ ũconf ⊥̃conf = ⊥̃conf ũconf c̃ = ⊥̃conf
〈[T,pcT, r̃T, t̃a

T]T∈Thrdc̃
, x̃, l̃〉 ũconf

〈[T,pc′T, r̃
′
T, t̃

a′
T]T∈Thrdc̃′

, x̃′, l̃′〉=
〈[T,pcT, r̃T ũreg r̃

′
T,

t̃a
T ũt t̃a′

T]T∈Thrdc̃
,

x̃ ũvar x̃
′, l̃ ũlock l̃

′〉

if Thrdc̃ = Thrdc̃′ ∧
∀T ∈ Thrdc̃ : pcT = pc′T

⊥̃conf otherwise 2

The least upper bound operator for abstract configurations,
⊔̃

conf , follows
naturally using Definition 3.28 and is given by Definition 5.39. Note that this
operator cannot be directly used within the analysis since

⊔̃
var cannot. A safe

operator,
⊔̃′

conf , is obtained by replacing
⊔̃

var by
⊔̃′

var in the definition of
⊔̃

conf .

5.7 Abstract Configurations 81

Definition 5.39 (Least upper bound for two abstract configurations):

c̃ t̃conf >̃conf = >̃conf t̃conf c̃ = >̃conf
c̃ t̃conf ⊥̃conf = ⊥̃conf t̃conf c̃ = c̃
〈[T,pcT, r̃T, t̃a

T]T∈Thrdc̃
, x̃, l̃〉 t̃conf

〈[T,pc′T, r̃
′
T, t̃

a′
T]T∈Thrdc̃′

, x̃′, l̃′〉=
〈[T,pcT, r̃T t̃reg r̃

′
T,

t̃a
T t̃t t̃a′

T]T∈Thrdc̃
,

x̃ t̃var x̃
′, l̃ t̃lock l̃

′〉

if Thrdc̃ = Thrdc̃′ ∧
∀T ∈ Thrdc̃ : pcT = pc′T

>̃conf otherwise 2

The abstraction function, αconf : P(Conf)→ Cõnf, is given by Definition
5.40 and 〈αconf ,γconf 〉 is a Galois connection (Theorem 5.41).

Definition 5.40 (Abstraction of a set of configurations):

αconf (C) = ˜⊔conf {c̃ |C ⊆ γconf (c̃)} 2

Theorem 5.41 (Galois connection – Configurations):
〈αconf ,γconf 〉, where γconf and αconf are given by Definitions 5.35 and 5.40,
respectively, is a Galois connection. 2

PROOF. First it will be shown that γconf is completely multiplicative. Thus
note that γconf is monotone (Lemma 5.37). Next observe that γconf (>̃conf) =
Conf =>conf .

Now, assume that c̃, c̃′ ∈ Cõnf are such that c̃ 6ṽconf c̃′ ∧ c̃′ 6ṽconf c̃. From
Definition 5.36, it follows that neither of c̃ and c̃′ can be ⊥̃conf or >̃conf .
Thus, it is safe to assume that these configurations can be expressed as
c̃ = 〈[T,pcT, r̃T, t̃a

T]T∈Thrdc̃
, x̃, l̃〉 and c̃′ = 〈[T,pc′T, r̃

′
T, t̃

a′
T]T∈Thrdc̃′

, x̃′, l̃′〉.
Based on the above assumptions, it will be shown that:

γconf (c̃ ũconf c̃′) = γconf (c̃)∩ γconf (c̃′)

First, assume that Thrdc̃ 6=Thrdc̃′ ∨∃T∈Thrdc̃ : pcT 6= pc′T. Then, c̃ ũconf
c̃′ = ⊥̃conf , and thus the L.H.S. becomes γconf (c̃ ũconf c̃′) = γconf (⊥̃conf) = /0.
The R.H.S. becomes γconf (c̃) ∩ γconf (c̃′) = /0, because it must be that ∀c ∈
γconf (c̃) : ∀c′ ∈ γconf (c̃′) : c 6= c′, since Thrdc̃ 6= Thrdc̃′ ∨∃T ∈ Thrdc̃ : pcT 6=
pc′T. Thus, L.H.S. = R.H.S.

82 Chapter 5. Abstractly Interpreting PPL

Next, assume that Thrdc̃ = Thrdc̃′ ∧ ∀T ∈ Thrdc̃ : pcT = pc′T and note
that 〈α t,γ t〉 = 〈αint,γ int〉, 〈αreg,γreg〉, 〈αvar,γvar〉 and 〈α lock,γ lock〉 are Galois
connections (Theorems 3.39, 5.6, 5.10 and 5.34, respectively). Then, c̃ ũconf
c̃′ = 〈[T,pcT, r̃T ũreg r̃

′
T, t̃

a
T ũt t̃a′

T]T∈Thrdc̃
, x̃ ũvar x̃

′, l̃ ũlock l̃
′〉 and

γconf (c̃ ũconf c̃′)
Def. 5.35

= {〈[T,pcT,rT, ta
T]T∈Thrdc̃

,x,l〉 |
rT ∈ γreg(r̃T ũreg r̃

′
T)∧ ta

T ∈ γ t(t̃a
T ũt t̃a′

T)∧
x ∈ γvar(x̃ ũvar x̃

′)∧ l ∈ γ lock(l̃ ũlock l̃
′)}

Lem. 3.14
= {〈[T,pcT,rT, ta

T]T∈Thrdc̃
,x,l〉 |

rT ∈ γreg(r̃T)∩ γreg(r̃
′
T)∧ ta

T ∈ γ t(t̃a
T)∩ γ t(t̃a′

T)∧
x ∈ γvar(x̃)∩ γvar(x̃

′)∧ l ∈ γ lock(l̃)∩ γ lock(l̃
′)}

calc.
= {〈[T,pcT,rT, ta

T]T∈Thrdc̃
,x,l〉 |

rT ∈ γreg(r̃T)∧ ta
T ∈ γ t(t̃a

T)∧
x ∈ γvar(x̃)∧ l ∈ γ lock(l̃)}∩

{〈[T,pcT,rT, ta
T]T∈Thrdc̃

,x,l〉 |
rT ∈ γreg(r̃

′
T)∧ ta

T ∈ γ t(t̃a′
T)∧

x ∈ γvar(x̃
′)∧ l ∈ γ lock(l̃

′)}
Def. 5.35

= γconf (c̃)∩ γconf (c̃′)

Thus, it has been shown that γconf (c̃ ũconf c̃′) = γconf (c̃)∩γconf (c̃′). Now, all
the three conditions in Lemma 3.4 are fulfilled, which means that γconf is com-
pletely multiplicative. Then, by Lemma 3.15, it is obvious that an abstraction
function, α , such that 〈α,γconf 〉 is a Galois connection can be defined. Using
Lemma 3.14, the definition of this α is the same as that of αconf in Definition
5.40. Thus, 〈αconf ,γconf 〉 is a Galois connection. �

An alternative approach to derive a Galois connection here could be to use
Theorems 3.16, 3.17, 3.20, 3.22, 3.24, 3.25 and 3.39, but the presented Galois
connection is easier to understand.

Now, consider the abstract domains, Cõnfax
in 3 c̃ax

in and Cõnfax
out 3 c̃ax

out,
which will be used for the abstract axiom transition rules in Table 5.5. These
domains are defined as:

Cõnfax
in = (Thrd×Lbl× (Reg→ Vãl)×

(Var→ Thrd→P(Vãl×Tim̃e))×
(Lck→ (Lckstt×Thrd⊥×Tim̃e×Thrd⊥×Tim̃e))×
Tim̃e)∪{⊥̃ax

in ,>̃ax
in }

c̃ax
in ::= 〈T,pc, r̃, x̃, l̃, t̃〉

5.7 Abstract Configurations 83

and:

Cõnfax
out = (Lbl× (Reg→ Vãl)×

(Var→ Thrd→P(Vãl×Tim̃e))×
(Lck→ (Lckstt×Thrd⊥×Tim̃e×Thrd⊥×Tim̃e)))∪
{⊥̃ax

out,>̃ax
out}

c̃ax
out ::= 〈pc, r̃, x̃, l̃〉

It is easy to see that 〈αax
in ,γ

ax
in 〉 and 〈αax

out ,γ
ax
out〉, where αax

in : P(Confax
in)→

Cõnfax
in , γ ax

in : Cõnfax
in →P(Confax

in), αax
out : P(Confax

out)→Cõnfax
out and γ ax

out :
Cõnfax

out →P(Confax
out) are given by Definitions 5.42, 5.43, 5.44 and 5.45,

respectively, are Galois connections (c.f., Theorems 5.46 and 5.47).
Definition 5.42 (Abstraction of a set of axiom input configurations):

α
ax
in (C

ax
in) = ˜⊔ax

in {c̃ax
in |Cax

in ⊆ γ
ax
in (c̃ax

in)} 2

Definition 5.43 (Concretization of an abstract axiom input configuration):

γ
ax
in (〈T,pc, r̃, x̃, l̃, t̃〉) = {〈T,pc,r,x,l, t〉 | r ∈ γreg(r̃)∧x ∈ γvar(x̃)∧

l ∈ γ lock(l̃)∧ t ∈ γ t(t̃)} 2

Definition 5.44 (Abstraction of a set of axiom output configurations):

α
ax
out(C

ax
out) = ˜⊔ax

out{c̃ax
out |Cax

out ⊆ γ
ax
out(c̃

ax
out)} 2

Definition 5.45 (Concretization of an abstract axiom output configuration):

γ
ax
out(〈pc, r̃, x̃, l̃〉) = {〈pc,r,x,l〉 | r ∈ γreg(r̃)∧x ∈ γvar(x̃)∧ l ∈ γ lock(l̃)} 2

Theorem 5.46 (Galois connection – Axiom input configurations):
〈αax

in ,γ
ax
in 〉, where αax

in and γ ax
in are given by Definitions 5.42 and 5.43, respec-

tively, is a Galois connection. 2

PROOF. Similar to the proof of Theorem 5.41. �

Theorem 5.47 (Galois connection – Axiom output configurations):
〈αax

out ,γ
ax
out〉, where αax

out and γ ax
out are given by Definitions 5.44 and 5.45, respec-

tively, is a Galois connection. 2

PROOF. Similar to the proof of Theorem 5.41. �

84
C

hapter
5.

A
bstractly

Interpreting
PPL

STM(T,pc) 〈pc′, r̃′, x̃′, l̃′〉 If

[halt]pc 〈pc, r̃, x̃, l̃〉
[skip]pc 〈pc+1, r̃, x̃, l̃〉
[r := a]pc 〈pc+1, r̃[r 7→ ˜A [[a]]r̃], x̃, l̃〉

[if b goto l]pc 〈pc+1,B̃R [[!b]]r̃, x̃, l̃〉 B̃R [[!b]]r̃ 6= ⊥̃reg

[if b goto l]pc 〈l,B̃R [[b]]r̃, x̃, l̃〉 B̃R [[b]]r̃ 6= ⊥̃reg

[store r to x]pc 〈pc+1, r̃,WRITE(T, x̃,x,(r̃ r, t̃)), l̃〉
[load r from x]pc 〈pc+1, r̃[r 7→ READ(x̃,x,T, t̃)], x̃, l̃〉

[lock lck]pc 〈pc+1, r̃, x̃, l̃[lck 7→ (locked,T, D̃L(l̃ lck), ˜POWN(l̃ lck), ˜REL(l̃ lck))]〉 ˜OWN(l̃ lck) = T∧
(˜STT(l̃ lck) = unlocked⇒

(t̃ 6<̃t ˜REL(l̃ lck)∧
D̃L(l̃ lck) 6<̃t t̃))

[lock lck]pc 〈pc, r̃, x̃, l̃〉 ˜OWN(l̃ lck) 6= T∨
(˜STT(l̃ lck) = unlocked∧

(t̃ <̃t ˜REL(l̃ lck)∨
D̃L(l̃ lck) <̃t t̃))

[unlock lck]pc 〈pc+1, r̃, x̃, l̃[lck 7→ (unlocked,⊥thrd, D̃L(l̃ lck),T, t̃)]〉 ˜OWN(l̃ lck) = T∧
˜STT(l̃ lck) = locked

[unlock lck]pc 〈pc+1, r̃, x̃, l̃〉 ˜OWN(l̃ lck) 6= T∨
˜STT(l̃ lck) = unlocked

Table 5.5: 〈T,pc, r̃, x̃, l̃, t̃〉−̃→ax 〈pc′, r̃′, x̃′, l̃′〉, semantics of abstract axiom transitions.

5.8 Abstract Semantics 85

5.8 Abstract Semantics
The abstract transition rules for axiom statements in Table 5.5 are safe approxi-
mations of the rules in Table 4.2 with respect to Definition 5.48 (Lemma 5.49).

Definition 5.48 (Soundness of the abstract axiom transition relation):
Assuming that x̃ contains safe write history (c.f., Definition 5.18), the transi-
tion relation −̃→ax is a safe approximation of −→ax , as used by −→prg , iff

∀c̃ax
in ∈ Cõnfax

in : ∀cax
in ∈ γ ax

in (c̃ax
in) : ∀cax

out ∈ Confax
out :

(cax
in −→ax cax

out ⇒∃c̃ax
out ∈ Cõnfax

out : (c̃ax
in −̃→ax c̃ax

out ∧ cax
out ∈ γ ax

out(c̃
ax
out)))

where cax
in is generated (c.f., Table 4.3) from a valid configuration (c.f., Defini-

tion 4.4); i.e., the lock state is valid with respect to the accumulated time of the
given thread. 2

Lemma 5.49 (Soundness of −̃→ax):
−̃→
ax is a safe approximation of −→ax , with respect to Definition 5.48. 2

PROOF. This proof will be conducted by showing for each defined transition
that it is safe according to Definition 5.48.

Assume that c̃ax
in @〈T,pc, r̃, x̃, l̃, t̃〉 ∈ Cõnfax

in and cax
in @〈T,pc,r,x,l, t〉 ∈

Confax
in , such that cax

in ∈ γ ax
in (c̃ax

in), that l is valid with respect to t and that x̃
contains safe write history. Now consider each defined axiom statement.

1. Assume that STM(T,pc) = [halt]pc. From the concrete semantics, it
must be that cax

in −→ax cax
out , where cax

out = 〈pc,r,x,l〉. Choose c̃ax
out so that

c̃ax
in −̃→ax c̃ax

out, i.e., c̃ax
out = 〈pc, r̃, x̃, l̃〉. Thus, cax

out ∈ γ ax
out(c̃

ax
out).

2. Assume that STM(T,pc) = [skip]pc. From the concrete semantics, it
must be that cax

in −→ax cax
out , where cax

out = 〈pc+ 1,r,x,l〉. Choose c̃ax
out so

that c̃ax
in −̃→ax c̃ax

out, i.e., c̃ax
out = 〈pc+1, r̃, x̃, l̃〉. Thus, cax

out ∈ γ ax
out(c̃

ax
out).

3. Assume that STM(T,pc) = [r := a]pc. From the concrete semantics,
it must be that cax

in −→ax cax
out , where cax

out = 〈pc + 1,r[r 7→A [[a]]r],x,l〉.
Choose c̃ax

out so that c̃ax
in −̃→ax c̃ax

out, i.e., c̃ax
out = 〈pc+ 1, r̃[r 7→ ˜A [[a]]r̃], x̃, l̃〉.

Since ˜A is safely induced from A (see Section 5.3), it must be that
A [[a]]r ∈ γval(˜A [[a]]r̃), and hence, r[r 7→A [[a]]r] ∈ γreg(r̃[r 7→ ˜A [[a]]r̃]).
Thus, cax

out ∈ γ ax
out(c̃

ax
out).

86 Chapter 5. Abstractly Interpreting PPL

4. Assume that STM(T,pc) = [if b goto l]pc. Then two cases must be con-
sidered.

(a) In the first case, B[[b]]r. This means that cax
in −→ax cax

out , where cax
out =

〈l,r,x,l〉. Now, choose c̃ax
out so that c̃ax

in −̃→ax c̃ax
out by the correspond-

ing branch (i.e., B̃R [[b]]r̃ 6= ⊥̃reg); i.e., c̃ax
out = 〈l,B̃R [[b]]r̃, x̃, l̃〉.

Since B̃R is safely induced from B (see Section 5.4), it must be
that B̃R [[b]]r̃ 6= ⊥̃reg and that γ ax

out(c̃
ax
out) contains, at least, all cases

where B[[b]]r. Thus, it must be the case that cax
out ∈ γ ax

out(c̃
ax
out).

(b) In the second case, ¬B[[b]]r. This means that cax
in −→ax cax

out , where

cax
out = 〈pc+ 1,r,x,l〉. Now, choose c̃ax

out so that c̃ax
in −̃→ax c̃ax

out by the

corresponding branch (i.e., B̃R [[!b]]r̃ 6= ⊥̃reg); i.e., c̃ax
out = 〈pc +

1,B̃R [[!b]]r̃, x̃, l̃〉. Since B̃R is safely induced from B (see Section
5.4), it must be that B̃R [[!b]]r̃ 6= ⊥̃reg and that γ ax

out(c̃
ax
out) contains,

at least, all cases where ¬B[[b]]r. Thus, it must be the case that
cax

out ∈ γ ax
out(c̃

ax
out).

5. Assume that STM(T,pc) = [store r to x]pc. From the concrete se-
mantics, it must be that cax

in −→ax cax
out , where cax

out = 〈pc + 1,r,x[x 7→
(x x)[T 7→ {(r r, t)}]],l〉. Choose c̃ax

out so that c̃ax
in −̃→ax c̃ax

out, i.e., c̃ax
out =

〈pc + 1, r̃,WRITE(T, x̃,x,(r̃ r, t̃)), l̃〉. It is easy to see that (c.f., Algo-
rithm 5.5) x[x 7→ (x x)[T 7→ {(r r, t)}]] ∈ γvar(WRITE(T, x̃,x,(r̃ r, t̃))),
thus cax

out ∈ γ ax
out(c̃

ax
out).

6. Assume that STM(T,pc) = [load r from x]pc. From the concrete seman-
tics, cax

in −→ax cax
out , where cax

out = 〈pc + 1,r[r 7→ v],x,l〉 for some v such

that ∃t′ ∈ Time : (v, t′) ∈
⋃

T′∈Thrd((x x) T′) if
⋃

T′∈Thrd((x x) T′) 6= /0
and v ∈ γ int([−∞,∞]) otherwise. Choose c̃ax

out so that c̃ax
in −̃→ax c̃ax

out, i.e.,

c̃ax
out = 〈pc + 1, r̃[r 7→ READ(x̃,x,T, t̃)], x̃, l̃〉. Since x̃ is safe at time t̃

and READ then returns a safe value (Lemma 5.26), it must be that v ∈
γval(READ(x̃,x,T, t̃)) and thus cax

out ∈ γ ax
out(c̃

ax
out).

7. Assume that STM(T,pc) = [lock lck]pc. Then two cases must be consid-
ered.

(a) In the first case, OWN(l lck) = T. From the concrete semantics,
it must be that cax

in −→ax cax
out , where cax

out = 〈pc + 1,r,x,l[lck 7→

5.8 Abstract Semantics 87

(locked,T,DL(l lck), POWN(l lck),REL(l lck))]〉. Choose c̃ax
out

so that c̃ax
in −̃→ax c̃ax

out by the corresponding branch, (˜OWN(l̃ lck) =

T∧ (˜STT(l̃ lck) = unlocked⇒ (t̃ 6<̃t ˜REL(l̃ lck)∧ D̃L(l̃ lck) 6<̃t t̃)));
i.e., c̃ax

out = 〈pc+1, r̃, x̃, l̃[lck 7→ (locked,T, D̃L(l̃ lck), ˜POWN(l̃ lck),
˜REL(l̃ lck))]〉. Note that if STT(l lck) = unlocked, it is implied that

t 6< REL(l lck)∧ DL(l lck) 6< t (Lemma 4.6). Thus, it must be the
case that cax

out ∈ γ ax
out(c̃

ax
out).

(b) In the second case, OWN(l lck) 6= T. From the concrete semantics,
it must be that cax

in −→ax cax
out , where cax

out = 〈pc,r,x,l〉. Choose c̃ax
out

so that c̃ax
in −̃→ax c̃ax

out by the corresponding branch, ˜OWN(l̃ lck) 6= T∨
(˜STT(l̃ lck) = unlocked ∧ (t̃ <̃t ˜REL(l̃ lck)∨ D̃L(l̃ lck) <̃t t̃)); i.e.,
c̃ax

out = 〈pc, r̃, x̃, l̃〉. Thus, it must be the case that cax
out ∈ γ ax

out(c̃
ax
out).

8. Assume that STM(T,pc) = [unlock lck]pc. Then two cases must be con-
sidered.

(a) In the first case, OWN(l lck) = T. From the concrete semantics,
it must be that cax

in −→ax cax
out , where cax

out = 〈pc + 1,r,x,l[lck 7→
(unlocked,⊥thrd,DL(l lck),T, t)]〉. Choose c̃ax

out so that c̃ax
in −̃→ax c̃ax

out

by the corresponding branch, ˜OWN(l̃ lck) = T ∧ ˜STT(l̃ lck) =
locked; i.e., c̃ax

out = 〈pc+1, r̃, x̃, l̃[lck 7→ (unlocked,⊥thrd, D̃L(l̃ lck),
T, t̃)]〉. Note that in the concrete case, STT(l lck) = locked when-
ever OWN(l lck) 6= ⊥thrd for a valid configuration (Definition 4.4).
Thus, it must be the case that cax

out ∈ γ ax
out(c̃

ax
out).

(b) In the second case, OWN(l lck) 6= T. From the concrete semantics,
it must be that cax

in −→ax cax
out , where cax

out = 〈pc+ 1,r,x,l〉. Choose

c̃ax
out so that c̃ax

in −̃→ax c̃ax
out by the corresponding branch, ˜OWN(l̃ lck) 6=

T∨ ˜STT(l̃ lck)= unlocked; i.e., c̃ax
out = 〈pc+1, r̃, x̃, l̃〉. Thus, it must

be the case that cax
out ∈ γ ax

out(c̃
ax
out). �

88
C

hapter
5.

A
bstractly

Interpreting
PPL

Thrdexe 6= /0∧∀T ∈ Thrdexe : 〈T,pcT, r̃T, x̃, l̃
′′, t̃a′

T 〉−̃→ax 〈pc′T, r̃
′
T, x̃

′
T, l̃
′
T〉

c̃@〈[T,pcT, r̃T, t̃a
T]T∈Thrdc̃

, x̃, l̃〉−̃→prg c̃′@〈[T,(T ∈ Thrdexe ? pc′T : pcT),(T ∈ Thrdexe ? r̃′T : r̃T), t̃a′
T]T∈Thrdc̃

, x̃′, l̃′〉
where

t̃ r
T = ABSTIME(c̃,T)

t̃all = α t({min({min(γ t(t̃a
T +̃t t̃ r

T)) | B}),
min({max(γ t(t̃a

T +̃t t̃ r
T)) | B})})

where B⇐⇒ T ∈ Thrdc̃∧ STM(T,pcT) 6= [halt]pcT ∧∀lck ∈ Lck :
(STM(T,pcT) = [lock lck]pcT ⇒ ˜OWN(l̃ lck) ∈ {⊥thrd,T})

Thrdall
exe = {T ∈ Thrdc̃ | t̃all ũt (t̃a

T +̃t t̃ r
T) 6= ⊥̃t ∧ STM(T,pcT) 6= [halt]pcT}

l̃
′′ lck =

(unlocked,T′,DLLOCK(c̃, lck),

˜POWN(l̃ lck), ˜REL(l̃ lck))
for some T′ ∈ {T ∈ Thrdc̃ | ∃l ∈ LblT : STM(T, l) = [lock lck]l},
if ∃T ∈ Thrdall

exe : STM(T,pcT) = [lock lck]pcT ∧ ˜OWN(l̃ lck) =⊥thrd

l̃ lck otherwise
Thrdhold = {T ∈ Thrdc̃ | ∃lck ∈ Lck : (STM(T,pcT) = [lock lck]pcT ∧ ˜OWN(l̃′′ lck) 6= T)∨ STM(T,pcT) = [halt]pcT}
t̃ = α t({min({min(γ t(t̃a

T +̃t t̃ r
T)) | T ∈ Thrdc̃ \Thrdhold}),min({max(γ t(t̃a

T +̃t t̃ r
T)) | T ∈ Thrdc̃ \Thrdhold})})

Thrdexe = {T ∈ Thrdc̃ \Thrdhold | t̃ ũt (t̃a
T +̃t t̃ r

T) 6= ⊥̃t}

l̃
′ lck =

{
l̃
′

˜OWN(l̃′′ lck)
lck if ˜OWN(l̃′′ lck) ∈ Thrdexe

l̃
′′ lck otherwise

x̃
′ =

{
TRIM(x̃′′, t̃) if Thrdc̃ = Thrd
x̃
′′ otherwise

where (x̃′′ x) T =

{
(x̃′T x) T if T ∈ Thrdexe

(x̃ x) T otherwise
t̃a′
T = ACCTIME(〈[T′,pcT′ , r̃T′ , t̃a

T′]T′∈Thrdc̃
, x̃, l̃′′〉,Thrdexe,T)

Table 5.6: c̃−̃→prg c̃′, semantics of abstract program transitions.

5.8 Abstract Semantics 89

The abstract transition rule for program configurations in Table 5.6 is an
approximation of the concrete rule in Table 4.3. The abstract rule now de-
fines a window in time, t̃, (since Tim̃e = Intv) that determines which threads
are included in Thrdexe. The window reaches from the earliest point in time
when some thread might execute its active statements, to the earliest point in
time when some thread must execute its active statements. Note that DLLOCK
and ACCTIME are defined in Algorithms 5.11 and 5.12, respectively, and that
ABSTIME is assumed to be a safe approximation of TIME, as specified in As-
sumption 5.50; however, the definitions of these functions are out of the scope
for this thesis.

Assumption 5.50 (ABSTIME is safe and non-negative):
It is assumed that ABSTIME is a “non-negative” function that safely approxi-
mates TIME in the interval domain. More formally, it is assumed that

∀c̃@〈[T,pcT, r̃T, t̃a
T]T∈Thrdc̃

, x̃, l̃〉 ∈ Cõnf :
∀T ∈ Thrdc̃ : 0≤min(γ t(ABSTIME(c̃,T)))

and

∀c̃@〈[T,pcc̃
T, r̃T, t̃a

T]T∈Thrdc̃
, x̃, l̃〉 ∈ Cõnf :

∀c@〈[T,pcT,rT, ta
T]T∈Thrd,x,l〉 ∈ Conf :

(Thrdc̃ ⊆ Thrd⇒∀T ∈ Thrdc̃ : ((pcT = pcc̃
T∧ ta

T ∈ γ t(t̃a
T))⇒

TIME(c,T) ∈ γ t(ABSTIME(c̃,T)))) 2

90 Chapter 5. Abstractly Interpreting PPL

Algorithm 5.11 Determine Deadline for Lock Owner Assignment

1: function DLLOCK(c̃@〈[T′,pcT′ , r̃T′ , t̃a
T′]T′∈Thrdc̃

, x̃, l̃〉, lck)
2: t̃dl← >̃t
3: for all T ∈ Thrdc̃ do
4: if STM(T,pcT) = [lock lck]pcT then
5: c̃′← c̃
6: t̃a′

T ← t̃a
T

7: repeat
8: c̃′← 〈[T′,pcT′ , r̃T′ ,(T = T′ ? t̃a′

T : t̃a
T′)]T′∈Thrdc̃

, x̃, l̃〉
9: t̃a′

T ← t̃a′
T +̃t ABSTIME(c̃′,T)

10: until ˜REL(l̃ lck) <̃t t̃a′
T ∨0 ∈ γ t(ABSTIME(c̃′,T))

11: if ˜REL(l̃ lck) 6<̃t t̃a′
T ∧0 ∈ γ t(ABSTIME(c̃′,T)) then

12: t̃← t̃a′
T t̃t ˜REL(l̃ lck)

13: c̃′← 〈[T′,pcT′ , r̃T′ ,(T = T′ ? t̃ : t̃a
T′)]T′∈Thrdc̃

, x̃, l̃〉
14: t̃dl← t̃dl ũt ((t̃ +̃t ABSTIME(c̃′,T)) t̃t α t({−∞}))
15: else
16: t̃dl← t̃dl ũt (t̃a′

T t̃t α t({−∞}))
17: end if
18: end if
19: end for
20: return t̃dl
21: end function

Algorithm 5.12 Determine Accumulated Execution Time

1: function ACCTIME(c̃@〈[T′,pcT′ , r̃T′ , t̃a
T′]T′∈Thrdc̃

, x̃, l̃〉,Thrdexe,T)
2: t̃a′

T ← t̃a
T

3: if T ∈ Thrdexe then
4: t̃ r

T← ABSTIME(c̃,T)
5: if ∀lck ∈ Lck : STM(T,pcT) 6= [lock lck]pcT then
6: t̃a′

T ← t̃a
T +̃t t̃ r

T
7: else

5.8 Abstract Semantics 91

Algorithm 5.12 Cont. Determine Accumulated Execution Time
8: for all lck ∈ Lck do
9: if STM(T,pcT) = [lock lck]pcT ∧ ˜OWN(l̃ lck) = T then

10: if ˜STT(l̃ lck) = locked then
11: t̃a′

T ← t̃a
T +̃t t̃ r

T
12: else if D̃L(l̃ lck) <̃t (t̃a

T +̃t t̃ r
T) then

13: t̃a′
T ← t̃a

T +̃t t̃ r
T

14: else if (t̃a
T +̃t t̃ r

T) <̃t ˜REL(l̃ lck) then
15: c̃′← c̃
16: while (t̃a′

T +̃t ABSTIME(c̃′,T)) <̃t ˜REL(l̃ lck) do
17: t̃a′

T ← t̃a′
T +̃t ABSTIME(c̃′,T)

18: c̃′← 〈[T′,pcT′ , r̃T′ ,(T = T′ ? t̃a′
T : t̃a

T′)]T′∈Thrdc̃
, x̃, l̃〉

19: end while
20: else if ˜POWN(l̃ lck) = T∨ ˜REL(l̃ lck) <̃t (t̃a

T +̃t t̃ r
T) then

21: t̃a′
T ← (t̃a

T +̃t t̃ r
T) ũt D̃L(l̃ lck)

22: else . ˜STT(l̃ lck) = unlocked∧ ˜REL(l̃ lck) ũt (t̃a
T +̃t t̃ r

T) 6= ⊥̃t ∧
˜POWN(l̃ lck) 6= T∧ D̃L(l̃ lck) 6<̃t (t̃a

T +̃t t̃ r
T))

23: t̃a′′
T ← t̃a

T +̃t t̃ r
T

24: c̃′← c̃
25: repeat
26: if D̃L(l̃ lck) <̃t (t̃a′

T +̃t ABSTIME(c̃′,T)) then
27: t̃ r

T← >̃t
28: else if 0 ∈ γ t(ABSTIME(c̃′,T)) then
29: t̃← (t̃a′

T t̃t α t({∞})) ũt ˜REL(l̃ lck)
30: c̃′← 〈[T′,pcT′ , r̃T′ ,(T = T′ ? t̃ : t̃a

T′)]T′∈Thrdc̃
, x̃, l̃〉

31: t̃a′
T ← t̃ +̃t ABSTIME(c̃′,T)

32: t̃ r
T← >̃t

33: else
34: t̃a′

T ← t̃a′
T +̃t ABSTIME(c̃′,T)

35: c̃′← 〈[T′,pcT′ , r̃T′ ,(T = T′ ? t̃a′
T : t̃a

T′)]T′∈Thrdc̃
, x̃, l̃〉

36: end if
37: until t̃ r

T = >̃t ∨ ˜REL(l̃ lck) <̃t t̃a′
T

38: t̃a′
T ← (t̃a′′

T t̃t t̃a′
T) ũt D̃L(l̃ lck) ũt (˜REL(l̃ lck) t̃t α t({∞}))

39: end if
40: end if
41: end for
42: end if
43: end if
44: return t̃a′

T
45: end function

92 Chapter 5. Abstractly Interpreting PPL

Since Time is approximated using Tim̃e, there are some consequences,
rendering −̃→prg an unsafe approximation of −→prg (c.f., Tables 4.3 and 5.6) in the
general case.

1. The sets of threads to execute, i.e., Thrdexe, might differ between c ∈
Conf and c̃ ∈ Cõnf, even if c ∈ γconf (c̃). Because of this, different pro-
gram points might be “visited” in the concrete and abstract cases, and
thus, fixed-point calculations on −̃→prg in the traditional sense cannot be
used to find a safe over-approximation of the concrete collecting seman-
tics (see for example [14, 23]).

2. The execution of load-statements cannot be safely approximated using
−̃→
prg if |Thrdexe| > 1 and the value of a global variable is to be loaded.
The reason for this is that executing load-statements introduces data-
dependencies between the threads, and the READ-function could return
a value for which all possible writes have not been taken into account;
i.e., all store-statements that could affect the variable have not yet
been executed (and thus, x̃ does not contain safe write history). To see
this, assume that for some abstract configuration, Thrdexe = {T1,T2},
STM(T1,pcT1

) = [load r from x]pcT1 , STM(T2,pcT2
) = [skip]pcT2 and

STM(T2,pcT2
+ 1) = [store r′ to x]pcT2

+1. When a transition occurs,
the load- and skip-statements are considered. However, since the ex-
ecution time of the store-statement (the abstract “point” in time when
the thread’s pc is updated) overlaps with the execution time of the load-
statement, the resulting value of r in T1 should be affected by the value
of r′ in T2, but this will not be the case.

3. A similar reasoning to that for load-statements holds for lock-
statements – an unlocked lock, lck ∈ Lck, cannot simply be assigned to
one of the threads in Thrdexe that issues lock lck. This is because in the
concrete case, the lock might be assigned to another thread in Thrdexe
(that might not yet be executing lock lck in the abstract case). Thus, the
only safe option is to make assignments to, at least, each thread specified
in the considered abstract configuration that at some point might acquire
lck. This is because these threads (even if currently not in Thrdexe)
could compete for lck with subsequent statements. If a thread that has
been assigned lck actually does not compete for lck, this can be detected
if the thread reaches a halt-statement or using the deadline parameter
in the state for lck.

5.8 Abstract Semantics 93

4. A transition sequence containing deadlocked configurations will not be
safely approximated. In the concrete case, the threads included in the
deadlock are spinning on the locks they are waiting to acquire. This
means that time moves forward for these threads (given that TIME is
non-zero). However, in the abstract case, the threads will be frozen and
their accumulated times do not increase on a transition.

To handle these issues, the analysis will be proven to safely approximate the
timing bounds of any concrete configuration, c@〈[T,pcT,rT, ta

T]T∈Thrd,x,l〉 ∈
Conf, in the finite collecting semantics, C (C), of a program in the initial states
described by the configurations in C, such that ∀T ∈ Thrd : STM(T,pcT) =
[halt]pcT . The analysis will also be proven to safely approximate the timing
bounds of some (but not all) collecting semantics that might be infinite. More
on this in Chapter 6.
−̃→
prg will be proven to be a safe approximation of−→prg in any finite collecting

semantics, with respect to each thread individually, for any configuration, c̃@
〈[T,pcT, r̃T, t̃a

T]T∈Thrdc̃
, x̃, l̃〉 ∈ Cõnf, such that |Thrdexe| 6> 1∨{T ∈ Thrdexe |

∃r ∈ RegT : ∃x ∈ Varg : STM(T,pcT) = [load r from x]pcT} = /0, where Varg
is the set of all global variables (i.e., variables that might transfer data between
threads); i.e., either no thread issues a load-statement on a global variable, or
there is such a thread and it is the sole thread that is executed, which means that
x̃ must contain safe write history since no more writes on x can occur before
the given load-statement has been executed.

One thing to notice from how −̃→prg is defined is that an abstract config-
uration cannot have the same restrictions for it being valid as a concrete
configuration does (c.f., Definition 4.4). When a thread (in Thrdexe) wants
to acquire some unlocked lock, −̃→prg can assign the lock to any thread
that at some point in the program wants to acquire the lock, as discussed
in 3 above. However (quite obviously), the assigned thread might not
acquire the lock with its current statement (it is also possible that the
thread never acquires the lock at all with its future statements). There-
fore, an abstract configuration, c̃@〈[T,pcT, r̃T, t̃a

T]T∈Thrdc̃
, x̃, l̃〉 ∈ Cõnf,

must be considered temporarily valid even if ∃lck ∈ Lck : (˜OWN(l̃ lck) 6=
⊥thrd ∧ ˜STT(l̃ lck) = unlocked). As also discussed in 3 above, however,
such an abstract configuration can be considered invalid if ∃lck ∈ Lck :
(˜OWN(l̃ lck) 6= ⊥thrd ∧ ˜STT(l̃ lck) = unlocked ∧ (D̃L(l̃ lck) <̃t (t̃a

˜OWN(l̃ lck) +̃t

ABSTIME(c̃, ˜OWN(l̃ lck)))∨STM(˜OWN(l̃ lck),pc ˜OWN(l̃ lck))= [halt]
pc ˜OWN(l̃ lck))),

given that D̃L(l̃ lck) is a safe approximation of when lck must have been taken

94 Chapter 5. Abstractly Interpreting PPL

by some thread in the corresponding concrete cases (c.f., Lemma 5.53), if any.
In the concrete case, a free (unlocked) lock is acquired as soon as some

thread tries to do so (c.f., Tables 4.2 and 4.3 and Lemma 4.5). The purpose of
DLLOCK, defined in Algorithm 5.11, is to derive a safe approximation of this
point in time (Lemma 5.53). Note that Lemma 5.51 states that accumulating
time for each thread individually is safe and that Lemma 5.52 states that the
timing of a thread can be analyzed in isolation from all other threads.

Lemma 5.51 (Time accumulation):
Given the two configurations c@〈[T,pcT,rT, ta

T]T∈Thrd,x,l〉 ∈ Conf and c̃@
〈[T,pcc̃

T, r̃T, t̃a
T]T∈Thrdc̃

, x̃, l̃〉 ∈ Cõnf, such that Thrdc̃ ⊆ Thrd, let Thrd′ =
{T ∈ Thrdc̃ | ta

T ∈ γ t(t̃a
T)∧pcT = pcc̃

T}. Then ∀T ∈ Thrd′ : (ta
T + TIME(c,T)) ∈

γ t(t̃a
T +̃t ABSTIME(c̃,T)). 2

PROOF. Assume that the configurations c@〈[T,pcT,rT, ta
T]T∈Thrd,x,l〉 ∈

Conf and c̃@〈[T,pcc̃
T, r̃T, t̃a

T]T∈Thrdc̃
, x̃, l̃〉 ∈Cõnf are such that Thrdc̃ ⊆Thrd,

and let Thrd′ = {T ∈ Thrdc̃ | ta
T ∈ γ t(t̃a

T) ∧ pcT = pcc̃
T}. Then, according

to Assumption 5.50, ∀T ∈ Thrd′ : TIME(c,T) ∈ γ t(ABSTIME(c̃,T)). Since
∀T ∈ Thrd′ : ta

T ∈ γ t(t̃a
T), it is easy to see that ∀T ∈ Thrd′ : (ta

T +TIME(c,T)) ∈
γ t(t̃a

T +̃t ABSTIME(c̃,T)). �

Lemma 5.52 (Thread isolation):
Given the two configurations c0@〈[T,pc0

T,r
0
T, t

a
T

0
]T∈Thrd,x

0,l0〉 ∈ Conf and

c̃0@〈[T,pcc̃0

T , r̃
0
T, t̃

a
T

0
]T∈Thrdc̃

, x̃0, l̃0〉 ∈Cõnf, and some thread, T∈Thrdc̃, such

that Thrdc̃ ⊆ Thrd, ta
T

0 ∈ γ t(t̃a
T

0
) and pc0

T = pcc̃0

T , and some configuration
cn+1@〈[T,pcn+1

T ,rn+1
T , ta

T
n+1

]T∈Thrd,x
n+1,ln+1〉, where

c0−→
prg . . .−→prg c1−→

prg . . .−→prg cn+1

for some n≥ 0,

ta
T

n+1 ∈ γ t(t̃a
T

0
+̃t ABSTIME(c̃0,T) +̃t . . . +̃t

ABSTIME(c̃n@〈[T,pcc̃n

T , r̃
n
T, t̃

a
T

n
]T∈Thrd, x̃

n, l̃n〉,T))

given that ∀i ∈ {1, . . . ,n} : t̃a
T

i
= t̃a

T
i−1

+̃t ABSTIME(c̃i−1,T), ∀i ∈ {0, . . . ,n} :
pci

T = pcc̃i

T , ∀i ∈ {0, . . . ,n} : T ∈ Thrdci

exe, and ∀c ∈ {c0, . . . ,c1, . . . ,cn} \
{c0,c1, . . . ,cn} : T 6∈ Thrdc

exe, where Thrdci

exe and Thrdc
exe are as defined in

Table 4.3 for all ci and all other c on the trace from c0 to cn+1. 2

5.8 Abstract Semantics 95

PROOF. Assume that the configurations c0@〈[T,pc0
T,r

0
T, t

a
T

0
]T∈Thrd,x

0,l0〉 ∈
Conf and c̃0@〈[T,pcc̃0

T , r̃
0
T, t̃

a
T

0
]T∈Thrdc̃

, x̃0, l̃0〉 ∈ Cõnf, and some thread,

T ∈ Thrd, are such that Thrdc̃ ⊆ Thrd, ta
T

0 ∈ γ t(t̃a
T

0
) and pc0

T = pcc̃0

T . Also
assume that c0−→

prg . . .−→prg c1−→
prg . . .−→prg cn+1 for some configuration cn+1@

〈[T,pcn+1
T ,rn+1

T , ta
T

n+1
]T∈Thrd,x

n+1,ln+1〉 and n≥ 0, for which ∀i∈ {0, . . . ,n} :

T ∈ Thrdci

exe, and ∀c ∈ {c0, . . . ,c1, . . . ,cn} \ {c0,c1, . . . ,cn} : T 6∈ Thrdc
exe,

where Thrdci

exe and Thrdc
exe are as defined in Table 4.3 for all ci and all other c

on the trace from c0 to cn+1.
From Table 4.3, it is easy to see that:

ta
T

0
= ta

T
0

ta
T

1
= ta

T
0
+ TIME(c0,T)

...
ta
T

n+1
= ta

T
n
+ TIME(cn,T) =

ta
T

0
+ TIME(c0,T)+ . . .+ TIME(cn,T)

Let {c̃0, . . . , c̃n@〈[T,pcc̃n

T , r̃
n
T, t̃

a
T

n
]T∈Thrdc̃

, x̃n, l̃n〉} be a set of some abstract
configurations such that c̃0 has the properties assumed above, ∀i ∈ {1, . . . ,n} :
pci

T = pcc̃i

T and ∀i ∈ {1, . . . ,n} : t̃a
T

i
= t̃a

T
i−1

+̃t ABSTIME(c̃i−1,T). Then,
according to Lemma 5.51:

(ta
T

0
+ TIME(c0,T)) ∈ γ t(t̃a

T
0
+̃t ABSTIME(c̃0,T))

...
(ta

T
n
+ TIME(cn,T)) ∈ γ t(t̃a

T
n
+̃t ABSTIME(c̃n,T))

Since ta
T

n+1
= ta

T
n
+ TIME(cn,T), this concludes the proof. �

Lemma 5.53 (Soundness of DLLOCK):
Given the valid concrete configurations (c.f., Definition 4.4), abstract configu-
rations and lock

c0@〈[T,pc0
T,r

0
T, t

a
T

0
]T∈Thrd,x

0,l0〉 ∈ Conf,
cm@〈[T,pcm

T ,r
m
T , t

a
T

m
]T∈Thrd,x

m,lm〉 ∈ Conf,
cn@〈[T,pcn

T,r
n
T, t

a
T

n
]T∈Thrd,x

n,ln〉 ∈ Conf,
c̃0@〈[T,pcc̃0

T , r̃
0
T, t̃

a
T

0
]T∈Thrdc̃0

, x̃0, l̃0〉 ∈ Cõnf,

c̃ j@〈[T,pcc̃ j

T , r̃
j
T, t̃

a
T

j
]T∈Thrdc̃ j

, x̃ j, l̃ j〉 ∈ Cõnf, and

lck ∈ Lck,

96 Chapter 5. Abstractly Interpreting PPL

such that

0≤ m≤ n,
c0−→

prg . . .−→prg cm−→
prg . . .−→prg cn,

0≤ j,
Thrdc̃ j ⊆ Thrdc̃0 ⊆ Thrd,

∀i ∈ {m, . . . ,n} : OWN(li lck) =⊥thrd,
REL(lm lck) ∈ γ t(˜REL(l̃ j lck)),

∃T ∈ Thrdc̃ j : (STM(T,pc0
T) = [lock lck]pc0

T ∧ ta
T

0 ∈ γ t(t̃a
T

0
)∧ t̃a

T
j
= t̃a

T
0 ∧

pcc̃ j

T = pcc̃0

T = pcn
T = pc0

T∧T ∈ Thrdcn

exe∧
∀i ∈ {0, . . . ,n} : OWN(li lck) 6= T),

∀i ∈ {m, . . . ,n−1} : ∀T ∈ Thrdci

exe : STM(T,pci
T) 6= [lock lck]pci

T ,

where Thrdci

exe is as defined in Table 4.3 for ci, DLLOCK satisfies:

min({ta
T

n
+ TIME(cn,T) | T ∈ Thrd}) ∈ γ t(DLLOCK(c̃ j, lck)) 2

PROOF. Given the valid concrete configurations (c.f., Definition 4.4), abstract
configurations and lock

c0@〈[T,pc0
T,r

0
T, t

a
T

0
]T∈Thrd,x

0,l0〉 ∈ Conf,
cm@〈[T,pcm

T ,r
m
T , t

a
T

m
]T∈Thrd,x

m,lm〉 ∈ Conf,
cn@〈[T,pcn

T,r
n
T, t

a
T

n
]T∈Thrd,x

n,ln〉 ∈ Conf,
c̃0@〈[T,pcc̃0

T , r̃
0
T, t̃

a
T

0
]T∈Thrdc̃0

, x̃0, l̃0〉 ∈ Cõnf,

c̃ j@〈[T,pcc̃ j

T , r̃
j
T, t̃

a
T

j
]T∈Thrdc̃ j

, x̃ j, l̃ j〉 ∈ Cõnf, and

lck ∈ Lck,

are such that

0≤ m≤ n,
c0−→

prg . . .−→prg cm−→
prg . . .−→prg cn,

0≤ j,
Thrdc̃ j ⊆ Thrdc̃0 ⊆ Thrd,

∀i ∈ {m, . . . ,n} : OWN(li lck) =⊥thrd,
REL(lm lck) ∈ γ t(˜REL(l̃ j lck)),

∃T ∈ Thrdc̃ j : (STM(T,pc0
T) = [lock lck]pc0

T ∧ ta
T

0 ∈ γ t(t̃a
T

0
)∧ t̃a

T
j
= t̃a

T
0 ∧

pcc̃ j

T = pcc̃0

T = pcn
T = pc0

T∧T ∈ Thrdcn

exe∧
∀i ∈ {0, . . . ,n} : OWN(li lck) 6= T),

∀i ∈ {m, . . . ,n−1} : ∀T ∈ Thrdci

exe : STM(T,pci
T) 6= [lock lck]pci

T ,

5.8 Abstract Semantics 97

where Thrdci

exe is as defined in Table 4.3 for ci. First note that:

• Since ∀i∈{m, . . . ,n−1} :∀T∈Thrdci

exe : (STM(T,pci
T) 6= [lock lck]pci

T∧
OWN(li lck) =⊥thrd), it must be that REL(ln lck) = REL(lm lck) (Tables
4.2 and 4.3).

• Since ∀i ∈ {m, . . . ,n} : OWN(li lck) = ⊥thrd and REL(ln lck) =
REL(lm lck), it must be that ∀T ∈ Thrd : ta

T
m ≤ REL(ln lck) (Tables

4.2 and 4.3 and Lemma 4.2).

• Since time only moves forward (Lemma 4.2), it must be that for cn,
∀T ∈ Thrd : REL(ln lck)≤ ta

T
n
+ TIME(cn,T).

• Since ∀i ∈ {m, . . . ,n−1} : ∀T ∈ Thrdci

exe : STM(T,pci
T) 6= [lock lck]pci

T ,
it must be that ∀T ∈ Thrd : (STM(T,pcn

T) = [lock lck]pcn
T ⇒ ta

T
n
= ta

T
m
)

(Tables 4.2 and 4.3).

• Since ∃T∈Thrdc̃ j : (STM(T,pc0
T) = [lock lck]pc0

T∧ ta
T

0 ∈ γ t(t̃a
T

0
)∧ t̃a

T
j
=

t̃a
T

0 ∧ pcc̃ j

T = pcc̃0

T = pcn
T = pc0

T ∧ T ∈ Thrdcn

exe ∧ ∀i ∈ {0, . . . ,n} :
OWN(li lck) 6= T), Thrdc̃ j ⊆ Thrd, ∀T ∈ Thrd : ta

T
m ≤ REL(ln lck),

∀T ∈ Thrd : REL(ln lck) ≤ ta
T

n
+ TIME(cn,T) and ∀T ∈ Thrd :

(STM(T,pcn
T) = [lock lck]pcn

T ⇒ ta
T

n
= ta

T
m
) it must be that ∃T ∈

Thrdc̃ j : ta
T

m ≤ REL(ln lck) ≤ ta
T

m
+ TIME(cn,T) ∧ STM(T,pcn

T) =

[lock lck]pcn
T ∧ ta

T
0 ∈ γ t(t̃a

T
0
)∧ t̃a

T
j
= t̃a

T
0 ∧pcc̃ j

T = pcc̃0

T = pcn
T = pc0

T∧T ∈
Thrdcn

exe∧∀i ∈ {0, . . . ,n} : OWN(li lck) 6= T).

From here on, it will be assumed that T′ ∈Thrdc̃ j is one of the threads such that
STM(T′,pc0

T′) = [lock lck]pc0
T′ ∧ tam

T′ ≤ REL(ln lck)≤ tam

T′ +TIME(cn,T′)∧ ta0

T′ ∈
γ t(t̃a0

T′)∧ t̃a j

T′ = t̃a0

T′ ∧pcc̃ j

T′ = pcc̃0

T′ = pcn
T′ = pc0

T′ ∧T′ ∈Thrdcn

exe∧∀i∈ {0, . . . ,n} :
OWN(li lck) 6= T′)).

• Let {m1, . . . ,m2} be the set of indices, such that 0 ≤ m1 ≤ m2 < m,
∀i ∈ {m1, . . . ,m2} : T′ ∈ Thrdci

exe and ∀i ∈ {0, . . . ,m} \ {m1, . . . ,m2} :
T′ 6∈ Thrdci

exe, where Thrdci

exe is as defined in Table 4.3 for ci (note
that it is possible that {m1, . . . ,m2} = /0; it should also be noted that
T′ 6∈ Thrdcm

exe). Since Thrdc̃ j ⊆ Thrd, ta0

T′ ∈ γ t(t̃a0

T′), t̃a j

T′ = t̃a0

T′ , c0−→
prg

. . .−→prg cm and 0≤m, it is easy to see that every configuration, c̃′, created

by the repeat-loop within DLLOCK(c̃ j, lck) fulfills the assumptions of

98 Chapter 5. Abstractly Interpreting PPL

Lemma 5.52. Furthermore, it is easy to see that (according to Lemma
5.52)

tam

T′ ∈ γ t(t̃a0

T′ +̃t ABSTIME(c̃m1 ,T′) +̃t . . . +̃t ABSTIME(c̃m2 ,T′))

where c̃m1 , . . . , c̃m2 correspond to a c̃′ derived by the repeat-loop (in total,
there are |{m1, . . . ,m2}| c̃′-configurations for the expression above).

For the sake of readability, let

t̃a′′
T′ = t̃a0

T′ +̃t ABSTIME(c̃m1 ,T′) +̃t . . . +̃t ABSTIME(c̃m2 ,T′)
c̃′′ = 〈[T,pcT, r̃T,(T = T′ ? t̃a′′

T′ : t̃a
T

j
)]T∈Thrdc̃

, x̃, l̃〉

where c̃m1 , . . . , c̃m2 are defined as in the bullet above.
Assuming that t̃dl is safe at the start of each iteration of the for all T ∈

Thrdc̃-loop, where T is such that STM(T,pcn
T) = [lock lck]pcn

T , it should be
shown that min({ta

T
n
+ TIME(cn,T) | T ∈ Thrdc̃}) ∈ γ t(t̃dl) is always fulfilled

at the end of each loop-iteration. It is easy to see that the initial value of t̃dl
(i.e., >̃t) is trivially safe since ∀T ∈ Thrdc̃ : ta

T
n
+ TIME(cn,T) ∈ γ t(>̃t). Note

that ∀c ∈ Conf : ∀T ∈ Thrd : TIME(c,T)≥ 0 (Assumption 4.1). Several cases
need to be considered.

1. If TIME(cn,T′) = 0, then tan

T′ + TIME(cn,T′) = tam

T′ = REL(ln lck)
(remember that tan

T′ = tam

T′ and REL(ln lck) = REL(lm lck)) and 0 ∈
ABSTIME(c̃′′,T′) (Assumption 5.50). Since 0 ∈ γ t(ABSTIME(c̃′′,T′)), it
will not be possible to determine a t̃a′

T′ such that ˜REL(l̃ j lck) <̃t t̃a′
T′ . How-

ever, for the iteration of the repeat-loop for which 0 ∈ ABSTIME(c̃′,T′),
it must be that ˜REL(l̃ j lck) 6<̃t t̃a′

T′ . ˜REL(l̃ j lck) provides a safe base for
when T′ would acquire lck since REL(ln lck) ∈ γ t(˜REL(l̃ j lck)). Thus,
according to Assumption 5.50, it must be that (tan

T′ + TIME(cn,T′)) ∈
γ t((t̃ +̃t ABSTIME(c̃′′′,T′)) t̃t α t({−∞})), where c̃′′′ = 〈[T,pcT, r̃T,

(T = T′ ? t̃ : t̃a
T

j
)]T∈Thrdc̃

, x̃, l̃〉 and t̃ = t̃a′
T′ t̃t ˜REL(l̃ j lck). But then, it

is easy to see that min({ta
T

n
+ TIME(cn,T) | T ∈ Thrdc̃}) ∈ γ t(((t̃ +̃t

ABSTIME(c̃′′′,T′)) t̃t α t({−∞})) ũt t̃dl).

2. If TIME(cn,T′)> 0, then two cases must be considered.

(a) If 0 ∈ γ t(ABSTIME(c̃′′,T′)) (or for any c̃′ of the repeat-loop), it
will not be possible to determine a t̃a′

T′ such that ˜REL(l̃ j lck) <̃t t̃a′
T′ .

However, this proof is the same as that of 1 above.

5.8 Abstract Semantics 99

(b) If 0 6∈ γ t(ABSTIME(c̃′′,T′)) (as well as for all c̃′ of the repeat-
loop), then a t̃a′

T′ such that ˜REL(l̃ j lck) <̃t t̃a′
T′ can be derived.

Since tam

T′ ≤ REL(ln lck), REL(ln lck) ∈ γ t(˜REL(l̃ j lck)) and
tam

T′ ∈ γ t(t̃a′′
T′), it must be that ˜REL(l̃ j lck) 6<̃t t̃a′′

T′ , and thus, the
repeat-loop will iterate at least once more when t̃a′

T′ = t̃a′′
T′ .

Since REL(ln lck) < tam

T′ + TIME(cn,T′), it must be that (since
tan

T′ = tam

T′) tan

T′ + TIME(cn,T) ∈ γ t(t̃a′′
T′ +̃t ABSTIME(c̃′′,T′)).

Thus, tan

T′ + TIME(cn,T) ∈ γ t(t̃a′
T′ t̃t α t({−∞})), where t̃a′

T′
and c̃′ are derived from c̃′′ by the repeat-loop, and thus
max(γ t(t̃a′′

T′))≤max(γ t(t̃a′
T′)) (c.f., Assumption 5.50). But then, it is

easy to see that min({ta
T

n
+ TIME(cn,T) | T ∈ Thrdc̃}) ∈ γ t((t̃a′

T′ t̃t
α t({−∞})) ũt t̃dl).

Thus, it must be that:

min({ta
T

n
+ TIME(cn,T) | T ∈ Thrd}) ∈ γ t(DLLOCK(c̃ j, lck)) �

The accumulated time, t̃a′
T ∈ Tim̃e, for a thread, T ∈ Thrdc̃, is determined

using ACCTIME, defined in Algorithm 5.12, which is partially a safe approxi-
mation of the concrete accumulated time of T (Lemma 5.54). This is because
the way that time accumulates for threads executing lock lck for some lock,
lck∈Lck, that is currently acquired by some other thread differs in the concrete
and abstract semantics. In the concrete semantics, the lock-statement is just
considered to finish its execution, without successfully acquiring lck, after the
(relative) time given by TIME, then a new instance of the same lock-statement
is executed (c.f., Tables 4.2 and 4.3); i.e., the thread is actively spinning on the
lock.

In the abstract semantics (c.f., Tables 5.5 and 5.6 and Algorithms 5.11 and
5.12), a thread issuing lock lck for some lock, lck ∈ Lck, that is currently
acquired by some other thread would be frozen until it is assigned lck, if this
ever occurs; i.e., the thread’s accumulated time would not be increased while
it is waiting to be assigned lck. When (and if) the thread is later assigned lck,
its accumulated execution time is advanced based on when lck became free
(unlocked).

If the lock, lck ∈ Lck, is not currently assigned to some other thread when
some thread issues lock lck, the behavior is the same in both the concrete
and abstract semantics in case the lock-issuing thread successfully acquires
lck; i.e., the thread’s execution time will be accumulated based on TIME and
ABSTIME, respectively.

100 Chapter 5. Abstractly Interpreting PPL

NOTE. ACCTIME is not directly safe for the case that STM(T,pcT) =
[lock lck]pcT ∧ OWN(l′′ lck) 6= T. In the concrete case, T will be executed in
a spin-lock fashion, while in the corresponding abstract case, T will be frozen
(i.e., its accumulated time will not be updated). This case is further considered
in the proof of Lemma 5.57.

ACCTIME is also not directly safe for the case that T has been waiting but
is now assigned lck, i.e., a catchup will be performed in the abstract case, since
there could be an extra abstract configuration such that t̃a

T <̃t ˜REL(l̃′′, lck) and
t̃a
T +̃t ABSTIME(c̃0,T) 6<̃t ˜REL(l̃′′, lck). This case is also further considered in

the proof of Lemma 5.57.

Lemma 5.54 (Partial soundness of ACCTIME):
Given the valid concrete configuration c@〈[T′,pcT′ ,rT′ , ta

T′]T′∈Thrd,x,l〉 ∈
Conf (c.f., Definition 4.4), the abstract configuration c̃0@
〈[T′,pcc̃

T′ , r̃T′ , t̃a
T′]T′∈Thrdc̃

, x̃, l̃〉 ∈Cõnf, and some thread, T ∈ Thrdc̃, such that

Thrdc̃ ⊆ Thrd∧
pcT = pcc̃

T∧
ta
T ∈ γ t(t̃a

T)∧
(T ∈ Thrdc

exe∧∀lck ∈ Lck : (STM(T,pcT) = [lock lck]pcT ⇒
(˜OWN(l̃′′ lck) = T∧OWN(l′′ lck) = T)))⇐⇒ T ∈ Thrdc̃

exe∧
∀lck ∈ Lck : (OWN(l′′ lck) = T⇒ (OWN(l′′ lck) = ˜OWN(l̃′′ lck)∧

DL(l′′ lck) ∈ γ t(D̃L(l̃′′ lck))∧
POWN(l′′ lck) = ˜POWN(l̃′′ lck)∧
REL(l′′ lck) ∈ γ t(˜REL(l̃′′ lck))∧
min(γ t(D̃L(l̃′′ lck))) =−∞)),

where Thrdc
exe and l′′, and Thrdc̃

exe and l̃′′, are as defined in Tables 4.3 and 5.6,
respectively,

ta′
T ∈ γ t(ACCTIME(〈[T′,pcc̃

T′ , r̃T′ , t̃
a
T′]T′∈Thrdc̃

, x̃, l̃′′〉,Thrdc̃
exe,T))

where ta′
T is as defined in Table 4.3. 2

PROOF. Assume that the (valid; c.f., Definition 4.4) configurations c@
〈[T′,pcT′ ,rT′ , ta

T′]T′∈Thrd,x,l〉 ∈ Conf and c̃0@〈[T′,pcc̃
T′ , r̃T′ , t̃a

T′]T′∈Thrdc̃
,

5.8 Abstract Semantics 101

x̃, l̃〉 ∈ Cõnf and the thread T ∈ Thrdc̃ are such that

Thrdc̃ ⊆ Thrd∧
pcT = pcc̃

T∧
ta
T ∈ γ t(t̃a

T)∧
(T ∈ Thrdc

exe∧∀lck ∈ Lck : (STM(T,pcT) = [lock lck]pcT ⇒
(˜OWN(l̃′′ lck) = T∧OWN(l′′ lck) = T)))⇐⇒ T ∈ Thrdc̃

exe∧
∀lck ∈ Lck : (OWN(l′′ lck) = T⇒ (OWN(l′′ lck) = ˜OWN(l̃′′ lck)∧

DL(l′′ lck) ∈ γ t(D̃L(l̃′′ lck))∧
POWN(l′′ lck) = ˜POWN(l̃′′ lck)∧
REL(l′′ lck) ∈ γ t(˜REL(l̃′′ lck))∧
min(γ t(D̃L(l̃′′ lck))) =−∞)),

where Thrdc
exe and l′′, and Thrdc̃

exe and l̃′′, are as defined in Tables 4.3 and 5.6,
respectively.

For the sake of readability, let c̃ = 〈[T′,pcc̃
T′ , r̃T′ , t̃a

T′]T′∈Thrdc̃
, x̃, l̃′′〉 when

considering the following cases. Note that Tim̃e = Intv.

1. If T 6∈ Thrdc
exe (and thus, T 6∈ Thrdc̃

exe), then ta′
T = ta

T (Table 4.3) and
ACCTIME(c̃,Thrdc̃

exe,T) = t̃a
T. Thus, ta′

T ∈ γ t(ACCTIME(c̃,Thrdc̃
exe,T)).

2. If T ∈ Thrdc
exe and for some a ∈ Aexp, b ∈ Bexp, l ∈ LblT,

r ∈ RegT, x ∈ Var and lck ∈ Lck, STM(T,pcT) ∈ {[skip]pcT ,
[r := a]pcT , [if b goto l]pcT , [store r to x]pcT , [load r from x]pcT ,
[unlock lck]pcT}, i.e., ∀lck′ ∈ Lck : STM(T,pcT) 6= [lock lck′]pcT (and
thus, T ∈ Thrdc̃

exe since (T ∈ Thrdc
exe ∧∀lck′ ∈ Lck : (STM(T,pcT) =

[lock lck′]pcT ⇒ (˜OWN(l̃′′ lck′) = T ∧ OWN(l′′ lck′) = T)))) ⇐⇒
T ∈ Thrdc̃

exe), then ACCTIME(c̃,Thrdc̃
exe,T) = t̃a

T +̃t ABSTIME(c̃,T)
and by Table 4.3, ta′

T = ta
T + TIME(c,T). Thus, by Lemma 5.51,

ta′
T ∈ γ t(ACCTIME(c̃,Thrdc̃

exe,T)).

3. If T ∈ Thrdc
exe and for some lck ∈ Lck, STM(T,pcT) = [lock lck]pcT

and OWN(l′′ lck) = T, and thus, T ∈ Thrdc̃
exe since (T ∈ Thrdc

exe ∧
∀lck′ ∈ Lck : (STM(T,pcT) = [lock lck′]pcT ⇒ (˜OWN(l̃′′ lck′) =
T ∧ OWN(l′′ lck′) = T)))) ⇐⇒ T ∈ Thrdc̃

exe, then several cases
need to be considered. Note that min(γ t(D̃L(l̃′′ lck))) = −∞, since
∀lck′ ∈ Lck : (OWN(l′′ lck′) = T ⇒ min(γ t(D̃L(l̃′′ lck′))) = −∞) and
OWN(l′′ lck) = T, and that T cannot acquire lck at any time, t̃, such that
t̃ <̃t ˜REL(l̃′′ lck), since lck has not been released at t̃, or D̃L(l̃′′ lck) <̃t t̃,
since by then some other thread would have taken lck (c.f., Tables 5.5
and 5.6).

102 Chapter 5. Abstractly Interpreting PPL

(a) If ˜STT(l̃′′ lck) = locked (and STT(l′′ lck) = locked since c is
valid and OWN(l′′ lck) 6= ⊥thrd), then ta′

T = ta
T + TIME(c,T)

and ACCTIME(c̃,Thrdc̃
exe,T) = t̃a

T +̃t ABSTIME(c̃,T). Thus,
ta′
T ∈ γ t(ACCTIME(c̃,Thrdc̃

exe,T)) (Lemma 5.51).

(b) Assume that ˜STT(l̃′′ lck) = unlocked ∧ D̃L(l̃′′ lck) <̃t (t̃a
T +̃t

ABSTIME(c̃,T)). Then, in the concrete case, it must be that T can-
not be the thread acquiring lck since DL(l′′ lck) ∈ γ t(D̃L(l̃′′ lck)),
ta
T ∈ γ t(t̃a

T), TIME(c,T)∈ γ t(ABSTIME(c̃,T)) and ta
T+TIME(c,T)=

DL(l′′ lck) whenever T acquires lck (Tables 4.2 and 4.3). But, then
it cannot be that ˜STT(l̃′′ lck) = unlocked ∧ D̃L(l̃′′ lck) <̃t (t̃a

T +̃t
ABSTIME(c̃,T)) since in the concrete case, T does successfully
acquire lck, which means that the corresponding branch cannot
apply for the given case. (Note that such a c̃ will not be further
considered; c.f., Algorithm 6.6 and Tables 5.5 and 5.6.)

(c) Note that the ˜STT(l̃′′ lck) = unlocked ∧ D̃L(l̃′′ lck) 6<̃t (t̃a
T +̃t

ABSTIME(c̃,T)) ∧ (t̃a
T +̃t ABSTIME(c̃,T)) <̃t ˜REL(l̃′′ lck) condi-

tioned branch, which applies to cases where T has been frozen
for sure while waiting to acquire lck but has now been assigned
lck, cannot be taken either. To see this, note that since c is
valid, it must be that REL(l′′ lck) ≤ ta

T + TIME(c,T) (Definition
4.4). Then, since ta

T ∈ γ t(t̃a
T), TIME(c,T) ∈ γ t(ABSTIME(c̃0,T))

(c.f., Assumption 5.50), OWN(l′′ lck) = T and OWN(l′′ lck) =
T ⇒ REL(l′′ lck) ∈ γ t(˜REL(l̃′′ lck)), it must be that t̃a

T +̃t
ABSTIME(c̃0,T) 6<̃t ˜REL(l̃′′ lck). This branch is further con-
sidered when the freezing of threads is proven to be safe (c.f., the
proof of Lemma 5.57).

(d) If ˜STT(l̃′′ lck) = unlocked∧ D̃L(l̃′′ lck) 6<̃t (t̃a
T +̃t ABSTIME(c̃,T))∧

(t̃a
T +̃t ABSTIME(c̃,T)) 6<̃t ˜REL(l̃′′ lck) ∧ (˜POWN(l̃′′ lck) =

T ∨ ˜REL(l̃′′ lck) <̃t (t̃a
T +̃t ABSTIME(c̃,T))), then two cases

must be considered.

i. If ˜POWN(l̃′′ lck) = T, then the sequential execution of the
statements of a thread (c.f., Tables 4.2 and 4.3) gives that
T must acquire lck at t̃a

T +̃t ABSTIME(c̃,T), but not at
a point in time, t̃, such that D̃L(l̃′′ lck) <̃t t̃, because by
then, some other thread must have already acquired lck
(since DL(l′′ lck) ∈ γ t(D̃L(l̃′′ lck))). Thus, it must be that
ta′
T ∈ γ t((t̃a

T +̃t ABSTIME(c̃,T)) ũt D̃L(l̃′′ lck)).
ii. If ˜REL(l̃′′ lck) <̃t (t̃a

T +̃t ABSTIME(c̃,T)), then Lemma 5.51

5.8 Abstract Semantics 103

gives that ta′
T ∈ γ t((t̃a

T +̃t ABSTIME(c̃,T)) ũt D̃L(l̃′′ lck))
since ta′

T = DL(l′′ lck) (c.f., Tables 4.2 and 4.3), DL(l′′ lck) ∈
γ t(D̃L(l̃′′ lck)) and REL(l′′ lck) ∈ γ t(˜REL(l̃′′ lck)).

(e) If ˜STT(l̃′′ lck) = unlocked∧ D̃L(l̃′′ lck) 6<̃t (t̃a
T +̃t ABSTIME(c̃,T))∧

(t̃a
T +̃t ABSTIME(c̃,T)) ũt ˜REL(l̃′′ lck) 6= ⊥̃t ∧T 6= ˜POWN(l̃′′ lck),

then let t̃a′′
T = t̃a

T +̃t ABSTIME(c̃,T), which is obviously a safe ap-
proximation of the first point in time at which T can acquire lck.
Also let c̃′ be any configuration derived before (i.e., c̃′= c̃) or inside
the repeat-loop. Note that t̃ r

T = >̃t is used to exit the loop in case
D̃L(l̃′′ lck) <̃t (t̃a′

T +̃t ABSTIME(c̃′,T)) or 0 ∈ γ t(ABSTIME(c̃′,T)),
where the latter case means that a t̃a′

T such that ˜REL(l̃′′ lck) <̃t t̃a′
T

cannot be derived.

i. If D̃L(l̃′′ lck) <̃t t̃a′
T +̃t ABSTIME(c̃′,T), then it must be that at

t̃a′
T +̃t ABSTIME(c̃′,T), some other thread will have acquired

lck (hence, t̃a′
T is the last point in time when T can acquire

lck). Thus, it must be that ta′
T ∈ γ t((t̃a′′

T t̃t t̃a′
T) ũt D̃L(l̃′′ lck) ũt

(˜REL(l̃′′ lck) t̃t α t({∞}))) since DL(l′′ lck) ∈ γ t(D̃L(l̃′′ lck))
and REL(l′′ lck) ∈ γ t(˜REL(l̃′′ lck)).

ii. If 0 ∈ γ t(ABSTIME(c̃′,T)) and also D̃L(l̃′′ lck) 6<̃t t̃a′
T +̃t

ABSTIME(c̃′,T), then it must be that t̃ +̃t
ABSTIME(c̃′′,T), where t̃ = (t̃a′

T t̃t α t({∞})) ũt ˜REL(l̃ lck)
and c̃′′ = 〈[T′,pcT′ , r̃T′ ,(T = T′ ? t̃ : t̃a

T′)]T′∈Thrdc̃
, x̃, l̃′′〉,

is a safe approximation of the last point in time when T
can (or rather, will) acquire lck (c.f., Assumption 5.50)
since REL(l′′ lck) ∈ γ t(˜REL(l̃′′ lck)). Thus, it must be that
ta′
T ∈ γ t((t̃a′′

T t̃t t̃a′
T) ũt D̃L(l̃′′ lck) ũt (˜REL(l̃′′ lck) t̃t α t({∞})))

since REL(l′′ lck) ∈ γ t(˜REL(l̃′′ lck)) and DL(l′′ lck) ∈
γ t(D̃L(l̃′′ lck)).

iii. If 0 6∈ γ t(ABSTIME(c̃′,T)) and also D̃L(l̃′′ lck) 6<̃t t̃a′
T +̃t

ABSTIME(c̃′,T), then it must be that, at some point,
˜REL(l̃′′ lck) <̃t t̃a′

T . Since REL(l′′ lck) ∈ γ t(˜REL(l̃′′ lck))
and DL(l′′ lck) ∈ γ t(D̃L(l̃′′ lck)), it is thus easy to see
that ta′

T ∈ γ t((t̃a′′
T t̃t t̃a′

T) ũt D̃L(l̃′′ lck) ũt (˜REL(l̃′′ lck) t̃t
α t({∞}))).

This concludes the proof. �

It is important to notice that all the possible orders in which threads can
acquire a lock in the concrete case are covered by the abstract transition rela-

104 Chapter 5. Abstractly Interpreting PPL

tions, even though Tim̃e = Intv. Since Tim̃e = Intv, Thrdexe might differ for
concrete and abstract cases as discussed above. This means that even if some
thread is the first in a set of threads to issue a lock-statement acting on some
lock, lck ∈ Lck, some other thread could issue its corresponding lock lck-
statement first in the abstract case. Lemma 5.55 states that even if this happens,
the first thread will be assigned, and eventually acquire, lck anyway for some
transition sequence(s).

Lemma 5.55 (Properties of owner assignment for lock-transitions):
Given the valid concrete configurations (c.f., Definition 4.4), abstract configu-
rations, lock and threads

c0@〈[T,pc0
T,r

0
T, t

a
T

0
]T∈Thrd,x

0,l0〉 ∈ Conf,
ci@〈[T,pci

T,r
i
T, t

a
T

i
]T∈Thrd,x

i,li〉 ∈ Conf,
cn@〈[T,pcn

T,r
n
T, t

a
T

n
]T∈Thrd,x

n,ln〉 ∈ Conf,
c̃0@〈[T,pcc̃0

T , r̃
0
T, t̃

a
T

0
]T∈Thrdc̃0

, x̃0, l̃0〉 ∈ Cõnf,

c̃ j@〈[T,pcc̃ j

T , r̃
j
T, t̃

a
T

j
]T∈Thrdc̃ j

, x̃ j, l̃ j〉 ∈ Cõnf,

c̃k@〈[T,pcc̃k

T , r̃
k
T, t̃

a
T

k
]T∈Thrdc̃k

, x̃k, l̃k〉 ∈ Cõnf,
lck′ ∈ Lck,
T′ ∈ Thrdc̃k and
T′′ ∈ Thrdc̃k ,

5.8 Abstract Semantics 105

such that

0≤ i< n,
c0−→

prg . . .−→prg ci−→
prg . . .−→prg cn,

0≤ j < k,
c̃0 −̃→

prg . . .−̃→prg c̃ j −̃→
prg . . .−̃→prg c̃k,

Thrdc̃k ⊆ Thrdc̃ j ⊆ Thrdc̃0 ⊆ Thrd,
STM(T′′,pcn

T′′) = [lock lck′]pcn
T′′ ,

T′′ ∈ Thrdcn

exe,

STM(T′,pcc̃k

T′) = [lock lck′]pcc̃k
T′ ,

T′ ∈ Thrdc̃k

exe,

∀h ∈ {0, . . . ,k−1} : (T′ ∈ Thrdc̃h

exe⇒ STM(T′,pcc̃h

T′) 6= [lock lck′]pcc̃h
T′),

REL(li lck′) ∈ γ t(˜REL(l̃ j lck′)),
(pci

T′ = pcc̃k

T′ ∧
tai

T′ ∈ γ t(t̃ak

T′)∧
T′ ∈ Thrdci

exe∧
OWN(li lck′) =⊥thrd ∧
OWN(li+1 lck′) = T′) and
(pcn

T′′ = pcc̃ j

T′′ ∧
tan

T′′ ∈ γ t(t̃a j

T′′)∧
T′′ ∈ Thrdallc̃

j

exe ∧
˜OWN(l̃ j lck′) =⊥thrd ∧
˜OWN(l̃ j+1 lck′) = T′),

where the trace for T′ in c̃0 −̃→
prg . . .−̃→prg c̃k is the same as in c0−→

prg . . .−→prg ci, the

trace for T′′ in c̃0 −̃→
prg . . .−̃→prg c̃ j is the same as in c0−→

prg . . .−→prg cn, Thrdcn

exe is as

defined in Table 4.3, and Thrdallc̃
j

exe and Thrdc̃k

exe are as defined in Table 5.6, −̃→prg

satisfies:

˜OWN(l̃k lck′) = ˜OWN(l̃ j+1 lck′) = OWN(li+1 lck′) = T′∧
STT(li lck′) = ˜STT(l̃ j lck′) = ˜STT(l̃ j+1 lck′) = ˜STT(l̃k lck′) = unlocked∧
D̃L(l̃k lck′) = D̃L(l̃ j+1 lck′)∧
min(γ t(D̃L(l̃k lck′))) =−∞∧
tai

T′ + TIME(ci,T′) ∈ γ t(D̃L(l̃k lck′))
2

106 Chapter 5. Abstractly Interpreting PPL

PROOF. Assume that the valid concrete configurations, abstract configura-
tions, lock and threads

c0@〈[T,pc0
T,r

0
T, t

a
T

0
]T∈Thrd,x

0,l0〉 ∈ Conf,
ci@〈[T,pci

T,r
i
T, t

a
T

i
]T∈Thrd,x

i,li〉 ∈ Conf,
cn@〈[T,pcn

T,r
n
T, t

a
T

n
]T∈Thrd,x

n,ln〉 ∈ Conf,
c̃0@〈[T,pcc̃0

T , r̃
0
T, t̃

a
T

0
]T∈Thrdc̃0

, x̃0, l̃0〉 ∈ Cõnf,

c̃ j@〈[T,pcc̃ j

T , r̃
j
T, t̃

a
T

j
]T∈Thrdc̃ j

, x̃ j, l̃ j〉 ∈ Cõnf,

c̃k@〈[T,pcc̃k

T , r̃
k
T, t̃

a
T

k
]T∈Thrdc̃k

, x̃k, l̃k〉 ∈ Cõnf,
lck′ ∈ Lck,
T′ ∈ Thrdc̃k and
T′′ ∈ Thrdc̃k ,

are such that

0≤ i< n,
c0−→

prg . . .−→prg ci−→
prg . . .−→prg cn,

0≤ j < k,
c̃0 −̃→

prg . . .−̃→prg c̃ j −̃→
prg . . .−̃→prg c̃k,

Thrdc̃k ⊆ Thrdc̃ j ⊆ Thrdc̃0 ⊆ Thrd,
STM(T′′,pcn

T′′) = [lock lck′]pcn
T′′ ,

T′′ ∈ Thrdcn

exe,

STM(T′,pcc̃k

T′) = [lock lck′]pcc̃k
T′ ,

T′ ∈ Thrdc̃k

exe,

∀h ∈ {0, . . . ,k−1} : (T′ ∈ Thrdc̃h

exe⇒ STM(T′,pcc̃h

T′) 6= [lock lck′]pcc̃h
T′),

REL(li lck′) ∈ γ t(˜REL(l̃ j lck′)),
(pci

T′ = pcc̃k

T′ ∧
tai

T′ ∈ γ t(t̃ak

T′)∧
T′ ∈ Thrdci

exe∧
OWN(li lck′) =⊥thrd ∧
OWN(li+1 lck′) = T′) and
(pcn

T′′ = pcc̃ j

T′′ ∧
tan

T′′ ∈ γ t(t̃a j

T′′)∧
T′′ ∈ Thrdallc̃

j

exe ∧
˜OWN(l̃ j lck′) =⊥thrd ∧
˜OWN(l̃ j+1 lck′) = T′),

5.8 Abstract Semantics 107

where the trace for T′ in c̃0 −̃→
prg . . .−̃→prg c̃k is the same as in c0−→

prg . . .−→prg ci, the

trace for T′′ in c̃0 −̃→
prg . . .−̃→prg c̃ j is the same as in c0−→

prg . . .−→prg cn, Thrdcn

exe is as

defined in Table 4.3, and Thrdallc̃
j

exe and Thrdc̃k

exe are as defined in Table 5.6.
First note that since the trace for T′ in c̃0 −̃→

prg . . .−̃→prg c̃k is the same

as in c0−→
prg . . .−→prg ci, the trace for T′′ in c̃0 −̃→

prg . . .−̃→prg c̃ j is the same

as in c0−→
prg . . .−→prg cn, STM(T′′,pcn

T′′) = [lock lck′]pcn
T′′ , T′′ ∈ Thrdcn

exe,

STM(T′,pcc̃k

T′) = [lock lck′]pcc̃k
T′ , T′ ∈ Thrdc̃k

exe, pci
T′ = pcc̃k

T′ , tai

T′ ∈ γ t(t̃ak

T′),
T′ ∈ Thrdci

exe, OWN(li lck′) = ⊥thrd, OWN(li+1 lck′) = T′, pcn
T′′ = pcc̃ j

T′′ ,
tan

T′′ ∈ γ t(t̃a j

T′′), ˜OWN(l̃ j lck′) =⊥thrd and ˜OWN(l̃ j+1 lck′) = T′, it must be that T′

acquires lck′ in the transition between ci and ci+1 and T′′ wants to acquire lck′

in a transition from cn, while the abstract trace represents a situation (that can
occur due to that Tim̃e = Intv) where T′′ reaches the lock lck′-statement (i.e.,
it reaches pcn

T′′) before T′ (i.e., before T′ reaches pci
T′), but lck′ is assigned to

T′ as shown below.

Since ∀h∈{0, . . . ,k−1} : (T′ ∈Thrdc̃h

exe⇒ STM(T′,pcc̃h

T′) 6= [lock lck′]pcc̃h
T′),

OWN(li lck′) = ⊥thrd, ˜OWN(l̃ j lck′) = ⊥thrd and ˜OWN(l̃ j+1 lck′) = T′, it
is easy to see that ˜OWN(l̃k lck′) = ˜OWN(l̃ j+1 lck′) = OWN(li+1 lck′) = T′,
STT(li lck′) = ˜STT(l̃ j lck′) = ˜STT(l̃ j+1 lck′) = ˜STT(l̃k lck′) = unlocked and
D̃L(l̃k lck′) = D̃L(l̃ j+1 lck′) (c.f., Table 5.6).

Since DLLOCK is used to determine D̃L(l̃ j+1 lck′) and D̃L(l̃k lck′) =
D̃L(l̃ j+1 lck′), it is easy to see that min(γ t(D̃L(l̃k lck′))) = −∞ since DLLOCK

is used only if ∃T ∈ Thrdallc̃
j

exe : STM(T,pcc̃ j

T) = [lock lck′]pcc̃ j
T (c.f., Ta-

ble 5.6) which is the case since pcn
T′′ = pcc̃ j

T′′ , ˜OWN(l̃ j lck′) = ⊥thrd and
˜OWN(l̃ j+1 lck′) = T′ (c.f., Algorithm 5.11).

Since T′ ∈ Thrdci

exe, it must be that tai

T′ + TIME(ci,T′) = min({ta
T

i
+

TIME(ci,T) | T ∈ Thrd}), and since T′′ ∈ Thrdcn

exe, it must be that tan

T′′ +

TIME(cn,T′′) = min({ta
T

n
+ TIME(cn,T) | T ∈ Thrd}). But since ci−→

prg . . .−→prg

cn, it must be that tai

T′ + TIME(ci,T′) ≤ tan

T′′ + TIME(cn,T′′) (Lemma 4.2). Note
that by choosing c0, cm, cn, c̃0 and c̃ j (defined by Lemma 5.53) to be cn,
cn, cn, c̃ j and c̃ j (defined by this proof), respectively, and assuming that
OWN(ln lck′) = ⊥thrd and REL(ln lck′) ∈ γ t(˜REL(l̃ j lck′)) (which is actually
not necessarily the case since T′ acquires lck′ in the transition between ci

and ci+1; however, note that this assumption is okay since if T′ would not

108 Chapter 5. Abstractly Interpreting PPL

acquire lck′, then OWN(ln lck′) = ⊥thrd and REL(ln lck′) ∈ γ t(˜REL(l̃ j lck′))
would hold since OWN(li lck′) = ⊥thrd and REL(li lck′) ∈ γ t(˜REL(l̃ j lck′))), it
is easy to see that tan

T′′ + TIME(cn,T′′) ∈ γ t(DLLOCK(c̃ j, lck′)) since Thrdc̃k ⊆
Thrdc̃ j ⊆ Thrdc̃0 ⊆ Thrd, STM(T′′,pcn

T′′) = [lock lck′]pcn
T′′ , T′′ ∈ Thrdcn

exe

and tan

T′′ ∈ γ t(t̃a j

T′′) (Lemma 5.53). But then, since min(γ t(D̃L(l̃k lck′))) = −∞,
D̃L(l̃k lck′) = DLLOCK(c̃ j, lck′) and tai

T′ + TIME(ci,T′)≤ tan

T′′ + TIME(cn,T′′), it
must be that tai

T′ + TIME(ci,T′) ∈ γ t(D̃L(l̃k lck′)) which concludes the proof. �

Three lemmas will be presented in order to prove that the abstract transi-
tions described by −̃→prg safely approximate the concrete transitions described by
−→
prg . The lemmas hold given that the concrete transition sequences are finite in
length (i.e., given that they terminate) and that either no thread issues a load-
statement on a global variable or that the thread issuing the load-statement
is the sole thread in Thrdexe in any step of the transition sequence. The first
lemma shows that the halt-, skip-, := -, if-, load-, store- and unlock-
statements, and also the lock-statement if the issuing thread immediately is
assigned the lock, are safely approximated (Lemma 5.56). Note that a variable
is considered global if it could transfer data between two or more threads (c.f.,
Algorithm 6.9).

Lemma 5.56 (Soundness of −̃→prg , no frozen thread):

Given the valid concrete configurations (c.f., Definition 4.4), abstract configu-
rations and thread

c0@〈[T,pc0
T,r

0
T, t

a
T

0
]T∈Thrd,x

0,l0〉 ∈ Conf,
cn@〈[T,pcn

T,r
n
T, t

a
T

n
]T∈Thrd,x

n,ln〉 ∈ Conf,
c̃0@〈[T,pcc̃0

T , r̃
0
T, t̃

a
T

0
]T∈Thrdc̃0

, x̃0, l̃0〉 ∈ Cõnf,

c̃k@〈[T,pcc̃k

T , r̃
k
T, t̃

a
T

k
]T∈Thrdc̃k

, x̃k, l̃k〉 ∈ Cõnf, and

T′ ∈ Thrdc̃k ,

5.8 Abstract Semantics 109

such that
0≤ n,

c0−→
prg . . .−→prg cn,

0≤ k,
c̃0 −̃→

prg . . .−̃→prg c̃k,

Thrdc̃k ⊆ Thrdc̃0 ⊆ Thrd,
pc0

T′ = pcc̃0

T′ ,
r

0
T′ ∈ γreg(r̃

0
T′),

ta0

T′ ∈ γ t(t̃a0

T′),
∃x′ ∈ γvar(x̃

0) : ∀x ∈ Var : ∀T ∈ Thrd : ((x0 x) T)⊆ ((x′ x) T),
∀lck ∈ Lck : ((OWN(l0 lck) 6=⊥thrd⇒ (STT(l0 lck) = ˜STT(l̃0 lck)∧

OWN(l0 lck) = ˜OWN(l̃0 lck)∧
DL(l0 lck) ∈ γ t(D̃L(l̃0 lck))∧
POWN(l0 lck) = ˜POWN(l̃0 lck)∧
REL(l0 lck) ∈ γ t(˜REL(l̃0 lck))∧
min(γ t(D̃L(l̃0 lck))) =−∞))∧

(OWN(l0 lck) =⊥thrd⇒ ((OWN(l0 lck) = ˜OWN(l̃0 lck)∨
(˜OWN(l̃0 lck) = T′∧

˜STT(l̃0 lck) = unlocked∧
tan

T′ + TIME(cn,T′) ∈ γ t(D̃L(l̃0 lck))∧
min(γ t(D̃L(l̃0 lck))) =−∞))∧

POWN(l0 lck) = ˜POWN(l̃0 lck)∧
REL(l0 lck) ∈ γ t(˜REL(l̃0 lck))∧
STM(T′,pc0

T′) = [lock lck]pc0
T′ ⇒

(ln lck = l
0 lck∧

l̃
k lck = l̃

0 lck)))),
∀i ∈ {0, . . . ,n−1} : T′ 6∈ Thrdci

exe,

STM(T′,pcn
T′) 6= [halt]pcn

T′ ⇒ T′ ∈ Thrdcn

exe,

∀i ∈ {0, . . . ,k−1} : T′ 6∈ Thrdc̃i

exe,

STM(T′,pcc̃k

T′) 6= [halt]pcc̃k
T′ ⇒ T′ ∈ Thrdc̃k

exe, and
∀i ∈ {0, . . . ,k} : (|Thrdc̃i

exe| 6> 1∨
{T ∈ Thrdc̃i

exe | ∃r ∈ RegT : ∃x ∈ Varg :

STM(T,pcc̃i

T) = [load r from x]pcc̃i
T }= /0),

where for all i ∈ {0, . . . ,n}, Thrdci

exe is as defined in Table 4.3, for all i ∈
{0, . . . ,k}, Thrdc̃i

exe is as defined in Table 5.6, and Varg contains all x ∈ Var

110 Chapter 5. Abstractly Interpreting PPL

such that x can be written to by one thread and read from by another thread
(i.e., there might be a data dependency between the threads; note that Varg can
be derived using Algorithm 6.9), −̃→prg satisfies:

∀c@〈[T,pcT,rT, ta
T]T∈Thrd,x,l〉 ∈ Conf :

(cn−→
prg c⇒∃c̃@〈[T,pcc̃

T, r̃T, t̃a
T]T∈Thrdc̃k

, x̃, l̃〉 ∈ Cõnf :

(c̃k −̃→
prg c̃∧

pcT′ = pcc̃
T′ ∧

rT′ ∈ γreg(r̃T′)∧
ta
T′ ∈ γ t(t̃a

T′)∧
∃x′ ∈ γvar(x̃) : (∀x ∈ Var : ((x x) T′)⊆ ((x′ x) T′))∧
∀lck ∈ Lck : ((OWN(l0 lck) = T′∨OWN(l lck) = T′)⇒

(STT(l lck) = ˜STT(l̃ lck)∧
OWN(l lck) = ˜OWN(l̃ lck)∧
DL(l lck) ∈ γ t(D̃L(l̃ lck))∧
POWN(l lck) = ˜POWN(l̃ lck)∧
REL(l lck) ∈ γ t(˜REL(l̃ lck))∧
min(γ t(D̃L(l̃ lck))) =−∞)))) 2

PROOF. Assume that the valid concrete configurations (c.f., Definition 4.4),
abstract configurations and thread

c0@〈[T,pc0
T,r

0
T, t

a
T

0
]T∈Thrd,x

0,l0〉 ∈ Conf,
cn@〈[T,pcn

T,r
n
T, t

a
T

n
]T∈Thrd,x

n,ln〉 ∈ Conf,
c̃0@〈[T,pcc̃0

T , r̃
0
T, t̃

a
T

0
]T∈Thrdc̃0

, x̃0, l̃0〉 ∈ Cõnf,

c̃k@〈[T,pcc̃k

T , r̃
k
T, t̃

a
T

k
]T∈Thrdc̃k

, x̃k, l̃k〉 ∈ Cõnf, and

T′ ∈ Thrdc̃k ,

5.8 Abstract Semantics 111

are such that
0≤ n,

c0−→
prg . . .−→prg cn,

0≤ k,
c̃0 −̃→

prg . . .−̃→prg c̃k,

Thrdc̃k ⊆ Thrdc̃0 ⊆ Thrd,
pc0

T′ = pcc̃0

T′ ,
r

0
T′ ∈ γreg(r̃

0
T′),

ta0

T′ ∈ γ t(t̃a0

T′),
∃x′ ∈ γvar(x̃

0) : ∀x ∈ Var : ∀T ∈ Thrd : ((x0 x) T)⊆ ((x′ x) T),
∀lck ∈ Lck : ((OWN(l0 lck) 6=⊥thrd⇒ (STT(l0 lck) = ˜STT(l̃0 lck)∧

OWN(l0 lck) = ˜OWN(l̃0 lck)∧
DL(l0 lck) ∈ γ t(D̃L(l̃0 lck))∧
POWN(l0 lck) = ˜POWN(l̃0 lck)∧
REL(l0 lck) ∈ γ t(˜REL(l̃0 lck))∧
min(γ t(D̃L(l̃0 lck))) =−∞))∧

(OWN(l0 lck) =⊥thrd⇒ ((OWN(l0 lck) = ˜OWN(l̃0 lck)∨
(˜OWN(l̃0 lck) = T′∧

˜STT(l̃0 lck) = unlocked∧
tan

T′ + TIME(cn,T′) ∈ γ t(D̃L(l̃0 lck))∧
min(γ t(D̃L(l̃0 lck))) =−∞))∧

POWN(l0 lck) = ˜POWN(l̃0 lck)∧
REL(l0 lck) ∈ γ t(˜REL(l̃0 lck))∧
STM(T′,pc0

T′) = [lock lck]pc0
T′ ⇒

(ln lck = l
0 lck∧

l̃
k lck = l̃

0 lck)))),
∀i ∈ {0, . . . ,n−1} : T′ 6∈ Thrdci

exe,

STM(T′,pcn
T′) 6= [halt]pcn

T′ ⇒ T′ ∈ Thrdcn

exe,

∀i ∈ {0, . . . ,k−1} : T′ 6∈ Thrdc̃i

exe,

STM(T′,pcc̃k

T′) 6= [halt]pcc̃k
T′ ⇒ T′ ∈ Thrdc̃k

exe, and
∀i ∈ {0, . . . ,k} : (|Thrdc̃i

exe| 6> 1∨
{T ∈ Thrdc̃i

exe | ∃r ∈ RegT : ∃x ∈ Varg :

STM(T,pcc̃i

T) = [load r from x]pcc̃i
T }= /0),

where for all i ∈ {0, . . . ,n}, Thrdci

exe is as defined in Table 4.3, for all i ∈
{0, . . . ,k}, Thrdc̃i

exe is as defined in Table 5.6, and Varg contains all x ∈ Var

112 Chapter 5. Abstractly Interpreting PPL

such that x can be written to by one thread and read from by another thread
(i.e., there might be a data dependency between the threads).

First note that:

• Since ∀i ∈ {0, . . . ,n− 1} : T′ 6∈ Thrdci

exe, it must be that pcn
T′ = pc0

T′ ,
r

n
T′ = r

0
T′ , tan

T′ = ta0

T′ and ∀lck∈Lck : (OWN(l0 lck)=T′⇒ l
n lck= l

0 lck)
(c.f., Table 4.3).

• Since ∀i∈ {0, . . . ,k−1} : T′ 6∈Thrdc̃i

exe, it must be that pcc̃k

T′ = pcc̃0

T′ , r̃
k
T′ =

r̃
0
T′ , t̃ak

T′ = t̃a0

T′ and ∀lck ∈ Lck : (˜OWN(l̃0 lck) = T′ ⇒ (l̃k lck = l̃
0 lck∧

min(γ t(D̃L(l̃k lck))) =−∞)).

• Since pcn
T′ = pc0

T′ , r
n
T′ = r

0
T′ , tan

T′ = ta0

T′ , ∀lck ∈ Lck : (OWN(l0 lck) =

T′ ⇒ l
n lck = l

0 lck), pcc̃k

T′ = pcc̃0

T′ , r̃
k
T′ = r̃

0
T′ , t̃ak

T′ = t̃a0

T′ , ∀lck ∈
Lck : (˜OWN(l̃0 lck) = T′ ⇒ (l̃k lck = l̃

0 lck ∧ min(γ t(D̃L(l̃k lck))) =

−∞)), pc0
T′ = pcc̃0

T′ , r
0
T′ ∈ γreg(r̃

0
T′), ta0

T′ ∈ γ t(t̃a0

T′) and ∀lck ∈ Lck :
(OWN(l0 lck) = T′ ⇒ (STT(l0 lck) = ˜STT(l̃0 lck) ∧ OWN(l0 lck) =

˜OWN(l̃0 lck) ∧ DL(l0 lck) ∈ γ t(D̃L(l̃0 lck)) ∧ POWN(l0 lck) =
˜POWN(l̃0 lck)∧ REL(l0 lck) ∈ γ t(˜REL(l̃0 lck))∧ min(γ t(D̃L(l̃0 lck))) =

−∞)), it must be that:

pcn
T′ = pcc̃k

T′ ∧
r

n
T′ ∈ γreg(r̃

k
T′)∧

tan

T′ ∈ γ t(t̃ak

T′)∧
∀lck ∈ Lck : (OWN(ln lck) = T′⇒ (STT(ln lck) = ˜STT(l̃k lck)∧

OWN(ln lck) = ˜OWN(l̃k lck)∧
DL(ln lck) ∈ γ t(D̃L(l̃k lck))∧
POWN(ln lck) = ˜POWN(l̃k lck)∧
REL(ln lck) ∈ γ t(˜REL(l̃k lck))∧
min(γ t(D̃L(l̃k lck))) =−∞))

• Since c0−→
prg . . .−→prg cn and ∀i ∈ {0, . . . ,n− 1} : T′ 6∈ Thrdci

exe, it must be

that for all x ∈ Var, ((xn x) T′) = ((x0 x) T′) if no thread writes to x in
the sequence c0−→

prg . . .−→prg cn, or ((xn x) T′) = /0 if some other thread has
written to x in the given sequence (c.f., Table 4.3). Thus, ∀x ∈ Var :
((xn x) T′)⊆ ((x0 x) T′).

5.8 Abstract Semantics 113

• Since ∃x′ ∈ γvar(x̃
0) : ∀x ∈Var : ((x0 x) T′)⊆ ((x′ x) T′), c0−→

prg . . .−→prg

cn, c̃0 −̃→
prg . . .−̃→prg c̃k, ∀i ∈ {0, . . . ,n− 1} : T′ 6∈ Thrdci

exe, ∀i ∈ {0, . . . ,k−

1} : T′ 6∈ Thrdc̃i

exe and TRIM is safe (Lemma 5.27), it must be that ∃x′ ∈
γvar(x̃

k) : ∀x ∈ Var : ((xn x) T′)⊆ ((x′ x) T′).

• Since ∀i ∈ {0, . . . ,k} : (|Thrdc̃i

exe| 6> 1 ∨ {T ∈ Thrdc̃i

exe | ∃r ∈ RegT :

∃x ∈ Varg : STM(T,pcc̃i

T) = [load r from x]pcc̃i
T } = /0), it must be that

∀i ∈ {0, . . . ,k} : ({T ∈ Thrdc̃i

exe | ∃r ∈RegT : ∃x ∈Varg : STM(T,pcc̃i

T) =

[load r from x]pcc̃i
T } 6= /0 ⇒ |Thrdc̃i

exe| = 1). This means that if some
thread in Thrdc̃i

exe, where i ∈ {0, . . . ,k}, performs a load-statement,
there is only one single thread in Thrdc̃i

exe; thus that thread performs the
load-statement. It is then easy to see, from the definition of Thrdc̃i

exe,
that there cannot occur any other write than those represented by x̃

i

such that it could affect the load-statement of the thread in Thrdc̃i

exe
(c.f., Assumption 5.50) – thus, it must be that x̃k (and also all x̃i, where
i ∈ {0, . . . ,k}) contains safe write history (c.f., Definition 5.18).

• Since, trivially, ∀lck ∈ Lck : {T ∈ Thrdcn

exe ∩Thrdc̃k | STM(T,pcn
T) =

[lock lck]pcn
T} ⊆ {T ∈ Thrdc̃k | ∃l ∈ LblT : STM(T, l) = [lock lck]l}, it

must be that if T′ can be assigned a lock in the concrete case, it can also
be assigned the lock in the corresponding abstract case.

• If, for some lck ∈ Lck, STM(T′,pcc̃k

T′) = [lock lck]pcc̃k
T′ , it must be that

˜OWN(l̃k′′ lck) = T′, since ∀i ∈ {0, . . .k− 1} : T′ 6∈ Thrdc̃i

exe and T′ ∈
Thrdc̃k

exe.

• Since T′ ∈ Thrdc̃k , Thrdc̃k ⊆ Thrd, pcc̃k

T′ = pcn
T′ , tan

T′ ∈ γ t(t̃ak

T′), ∀lck ∈
Lck : (OWN(l0 lck) = T′⇒ (STT(ln lck) = ˜STT(l̃k lck)∧OWN(ln lck) =

˜OWN(l̃k lck) ∧ DL(ln lck) ∈ γ t(D̃L(l̃k lck)) ∧ POWN(ln lck) =

˜POWN(l̃k lck) ∧ REL(ln lck) ∈ γ t(˜REL(l̃k lck)))), T′ ∈ Thrdc̃k

exe, T′ ∈

Thrdcn

exe, ∀lck∈Lck : (STM(T′,pcc̃k

T′)= [lock lck]pcc̃k
T′ ⇒ ˜OWN(l̃k′′ lck)=

T′), it must be that ta
T′ ∈ γ t(ACCTIME(〈[T,pcc̃k

T , r̃
k
T, t̃

a
T

k
]T∈Thrdc̃k

, x̃k, l̃k′′〉,

Thrdc̃k

exe,T
′)) whenever ∀lck ∈ Lck : (STM(T′,pcn

T′) = [lock lck]pcn
T′ ⇒

(˜OWN(l̃k′′ lck) = T′ ∧ OWN(ln′′ lck) = T′)) (Lemma 5.54), where ta
T′

114 Chapter 5. Abstractly Interpreting PPL

is derived from cn−→
prg 〈[T,pcT,rT, ta

T]T∈Thrd,x,l〉 and l
n′′ and l̃

k′′ are
defined as in Tables 4.3 and 5.6, respectively.

• Since ∀lck ∈ Lck : (OWN(l0 lck) = ⊥thrd ⇒ (STM(T′,pc0
T′) =

[lock lck]pc0
T′ ⇒ (ln lck = l

0 lck∧ l̃k lck = l̃
0 lck))), ∀i ∈ {0, . . . ,n−1} :

T′ 6∈ Thrdci

exe, STM(T′,pcn
T′) 6= [halt]pcn

T′ ⇒ T′ ∈ Thrdcn

exe and
˜OWN(l̃k′′ lck) = T′, it must be that T′ immediately acquires lck (i.e.,

without any other thread acquiring and possibly releasing lck in the

sequence c0−→
prg . . .−→prg cn) if STM(T′,pcc̃k

T′) = [lock lck]pcc̃k
T′ , both in the

concrete and abstract cases (based on cn and c̃k).

• If, for some lock, lck′ ∈ Lck, STM(T′,pcc̃0

T′) = [lock lck′]pcc̃0
T′ and

OWN(l0 lck′) = ⊥thrd, it must be that min({ta
T

n
+ TIME(cn,T) |

T ∈ Thrd}) ∈ γ t(DLLOCK(c̃ j, lck′)), since T′ ∈ Thrdc̃k , Thrdc̃k ⊆
Thrdc̃0 ⊆ Thrd, m, n and j (c.f., Lemma 5.53) can be chosen
to be 0, n and k (given by this proof), respectively, ta0

T′ ∈ γ t(t̃a0

T′),
tan

T′ = ta0

T′ , t̃ak

T′ = t̃a0

T′ , pcc̃k

T′ = pcc̃0

T′ = pcn
T′ = pc0

T′ , T′ ∈ Thrdcn

exe
and (since ∀lck ∈ Lck : (OWN(l0 lck) = ⊥thrd ⇒ (STM(T′,pc0

T′) =

[lock lck]pc0
T′ ⇒ (ln lck = l

0 lck∧ l̃k lck = l̃
0 lck))) and REL(l0 lck′) ∈

γ t(˜REL(l̃0 lck′))) REL(l0 lck′) ∈ γ t(˜REL(l̃k lck′)) (Lemma 5.53). Thus,
tan

T′ + TIME(cn,T′) ∈ γ t(DLLOCK(c̃k, lck′)), since T′ ∈ Thrdcn

exe which
means that tan

T′ + TIME(cn,T′) = min({ta
T

n
+ TIME(cn,T) | T ∈ Thrd})

(c.f., Table 4.3).

The proof will now be conducted by considering the different statements
that T′ could issue in c0 (i.e., in cn).

1. If STM(T′,pc0
T′) = [halt]pc0

T′ , then it must be that T′ 6∈ Thrdcn

exe. Thus, it
must be that cn−→

prg c, where c@〈[T,pcT,rT, ta
T]T∈Thrd,x,l〉 is such that

pcT′ = pcn
T′ , rT′ = r

n
T′ , ta

T′ = tan

T′ , ∀lck ∈ Lck : (OWN(l0 lck) = T′ ⇒
l lck = l

n lck) and ∀x ∈ Var : ((x x) T′) ⊆ ((xn x) T′), provided that
∃T ∈ Thrd : STM(T,pc0

T) 6= [halt]pc0
T (otherwise −→prg is not applicable;

c.f., Table 4.3).

Note that T′ 6∈ Thrdc̃k

exe and choose c̃@〈[T,pcc̃
T, r̃T, t̃a

T]T∈Thrdc̃k
, x̃, l̃〉

such that c̃k −̃→
prg c̃, i.e., pcc̃

T′ = pcc̃k

T′ , r̃T′ = r̃
k
T′ , t̃a

T′ = t̃ak

T′ , ∀lck ∈ Lck :

5.8 Abstract Semantics 115

(OWN(l0 lck) = T′ ⇒ (l̃ lck = l̃
k lck ∧ min(γ t(D̃L(l̃ lck))) = −∞)).

Note that x̃ must still be such that for all x ∈ Var, ((x̃ x) T′) is a safe
approximation of the writes performed on x by T′ since TRIM is safe
(Lemma 5.27). Thus, it must be that:

pcT′ = pcc̃
T′ ∧

rT′ ∈ γreg(r̃T′)∧
ta
T′ ∈ γ t(t̃a

T′)∧
∃x′ ∈ γvar(x̃) : (∀x ∈ Var : ((x x) T′)⊆ ((x′ x) T′))∧
∀lck ∈ Lck : ((OWN(l0 lck) = T′∨OWN(l lck) = T′)⇒

(STT(l lck) = ˜STT(l̃ lck)∧
OWN(l lck) = ˜OWN(l̃ lck)∧
DL(l lck) ∈ γ t(D̃L(l̃ lck))∧
POWN(l lck) = ˜POWN(l̃ lck)∧
REL(l lck) ∈ γ t(˜REL(l̃ lck))∧
min(γ t(D̃L(l̃ lck))) =−∞))

2. If, for some a ∈ Aexp, b ∈ Bexp, l ∈ LblT′ , r ∈ RegT′ , x ∈ Var and
lck ∈ Lck, STM(T′,pc0

T′) ∈ {[skip]
pc0

T′ , [r := a]pc0
T′ , [if b goto l]pc0

T′ ,

[store r to x]pc0
T′ , [unlock lck]pc0

T′}, then let the configuration
c@〈[T,pcT,rT, ta

T]T∈Thrd,x,l〉 be such that cn−→
prg c and choose

c̃@〈[T,pcc̃
T, r̃T, t̃a

T]T∈Thrdc̃k
, x̃, l̃〉 such that c̃k −̃→

prg c̃. Thus, since

∀i ∈ {0, . . . ,n− 1} : T′ 6∈ Thrdci

exe, T′ ∈ Thrdcn

exe, ∀i ∈ {0, . . . ,k− 1} :
T′ 6∈ Thrdc̃i

exe, T′ ∈ Thrdc̃k

exe, −̃→ax is a safe approximation of −→ax (Lemma
5.49), TRIM is safe (Lemma 5.27), Thrdc̃k ⊆ Thrd and ACCTIME is
safe (Lemma 5.54), it must be that:

pcT′ = pcc̃
T′ ∧

rT′ ∈ γreg(r̃T′)∧
ta
T′ ∈ γ t(t̃a

T′)∧
∃x′ ∈ γvar(x̃) : (∀x ∈ Var : ((x x) T′)⊆ ((x′ x) T′))∧
∀lck ∈ Lck : ((OWN(l0 lck) = T′∨OWN(l lck) = T′)⇒

(STT(l lck) = ˜STT(l̃ lck)∧
OWN(l lck) = ˜OWN(l̃ lck)∧
DL(l lck) ∈ γ t(D̃L(l̃ lck))∧
POWN(l lck) = ˜POWN(l̃ lck)∧
REL(l lck) ∈ γ t(˜REL(l̃ lck))∧
min(γ t(D̃L(l̃ lck))) =−∞))

116 Chapter 5. Abstractly Interpreting PPL

Note that in the case STM(T′,pc0
T′) = [if b goto l]pc0

T′ , c̃ can be chosen
so that the corresponding branch to that taken in c is taken since r

0
T ∈

γreg(r̃
0
T) (c.f., Table 5.5 and Definition 5.7).

3. If, for some r ∈RegT′ and x∈Var, STM(T′,pc0
T′) = [load r from x]pc0

T′ ,
then let c@〈[T,pcT,rT, ta

T]T∈Thrd,x,l〉 be such that cn−→
prg c and choose

c̃@〈[T,pcc̃
T, r̃T, t̃a

T]T∈Thrdc̃k
, x̃, l̃〉 such that c̃k −̃→

prg c̃. Since ∀i∈{0, . . . ,n−

1} : T′ 6∈ Thrdci

exe, T′ ∈ Thrdcn

exe, ∀i ∈ {0, . . . ,k−1} : T′ 6∈ Thrdc̃i

exe, T′ ∈
Thrdc̃k

exe, −̃→ax is a safe approximation of −→ax (Lemma 5.49), x̃k contains
safe write history, TRIM is safe (Lemma 5.27), Thrdc̃k ⊆ Thrd and AC-
CTIME is safe (Lemma 5.54), it must be that:

pcT′ = pcc̃
T′ ∧

rT′ ∈ γreg(r̃T′)∧
ta
T′ ∈ γ t(t̃a

T′)∧
∃x′ ∈ γvar(x̃) : (∀x ∈ Var : ((x x) T′)⊆ ((x′ x) T′))∧
∀lck ∈ Lck : ((OWN(l0 lck) = T′∨OWN(l lck) = T′)⇒

(STT(l lck) = ˜STT(l̃ lck)∧
OWN(l lck) = ˜OWN(l̃ lck)∧
DL(l lck) ∈ γ t(D̃L(l̃ lck))∧
POWN(l lck) = ˜POWN(l̃ lck)∧
REL(l lck) ∈ γ t(˜REL(l̃ lck))∧
min(γ t(D̃L(l̃ lck))) =−∞))

4. If, for some lck′ ∈ Lck, STM(T′,pc0
T′) = [lock lck′]pc0

T′ , only the case
that T′ successfully and immediately acquires lck′ needs to be consid-
ered. (Note that the remaining cases will be considered in the proofs of
Lemmas 5.57 and 5.58.) Hence, ACCTIME is safe since it must be that

˜OWN(l̃k′′ lck′) = T′ and OWN(ln′′ lck′) = T′ (Lemma 5.54).

Since OWN(l0 lck′) = T′ ⇒ ˜OWN(l̃0 lck′) = T′ and OWN(l0 lck′) =
⊥thrd ⇒ (˜OWN(l̃0 lck′) = ⊥thrd ∨ ˜OWN(l̃0 lck′) = T′), there are three
cases to consider.

(a) Assume that OWN(l0 lck′) = T′ (and thus, ˜OWN(l̃0 lck′) = T′)
and let c@〈[T,pcT,rT, ta

T]T∈Thrd,x,l〉 be such that cn−→
prg c. Then

choose c̃@〈[T,pcc̃
T, r̃T, t̃a

T]T∈Thrdc̃k
, x̃, l̃〉 such that c̃k −̃→

prg c̃. It is

5.8 Abstract Semantics 117

trivially the case that OWN(l lck′) = ˜OWN(l̃ lck′) = T′ and thus

pcT′ = pcc̃
T′ ∧

rT′ ∈ γreg(r̃T′)∧
ta
T′ ∈ γ t(t̃a

T′)∧
∃x′ ∈ γvar(x̃) : (∀x ∈ Var : ((x x) T′)⊆ ((x′ x) T′))∧
∀lck ∈ Lck : ((OWN(l0 lck) = T′∨OWN(l lck) = T′)⇒

(STT(l lck) = ˜STT(l̃ lck)∧
OWN(l lck) = ˜OWN(l̃ lck)∧
DL(l lck) ∈ γ t(D̃L(l̃ lck))∧
POWN(l lck) = ˜POWN(l̃ lck)∧
REL(l lck) ∈ γ t(˜REL(l̃ lck))∧
min(γ t(D̃L(l̃ lck))) =−∞))

since ∀i ∈ {0, . . . ,n − 1} : T′ 6∈ Thrdci

exe, T′ ∈ Thrdcn

exe, ∀i ∈
{0, . . . ,k − 1} : T′ 6∈ Thrdc̃i

exe, T′ ∈ Thrdc̃k

exe, −̃→ax is a safe ap-
proximation of −→ax (Lemma 5.49) and TRIM is safe (Lemma
5.27).

(b) Assume that OWN(l0 lck′) = ˜OWN(l̃0 lck′) = ⊥thrd and let c@
〈[T,pcT,rT, ta

T]T∈Thrd,x,l〉 be such that cn−→
prg c∧OWN(l lck′) =T′

and choose c̃@〈[T,pcc̃
T, r̃T, t̃a

T]T∈Thrdc̃k
, x̃, l̃〉 such that c̃k −̃→

prg c̃.

Then it must be that ˜OWN(l̃ lck′) = T′ (since T′ ∈ Thrdc̃k

exe and thus
˜OWN(l̃k′′ lck′) = T′) and

pcT′ = pcc̃
T′ ∧

rT′ ∈ γreg(r̃T′)∧
ta
T′ ∈ γ t(t̃a

T′)∧
∃x′ ∈ γvar(x̃) : (∀x ∈ Var : ((x x) T′)⊆ ((x′ x) T′))∧
∀lck ∈ Lck : ((OWN(l0 lck) = T′∨OWN(l lck) = T′)⇒

(STT(l lck) = ˜STT(l̃ lck)∧
OWN(l lck) = ˜OWN(l̃ lck)∧
DL(l lck) ∈ γ t(D̃L(l̃ lck))∧
POWN(l lck) = ˜POWN(l̃ lck)∧
REL(l lck) ∈ γ t(˜REL(l̃ lck))∧
min(γ t(D̃L(l̃ lck))) =−∞))

since ∀i ∈ {0, . . . ,n − 1} : T′ 6∈ Thrdci

exe, T′ ∈ Thrdcn

exe, ∀i ∈
{0, . . . ,k− 1} : T′ 6∈ Thrdc̃i

exe, T′ ∈ Thrdc̃k

exe, −̃→ax is a safe approxi-

118 Chapter 5. Abstractly Interpreting PPL

mation of−→ax (Lemma 5.49), TRIM is safe (Lemma 5.27), Thrdc̃k ⊆
Thrd, ∀c̃′ ∈Cõnf : ∀lck ∈ Lck : min(DLLOCK(c̃′, lck)) =−∞ (Al-
gorithm 5.11), DL(l lck′) = ta

T′ = tan

T′ + TIME(cn,T′) (Table 4.3)
and ta

T′ ∈ γ t(DLLOCK(c̃k, lck′)) (Lemma 5.53).

(c) Assume that OWN(l0 lck′) = ⊥thrd and ˜OWN(l̃0 lck′) = T′

and let c@〈[T,pcT,rT, ta
T]T∈Thrd,x,l〉 be such that cn−→

prg

c ∧ OWN(l lck′) = T′ and choose c̃@〈[T,pcc̃
T, r̃T, t̃a

T]T∈Thrdc̃k
,

x̃, l̃〉 such that c̃k −̃→
prg c̃. Then it is easy to see that OWN(l lck′) =

˜OWN(l̃ lck′) = T′.
First note that since OWN(ln lck′) = OWN(l0 lck′) = ⊥thrd ∧

˜OWN(l̃k lck′) = ˜OWN(l̃0 lck′) = T′, it must be that STT(ln lck′) =
˜STT(l̃k lck′)= ˜STT(l̃0 lck′)= unlocked, D̃L(l̃ lck′)= D̃L(l̃k′′ lck′)=

D̃L(l̃k lck′) = D̃L(l̃0 lck′), and thus min(γ t(D̃L(l̃ lck′))) = −∞

and tan

T′ + TIME(cn,T′) ∈ γ t(D̃L(l̃ lck′)), which means that
DL(l̃ lck′) ∈ γ t(D̃L(l̃ lck′)) since DL(l̃ lck′) = tan

T′ + TIME(cn,T′).

Note that since tan

T′ ∈ γ t(t̃ak

T′), it must be that D̃L(l̃k′′ lck′) 6<̃t t̃ak

T′ +̃t

ABSTIME(c̃k,T′). It is thus easy to see that

pcT′ = pcc̃
T′ ∧

rT′ ∈ γreg(r̃T′)∧
ta
T′ ∈ γ t(t̃a

T′)∧
∃x′ ∈ γvar(x̃) : (∀x ∈ Var : ((x x) T′)⊆ ((x′ x) T′))∧
∀lck ∈ Lck : ((OWN(l0 lck) = T′∨OWN(l lck) = T′)⇒

(STT(l lck) = ˜STT(l̃ lck)∧
OWN(l lck) = ˜OWN(l̃ lck)∧
DL(l lck) ∈ γ t(D̃L(l̃ lck))∧
POWN(l lck) = ˜POWN(l̃ lck)∧
REL(l lck) ∈ γ t(˜REL(l̃ lck))∧
min(γ t(D̃L(l̃ lck))) =−∞))

since ∀i ∈ {0, . . . ,n − 1} : T′ 6∈ Thrdci

exe, T′ ∈ Thrdcn

exe, ∀i ∈
{0, . . . ,k− 1} : T′ 6∈ Thrdc̃i

exe, T′ ∈ Thrdc̃k

exe, −̃→ax is a safe approx-
imation of −→ax (Lemma 5.49), TRIM is safe (Lemma 5.27) and
Thrdc̃k ⊆ Thrd.

This concludes the proof. �

5.8 Abstract Semantics 119

Lemma 5.57 shows that −̃→prg safely approximates the case that a thread
issuing lock lck for some lock, lck ∈ Lck, has to wait for an arbitrary number
of owner switches on lck before it acquires lck. Note that the lemma holds if all
threads wanting to acquire some lock eventually will be able to do so (which
obviously is the case if the concrete transition sequences are finite in length)
and if either no thread issues a load-statement on a global variable or that the
thread issuing the load-statement is the sole thread in Thrdexe in any step of
the transition sequence.

Lemma 5.57 (Soundness of −̃→prg , frozen thread):

Given the valid concrete configurations (c.f., Definition 4.4), abstract configu-
rations, lock and thread

c0@〈[T,pc0
T,r

0
T, t

a
T

0
]T∈Thrd,x

0,l0〉 ∈ Conf,
cn1@〈[T,pcn1

T ,r
n1
T , t

a
T

n1]T∈Thrd,x
n1 ,ln1〉 ∈ Conf,

cn2@〈[T,pcn2
T ,r

n2
T , t

a
T

n2]T∈Thrd,x
n2 ,ln2〉 ∈ Conf,

...
cnm@〈[T,pcnm

T ,rnm
T , ta

T
nm
]T∈Thrd,x

nm ,lnm〉 ∈ Conf,
cn@〈[T,pcn

T,r
n
T, t

a
T

n
]T∈Thrd,x

n,ln〉 ∈ Conf,
c̃0@〈[T,pcc̃0

T , r̃
0
T, t̃

a
T

0
]T∈Thrdc̃0

, x̃0, l̃0〉 ∈ Cõnf,

c̃k@〈[T,pcc̃k

T , r̃
k
T, t̃

a
T

k
]T∈Thrdc̃k

, x̃k, l̃k〉 ∈ Cõnf,
lck′ ∈ Lck, and
T′ ∈ Thrdc̃k ,

120 Chapter 5. Abstractly Interpreting PPL

such that

STM(T′,pc0
T′) = [lock lck′]pc0

T′ ,
0≤ n1 ≤ n2 ≤ nm ≤ n,

c0−→
prg . . .−→prg cn1−→

prg . . .−→prg cn2−→
prg . . .−→prg cnm−→

prg . . .−→prg cn,

0≤ k,
c̃0 −̃→

prg . . .−̃→prg c̃k,

Thrdc̃k ⊆ Thrdc̃0 ⊆ Thrd,
pc0

T′ = pcc̃0

T′ ,
r

0
T′ ∈ γreg(r̃

0
T′),

ta0

T′ ∈ γ t(t̃a0

T′),
∃x′ ∈ γvar(x̃

0) : ∀x ∈ Var : ∀T ∈ Thrd : ((x0 x) T)⊆ ((x′ x) T),
∀lck ∈ Lck : ((OWN(l0 lck) 6=⊥thrd⇒ (STT(l0 lck) = ˜STT(l̃0 lck)∧

OWN(l0 lck) = ˜OWN(l̃0 lck)∧
DL(l0 lck) ∈ γ t(D̃L(l̃0 lck))∧
POWN(l0 lck) = ˜POWN(l̃0 lck)∧
REL(l0 lck) ∈ γ t(˜REL(l̃0 lck))∧
min(γ t(D̃L(l̃0 lck))) =−∞))∧

(OWN(l0 lck) =⊥thrd⇒ ((OWN(l0 lck) = ˜OWN(l̃0 lck)∨
(˜OWN(l̃0 lck) = T′∧

˜STT(l̃0 lck) = unlocked∧
tan

T′ + TIME(cn,T′) ∈ γ t(D̃L(l̃0 lck))∧
min(γ t(D̃L(l̃0 lck))) =−∞))∧

POWN(l0 lck) = ˜POWN(l̃0 lck)∧
REL(l0 lck) ∈ γ t(˜REL(l̃0 lck))))),

∀i ∈ {0, . . . ,n−1}\{n1,n2, . . . ,nm} : T′ 6∈ Thrdci

exe,

∀i ∈ {n1,n2, . . . ,nm} : (T′ ∈ Thrdci

exe∧OWN(li′′ lck′) 6= T′),
T′ ∈ Thrdcn

exe,

∀i ∈ {0, . . . ,k−1} : T′ 6∈ Thrdc̃i

exe,

T′ ∈ Thrdc̃k

exe, and
∀i ∈ {0, . . . ,k} : (|Thrdc̃i

exe| 6> 1∨
{T ∈ Thrdc̃i

exe | ∃r ∈ RegT : ∃x ∈ Varg :

STM(T,pcc̃i

T) = [load r from x]pcc̃i
T }= /0),

where for all i ∈ {0, . . . ,n}, Thrdci

exe is as defined in Table 4.3, for all i ∈
{0, . . . ,k}, Thrdc̃i

exe is as defined in Table 5.6, and Varg contains all x ∈ Var
such that x can be written to by one thread and read from by another thread

5.8 Abstract Semantics 121

(i.e., there might be a data dependency between the threads; note that Varg can
be derived using Algorithm 6.9), −̃→prg satisfies:

∀c@〈[T,pcT,rT, ta
T]T∈Thrd,x,l〉 ∈ Conf :

(cn−→
prg c⇒∃c̃@〈[T,pcc̃

T, r̃T, t̃a
T]T∈Thrdc̃k

, x̃, l̃〉 ∈ Cõnf :

(c̃k −̃→
prg . . .−̃→prg c̃∧

pcT′ = pcc̃
T′ ∧

rT′ ∈ γreg(r̃T′)∧
ta
T′ ∈ γ t(t̃a

T′)∧
∃x′ ∈ γvar(x̃) : (∀x ∈ Var : ((x x) T′)⊆ ((x′ x) T′))∧
∀lck ∈ Lck : (OWN(l lck) = T′⇒ (STT(l lck) = ˜STT(l̃ lck)∧

OWN(l lck) = ˜OWN(l̃ lck)∧
DL(l lck) ∈ γ t(D̃L(l̃ lck))∧
POWN(l lck) = ˜POWN(l̃ lck)∧
REL(l lck) ∈ γ t(˜REL(l̃ lck))∧
min(γ t(D̃L(l̃ lck))) =−∞)))) 2

PROOF. Assume that the valid concrete configurations (c.f., Definition 4.4),
abstract configurations, lock and thread

c0@〈[T,pc0
T,r

0
T, t

a
T

0
]T∈Thrd,x

0,l0〉 ∈ Conf,
cn1@〈[T,pcn1

T ,r
n1
T , t

a
T

n1]T∈Thrd,x
n1 ,ln1〉 ∈ Conf,

cn2@〈[T,pcn2
T ,r

n2
T , t

a
T

n2]T∈Thrd,x
n2 ,ln2〉 ∈ Conf,

...
cnm@〈[T,pcnm

T ,rnm
T , ta

T
nm
]T∈Thrd,x

nm ,lnm〉 ∈ Conf,
cn@〈[T,pcn

T,r
n
T, t

a
T

n
]T∈Thrd,x

n,ln〉 ∈ Conf,
c̃0@〈[T,pcc̃0

T , r̃
0
T, t̃

a
T

0
]T∈Thrdc̃0

, x̃0, l̃0〉 ∈ Cõnf,

c̃k@〈[T,pcc̃k

T , r̃
k
T, t̃

a
T

k
]T∈Thrdc̃k

, x̃k, l̃k〉 ∈ Cõnf,
lck′ ∈ Lck, and
T′ ∈ Thrdc̃k ,

122 Chapter 5. Abstractly Interpreting PPL

are such that

STM(T′,pc0
T′) = [lock lck′]pc0

T′ ,
0≤ n1 ≤ n2 ≤ nm ≤ n,

c0−→
prg . . .−→prg cn1−→

prg . . .−→prg cn2−→
prg . . .−→prg cnm−→

prg . . .−→prg cn,

0≤ k,
c̃0 −̃→

prg . . .−̃→prg c̃k,

Thrdc̃k ⊆ Thrdc̃0 ⊆ Thrd,
pc0

T′ = pcc̃0

T′ ,
r

0
T′ ∈ γreg(r̃

0
T′),

ta0

T′ ∈ γ t(t̃a0

T′),
∃x′ ∈ γvar(x̃

0) : ∀x ∈ Var : ∀T ∈ Thrd : ((x0 x) T)⊆ ((x′ x) T),
∀lck ∈ Lck : ((OWN(l0 lck) 6=⊥thrd⇒ (STT(l0 lck) = ˜STT(l̃0 lck)∧

OWN(l0 lck) = ˜OWN(l̃0 lck)∧
DL(l0 lck) ∈ γ t(D̃L(l̃0 lck))∧
POWN(l0 lck) = ˜POWN(l̃0 lck)∧
REL(l0 lck) ∈ γ t(˜REL(l̃0 lck))∧
min(γ t(D̃L(l̃0 lck))) =−∞))∧

(OWN(l0 lck) =⊥thrd⇒ ((OWN(l0 lck) = ˜OWN(l̃0 lck)∨
(˜OWN(l̃0 lck) = T′∧

˜STT(l̃0 lck) = unlocked∧
tan

T′ + TIME(cn,T′) ∈ γ t(D̃L(l̃0 lck))∧
min(γ t(D̃L(l̃0 lck))) =−∞))∧

POWN(l0 lck) = ˜POWN(l̃0 lck)∧
REL(l0 lck) ∈ γ t(˜REL(l̃0 lck))))),

∀i ∈ {0, . . . ,n−1}\{n1,n2, . . . ,nm} : T′ 6∈ Thrdci

exe,

∀i ∈ {n1,n2, . . . ,nm} : (T′ ∈ Thrdci

exe∧OWN(li′′ lck′) 6= T′),
T′ ∈ Thrdcn

exe,

∀i ∈ {0, . . . ,k−1} : T′ 6∈ Thrdc̃i

exe,

T′ ∈ Thrdc̃k

exe, and
∀i ∈ {0, . . . ,k} : (|Thrdc̃i

exe| 6> 1∨
{T ∈ Thrdc̃i

exe | ∃r ∈ RegT : ∃x ∈ Varg :

STM(T,pcc̃i

T) = [load r from x]pcc̃i
T }= /0),

where for all i ∈ {0, . . . ,n}, Thrdci

exe is as defined in Table 4.3, for all i ∈
{0, . . . ,k}, Thrdc̃i

exe is as defined in Table 5.6, and Varg contains all x ∈ Var
such that x can be written to by one thread and read from by another thread

5.8 Abstract Semantics 123

(i.e., there might be a data dependency between the threads; note that Varg can
be derived using Algorithm 6.9).

First note that:

• Since ∀i ∈ {0, . . . ,n − 1} \ {n1,n2, . . . ,nm} : T′ 6∈ Thrdci

exe, ∀i ∈
{n1,n2, . . . ,nm} : (T′ ∈ Thrdci

exe ∧ OWN(li′′ lck′) 6= T′) and
STM(T′,pc0

T′) = [lock lck′]pc0
T′ , it must be that pcn

T′ = pc0
T′ , r

n
T′ = r

0
T′ ,

tan

T′ = ta0

T′ + TIME(cn1 ,T′) + TIME(cn2 ,T′) + . . . + TIME(cnm ,T′) and
∀lck ∈ Lck : (OWN(l0 lck) = T′⇒ l

n lck = l
0 lck) (c.f., Table 4.3).

• Since ∀i∈ {0, . . . ,k−1} : T′ 6∈Thrdc̃i

exe, it must be that pcc̃k

T′ = pcc̃0

T′ , r̃
k
T′ =

r̃
0
T′ , t̃ak

T′ = t̃a0

T′ and ∀lck ∈ Lck : (˜OWN(l̃0 lck) = T′ ⇒ (l̃k lck = l̃
0 lck∧

min(γ t(D̃L(l̃k lck))) =−∞)).

• Since pcn
T′ = pc0

T′ , r
n
T′ = r

0
T′ , ∀lck ∈ Lck : (OWN(l0 lck) = T′ ⇒

l
n lck = l

0 lck), pcc̃k

T′ = pcc̃0

T′ , r̃
k
T′ = r̃

0
T′ , ∀lck ∈ Lck : (˜OWN(l̃0 lck) =

T′ ⇒ (l̃k lck = l̃
0 lck ∧ min(γ t(D̃L(l̃k lck))) = −∞)), pc0

T′ = pcc̃0

T′ ,
r

0
T′ ∈ γreg(r̃

0
T′), ta0

T′ ∈ γ t(t̃a0

T′) and ∀lck ∈ Lck : (OWN(l0 lck) = T′ ⇒
(STT(l0 lck) = ˜STT(l̃0 lck)∧OWN(l0 lck) = ˜OWN(l̃0 lck)∧DL(l0 lck) ∈
γ t(D̃L(l̃0 lck)) ∧ POWN(l0 lck) = ˜POWN(l̃0 lck) ∧ REL(l0 lck) ∈
γ t(˜REL(l̃0 lck))∧ min(γ t(D̃L(l̃0 lck))) =−∞)), it must be that:

pcn
T′ = pcc̃k

T′ ,
r

n
T′ ∈ γreg(r̃

k
T′) and

∀lck ∈ Lck : (OWN(ln lck) = T′⇒ (STT(ln lck) = ˜STT(l̃k lck)∧
OWN(ln lck) = ˜OWN(l̃k lck)∧
DL(ln lck) ∈ γ t(D̃L(l̃k lck))∧
POWN(ln lck) = ˜POWN(l̃k lck)∧
REL(ln lck) ∈ γ t(˜REL(l̃k lck))∧
min(γ t(D̃L(l̃k lck))) =−∞))

• Since ∃x′ ∈ γvar(x̃
0) : ∀x ∈Var : ((x0 x) T′)⊆ ((x′ x) T′), c0−→

prg . . .−→prg

cn1−→
prg . . .−→prg cn2−→

prg . . .−→prg cnm−→
prg . . .−→prg cn, c̃0 −̃→

prg . . .−̃→prg c̃k, ∀i ∈

{0, . . . ,n− 1} \ {n1,n2, . . . ,nm} : T′ 6∈ Thrdci

exe, ∀i ∈ {n1,n2, . . . ,nm} :
OWN(li′′ lck′) 6= T′, ∀i ∈ {0, . . . ,k− 1} : T′ 6∈ Thrdc̃i

exe, STM(T′,pc0
T′) =

[lock lck′]pc0
T′ and TRIM is safe (Lemma 5.27), it must be that

∃x′ ∈ γvar(x̃
k) : ∀x ∈ Var : ((xn x) T′)⊆ ((x′ x) T′).

124 Chapter 5. Abstractly Interpreting PPL

• Since ∀i ∈ {0, . . . ,k} : (|Thrdc̃i

exe| 6> 1 ∨ {T ∈ Thrdc̃i

exe | ∃r ∈ RegT :

∃x ∈ Varg : STM(T,pcc̃i

T) = [load r from x]pcc̃i
T } = /0), it must be that

∀i ∈ {0, . . . ,k} : ({T ∈ Thrdc̃i

exe | ∃r ∈RegT : ∃x ∈Varg : STM(T,pcc̃i

T) =

[load r from x]pcc̃i
T } 6= /0 ⇒ |Thrdc̃i

exe| = 1). This means that if some
thread in Thrdc̃i

exe, where i ∈ {0, . . . ,k}, performs a load-statement,
there is only one single thread in Thrdc̃i

exe; thus that thread performs the
load-statement. It is then easy to see, from the definition of Thrdc̃i

exe,
that there cannot occur any other write than those represented by x̃

i

such that it could affect the load-statement of the thread in Thrdc̃i

exe
(c.f., Assumption 5.50) – thus, it must be that x̃k (and also all x̃i, where
i ∈ {0, . . . ,k}) contains safe write history (c.f., Definition 5.18).

• Since, trivially, ∀lck ∈ Lck : {T ∈ Thrdcn

exe ∩Thrdc̃k | STM(T,pcn
T) =

[lock lck]pcn
T} ⊆ {T ∈ Thrdc̃k | ∃l ∈ LblT : STM(T, l) = [lock lck]l}, it

must be that if T′ can be assigned a lock in the concrete case, it can also
be assigned the lock in the corresponding abstract case.

• Since −̃→prg over-approximates the lock-owner assignment possible for

−→
prg and T′ ∈ Thrdc̃k , it must be that ˜OWN(l̃0 lck′) = T′ is possi-

ble even if OWN(l0 lck′) = ⊥thrd, given that some other thread (i.e.,
not T′) does lock lck′ before T′ in the abstract case and that the
abstract transition sequence safely represents the concrete transition
sequence; the situation is possible since Tim̃e = Intv (c.f., Lemma
5.55). However, if STM(T′,pc0

T′) = [lock lck′]pc0
T′ , OWN(l0 lck′) =⊥thrd

and ˜OWN(l̃0 lck′) = T′, it must be that ˜STT(l̃0 lck′) = unlocked,
tan

T′ + TIME(cn,T′) ∈ γ t(D̃L(l̃0 lck′)) and min(γ t(D̃L(l̃0 lck′))) = −∞

(Table 5.6, Algorithm 5.11 and Lemmas 5.53 and 5.55).

• Since STM(T′,pcc̃k

T′) = [lock lck′]pcc̃k
T′ and T′ ∈ Thrdc̃k

exe, it must be that
˜OWN(l̃k′′ lck′) = T′.

The proof will be conducted using induction based on T′ having to wait for j,
where j≥ 0, threads to first (acquire and) release lck′ before it can successfully
acquire lck′.

First consider the base case. Therefore, assume that T′ is the first thread in
a set of competing threads to successfully acquire lck′; i.e., j = 0. Then it must
be that {n1,n2, . . . ,nm}= /0, and thus, ∀i ∈ {0, . . . ,n−1} : T′ 6∈ Thrdci

exe. (Note

5.8 Abstract Semantics 125

that c0 can be chosen to be the first configuration satisfying OWN(l0 lck′) =
⊥thrd ∧ STM(T′,pc0

T′) = [lock lck′]pc0
T′ and the rest of the assumptions of the

lemma.) It must also be that the case OWN(ln lck′) = ⊥thrd, ˜OWN(l̃k lck′) ∈
{⊥thrd,T′} and OWN(ln′′ lck′) = ˜OWN(l̃k′′ lck′) = T′ must be considered.

Since T′ is the first thread to acquire lck′ it must be that ln lck′ = l
0 lck′

and l̃
k lck′ = l̃

0 lck′. Thus, since OWN(l0 lck′) = ⊥thrd and STM(T′,pc0
T′) =

[lock lck′]pc0
T′ , it must be that OWN(l0 lck′) = ⊥thrd ⇒ (STM(T′,pc0

T′) =

[lock lck′]pc0
T′ ⇒ (ln lck′ = l

0 lck′ ∧ l̃k lck′ = l̃
0 lck′)). But, then all the

assumptions of Lemma 5.56 are fulfilled, and thus, it must be that:

∀c@〈[T,pcT,rT, ta
T]T∈Thrd,x,l〉 ∈ Conf :

(cn−→
prg c⇒∃c̃@〈[T,pcc̃

T, r̃T, t̃a
T]T∈Thrdc̃k

, x̃, l̃〉 ∈ Cõnf :

(c̃k −̃→
prg c̃∧

pcT′ = pcc̃
T′ ∧

rT′ ∈ γreg(r̃T′)∧
ta
T′ ∈ γ t(t̃a

T′)∧
∃x′ ∈ γvar(x̃) : (∀x ∈ Var : ((x x) T′)⊆ ((x′ x) T′))∧
∀lck ∈ Lck : (OWN(l lck) = T′⇒

(STT(l lck) = ˜STT(l̃ lck)∧
OWN(l lck) = ˜OWN(l̃ lck)∧
DL(l lck) ∈ γ t(D̃L(l̃ lck))∧
POWN(l lck) = ˜POWN(l̃ lck)∧
REL(l lck) ∈ γ t(˜REL(l̃ lck))∧
min(γ t(D̃L(l̃ lck))) =−∞))))

This concludes the proof of the base case.
Now consider the case that T′ must wait for j owner switches (i.e., lock:s

and unlock:s) on lck′ before it can acquire lck′ itself; i.e., T′ is owner number
j+ 1 among a set of competing threads to successfully acquire lck′ (note that
a thread could successfully acquire and release lck′ several times while T′ is
waiting to acquire lck′; each time then counts as an owner switch). The induc-
tion assumption is that the lemma holds for all j owners that acquire lck′ while
T′ is waiting (i.e., frozen in the abstract case) and for all cases involving other
locks.

Assume that T′ must wait for j owner switches on lck′ before it success-
fully acquires lck′ itself and that the lemma holds for all j owners that ac-
quire lck′ while T′ is waiting. Then it must be that {n1,n2, . . . ,nm} 6= /0, and
thus ta0

T′ ≤ tan

T′ = ta0

T′ + TIME(cn1 ,T′) + TIME(cn2 ,T′) + . . .+ TIME(cnm ,T′) =

126 Chapter 5. Abstractly Interpreting PPL

tanm
T′ + TIME(cnm ,T′) (c.f., Assumption 4.1 and Table 4.3).

Since the lemma holds for all j owners that acquire lck′ while T′ is waiting,
and all other cases involving other locks, and −̃→prg safely over-approximates the
transitions described by −→prg for all other cases (Lemma 5.56), including lock
owner assignments (Lemma 5.55), it must be that there exists an abstract tran-
sition trace (starting at c̃0 and ending at c̃k) that safely represents the concrete
trace from c0 to cn for all j owners of lck′, at least until the point in which
they release lck′ and do not acquire it again (which is the important part of the
trace to consider here), the order in which threads acquire lck′ and all states,
including the accumulated execution times (c.f., Lemmas 5.51 and 5.56 and
the induction assumption). Thus, since T′ ∈ Thrdcnm

exe ∧ OWN(lnm′′ lck′) 6= T′,
∀i ∈ {nm + 1, . . . ,n− 1} : T′ 6∈ Thrdci

exe and T′ ∈ Thrdcn

exe ∧ OWN(ln lck′) =
⊥thrd ∧ OWN(ln′′ lck′) = T′ (since it is assumed that T′ acquires lck′ in the
transition from cn), it must be that lck′ is released (by owner number j) in a
transition to cn′ , where cnm−→

prg . . .−→prg cn′−→
prg . . .−→prg cn and nm < n′ ≤ n. Thus,

it must be that tanm
T′ + TIME(cnm ,T′) = tan

T′ ≤ REL(ln lck′) ≤ tan

T′ + TIME(cn,T′)
(c.f., Assumption 4.1 and Table 4.3), where REL(ln lck′) = REL(ln′ lck′) and
REL(ln lck′)∈ γ t(˜REL(l̃k lck′)) (given the abstract trace from c̃0 to c̃k that safely
represents the trace from c0 to cn′ for the previous, i.e., jth, owner of lck′, it
is easy to see that this is the result when the jth owner issues unlock lck′).
But, then it is trivially the case that tan

T′ + TIME(cn,T′) ∈ γ t(DLLOCK(c̃k, lck′))
(Lemma 5.53).

To show that ACCTIME is safe for this case, first note that T′ ∈ Thrdc̃k

exe,

STM(T′,pcc̃k

T′) = [lock lck′]pcc̃k
T′ and ˜STT(l̃k′′ lck′) = unlocked. Also note that

since tan

T′ +TIME(cn,T′)∈ γ t(DLLOCK(c̃k, lck′)) = D̃L(l̃k′′ lck′), DL(ln′′ lck′) =
tan

T′ + TIME(cn,T′) (c.f., Tables 4.2 and 4.3 since T′ acquires lck′ in a tran-
sition from cn) and min(γ t(t̃a0

T′ +̃t ABSTIME(c̃0,T′))) ≤ tan

T′ + TIME(cn,T′) ≤
max(γ t(D̃L(l̃k′′ lck′))) (c.f., Assumptions 4.1 and 5.50), it must be the case
that D̃L(l̃k′′ lck′) 6<̃t t̃a0

T′ +̃t ABSTIME(c̃0,T′), which means that there are three
branches of Algorithm 5.12 that must be considered here. Note that this also
means that DL(ln′′ lck′) ∈ γ t(D̃L(l̃k′′ lck′)). For the sake of readability, let
c̃k′′ = 〈[T,pcc̃k

T , r̃
k
T, t̃

a
T

k
]T∈Thrdc̃k

, x̃k, l̃k′′〉. Also let t̃a′
T′ be defined as t̃a′

T in Al-
gorithm 5.12.

1. Since T′ has been frozen while waiting to acquire lck′, it can be the case
that t̃ak

T′ +̃t ABSTIME(c̃k′′,T′) <̃t ˜REL(l̃k′′ lck′), where t̃ak

T′ = t̃a0

T′ . (Note

5.8 Abstract Semantics 127

that this does not necessarily have to be the case, though.) Let c̃′ be any
configuration derived before (i.e., c̃′ = c̃k′′) or inside the while-loop.

First note that it cannot be that ABSTIME(c̃′,T′) = α t({0}) and t̃a′
T′ +̃t

ABSTIME(c̃′,T′) <̃t ˜REL(l̃k′′ lck′) (c.f., Assumptions 4.3 and 5.50). This
means that the while-loop will eventually terminate. It does so when
t̃a′
T′ is the last point in time that safely represents the situation that T′

has not yet acquired lck′; thus, at t̃a′
T′ +̃t ABSTIME(c̃′,T′), T′ might have

acquired lck′ (i.e., t̃a′
T′ <̃t ˜REL(l̃k′′ lck′) and t̃a′

T′ +̃t ABSTIME(c̃′,T′) 6<̃t
˜REL(l̃k′′ lck′)). In later references within this proof, the t̃a′

T′ obtained at
the exit of the while-loop will be referred to as t̃aw

T′ .

Since t̃aw

T′ <̃t ˜REL(l̃k′′ lck′) and t̃aw

T′ +̃t ABSTIME(c̃′,T′) 6<̃t
˜REL(l̃k′′ lck′), it is easy to see that this branch will lead to an aux-

iliary configuration, c̃k′, such that c̃k −̃→
prg c̃k′, for which l̃

k′ lck′ = l̃
k′′ lck′;

i.e., T′ has not yet acquired lck′. The only difference for T′ between c̃k

and c̃k′ is that, in the latter, it has an advanced accumulated execution
time (c.f., Table 5.5). Since t̃aw

T′ +̃t ABSTIME(c̃′,T′) 6<̃t ˜REL(l̃k′′ lck′),
it is also easy to see that this branch of Algorithm 5.12 will not be
taken when ACCTIME is called based on c̃k′. Note that it must be that
|{n1,n2, . . . ,nm}| is greater than or equal to the number of iterations
of the while-loop (Assumption 5.50 and Lemma 5.52). Thus, it is
also easy to see that D̃L(l̃k′′ lck′) 6<̃t t̃aw

T′ +̃t ABSTIME(c̃k′,T′) since
TIME(ci,T′) ∈ γ t(ABSTIME(c̃k′,T′)), where i ∈ {n1,n2, . . . ,nm} is the
corresponding concrete configuration for which the while-loop termi-
nates (Assumption 5.50). This means that for c̃k′, one of the two last
branches (considered in the next two bullets) of Algorithm 5.12 will
apply.

2. First note that it must be that ˜POWN(l̃k′′ lck′) 6= T′ since T′ has been
waiting for at least one other thread to release lck′ before it is allowed
to acquire it (c.f., Tables 5.5 and 5.6 and the induction assumption). If,
on the other hand, ˜REL(l̃k′′ lck′) <̃t t̃a′

T′ +̃t ABSTIME(c̃k′′,T′), then the
proof is equivalent to the corresponding part of the proof for Lemma 5.54
since tan

T′ + TIME(cn,T′) = DL(ln′′ lck′), DL(ln′′ lck′) ∈ γ t(D̃L(l̃k′′ lck′))
and REL(ln′′ lck′) ∈ γ t(˜REL(l̃k′′ lck′)). Note that this also applies if t̃a′

T′ =

t̃aw

T′ (i.e., if c̃k′′ = c̃k′) since it must be that tan

T′ ∈ γ t(t̃aw

T′), which follows
from Assumption 5.50 and Lemma 5.51 based on 1 above.

3. If (t̃a′
T′ +̃t ABSTIME(c̃′,T′)) ũt ˜REL(l̃k′′ lck′) 6= ⊥̃t , then let t̃a′′

T′ = t̃a′
T′ +̃t

128 Chapter 5. Abstractly Interpreting PPL

ABSTIME(c̃′,T) (where t̃a′′
T′ is thus defined as in Algorithm 5.12 and t̃a′

T′

is either t̃ak

T′ or t̃aw

T′ and c̃′ is either c̃k′′ or c̃k′), which is obviously a safe
estimation of the first point in time when T′ can acquire lck′.

Now, let c̃′ be any configuration derived before (i.e., c̃′ = c̃k′′ or c̃′ =
c̃k′) or inside the repeat-loop (and the corresponding for t̃a′

T′), which
will now be considered. Note that t̃ r

T′ = >̃t is used to exit the loop in
case D̃L(l̃k′′ lck′) <̃t t̃a′

T′ +̃t ABSTIME(c̃′,T′) or 0 ∈ γ t(ABSTIME(c̃′,T′)),
where the latter case means that a t̃a′

T′ such that ˜REL(l̃k′′ lck′) <̃t t̃a′
T′ cannot

be derived (c.f., Assumption 5.50).

(a) If D̃L(l̃k′′ lck′) <̃t t̃a′
T′ +̃t ABSTIME(c̃′,T′), then it must be

that t̃a′
T′ is a safe estimation of the last point in time when

T′ can acquire lck′ since tan

T′ + TIME(cn,T′) = DL(ln′′ lck′),
DL(ln′′ lck′) ∈ γ t(D̃L(l̃k′′ lck′)) and T′ acquires lck′ in a transition
from cn (c.f., Assumption 5.50 and Lemma 5.52 which means
that the total number of iterations of the repeat-loop, and pos-
sibly the while-loop from 1, must be greater than or equal to
|{n1,n2, . . . ,nm,n}|). Thus, it must be that tan

T′ + TIME(cn,T′) ∈
γ t((t̃a′′

T′ t̃t t̃a′
T′) ũt D̃L(l̃k′′ lck′) ũt (˜REL(l̃k′′ lck′) t̃t α t({∞}))) since

REL(ln′′ lck′) ∈ γ t(˜REL(l̃k′′ lck′)) and min(γ t(D̃L(l̃k′′ lck′))) =−∞.

(b) If 0 ∈ γ t(ABSTIME(c̃′,T′)), then it must obviously be that t̃ +̃t
ABSTIME(c̃′′,T′), where t̃ = (t̃a′

T′ t̃t α t({∞})) ũt ˜REL(l̃k′′ lck′),
and c̃′′ = 〈[T,pcc̃k

T , r̃
k
T,(T = T′ ? t̃ : t̃a

T
k
)]T∈Thrdc̃k

, x̃k, l̃k′′〉,
is a safe approximation of the last point in time when T′

can (or rather, will) acquire lck′ (c.f., Assumption 5.50 and
Lemma 5.52). Thus, it must be that tan

T′ + TIME(cn,T′) ∈
γ t((t̃a′′

T′ t̃t t̃a′
T′) ũt D̃L(l̃k′′ lck′) ũt (˜REL(l̃k′′ lck′) t̃t α t({∞}))) since

REL(ln′′ lck′) ∈ γ t(˜REL(l̃k′′ lck′)), DL(ln′′ lck′) ∈ γ t(D̃L(l̃k′′ lck′)),
tan

T′ +TIME(cn,T′) = DL(ln′′ lck′), min(γ t(D̃L(l̃k′′ lck′))) =−∞ and
T′ acquires lck′ in a transition from cn.

(c) If 0 6∈ γ t(ABSTIME(c̃′,T′)) and also D̃L(l̃k′′ lck′) 6<̃t t̃a′
T′ +̃t

ABSTIME(c̃′,T′), then it must be that, at the end of some it-
eration of the repeat-loop, ˜REL(l̃k′′ lck′) <̃t t̃a′

T′ . For such a
t̃a′
T′ , it is easy to see that tan

T′ + TIME(cn,T′) ∈ γ t((t̃a′′
T′ t̃t t̃a′

T′) ũt

D̃L(l̃k′′ lck′) ũt (˜REL(l̃k′′ lck′) t̃t α t({∞}))) since REL(ln′′ lck′) ∈
γ t(˜REL(l̃k′′ lck′)), DL(ln′′ lck′) ∈ γ t(D̃L(l̃k′′ lck′)), tan

T′ +

5.8 Abstract Semantics 129

TIME(cn,T′) = DL(ln′′ lck′), min(γ t(D̃L(l̃k′′ lck′))) = −∞ and
T′ acquires lck′ in a transition from cn (c.f., Assumption 5.50 and
Lemma 5.52 which means that the total number of iterations of the
repeat-loop, and possibly the while-loop from 1, must be greater
than or equal to |{n1,n2, . . . ,nm,n}|).

Thus, it has been shown that tan

T′ + TIME(cn,T′) ∈ γ t(ACCTIME(c̃′@
〈[T,pc′T, r̃

′
T, t̃

a′
T]T∈Thrdc̃k

, x̃′, l̃′〉,Thrdc̃′
exe,T

′)), for both the case that c̃′ is

c̃k′′ (if t̃ak

T′ +̃t ABSTIME(c̃k′′,T′) 6<̃t ˜REL(l̃k′′ lck′)) and c̃′ is c̃k′ (if t̃ak

T′ +̃t

ABSTIME(c̃k′′,T′) <̃t ˜REL(l̃k′′ lck′)), where c̃k′′ and c̃k′ are as defined above. If
t̃ak

T′ +̃t ABSTIME(c̃k′′,T′) <̃t ˜REL(l̃k′′ lck′), it is easy to see that

pcn
T′ = pcc̃k′

T′ ,
r

n
T′ ∈ γreg(r̃

k′
T′),

∃x′ ∈ γvar(x̃
k′) : (∀x ∈ Var : ((xn x) T′)⊆ ((x′ x) T′)) and

∀lck ∈ Lck : (OWN(ln lck) = T′⇒ (STT(ln lck) = ˜STT(l̃k′ lck)∧
OWN(ln lck) = ˜OWN(l̃k′ lck)∧
DL(ln lck) ∈ γ t(D̃L(l̃k′ lck))∧
POWN(ln lck) = ˜POWN(l̃k′ lck)∧
REL(ln lck) ∈ γ t(˜REL(l̃k′ lck))∧
min(γ t(D̃L(l̃k′ lck))) =−∞))

since, for T′, the accumulated execution time is the only state affected by the
transition c̃k −̃→

prg c̃k′ (c.f., Table 5.5; this means that, e.g., l̃k′ lck′ = l̃
k′′ lck′) and

TRIM is safe (Lemma 5.27). Thus, for both transition sequences described by
c̃k −̃→

prg c̃k′ −̃→
prg c̃ and c̃k −̃→

prg c̃, where c̃@〈[T,pcc̃
T, r̃T, t̃a

T]T∈Thrdc̃k
, x̃, l̃〉 ∈Cõnf, for

the two different cases (t̃ak

T′ +̃t ABSTIME(c̃k′′,T′) <̃t ˜REL(l̃k′′ lck′) and t̃ak

T′ +̃t

130 Chapter 5. Abstractly Interpreting PPL

ABSTIME(c̃k′′,T′) 6<̃t ˜REL(l̃k′′ lck′), respectively), it must be that

pcT′ = pcc̃
T′ ,

rT′ ∈ γreg(r̃T′),
ta
T′ ∈ γ t(t̃a

T′),
∃x′ ∈ γvar(x̃) : (∀x ∈ Var : ((x x) T′)⊆ ((x′ x) T′)) and
∀lck ∈ Lck : (OWN(l lck) = T′⇒ (STT(l lck) = ˜STT(l̃ lck)∧

OWN(l lck) = ˜OWN(l̃ lck)∧
DL(l lck) ∈ γ t(D̃L(l̃ lck))∧
POWN(l lck) = ˜POWN(l̃ lck)∧
REL(l lck) ∈ γ t(˜REL(l̃ lck))∧
min(γ t(D̃L(l̃ lck))) =−∞))

where cn−→
prg c for some c@〈[T,pcT,rT, ta

T]T∈Thrd,x,l〉 ∈ Conf, since −̃→ax is a

safe approximation of −→ax (Lemma 5.49), DL(l lck′) = tan

T′ + TIME(cn,T′) (Ta-
ble 4.2) and TRIM is safe (Lemma 5.27). But then the lemma holds. �

Lemma 5.58 shows that −̃→prg can be used to safely approximate any finite
concrete transition sequence. Note that the approximation is safe if either no
thread issues a load-statement on a global variable or that the thread issuing
the load-statement is the sole thread in Thrdexe in any step of the transition
sequence.

Lemma 5.58 (Soundness of −̃→prg , final state):

Given the valid concrete configurations (c.f., Definition 4.4) c0@

〈[T,pc0
T,r

0
T, t

a
T

0
]T∈Thrdc̃

,x0,l0〉 ∈ Conf and cn@〈[T,pcn
T,r

n
T, t

a
T

n
]T∈Thrdc̃

,

x
n,ln〉 ∈ Conf and the abstract configuration c̃0@〈[T,pcc̃0

T , r̃
0
T, t̃

a
T

0
]T∈Thrdc̃

,

x̃
0, l̃0〉 ∈ Cõnf, such that c0 ∈ γconf (c̃0), ∀lck ∈ Lck : min(γ t(D̃L(l̃0 lck))) =

5.8 Abstract Semantics 131

−∞, 0< n and c0−→
prg . . .−→prg cn, −̃→prg satisfies

(∀T ∈ Thrdc̃ : STM(T,pcn
T) = [halt]pcn

T)
⇒
(∃c̃k@〈[T,pcc̃k

T , r̃
k
T, t̃

a
T

k
]T∈Thrdc̃

, x̃k, l̃k〉 ∈ Cõnf :
(c̃0 −̃→

prg . . .−̃→prg c̃k∧

(∀i ∈ {0, . . . ,k−1} : (|Thrdc̃i

exe| 6> 1∨
{T ∈ Thrdc̃i

exe | ∃r ∈ RegT : ∃x ∈ Varg :

STM(T,pcc̃i

T) = [load r from x]pcc̃i
T }= /0))

⇒
(∀T ∈ Thrdc̃ : (pcn

T = pcc̃k

T ∧
r

n
T ∈ γreg(r̃

k
T)∧

ta
T

n ∈ γ t(t̃a
T

k
)∧

∃x′ ∈ γvar(x̃
k) : (∀x ∈ Var : ((xn x) T)⊆ ((x′ x) T)))∧

∀lck ∈ Lck : (STT(ln lck) = ˜STT(l̃k lck)∧
OWN(ln lck) = ˜OWN(l̃k lck)∧
DL(ln lck) ∈ γ t(D̃L(l̃k lck))∧
POWN(ln lck) = ˜POWN(l̃k lck)∧
REL(ln lck) ∈ γ t(˜REL(l̃k lck))∧
min(γ t(D̃L(l̃k lck))) =−∞))))

where, for all i ∈ {0, . . . ,k− 1}, Thrdc̃i

exe is as defined in Table 5.6, and Varg
contains all x ∈ Var such that x can be written to by one thread and read from
by another thread (i.e., there might be a data dependency between the threads;
note that Varg can be derived using Algorithm 6.9). 2

PROOF. Assume that the valid (c.f., Definition 4.4) concrete configurations
c0@〈[T,pc0

T,r
0
T, t

a
T

0
]T∈Thrdc̃

,x0,l0〉 ∈ Conf and cn@〈[T,pcn
T,r

n
T, t

a
T

n
]T∈Thrdc̃

,

x
n,ln〉 ∈ Conf and the abstract configuration c̃0@〈[T,pcc̃0

T , r̃
0
T, t̃

a
T

0
]T∈Thrdc̃

,

x̃
0, l̃0〉 ∈ Cõnf are such that c0 ∈ γconf (c̃0), c0−→

prg . . .−→prg cn, ∀lck ∈ Lck :

min(γ t(D̃L(l̃0 lck))) =−∞ and ∀T ∈ Thrdc̃ : STM(T,pcn
T) = [halt]pcn

T .
Note that since ∀T ∈ Thrdc̃ : STM(T,pcn

T) = [halt]pcn
T , it must be that all

threads trying to acquire a lock at some point will eventually successfully do so
(i.e., there are no deadlocks etc.) and there are no infinite loops. Also note that
the possible abstract combinations of the owner and the state for some lock,
lck ∈ Lck, given a reference thread, T ∈ Thrdc̃, in a lock state, l̃, resulting
from a transition using −̃→prg are by definition as follows.

132 Chapter 5. Abstractly Interpreting PPL

1 2 3 4

Figure 5.7: Abstract lock state transitions.

1. ˜OWN(l̃ lck) 6∈ {⊥thrd,T} – This means that T will be frozen if it issues
lock lck and occurs when OWN(l lck) 6= T.

2. ˜OWN(l̃ lck) = ⊥thrd – This occurs when OWN(l lck) = ⊥thrd. A safe
(over-approximate) owner assignment will occur if T issues lock lck.
(The soundness is given by that it is trivially the case that for all concrete
and abstract configurations consisting of the threads in Thrdc̃, {T′ ∈
Thrdexe | STM(T′,pcT′) = [lock lck]pcT′ } ⊆ {T′ ∈ Thrdc̃ | ∃l ∈ LblT′ :
STM(T′, l) = [lock lck]l}; c.f., Table 4.3.)

3. ˜OWN(l̃ lck) = T∧ ˜STT(l̃ lck) = unlocked – This means that T has not yet
done lock lck, but some other thread has (with the result that T was as-
signed lck; c.f., the discussion for state 2). If T issues lock lck within the
deadline, it will successfully acquire lck. If it does not, there is no cor-
responding concrete situation described by the owner assignment, given
that DL(l lck) ∈ D̃L(l̃ lck), and thus, the configuration will be discontin-
ued; c.f., Algorithms 6.1 and 6.6, which are discussed in Chapter 6. This
occurs when OWN(l lck) =⊥thrd.

4. ˜OWN(l̃ lck) = T∧ ˜STT(l̃ lck) = locked – This occurs when OWN(l lck) =
T.

The possible transitions between these abstract states (as defined by −̃→ax and
−̃→
prg) are depicted in Figure 5.7. State 3 (a result from the over-approximate
owner assignment performed by −̃→prg) is needed because Tim̃e = Intv, which
means that even if a thread acquires a lock first in the abstract case, it could be
that some other thread could actually acquire the lock first in the corresponding
concrete case. Lemma 5.55 gives that −̃→prg covers all the possible concrete situ-
ations for lock owner assignments, regardless of which thread issues lock lck
first in the abstract case; c.f., a transition from state 2 to state 4, possibly via
state 3.

This proof will partly be conducted using induction on how the states
of a configuration are changed during transitions, based on one thread at

5.8 Abstract Semantics 133

a time. Therefore, consider c f @〈[T,pc f
T,r

f
T, t

a
T

f
]T∈Thrdc̃

,x f ,l f 〉 ∈ Conf,
cg@〈[T,pcg

T,r
g
T, t

a
T

g
]T∈Thrdc̃

,xg,lg〉 ∈ Conf, c̃i@〈[T,pcc̃i

T , r̃
i
T, t̃

a
T

i
]T∈Thrdc̃

,

x̃
i, l̃i〉 ∈ Cõnf and T′ ∈ Thrdc̃ such that

c f −→
prg . . .−→prg cg∧

0≤ f < g≤ n∧
∀h ∈ { f , . . . ,g−2} : (T′ 6∈ Thrdch

exe∨
∃lck ∈ Lck : (STM(T′,pch

T′) = [lock lck]pch
T′ ∧

OWN(lh+1 lck) 6= T′))∧
T′ ∈ Thrdcg−1

exe ∧
∀lck ∈ Lck : STM(T′,pcg−1

T′) = [lock lck]pcg−1
T′ ⇒ OWN(lg lck) = T′∧

pc f
T′ = pcc̃i

T′ ∧
r

f
T′ ∈ γreg(r̃

i
T′)∧

taf

T′ ∈ γ t(t̃ai

T′)∧
∃x′ ∈ γvar(x̃

i) : ∀x ∈ Var : ∀T ∈ Thrd : ((x f x) T)⊆ ((x′ x) T)∧
∀lck ∈ Lck : ((OWN(l f lck) 6=⊥thrd⇒ (STT(l f lck) = ˜STT(l̃i lck)∧

OWN(l f lck) = ˜OWN(l̃i lck)∧
DL(l f lck) ∈ γ t(D̃L(l̃i lck))∧
POWN(l f lck) = ˜POWN(l̃i lck)∧
REL(l f lck) ∈ γ t(˜REL(l̃i lck))∧
min(γ t(D̃L(l̃i lck))) =−∞))∧

(OWN(l f lck) =⊥thrd⇒ ((OWN(l f lck) = ˜OWN(l̃i lck)∨
(˜OWN(l̃i lck) = T′∧

˜STT(l̃i lck) = unlocked∧
tag

T′ ∈ γ t(D̃L(l̃i lck))∧
min(γ t(D̃L(l̃i lck))) =−∞))∧

POWN(l f lck) = ˜POWN(l̃i lck)∧
REL(l f lck) ∈ γ t(˜REL(l̃i lck)))))∧

∀h ∈ { f , . . . ,g−1} : (|Thrdc̃h

exe| 6> 1∨
{T ∈ Thrdc̃h

exe | ∃r ∈ RegT : ∃x ∈ Varg :

STM(T,pcc̃h

T) = [load r from x]pcc̃h
T }= /0)

where Thrdexe is as defined in Table 4.3. This is the induction assumption.
Then it is easy to see that there exists a c̃ j@〈[T,pcc̃ j

T , r̃
j
T, t̃

a
T

j
]T∈Thrdc̃

, x̃ j, l̃ j〉 ∈

134 Chapter 5. Abstractly Interpreting PPL

Cõnf, such that

c̃i −̃→
prg . . .−̃→prg c̃ j ∧

pcg
T′ = pcc̃ j

T′ ∧
r

g
T′ ∈ γreg(r̃

j
T′)∧

tag

T′ ∈ γ t(t̃a j

T′)∧
∃x′ ∈ γvar(x̃

j) : (∀x ∈ Var : ((xg x) T′)⊆ ((x′ x) T′))∧
∀lck ∈ Lck : ((OWN(l f lck) = T′∨

OWN(lg lck) = T′)⇒ (STT(lg lck) = ˜STT(l̃ j lck)∧
OWN(lg lck) = ˜OWN(l̃ j lck)∧
DL(lg lck) ∈ γ t(D̃L(l̃ j lck))∧
POWN(lg lck) = ˜POWN(l̃ j lck)∧
REL(lg lck) ∈ γ t(˜REL(l̃ j lck))∧
min(γ t(D̃L(l̃ j lck))) =−∞))

(Lemmas 5.55, 5.56 and 5.57). Note that even if for some lock, lck ∈ Lck, T′

issues lock lck but lck is assigned to some other thread, T′ will eventually be
assigned lck so that it can acquire it (since all threads that want to acquire a
lock eventually will be able to do so). For such cases, T′ is the owner of lck in
cg and c̃ j (c.f., Lemmas 5.56 and 5.57).

Now consider the base case for the induction part of the proof. Since c0 ∈
γconf (c̃0), ∀lck ∈ Lck : min(γ t(D̃L(l̃0 lck))) = −∞ and c0 is valid, it is easy to
see that

∀T ∈ Thrdc̃ : (pc0
T = pcc̃0

T ∧
r

0
T ∈ γreg(r̃

0
T)∧

ta
T

0 ∈ γ t(t̃a
T

0
)∧

∃x′ ∈ γvar(x̃
0) : ∀x ∈ Var : ((x0 x) T)⊆ ((x′ x) T))∧

∀lck ∈ Lck : (STT(l0 lck) = ˜STT(l̃0 lck)∧
OWN(l0 lck) = ˜OWN(l̃0 lck)∧
DL(l0 lck) ∈ γ t(D̃L(l̃0 lck))∧
POWN(l0 lck) = ˜POWN(l̃0 lck)∧
REL(l0 lck) ∈ γ t(˜REL(l̃0 lck))∧
min(γ t(D̃L(l̃0 lck))) =−∞)

which means that as long as ∀h ∈ {0, . . . ,k − 1} : (|Thrdc̃h

exe| 6> 1 ∨ {T ∈
Thrdc̃h

exe | ∃r ∈ RegT : ∃x ∈ Varg : STM(T,pcc̃h

T) = [load r from x]pcc̃h
T } = /0),

the induction holds for all threads in Thrdc̃.

5.8 Abstract Semantics 135

Note that by definition, ln lck = l
0 lck (c.f., Tables 4.2 and 4.3) and l̃k lck =

l̃
0 lck (c.f., Tables 5.5 and 5.6) if lck is never acquired by any thread, or never

released by its initially owning thread (i.e., the owner of lck in c0 and c̃0, re-
spectively).

This concludes the proof. �

Because of the unsafe nature of −̃→prg (i.e., it cannot safely approximate all
concrete transition sequences), it cannot be directly used to derive a safe set
of possible final configurations (i.e., configurations such that all threads are
issuing halt). It must instead be encapsulated by an algorithm that uses it in a
safe manner and handles the unsafe situations explicitly. Such an algorithm is
defined in the next chapter.

Chapter 6

Safe Timing Analysis by
Abstract Execution

In this chapter, an algorithm for deriving safe timing bounds of PPL programs
will be defined. The analysis will be based on the abstraction of the PPL se-
mantics presented in Chapter 5.

NOTE. A summary of the notation and nomenclature used in this thesis can be
found in Appendix A.

6.1 Abstract Execution
ABSEXE, as given by Algorithm 6.1, can be used to derive safe approxima-
tions of the concrete final states resulting from a finite transition sequence
(Lemma 6.8). ABSEXE will also safely approximate some infinite transition
sequences but is not guaranteed to terminate for all possible inputs. The al-
gorithm is a work-list algorithm and is defined based on the auxiliary func-
tions CHOOSE, which returns an arbitrary element of a given set (which must
be non-empty), ISFINAL, ISDEADLOCK, ISTIMEOUT, ISVALID, CYCLE, EX-
ELOADTHRD, GLOBALVAR, EXETHRD, GETVARLOAD and GETREGLOAD,
defined in Algorithms 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12,

137

138 Chapter 6. Safe Timing Analysis by Abstract Execution

Algorithm 6.1 Abstract Execution

1: function ABSEXE(C̃, t̃to)
2: C̃w← C̃ ; C̃ f ← /0 ; C̃d ← /0 ; C̃t ← /0
3: while C̃w 6= /0 do
4: c̃@〈[T,pcT, r̃T, t̃a

T]T∈Thrdc̃
, x̃, l̃〉 ← CHOOSE(C̃w)

5: C̃w← C̃w \{c̃}
6: if ISFINAL(c̃) then
7: C̃ f ← C̃ f ∪{c̃}
8: else if ISDEADLOCK(c̃) then
9: C̃d ← C̃d ∪{c̃}

10: else if ISTIMEOUT(c̃, t̃to) then
11: C̃t ← C̃t ∪{c̃}
12: else if ISVALID(c̃, t̃to) then
13: Thrdloadexe ← EXELOADTHRD(c̃)
14: if Thrdloadexe 6= /0∧|EXETHRD(c̃)|> 1 then
15: 〈[t̃a′

T]
T∈Thrdload

exe
〉 ← 〈[t̃a

T +̃t ABSTIME(c̃,T)]
T∈Thrdload

exe
〉

16: for all T ∈ Thrdloadexe do
17: x← GETVARLOAD(STM(T,pcT))
18: r← GETREGLOAD(STM(T,pcT))
19: c̃′← 〈[T′,pcT′ , r̃T′ , t̃a

T′]T′∈Thrdc̃\{T}
, x̃, l̃〉

20: (C̃ f
T,C̃

d
T ,C̃

t
T)← ABSEXE({c̃′}, t̃a′

T ũt (t̃to t̃t α t({−∞})))
21: r̃T← r̃T[r 7→ ⊥̃val]

22: for all 〈T̃, x̃′, l̃′〉 ∈ C̃ f
T ∪C̃d

T ∪C̃ t
T∪{c̃} do

23: r̃T← r̃T[r 7→ (r̃T r) t̃val READ(x̃′,x,T, t̃a′
T)]

24: end for
25: end for
26: 〈[pcT]T∈Thrdload

exe
〉 ← 〈[pcT +1]

T∈Thrdload
exe
〉

27: 〈[t̃a
T]T∈Thrdload

exe
〉 ← 〈[t̃a′

T]
T∈Thrdload

exe
〉

28: C̃w← C̃w∪{〈[T,pcT, r̃T, t̃a
T]T∈Thrdc̃

, x̃, l̃〉}
29: else
30: C̃w← C̃w∪{c̃′ ∈ Cõnf | c̃−̃→prg c̃′}
31: end if
32: end if
33: end while
34: return (C̃ f ,C̃d ,C̃t)
35: end function

6.1 Abstract Execution 139

respectively.
A thread executing a load-statement on some global variable (i.e., a vari-

able that could transfer data between threads) is extracted and handled sepa-
rately in case it would not be the sole thread executed on a transition. This is
done by recursively using ABSEXE for each such thread to simulate how the
rest of the threads in the configuration can affect the read value. When the ef-
fects have been derived, they are merged and put in the target register for the
thread that issues the load-statement. Next, a new configuration, in which the
load-statements have been performed, is added to the work-list.

If no load-statement on some global variable is issued in any thread, or a
thread issuing such a load-statement is the sole thread that will execute on a
transition, −̃→prg is used to derive a set of succeeding configurations, which are
then added to the work-list.

Algorithm 6.2 Choose an Element
1: function CHOOSE(S)

Require: S 6= /0
2: return one of the elements in S
3: end function

Given an abstract configuration, c̃ ∈ Cõnf, ISFINAL(c̃) means that c̃ is in
the final state; i.e., all threads issue halt-statements.

Algorithm 6.3 Final Abstract Configuration

1: function ISFINAL(〈[T,pcT, r̃T, t̃a
T]T∈Thrdc̃

, x̃, l̃〉)
2: return ∀T ∈ Thrdc̃ : STM(T,pcT) = [halt]pcT

3: end function

Given an abstract configuration, c̃ ∈ Cõnf, ISDEADLOCK(c̃) means that c̃
cannot reach a final state (Lemma 6.5). Note that ISDEADLOCK is not guaran-
teed to identify all such cases, though.

Given an abstract configuration, c̃ ∈ Cõnf, and a timeout, t̃to ∈ Tim̃e,
ISTIMEOUT(c̃, t̃to) means that c̃ cannot reach a final state before t̃to has passed
(Lemma 6.6). Note that ISTIMEOUT might not identify all possible such cases,
though.

Given an abstract configuration, c̃ ∈ Cõnf, and a timeout, t̃to ∈ Tim̃e,
¬ISVALID(c̃, t̃to) means that c̃ cannot reach a configuration that could repre-
sent at least one valid (c.f., Definition 4.4) concrete configuration (Lemma
6.7). Note that ISVALID might not identify all possible such cases, though.

140 Chapter 6. Safe Timing Analysis by Abstract Execution

Algorithm 6.4 Deadlocked Abstract Configuration

1: function ISDEADLOCK(c̃@〈[T,pcT, r̃T, t̃a
T]T∈Thrdc̃

, x̃, l̃〉)
Require: ¬ISFINAL(c̃)

2: Thrdlock ←{T ∈ Thrdc̃ | ∃lck ∈ Lck : (STM(T,pcT) = [lock lck]pcT ∧
˜OWN(l̃ lck) 6∈ {⊥thrd,T}∧ ˜STT(l̃ lck) = locked)}

3: E←{(T,T′) ∈ Thrdlock ×Thrdlock | ∃lck ∈ Lck :
(STM(T,pcT) = [lock lck]pcT ∧ ˜OWN(l̃ lck) = T′)}

4: return Thrdc̃ = Thrd∧ (CYCLE(Thrdlock ,E)∨∃T ∈ Thrdc̃ : ∃lck ∈ Lck :
(STM(T,pcT) = [lock lck]pcT ∧

˜STT(l̃ lck) = locked∧
˜OWN(l̃ lck) 6=⊥thrd ∧

STM(˜OWN(l̃ lck),pc ˜OWN(l̃ lck)) = [halt]pc ˜OWN(l̃ lck)))

5: end function

Algorithm 6.5 Timed-Out Abstract Configuration

1: function ISTIMEOUT(c̃@〈[T,pcT, r̃T, t̃a
T]T∈Thrdc̃

, x̃, l̃〉, t̃to)
Require: ¬ISFINAL(c̃)∧¬ISDEADLOCK(c̃)

2: return ∀T ∈ Thrdc̃ : (STM(T,pcT) 6= [halt]pcT ⇒
(t̃to <̃t (t̃a

T +̃t ABSTIME(c̃,T))∨
(Thrdc̃ ⊂ Thrd∧∃lck ∈ Lck : (STM(T,pcT) = [lock lck]pcT ∧

˜OWN(l̃ lck) 6∈ {⊥thrd,T}))))
3: end function

Algorithm 6.6 Valid Abstract Configuration

1: function ISVALID(c̃@〈[T,pcT, r̃T, t̃a
T]T∈Thrdc̃

, x̃, l̃〉, t̃to)
Require: ¬ISFINAL(c̃)∧¬ISDEADLOCK(c̃)∧¬ISTIMEOUT(c̃, t̃to)

2: Thrdlock ←{T ∈ Thrdc̃ | ∃lck ∈ Lck : (STM(T,pcT) = [lock lck]pcT ∧
˜OWN(l̃ lck) 6∈ {⊥thrd,T})}

3: E←{(T,T′) ∈ Thrdlock ×Thrdlock | ∃lck ∈ Lck :
(STM(T,pcT) = [lock lck]pcT ∧ ˜OWN(l̃ lck) = T′)}

4: return (Thrdc̃ = Thrd⇒¬CYCLE(Thrdlock ,E))∧∀lck ∈ Lck : ∀T ∈ Thrdc̃ :
((˜OWN(l̃ lck) = T∧ ˜STT(l̃ lck) = unlocked)⇒

(STM(T,pcT) 6= [halt]pcT ∧
D̃L(l̃ lck) 6<̃t (t̃a

T +̃t ABSTIME(c̃,T))))
5: end function

6.1 Abstract Execution 141

Given a graph, (V,E), CYCLE(V,E) means that (V,E) contains at least one
cycle (Lemma 6.1).

Algorithm 6.7 Determine if Graph Has Cycles

1: function CYCLE(V,E)
2: V ′←V
3: E ′← E
4: while V ′ 6= /0 do
5: V ′′←{v ∈V ′ | ¬∃v′ ∈V ′ : (v′,v) ∈ E ′}
6: if V ′′ = /0 then
7: return true

8: else
9: E ′← E ′ \{(v,v′) ∈ E ′ | v ∈V ′′∧ v′ ∈V ′}

10: V ′←V ′ \V ′′

11: end if
12: end while
13: return false

14: end function

Given a configuration, c̃ ∈ Cõnf, EXELOADTHRD(c̃) is a set of threads
that might issue a load-statement on a global variable in a transition from c̃
(Lemma 6.4).

Algorithm 6.8 Threads Executing a Possibly Unsafe Load Statement

1: function EXELOADTHRD(c̃@〈[T,pcT, r̃T, t̃a
T]T∈Thrdc̃

, x̃, l̃〉)
2: return {T ∈ EXETHRD(c̃) | ∃r ∈ RegT : ∃x ∈ GLOBALVAR(Thrdc̃) :

STM(T,pcT) = [load r from x]pcT}
3: end function

Given a set of threads, Thrdc̃ ⊆ Thrd, GLOBALVAR(Thrdc̃) is the set
of variables that could transfer data between some of the threads in Thrdc̃
(Lemma 6.3).

Given a configuration, c̃∈Cõnf, EXETHRD(c̃) is an over-approximation of
Thrdexe as defined in Table 5.6 (Lemma 6.2).

Given a load-statement, GETVARLOAD is the variable, and GETREGLOAD
is the register, defined by the statement.

Lemma 6.1 (Soundness of CYCLE):
Given the graph (V,E), where V is a set of vertices and E is a set of edges (i.e.,

142 Chapter 6. Safe Timing Analysis by Abstract Execution

Algorithm 6.9 Global Variables in an Abstract Configuration
1: function GLOBALVAR(Thrdc̃)
2: 〈[VarloadT]T∈Thrdc̃

〉 ←
〈[{x ∈ Var | ∃r ∈ RegT : ∃l ∈ LblT : STM(T, l) = [load r from x]l}]T∈Thrdc̃

〉
3: 〈[VarstoreT]T∈Thrdc̃

〉 ←
〈[{x ∈ Var | ∃r ∈ RegT : ∃l ∈ LblT : STM(T, l) = [store r to x]l}]T∈Thrdc̃

〉
4: return {x ∈ Var | ∃T,T′ ∈ Thrdc̃ : (T 6= T′∧ x ∈ VarloadT ∧ x ∈ VarstoreT′)}
5: end function

Algorithm 6.10 Threads to Execute in Abstract Configuration

1: function EXETHRD(c̃@〈[T,pcT, r̃T, t̃a
T]T∈Thrdc̃

, x̃, l̃〉)
2: Thrdhold←{T ∈ Thrdc̃ | STM(T,pcT) = [halt]pcT ∨∃lck ∈ Lck :

(STM(T,pcT) = [lock lck]pcT ∧ ˜OWN(l̃ lck) 6= T)}
3: 〈[t̃ r

T]T∈Thrdc̃\Thrdhold
〉 ← 〈[ABSTIME(c̃,T)]T∈Thrdc̃\Thrdhold

〉
4: tmin←min{min(γ t(t̃a

T +̃t t̃ r
T)) | T ∈ Thrdc̃ \Thrdhold}

5: tmax←min{max(γ t(t̃a
T +̃t t̃ r

T)) | T ∈ Thrdc̃ \Thrdhold}
6: t̃← α t({tmin, tmax})
7: return {T ∈ Thrdc̃ \Thrdhold | t̃ ũt (t̃a

T +̃t t̃ r
T) 6= ⊥̃t}∪

{T ∈ Thrdhold | ∃lck ∈ Lck :
(STM(T,pcT) = [lock lck]pcT ∧ ˜OWN(l̃ lck) =⊥thrd)}

8: end function

Algorithm 6.11 Get Variable in Load Statement

1: function GETVARLOAD([load r from x]l)
2: return x
3: end function

Algorithm 6.12 Get Register in Load Statement

1: function GETREGLOAD([load r from x]l)
2: return r
3: end function

6.1 Abstract Execution 143

pairs of vertices) connecting the vertices, then CYCLE(V,E) iff (V,E) contains
at least one cycle. 2

PROOF. Assume that (V,E) is a graph, where V is a set of vertices and E is a
set of edges connecting the vertices. By definition, a cycle involving vertices
v1,v2,v3, . . . ,vn is described by the edges (v1,v2),(v2,v3), . . . ,(vn,v1), where
n ≥ 2. Thus it is easy to see that a vertex, v ∈ V , cannot be part of a cycle in
(V,E) if ¬∃v′ ∈V : (v′,v) ∈ E; i.e., if v has no incoming edges. It is also easy
to see that the graph (V ′,E ′), where V ′ = V \ {v ∈ V | ¬∃v′ ∈ V : (v′,v) ∈ E}
(i.e., all vertices without incoming edges are removed) and E ′ = E \{(v,v′) ∈
E | v ∈ {v′′ ∈V | ¬∃v′′′ ∈V : (v′′′,v′′) ∈ E}∧ v′ ∈V}, (i.e., all edges going out
from a vertex without incoming edges are removed) contains exactly as many
cycles as (V,E).

Thus it must be that if this procedure can be repeated until an empty graph
is reached, there are no cycles in the initial graph. Likewise, if it is not possible
to reduce the initial graph to an empty graph, there must be at least one cycle
in the initial graph. If there is no cycle in the initial graph, it is easy to see that
the graph can be reduced to the empty graph by the above procedure. Likewise
it is easy to see that if there is a cycle in the initial graph, the graph cannot be
reduced to the empty graph by the above procedure. But then it must be that
CYCLE(V,E) iff the graph (V,E) contains at least one cycle. �

Lemma 6.2 (Soundness of EXETHRD):
Given c̃∈Cõnf, Thrdc̃

exe ⊆ EXETHRD(c̃), where Thrdc̃
exe is as defined in Table

5.6. 2

PROOF. Based on c̃@〈[T,pcT, r̃T, t̃a
T]T∈Thrdc̃

, x̃, l̃〉 ∈ Cõnf, assume that t̃ is as
defined in Algorithm 6.10 and that t̃′ is defined as t̃ given by Table 5.6. It is
easy to see that Thrdhold as given by Algorithm 6.10 is a superset of Thrdhold
as given by Table 5.6 since in the latter case, a lock might have been assigned
to some thread, which will exclude that thread from Thrdhold. Thus it must be
that min(γ t(t̃′))≤min(γ t(t̃)) and max(γ t(t̃′))≤max(γ t(t̃)) (since t̃′ is derived
based on a superset of the threads used to derive t̃; note that if it is a true
superset, it must be that all the extra threads issue lock lck for some locks,
lck∈Lck, and have been assigned the ownership of lck, and that for those locks

˜OWN(l̃ lck) = ⊥thrd). Thus it must be that Thrdc̃
exe ⊆ EXETHRD(c̃), where

Thrdc̃
exe is as defined in Table 5.6, since EXETHRD(c̃) is derived based on t̃ but

also includes all threads issuing lock lck where lck ∈ Lck and ˜OWN(l̃ lck) =
⊥thrd. �

144 Chapter 6. Safe Timing Analysis by Abstract Execution

Lemma 6.3 (Soundness of GLOBALVAR):
GLOBALVAR(Thrdc̃) is the set of variables (called global variables) for which
a data dependency between two or more threads can occur in the program de-
scribed by Thrdc̃. 2

PROOF. Assume that x ∈ Var. First note that

• if {T ∈ Thrdc̃ | ∃l ∈ LblT : ∃r ∈ RegT : [store r to x]l} = /0 (i.e., no
thread ever writes to x), then it must be that x can be considered a con-
stant (since x ∈ Var, there must be some thread reading from it),

• if {T ∈ Thrdc̃ | ∃l ∈ LblT : ∃r ∈ RegT : [load r from x]l} = /0 (i.e., no
thread ever reads from x), then it must be that x can be considered a trash
variable (since x ∈ Var, there must be some thread writing to it),

• if, for some thread, T′ ∈ Thrdc̃, {T ∈ Thrdc̃ | ∃l ∈ LblT : ∃r ∈ RegT :
[store r to x]l} = {T′} and {T ∈ Thrdc̃ | ∃l ∈ LblT : ∃r ∈ RegT :
[load r from x]l} = {T′}, then it must be that x is only read from and
written to by T′ (thus there cannot be any data dependency on x between
two threads), and

• for a data dependency to occur on x for two threads, T′,T′′ ∈ Thrdc̃, it
must be that T′ ∈ {T∈Thrdc̃ | ∃l ∈LblT : ∃r ∈RegT : [store r to x]l},
T′′ ∈ {T ∈ Thrdc̃ | ∃l ∈ LblT : ∃r ∈ RegT : [load r from x]l} and T′ 6=
T′′.

Thus, since for each T ∈ Thrdc̃, the set VarloadT contains all variables that T
might read from and the set VarstoreT contains all variables that T might write
to, it must be that {x ∈ Var | ∃T′,T′′ ∈ Thrdc̃ : (T′ 6= T′′ ∧ x ∈ VarloadT′ ∧ x ∈
VarstoreT′′)} is the set of variables for which data dependencies occur between
at least two threads. �

Lemma 6.4 (Soundness of EXELOADTHRD):
Given a configuration c̃@〈[T,pcT, r̃T, t̃a

T]T∈Thrdc̃
, x̃, l̃〉 ∈ Cõnf, {T ∈ Thrdc̃

exe |
∃r ∈RegT : ∃x∈ GLOBALVAR(Thrdc̃) : STM(T,pcT) = [load r from x]pcT}⊆
EXELOADTHRD(c̃), where Thrdc̃

exe is defined as in Table 5.6. 2

PROOF. Assume that c̃@〈[T,pcT, r̃T, t̃a
T]T∈Thrdc̃

, x̃, l̃〉 ∈Cõnf and that Thrdc̃
exe

is defined as in Table 5.6. The proof follows directly from the fact that
Thrdc̃

exe ⊆ EXETHRD(c̃) (Lemma 6.2). �

6.1 Abstract Execution 145

Lemma 6.5 (Soundness of ISDEADLOCK):
Given a configuration c̃@〈[T,pcT, r̃T, t̃a

T]T∈Thrdc̃
, x̃, l̃〉 ∈ Cõnf, such that

∃T ∈ Thrdc̃ : STM(T,pcT) 6= [halt]pcT , ISDEADLOCK(c̃) ⇒ ∀c ∈ γconf (c̃) :
¬∃c′@〈[T,pc′T,r

′
T, t

a′
T]T∈Thrdc̃

,x′,l′〉 ∈ Conf : (c−→prg . . .−→prg c′ ∧ ∀T ∈ Thrdc̃ :

STM(T,pc′T) = [halt]pc′T), where c and c′ are valid concrete configurations
(c.f., Definition 4.4); i.e., if ISDEADLOCK(c̃), then c̃ does not represent any
concrete configuration that can possibly reach a final state. 2

PROOF. Assume that c̃@〈[T,pcT, r̃T, t̃a
T]T∈Thrdc̃

, x̃, l̃〉 ∈ Cõnf, such that
∃T ∈ Thrdc̃ : STM(T,pcT) 6= [halt]pcT (note that this assumption ful-
fills ¬ISFINAL(c̃)) and that ISDEADLOCK(c̃). Note that it must be that
Thrdc̃ = Thrd (otherwise, ¬ISDEADLOCK(c̃)).

Since Thrdlock = {T∈Thrdc̃ | ∃lck∈Lck : (STM(T,pcT)= [lock lck]pcT∧
˜OWN(l̃ lck) 6∈ {⊥thrd,T} ∧ ˜STT(l̃ lck) = locked)} and E = {(T,T′) | T,T′ ∈

Thrdlock ∧∃lck ∈ Lck : (STM(T,pcT) = [lock lck]pcT ∧ ˜OWN(l̃ lck) = T′)}, it
is easy to see that (Thrdlock ,E) is a graph where the vertices (in Thrdlock)
represent threads that are waiting to acquire a lock that is currently acquired
(i.e., owned and locked) by some other thread, and each edge, (T,T′) ∈ E,
describes a dependency (i.e., T is waiting to acquire a lock that is cur-
rently acquired by T′). But then it must be that if CYCLE(Thrdlock ,E),
then for all c ∈ γconf (c̃) (such that c is valid) there exists a deadlock
in c (since (Thrdlock ,E) contains at least one cycle; Lemma 6.1), and
thus, ∀c ∈ γconf (c̃) : ¬∃c′@〈[T,pc′T,r

′
T, t

a′
T]T∈Thrdc̃

,x′,l′〉 ∈ Conf : (c−→prg

. . .−→prg c′ ∧ ∀T ∈ Thrdc̃ : STM(T,pc′T) = [halt]pc′T). (Note that if for some

thread, T ∈ Thrdc̃, and lock, lck ∈ Lck, STM(T,pcT) = [lock lck]pcT ,
˜OWN(l̃ lck) 6∈ {⊥thrd,T} and ˜STT(l̃ lck) = unlocked, then T 6∈ Thrdlock since
˜OWN(l̃ lck) has not yet acquired lck.)

If ∃T ∈ Thrdc̃ : ∃lck ∈ Lck : (STM(T,pcT) = [lock lck]pcT ∧ ˜STT(l̃ lck) =
locked∧ ˜OWN(l̃ lck) 6=⊥thrd∧STM(˜OWN(l̃ lck),pc ˜OWN(l̃ lck))= [halt]

pc ˜OWN(l̃ lck)),
it is easy to see that ˜OWN(l̃ lck) will never issue unlock lck (c.f., Ta-
bles 5.5 and 5.6) and thus ∀c ∈ γconf (c̃) : ¬∃c′@〈[T,pc′T,r

′
T, t

a′
T]T∈Thrdc̃

,

x
′,l′〉 ∈ Conf : (c−→prg . . .−→prg c′∧∀T ∈ Thrdc̃ : STM(T,pc′T) = [halt]pc′T).

This concludes the proof. �

Lemma 6.6 (Soundness of ISTIMEOUT):
Given a configuration, c̃@〈[T,pcT, r̃T, t̃a

T]T∈Thrdc̃
, x̃, l̃〉 ∈ Cõnf, and time-

out, t̃to ∈ Tim̃e, such that ∃T ∈ Thrdc̃ : STM(T,pcT) 6= [halt]pcT and
¬ISDEADLOCK(c̃), ISTIMEOUT(c̃, t̃to) ⇒ ∀c ∈ γconf (c̃) : ¬∃c′@

146 Chapter 6. Safe Timing Analysis by Abstract Execution

〈[T,pc′T,r
′
T, t

a′
T]T∈Thrdc̃

,x′,l′〉 ∈ Conf : (c−→prg . . .−→prg c′ ∧ ∀T ∈ Thrdc̃ :

(STM(T,pc′T) = [halt]pc′T ∧ ta′
T ≤ max(γ t(t̃to)))), where c and c′ are valid

concrete configurations (c.f., Definition 4.4); i.e., if ISTIMEOUT(c̃, t̃to), then c̃
does not represent any concrete configuration that can possibly reach a final
state before the given timeout (i.e., before max(γ t(t̃to))). 2

PROOF. Assume that c̃@〈[T,pcT, r̃T, t̃a
T]T∈Thrdc̃

, x̃, l̃〉 ∈ Cõnf and t̃to ∈ Tim̃e
are such that ∃T ∈ Thrdc̃ : STM(T,pcT) 6= [halt]pcT , ¬ISDEADLOCK(c̃) and
ISTIMEOUT(c̃, t̃to).

Since ISTIMEOUT(c̃, t̃to), it must be that ∀T ∈ Thrdc̃ : (STM(T,pcT) 6=
[halt]pcT ⇒ (t̃to <̃t (t̃a

T +̃t ABSTIME(c̃,T))∨ (Thrdc̃ ⊂ Thrd∧∃lck ∈ Lck :
(STM(T,pcT) = [lock lck]pcT ∧ ˜OWN(l̃ lck) 6∈ {⊥thrd,T})))). For all threads,
T ∈Thrdc̃, such that STM(T,pcT) 6= [halt]pcT ∧ t̃to <̃t (t̃a

T +̃t ABSTIME(c̃,T)),
it is easy to see that ¬∃c′@〈[T,pc′T,r

′
T, t

a′
T]T∈Thrdc̃

,x′,l′〉 ∈ Conf : (c−→prg

. . .−→prg c′ ∧ STM(T,pc′T) = [halt]pc′T ∧ ta′
T ≤ max(γ t(t̃to))) (c.f., Assump-

tions 4.1 and 5.50). Thus, for all other threads, T ∈ Thrdc̃, such that
∃lck ∈ Lck : (STM(T,pcT) = [lock lck]pcT ∧ ˜OWN(l̃ lck) 6∈ {⊥thrd,T}), it
must be that ¬∃c′@〈[T,pc′T,r

′
T, t

a′
T]T∈Thrdc̃

,x′,l′〉 ∈ Conf : (c−→prg . . .−→prg

c′ ∧ STM(T,pc′T) = [halt]pc′T ∧ ta′
T ≤ max(γ t(t̃to))) since the respective locks

cannot possibly be released at any time, t, such that t ≤ max(γ t(t̃to)) (c.f.,
Assumptions 4.1 and 5.50).

This concludes the proof. �

Lemma 6.7 (Soundness of ISVALID):
Given a configuration c̃@〈[T,pcT, r̃T, t̃a

T]T∈Thrdc̃
, x̃, l̃〉 ∈ Cõnf and a time, t̃to ∈

Tim̃e, such that ∃T ∈ Thrdc̃ : STM(T,pcT) 6= [halt]pcT , ¬ISDEADLOCK(c̃)
and ¬ISTIMEOUT(c̃, t̃to), ¬ISVALID(c̃, t̃to) ⇒ ¬∃c̃′ ∈ Cõnf : (c̃−̃→prg . . .−̃→prg

c̃′ ∧ ∃c@〈[T,pcT,rT, ta
T]T∈Thrdc̃

,x,l〉 ∈ γconf (c̃′) : (∃c′ ∈ Conf : c′−→prg . . .−→prg

c∧∀lck ∈ Lck : (STT(l lck) = unlocked⇒ OWN(l lck) = ⊥thrd))); i.e., c̃ can
never lead to a configuration that could represent at least one valid concrete
configuration (c.f., Definition 4.4). 2

PROOF. Assume that c̃@〈[T,pcT, r̃T, t̃a
T]T∈Thrdc̃

, x̃, l̃〉 ∈ Cõnf and t̃to ∈ Tim̃e
are such that ∃T ∈ Thrdc̃ : STM(T,pcT) 6= [halt]pcT , ¬ISDEADLOCK(c̃),
¬ISTIMEOUT(c̃, t̃to) and ¬ISVALID(c̃, t̃to). Then it must be that

1. ¬(Thrdc̃ = Thrd ⇒ ¬CYCLE(Thrdlock ,E)) (i.e., Thrdc̃ = Thrd ∧
CYCLE(Thrdlock ,E))), where Thrdlock = {T ∈ Thrdc̃ | ∃lck ∈

6.1 Abstract Execution 147

Lck : (STM(T,pcT) = [lock lck]pcT ∧ ˜OWN(l̃ lck) 6∈ {⊥thrd,T})}
and E = {(T,T′) | T,T′ ∈ Thrdlock ∧ ∃lck ∈ Lck : (STM(T,pcT) =
[lock lck]pcT ∧ ˜OWN(l̃ lck) = T′)}, or

2. ¬∀lck∈Lck :∀T∈Thrdc̃ : ((˜OWN(l̃ lck)=T∧ ˜STT(l̃ lck)= unlocked)⇒
(STM(T,pcT) 6= [halt]pcT ∧ D̃L(l̃ lck) 6<̃t (t̃a

T +̃t ABSTIME(c̃,T)))).

If Thrdc̃ =Thrd∧CYCLE(Thrdlock ,E), then it must be that there is a cycle in
the dependency graph, (Thrdlock ,E), for threads waiting to acquire some lock
(Lemma 6.1). Since ¬ISDEADLOCK(c̃), it must be that this cycle involves at
least one lock, lck ∈ Lck, such that for some thread, T ∈ Thrd, ˜OWN(l̃ lck) 6∈
{⊥thrd,T} and ˜STT(l̃ lck) = unlocked (c.f., Algorithm 6.4). But then it is easy
to see that ¬∃c̃′ ∈ Cõnf : (c̃−̃→prg . . .−̃→prg c̃′ ∧∃c@〈[T,pcT,rT, ta

T]T∈Thrdc̃
,x,l〉 ∈

γconf (c̃′) : (∃c′ ∈Conf : c′−→prg . . .−→prg c∧∀lck∈Lck : (STT(l lck) = unlocked⇒
OWN(l lck) =⊥thrd))) (c.f., Tables 5.5 and 5.6 and Lemma 4.5).

Note that if ¬∀lck ∈ Lck : ∀T ∈ Thrdc̃ : ((˜OWN(l̃ lck) = T∧ ˜STT(l̃ lck) =
unlocked) ⇒ (STM(T,pcT) 6= [halt]pcT ∧ D̃L(l̃ lck) 6<̃t (t̃a

T +̃t
ABSTIME(c̃,T)))), then it must be that ∃lck∈Lck :∃T∈Thrdc̃ : (˜OWN(l̃ lck)=
T∧ ˜STT(l̃ lck) = unlocked ∧ (STM(T,pcT) = [halt]pcT ∨ D̃L(l̃ lck) <̃t (t̃a

T +̃t
ABSTIME(c̃,T)))).

If ∃lck ∈ Lck : ∃T ∈ Thrdc̃ : (˜OWN(l̃ lck) = T∧ ˜STT(l̃ lck) = unlocked∧
STM(T,pcT)= [halt]pcT), then it is easy to see that¬∃c̃′ ∈Cõnf : (c̃−̃→prg . . .−̃→prg

c̃′ ∧ ∃c@〈[T,pcT,rT, ta
T]T∈Thrdc̃

,x,l〉 ∈ γconf (c̃′) : (∃c′ ∈ Conf : c′−→prg . . .−→prg

c∧∀lck ∈ Lck : (STT(l lck) = unlocked ⇒ OWN(l lck) = ⊥thrd))) since, for
the given lock, the owner will be T but the state will remain unlocked for all
configurations following c̃ (c.f., Tables 5.5 and 5.6).

If ∃lck ∈ Lck : ∃T ∈ Thrdc̃ : (˜OWN(l̃ lck) = T∧ ˜STT(l̃ lck) = unlocked∧
D̃L(l̃ lck) <̃t (t̃a

T +̃t ABSTIME(c̃,T))), then it is easy to see that ¬∃c̃′ ∈ Cõnf :
(c̃−̃→prg . . .−̃→prg c̃′ ∧ ∃c@〈[T,pcT,rT, ta

T]T∈Thrdc̃
,x,l〉 ∈ γconf (c̃′) : (∃c′ ∈ Conf :

c′−→prg . . .−→prg c∧∀lck ∈Lck : (STT(l lck) = unlocked⇒ OWN(l lck) =⊥thrd)))

since ˜OWN(l̃ lck) must be one of the threads that issue lock lck (and thus
determines DL(l lck)) in the concrete case for ∀lck ∈ Lck : (STT(l lck) =
unlocked ⇒ OWN(l lck) = ⊥thrd) to hold. But since D̃L(l̃ lck) <̃t (t̃a

T +̃t
ABSTIME(c̃,T)) and DL(l lck) ∈ γ t(D̃L(l̃ lck)) for any given transitional
sequence (c.f., Lemma 5.58), there cannot be any c ∈ γconf (c̃) such that

˜OWN(l̃ lck) = T (c.f., Assumptions 4.1 and 5.50 and Tables 4.2, 4.3, 5.5 and
5.6).

This concludes the proof. �

148 Chapter 6. Safe Timing Analysis by Abstract Execution

Lemma 6.8 (Soundness of ABSEXE):
Given the sets of valid configurations C ∈ P(Conf) (c.f., Definition
4.4) and C̃ ∈ P(Cõnf), such that ∀c@〈[T,pcT,rT, ta

T]T∈Thrd1
,x,l〉 ∈ C :

(∀〈[T,pcc̃
T, r̃T, t̃a

T]T∈Thrd2
, x̃, l̃〉 ∈ C̃ : (Thrd1 = Thrd2 = Thrd)∧∃c̃ ∈ C̃ : c ∈

γconf (c̃)) ∧ |Thrd| < ∞ ∧ ∀c̃@〈[T,pcc̃
T, r̃T, t̃a

T]T∈Thrd, x̃, l̃〉 ∈ C̃ : ∀lck ∈ Lck :
min(γ t(D̃L(l̃ lck) = −∞)), and the times tto ∈ Time and t̃to ∈ Tim̃e, such that
tto = max(γ t(t̃to)), (C̃ f ,C̃d ,C̃t)@ABSEXE(C̃, t̃to) is such that

∀c ∈C : ∀c′@〈[T,pc′T,r
′
T, t

a′
T]T∈Thrd,x

′,l′〉 ∈ Conf :
((c−→prg . . .−→prg c′∧∀T ∈ Thrd : STM(T,pc′T) = [halt]pc′T)⇒
(C̃t 6= /0∨
∃c̃@〈[T,pcc̃

T, r̃T, t̃a
T]T∈Thrd, x̃, l̃〉 ∈ C̃ f : ∀T ∈ Thrd :

(pcc̃
T = pc′T∧ ta′

T ∈ γ t(t̃a
T))))∧

∀c ∈C : ∀c′@〈[T,pc′T,r
′
T, t

a′
T]T∈Thrd,x

′,l′〉 ∈ Conf :
((c−→prg . . .−→prg c′∧ (CYCLE(Thrdc′

lock ,E
c′)∨

∃T ∈ Thrd : ∃lck ∈ Lck :
(STM(T,pc′T) = [lock lck]pc′T ∧

OWN(l′ lck) 6∈ {⊥thrd,T}∧
STM(OWN(l′ lck),pc′OWN(l′ lck)) =

[halt]
pc′

OWN(l′ lck))))⇒
(C̃t 6= /0∨C̃d 6= /0))

where Thrdc′
lock = {T ∈ Thrd | ∃lck ∈ Lck : (STM(T,pc′T) = [lock lck]pc′T ∧

OWN(l′ lck) 6∈ {⊥thrd,T})} and Ec′ = {(T,T′) |T,T′ ∈Thrdc′
lock ∧∃lck∈Lck :

(STM(T,pc′T) = [lock lck]pc′T ∧OWN(l′ lck) = T′)}, whenever it terminates. In
other words, if a concrete configuration in C could be executed into a final
configuration, ABSEXE will either find a final abstract configuration that safely
represents the timing behavior of the concrete final configuration or reach a
timeout for the corresponding abstract transition sequence, and thus, C̃t 6= /0. If
a concrete configuration in C could be executed into a state from which a final
configuration cannot be reached, ABSEXE will either find the corresponding
abstract situation (i.e., C̃d 6= /0) or reach a timeout for the corresponding abstract
transition sequence, and thus, C̃t 6= /0.

It is also the case that if C̃d ∪C̃t = /0, then all concrete configurations in C
are guaranteed to, along all possible paths, reach a state in which all threads is-
sue the halt-statement (i.e., reach the final state, or in other words, terminate).

6.1 Abstract Execution 149

Furthermore (if C̃d ∪C̃t = /0):

∀c ∈C : ∀c′@〈[T,pc′T,r
′
T, t

a′
T]T∈Thrd,x

′,l′〉 ∈ Conf :
((c−→prg . . .−→prg c′∧∀T ∈ Thrd : STM(T,pc′T) = [halt]pc′T)⇒

∃〈[T,pcc̃
T, r̃T, t̃a

T]T∈Thrd, x̃, l̃〉 ∈ C̃ f : (pcc̃
T = pc′T∧ ta′

T ∈ γ t(t̃a
T))) 2

PROOF. Assume that the sets of valid configurations C ∈ P(Conf)
and C̃ ∈ P(Cõnf) are such that ∀c@〈[T,pcT,rT, ta

T]T∈Thrd1
,x,l〉 ∈ C :

(∀〈[T,pcc̃
T, r̃T, t̃a

T]T∈Thrd2
, x̃, l̃〉 ∈ C̃ : (Thrd1 = Thrd2 = Thrd)∧∃c̃ ∈ C̃ : c ∈

γconf (c̃)) ∧ |Thrd| < ∞ ∧ ∀c̃@〈[T,pcc̃
T, r̃T, t̃a

T]T∈Thrd, x̃, l̃〉 ∈ C̃ : ∀lck ∈ Lck :
min(γ t(D̃L(l̃ lck) = −∞)), the times tto ∈ Time and t̃to ∈ Tim̃e, are such that
tto = max(γ t(t̃to)), and that (C̃ f ,C̃d ,C̃t) = ABSEXE(C̃, t̃to).

This proof will partly be conducted using induction on the considered level
of recursion, where level 0 is the base level (i.e., the level where for any consid-
ered c̃, Thrdc̃ = Thrd) and level n≥ 0 is the bottom level (i.e., the level from
which no more recursion occurs, which is also referred to as the maximum level
of recursion), while assuming that all sequentially preceding load-statements
in all threads for any considered configuration on any level of recursion have
been safely approximated. Before beginning the induction part of the proof,
first note that:

• The overall structure of the algorithm is of the work-list type; i.e., given
an item (abstract configuration in this case) that is extracted from a work-
list, new items are generated, based on some rules, and are either added
to the work-list (and will thus eventually be extracted themselves) or
saved as output items if some condition is fulfilled. When the work-list
is empty, the algorithm terminates.

• Since (C̃ f ,C̃d ,C̃t) = ABSEXE(C̃, t̃to), it must be that the algorithm ter-
minates for the considered input (i.e., C̃ and t̃to).

• The structure of the algorithm is such that, for any c̃ ∈ Cõnf and
t̃to ∈ Tim̃e, ISDEADLOCK(c̃) is only issued when ¬ISFINAL(c̃),
ISTIMEOUT(c̃, t̃to) is only issued when ¬ISDEADLOCK(c̃), and
ISVALID(c̃, t̃to) is only issued when ¬ISTIMEOUT(c̃, t̃to). This means
that the requirements of Algorithms 6.4, 6.5 and 6.6 are fulfilled.

• The timing behaviors of the threads included on any recursion level are
safely given by ABSTIME (Assumption 5.50).

150 Chapter 6. Safe Timing Analysis by Abstract Execution

• The maximum level (i.e., depth) of any recursion pattern is |Thrd| − 1
since |EXETHRD(c̃)| > 1 for recursion to occur and |Thrd| ≥
|EXETHRD(c̃)| for any c̃ ∈ Cõnf (c.f., Algorithm 6.10). Since
|Thrd| < ∞, it must thus be that 0 ≤ n ≤ |Thrd| − 1 < ∞. But
then, since the recursion depth is of a finite size, it must be that the
recursion eventually stops for any considered case.

• When the considered level of recursion, i, is greater than 0, it is easy to
see that Thrdi ⊂Thrd, where Thrdi is the set of threads included in any
configuration on recursion level i for the considered recursion pattern.
Note that Thrd0 = Thrd.

• The timeout, t̃i
to, for recursion level i > 0 is such that max(γ t(t̃i

to)) ≤
max(γ t(t̃i−1

to)) since t̃i
to = t̃a′

T ũt (t̃i−1
to t̃t α t({−∞})), where T ∈ Thrdc̃

is the thread that will be removed from the configurations on recursion
level i. This means that the timeout cannot be shifted into the future
when recursion occurs.
Figure 6.1 illustrates a case where n = 4, t̃0

to is the timeout at the base
level (i.e., recursion level 0) and for all i ∈ {1,2,3,4}, t̃i

to is the timeout
at recursion level i, Ti−1 is the thread not included in configurations at
recursion level i and t̃a′

Ti−1
= t̃a

Ti−1
+̃t ABSTIME(c̃i−1,Ti−1).

• Assume that a thread, T ∈ Thrd, issues a load-statement at some recur-
sion level i− 2, where i ≥ 2, and has been removed from all configura-
tions at recursion level i− 1 and beyond, and that no events occurring
after t̃i−1

to can affect the loaded value. If some other thread, T′ ∈ Thrd,
issues a possibly unsafe load-statement at recursion level i− 1, then a
new recursion level, i, will be created to determine a safe write history
before the load in T′ is evaluated. Then it is easy to see that any event
occurring after t̃a′

T′ cannot affect the value loaded by T′. But then it is
easy to see that the value loaded by T at recursion level i− 2 cannot be
affected by any event occurring after t̃i

to = t̃a′
T′ ũt (t̃i−1

to t̃t α t({−∞})) for
the considered recursion instance at level i. Thus, for all recursion levels
i ∈ {1, . . . ,n}, the timeout for recursion level i, as determined by the al-
gorithm, is safe since the accumulated time for a thread cannot decrease
(c.f., Assumption 5.50).

• The structure of the algorithm (i.e., on a recursion level, one new
recursion-instance is created for each thread that is executing a possibly
unsafe load-statement) gives that all possible cases, for in which order
load-statements in different threads can be issued, are considered.

6.1 Abstract Execution 151

time

Recursion level

0

1

2

3

4

t̃0to

t̃ a′
T0

t̃1to

t̃ a′
T1

t̃2to

t̃ a′
T2

t̃3to

t̃ a′
T3

t̃4to

Figure 6.1: Illustration of how the timeout, t̃to, for a new level of recursion in
ABSEXE is determined.

Assume that, given some configuration, c̃@〈[T,pcc̃
T, r̃T, t̃a

T]T∈Thrdi
, x̃, l̃〉,

and timeout, t̃to, on recursion level i, where 0≤ i< n, some thread, Ti ∈Thrdi,
issues a possibly unsafe load-statement (which means that a deeper recursion
level, i + 1, will exist) that cannot be affected by any event occurring after
t̃to. Further assume that the local thread states (i.e., program counters, register
values and accumulated execution times) and write history for all variables as
given by c̃ safely approximate the possible concrete thread states and variable
values given the considered program point and the corresponding concrete
transition sequences (if any), and that all load-statements on recursion levels
i+1 to n are safely approximated. This comprises the induction assumption.

Since the local thread states and write history for all variables as given
by c̃ safely approximate the possible concrete thread states and variable
values given by the configuration at the end of the corresponding con-
crete transition sequences and all load-statements on recursion levels
i + 1 to n are safely approximated, it must be that all c̃′ ∈ Cõnf, such
that c̃−̃→prg . . .−̃→prg c̃′, safely approximate the possible concrete thread states

152 Chapter 6. Safe Timing Analysis by Abstract Execution

and variable values given the considered program point and the corre-
sponding concrete transition sequences since −̃→prg is used to approximate
the execution of all statements except load-statements that are possi-
bly unsafe (c.f., Lemmas 5.55, 5.56 and 5.57). Thus, it must be that
(C̃ f

i+1,C̃
d
i+1,C̃

t
i+1) @ ABSEXE({〈[T,pcc̃

T, r̃T, t̃a
T]T∈Thrdi\{Ti}

, x̃, l̃〉},(t̃a
Ti

+̃t

ABSTIME(c̃,Ti)) ũt (t̃to t̃t α t({−∞}))) is such that
⊔̃

val{READ(x̃′,x,Ti, t̃a
Ti
+̃t

ABSTIME(c̃,Ti)) | 〈T̃, x̃′, l̃′〉 ∈ C̃ f
i+1 ∪ C̃d

i+1 ∪ C̃t
i+1 ∪{c̃}} safely approximates

all possible concrete values that could be read by the load-statement in Ti for
the corresponding concrete transition sequence, since (the ABSEXE instance
mentioned above, corresponding to recursion level i+1 is considered)

1. {c̃′′ ∈ Cõnf | c̃′ −̃→prg c̃′′} safely collects all transition possibilities for any

given configuration, c̃′ ∈ Cõnf, or rather, thread, for which no possibly
unsafe load-statements are approximated by the transition (c.f., Lem-
mas 5.55, 5.56 and 5.57),

2. TRIM is not used to remove old writes from the write history since i+1>
0 (c.f., Table 5.6),

3. (note that Thrdi+1 ⊂Thrd) ∀c̃′@〈[T,pc′T, r̃
′
T, t̃

a′
T]

T∈Thrd′ , x̃
′, l̃′〉 ∈Cõnf :

(Thrd′ ⊂Thrd⇒¬ISDEADLOCK(c̃′)); i.e., even if a deadlock exists in
c̃′, it is further evaluated just in case there are threads that are not part of
the deadlock and thus could affect the value of the variable which is read
on the lower recursion level (c.f., Algorithm 6.4),

4. for any c̃′ ∈ Cõnf and t̃′to ∈ Tim̃e, ISTIMEOUT(c̃′, t̃′to) ⇒ ∀c ∈
γconf (c̃′) : ¬∃c′@〈[T,pc′T,r

′
T, t

a′
T]T∈Thrdc̃′

,x′,l′〉 ∈ Conf : (c−→prg . . .−→prg

c′ ∧ ∀T ∈ Thrdc̃′ : (STM(T,pc′T) = [halt]pc′T ∧ ta′
T ≤ max(γ t(t̃′to)))),

where c and c′ are valid concrete configurations (c.f., Definition 4.4);
i.e., if ISTIMEOUT(c̃′, t̃′to), then c̃′ does not represent any concrete con-
figuration that can possibly reach a final state before the given timeout
(Lemma 6.6), or in other words, no thread in c̃′ can affect the system
state so that the effects are visible at or before t̃′to (c.f., Algorithm 6.5
and Assumption 5.50),

5. (note that Thrdi+1 ⊂ Thrd) ∀c̃′@〈[T,pc′T, r̃
′
T, t̃

a′
T]

T∈Thrd′ , x̃
′, l̃′〉 ∈

Cõnf : ((Thrd′ ⊂ Thrd ∧ ¬ISVALID(c̃′)) ⇒ ¬∀lck ∈ Lck : ∀T ∈
Thrd′ : ((˜OWN(l̃′ lck) = T∧ ˜STT(l̃′ lck) = unlocked)⇒ (STM(T,pc′T) 6=
[halt]pc′T ∧ D̃L(l̃ lck) 6<̃t (t̃a

T +̃t ABSTIME(c̃,T))))), which follows

6.1 Abstract Execution 153

directly from Algorithm 6.6 and means that there is no possibility that
c̃′ has any (or could lead to a configuration that has a) valid concrete
counterpart (c.f., Definition 4.4 and the proof of Lemma 6.7).

It is important to notice that ISTIMEOUT captures all configurations such that
all threads have either executed beyond the timeout or are waiting to acquire a
lock that is currently owned by a thread that has executed beyond the timeout
or is also waiting to acquire some lock (c.f., Algorithm 6.5), which means that
the first mentioned thread cannot possibly acquire the lock before the time-
out has passed (c.f., Tables 5.5 and 5.6 and Assumption 5.50). This means
that ISTIMEOUT captures all deadlocked configurations, since ISDEADLOCK
does not capture any configuration at all when the considered recursion level
is greater than 0 (c.f., Algorithm 6.4), and also all configurations allowed by
ISVALID, although they lack valid concrete counterparts (c.f., Algorithm 6.6).

Since t̃a′
Ti

= t̃a
Ti

+̃t ABSTIME(c̃i,Ti), pc′Ti
= pcTi

+ 1 and r̃
′
Ti

= r̃Ti [r 7→⊔̃
val{READ(x̃′,x,Ti, t̃a

Ti
+̃t ABSTIME(c̃i,Ti)) | 〈T̃, x̃′, l̃′〉 ∈ C̃ f

i+1∪C̃d
i+1∪C̃t

i+1∪
{c̃i}}] (assuming that the possibly unsafe load-statement issued by Ti is
[load r from x]pcTi for some r ∈ RegTi

and x ∈ Var), it must thus be that the
load-statement in thread Ti on recursion level i is safely approximated and
that the new configuration, which is added to the work-list on line 28, therefore
safely approximates the local thread states (i.e., program counters, register val-
ues and accumulated execution times) for all threads and the write history for
all variables as given by the possible concrete thread states and variable values
in the considered program point and the corresponding concrete transition
sequences (if any). But this means that all possibly unsafe load-statements on
recursion level i are safely approximated.

Now consider recursion level n (i.e., the level from which no more
recursion will occur for a given recursion pattern, which is the base case
for the induction part of the proof) for the first ever occurring recursion
pattern for a given transition sequence, such that no potentially unsafe
load-statement has yet been approximated. Since no potentially unsafe
load-statement has yet been approximated and ∀c ∈C : ∃c̃ ∈ C̃ : c ∈ γconf (c̃),
it must be that any concrete state for all threads individually, and the write
history for each variable, must be safely approximated up until the con-
sidered point of the considered transition sequence (since −̃→prg has been

safely used for all transitions and {c̃′ ∈ Cõnf | c̃−̃→prg c̃′} collects all ab-
stract transition possibilities for any given configuration, c̃ ∈ Cõnf, or
rather, thread; c.f., Lemmas 5.55, 5.56 and 5.57). Since no more (i.e.,

154 Chapter 6. Safe Timing Analysis by Abstract Execution

deeper) recursion will occur, it must be that for any considered configura-
tion, c̃@〈[T,pcT, r̃T, t̃a

T]T∈Thrdn
, x̃, l̃〉 ∈ Cõnf, at level n, |EXETHRD(c̃)| 6> 1

or EXELOADTHRD(c̃) = /0. But since for any given configuration c̃@
〈[T,pcT, r̃T, t̃a

T]T∈Thrdc̃
, x̃, l̃〉 ∈ Cõnf, Thrdc̃

exe ⊆ EXETHRD(c̃) (Lemma 6.2)
and {T ∈ Thrdc̃

exe | ∃r ∈ RegT : ∃x ∈ GLOBALVAR(Thrdc̃) : STM(T,pcT) =
[load r from x]pcT} ⊆ EXELOADTHRD(c̃) (Lemma 6.4), where Thrdc̃

exe is as
defined in Table 5.6, it must thus be that |Thrdc̃

exe| 6> 1∨{T ∈ Thrdc̃
exe | ∃r ∈

RegT : ∃x ∈ Varg : STM(T,pcc̃
T) = [load r from x]pcc̃

T} = /0 for all c̃ ∈ Cõnf
at recursion level n. Thus, it must be that {c̃′ ∈ Cõnf | c̃−̃→prg c̃′} will be safely
used to collect all the possible transitions on recursion level n until all threads
either reach the final state (i.e., issue halt-statements) or execute beyond the
timeout (c.f., Lemmas 5.55, 5.56, 5.57, 5.58, 6.5, 6.6 and 6.7). But, then it
must be that all the possible concrete transition sequences for each thread are
safely approximated up until the timeout point (if ever reached, and if reached
before the final state) since ∀c ∈C : ∃c̃ ∈ C̃ : c ∈ γconf (c̃). This concludes the
induction part of the proof.

Given c ∈ C and c′@〈[T,pc′T,r
′
T, t

a′
T]T∈Thrd,x

′,l′〉 ∈ Conf, the following
concrete cases (corresponding to a terminating program, a program reaching
a deadlocked state and a more general case of a non-terminating program, re-
spectively) must be considered.

1. Assume that c−→prg . . .−→prg c′ ∧ ∀T ∈ Thrd : STM(T,pc′T) = [halt]pc′T .
Note that since all possible concrete transition sequences for each thread
individually are safely approximated up until the timeout point and a
final configuration is reached in the concrete case, there must be an
abstract trace of transitions such that all configurations, c̃ ∈ Cõnf, on
that trace are such that ¬ISDEADLOCK(c̃) (c.f., Algorithm 6.4 and
Lemma 6.5) and ISVALID(c̃, t̃to) (c.f., Algorithm 6.6 and Lemma 6.7). It
must also be that, eventually, a configuration, c̃@〈[T,pcc̃

T, r̃T, t̃a
T]T∈Thrd,

x̃, l̃〉 ∈ Cõnf, for which either ∀T ∈ Thrd : STM(T,pcc̃
T) = [halt]pcc̃

T or
∀T ∈ Thrd : (STM(T,pcc̃

T) 6= [halt]pcc̃
T ⇒ t̃to <̃t t̃a

T +̃t ABSTIME(c̃,T))
is derived along the corresponding (over-approximating) abstract trace
of transitions.

If ∀T ∈ Thrd : STM(T,pcc̃
T) = [halt]pcc̃

T , then it is easy to see that
ISFINAL(c̃) (c.f., Algorithm 6.3), which means that c̃ ∈ C̃ f . Thus, it
must be that ∃c̃′@〈[T,pcc̃′

T , r̃
′
T, t̃

a′
T]T∈Thrd, x̃

′, l̃′〉 ∈ C̃ f : ∀T ∈ Thrd :
(pcc̃′

T = pc′T∧ ta′
T ∈ γ t(t̃a′

T)).

6.1 Abstract Execution 155

If ∃T ∈ Thrd : STM(T,pcc̃
T) 6= [halt]pcc̃

T ∧∀T ∈ Thrd : (STM(T,pcc̃
T) 6=

[halt]pcc̃
T ⇒ t̃to <̃t t̃a

T +̃t ABSTIME(c̃,T)), then it is easy to see that
¬ISFINAL(c̃), ¬ISDEADLOCK(c̃) (since the program terminates in the
concrete case) and ISTIMEOUT(c̃, t̃to) (c.f., Algorithms 6.3 and 6.5),
which means that c̃ ∈ C̃t . Thus, it must be that C̃t 6= /0.

2. Assume that c−→prg . . .−→prg c′ ∧ (CYCLE(Thrdc′
lock ,E

c′) ∨ ∃T ∈ Thrd :

∃lck ∈ Lck : (STM(T,pc′T) = [lock lck]pc′T ∧OWN(l′ lck) 6∈ {⊥thrd,T}∧
STM(OWN(l′ lck),pc′OWN(l′ lck)) = [halt]

pc′
OWN(l′ lck))), where Thrdc′

lock =

{T ∈ Thrd | ∃lck ∈ Lck : (STM(T,pc′T) = [lock lck]pc′T ∧OWN(l′ lck) 6∈
{⊥thrd,T})} and Ec′ = {(T,T′) | T,T′ ∈ Thrdc′

lock ∧ ∃lck ∈ Lck :
(STM(T,pc′T) = [lock lck]pc′T ∧ OWN(l′ lck) = T′)} (remember that
OWN(l′ lck) 6= ⊥thrd ⇒ OWN(l′ lck) = locked since c is valid and −→prg

preserves validity; c.f., Definition 4.4 and Lemma 4.5). Note that since
all possible concrete transition sequences for each thread individually
are safely approximated up until the timeout point and a deadlocked
configuration is reached in the concrete case, there must be an abstract
trace of transitions such that all configurations, c̃ ∈ Cõnf, on that trace
are such that ¬ISFINAL(c̃) (c.f., Algorithm 6.3) and ISVALID(c̃, t̃to) (c.f.,
Algorithm 6.6 and Lemma 6.7). It must also be that, eventually, a config-
uration, c̃@〈[T,pcc̃

T, r̃T, t̃a
T]T∈Thrd, x̃, l̃〉 ∈ Cõnf, will be derived (along

the corresponding, over-approximating abstract trace of transitions)
for which either (CYCLE(Thrdc̃

lock ,E
c̃) ∨ ∃T ∈ Thrd : ∃lck ∈ Lck :

(STM(T,pcc̃
T) = [lock lck]pcc̃

T ∧ ˜STT(l̃ lck) = locked ∧ ˜OWN(l̃ lck) 6=
⊥thrd ∧ STM(˜OWN(l̃ lck),pcc̃

˜OWN(l̃ lck)) = [halt]
pcc̃

˜OWN(l̃ lck))), where

Thrdc̃
lock = {T ∈ Thrd | ∃lck ∈ Lck : (STM(T,pcc̃

T) = [lock lck]pcc̃
T ∧

˜OWN(l̃ lck) 6∈ {⊥thrd,T} ∧ ˜STT(l̃ lck) = locked)} and E c̃ = {(T,T′) |
T,T′ ∈ Thrdc̃

lock ∧ ∃lck ∈ Lck : (STM(T,pcc̃
T) = [lock lck]pcc̃

T ∧
˜OWN(l̃ lck) = T′)}, or ∀T ∈ Thrd : (STM(T,pcc̃

T) 6= [halt]pcc̃
T ⇒ t̃to <̃t

t̃a
T +̃t ABSTIME(c̃,T)) ∧ ¬(CYCLE(Thrdc̃

lock ,E
c̃) ∨ ∃T ∈ Thrd :

∃lck ∈ Lck : (STM(T,pcc̃
T) = [lock lck]pcc̃

T ∧ ˜STT(l̃ lck) = locked ∧
˜OWN(l̃ lck) 6=⊥thrd∧STM(˜OWN(l̃ lck),pcc̃

˜OWN(l̃ lck))= [halt]
pcc̃

˜OWN(l̃ lck))).

If CYCLE(Thrdc̃
lock ,E

c̃) ∨ ∃T ∈ Thrd : ∃lck ∈ Lck : (STM(T,pcc̃
T) =

[lock lck]pcc̃
T ∧ ˜STT(l̃ lck) = locked ∧ ˜OWN(l̃ lck) 6= ⊥thrd ∧

156 Chapter 6. Safe Timing Analysis by Abstract Execution

STM(˜OWN(l̃ lck),pcc̃
˜OWN(l̃ lck)) = [halt]

pcc̃
˜OWN(l̃ lck)), then it is easy to

see that ¬ISFINAL(c̃) and ISDEADLOCK(c̃) (c.f., Algorithm 6.4 and
Lemma 6.5), which means that C̃d 6= /0.

If ∀T ∈ Thrd : (STM(T,pcc̃
T) 6= [halt]pcc̃

T ⇒ t̃to <̃t t̃a
T +̃t

ABSTIME(c̃,T))∧¬(CYCLE(Thrdc̃
lock ,E

c̃)∨∃T ∈ Thrd : ∃lck ∈ Lck :
(STM(T,pcc̃

T) = [lock lck]pcc̃
T ∧ ˜STT(l̃ lck) = locked ∧ ˜OWN(l̃ lck) 6=

⊥thrd ∧ STM(˜OWN(l̃ lck),pcc̃
˜OWN(l̃ lck)) = [halt]

pcc̃
˜OWN(l̃ lck))), then it is

easy to see that¬ISFINAL(c̃), ¬ISDEADLOCK(c̃) and ISTIMEOUT(c̃, t̃to)
(c.f., Algorithm 6.5 and Lemma 6.6), which means that C̃t 6= /0.

To prove the last part of the lemma, assume that C̃d ∪ C̃t = /0. Since
∀〈[T,pcc̃

T, r̃T, t̃a
T]T∈Thrd, x̃, l̃〉 ∈ C̃ f : ∀T ∈ Thrd : STM(T,pcc̃

T) = [halt]pcc̃
T

(c.f., Algorithm 6.3) and ¬ISVALID(c̃, t̃to) only if c̃ can never lead to a config-
uration that might have a valid concrete counterpart (Lemma 6.7), it is easy to
see that all concrete executions of the configurations in C will terminate since
all possible concrete transition sequences are safely approximated. Further
assume that c ∈ C and c′@〈[T,pc′T,r

′
T, t

a′
T]T∈Thrd,x

′,l′〉 ∈ Conf are such that
c−→prg . . .−→prg c′∧∀T ∈ Thrd : STM(T,pc′T) = [halt]pc′T . Since C̃d ∪C̃t = /0 and

∀c ∈ C : ∃c̃ ∈ C̃ : c ∈ γconf (c̃), it is easy to see that ∃〈[T,pcc̃
T, r̃T, t̃a

T]T∈Thrd,

x̃, l̃〉 ∈ C̃ f : (pcc̃
T = pc′T ∧ ta′

T ∈ γ t(t̃a
T)) since all possible concrete transition

sequences are safely approximated.

This concludes the proof. �

NOTE. ABSEXE has not been proven to terminate for all inputs. However,
when it does terminate, it safely approximates the transition sequences for the
corresponding concrete input set.

One case for which ABSEXE will not terminate is when some thread could
execute an infinite amount of statements in zero amount of time; c.f., an infi-
nite loop where all the statements of the loop could be executed without any
progression of time.

6.2 Timing Analysis 157

Algorithm 6.13 BCET/WCET Analysis

1: function ANALYSIS(C̃, t̃to)
2: (C̃ f ,C̃d ,C̃t)← ABSEXE(C̃, t̃to)
3: if C̃d ∪C̃t 6= /0 then
4: return (−∞,∞)
5: end if
6: BCET← ∞

7: WCET←−∞

8: while C̃ f 6= /0 do
9: c̃@〈[T,pcT, r̃T, t̃a

T]T∈Thrd, x̃, l̃〉 ← CHOOSE(C̃ f)

10: C̃ f ← C̃ f \{c̃}
11: BCET c̃←max({min(γ t(t̃a

T)) | T ∈ Thrd})
12: WCET c̃←max({max(γ t(t̃a

T)) | T ∈ Thrd})
13: if BCET > BCET c̃ then
14: BCET← BCET c̃
15: end if
16: if WCET <WCET c̃ then
17: WCET←WCET c̃
18: end if
19: end while
20: return (BCET,WCET)
21: end function

158 Chapter 6. Safe Timing Analysis by Abstract Execution

6.2 Timing Analysis

The BCET and WCET (c.f., Definition 6.9) of a program, given an initial sys-
tem state, is safely derived by ANALYSIS, which is defined in Algorithm 6.13
(Lemma 6.10), whenever it terminates.

Definition 6.9 (BCET and WCET):
The Best-Case Execution Time, BCET , and the Worst-Case Execution Time,
WCET , of a given configuration, 〈[T,pcT, r̃T, t̃a

T]T∈Thrdc̃
, x̃, l̃〉 ∈ Cõnf are de-

fined as: {
BCET = max({min(γ t(t̃a

T)) | T ∈ Thrdc̃})
WCET = max({max(γ t(t̃a

T)) | T ∈ Thrdc̃}) 2

Lemma 6.10 (Soundness of ANALYSIS):
Given the sets of valid concrete configurations C ∈ P(Conf) (c.f., Def-
inition 4.4) and abstract configurations C̃ ∈ P(Cõnf), such that ∀c@
〈[T,pcT,rT, ta

T]T∈Thrd1
,x,l〉 ∈ C : (∀〈[T,pcc̃

T, r̃T, t̃a
T]T∈Thrd2

, x̃, l̃〉 ∈ C̃ :
(Thrd1 = Thrd2 = Thrd) ∧ ∃c̃ ∈ C̃ : c ∈ γconf (c̃)) ∧ |Thrd| < ∞ ∧ ∀c̃@
〈[T,pcc̃

T, r̃T, t̃a
T]T∈Thrd, x̃, l̃〉 ∈ C̃ : ∀lck ∈ Lck : min(γ t(D̃L(l̃ lck) = −∞)),

and the times tto ∈ Time and t̃to ∈ Tim̃e, such that tto = max(γ t(t̃to)),
(BCET,WCET)@ANALYSIS(C̃, t̃to) is such that

∀c ∈C : ∀c′@〈[T,pc′T,r
′
T, t

a′
T]T∈Thrd,x

′,l′〉 ∈ Conf :
(((c−→prg . . .−→prg c′∧∀T ∈ Thrd : STM(T,pc′T) = [halt]T,pc′T)⇒

∀T ∈ Thrd : BCET ≤ ta′
T ≤WCET)∧

(c−→prg . . .−→prg c′⇒ ta′
T ≤WCET))

given that the algorithm terminates. 2

PROOF. Assume that the sets of valid concrete configurations C ∈P(Conf)
(c.f., Definition 4.4) and abstract configurations C̃ ∈P(Cõnf) are such that
∀c@〈[T,pcT,rT, ta

T]T∈Thrd1
,x,l〉 ∈ C : (∀〈[T,pcc̃

T, r̃T, t̃a
T]T∈Thrd2

, x̃, l̃〉 ∈ C̃ :
(Thrd1 = Thrd2 = Thrd) ∧ ∃c̃ ∈ C̃ : c ∈ γconf (c̃)) ∧ |Thrd| < ∞ ∧ ∀c̃@
〈[T,pcc̃

T, r̃T, t̃a
T]T∈Thrd, x̃, l̃〉 ∈ C̃ : ∀lck ∈ Lck : min(γ t(D̃L(l̃ lck) = −∞)), that

the times tto ∈ Time and t̃to ∈ Tim̃e are such that tto = max(γ t(t̃to)), and that
(BCET,WCET) = ANALYSIS(C̃, t̃to).

6.2 Timing Analysis 159

Since (BCET,WCET) = ANALYSIS(C̃, t̃to), it must be that (C̃ f ,C̃d ,C̃t)@
ABSEXE(C̃, t̃to) terminates at some point and that

∀c ∈C : ∀c′@〈[T,pc′T,r
′
T, t

a′
T]T∈Thrd,x

′,l′〉 ∈ Conf :
((c−→prg . . .−→prg c′∧∀T ∈ Thrd : STM(T,pc′T) = [halt]pc′T)⇒
(C̃t 6= /0∨
∃c̃@〈[T,pcc̃

T, r̃T, t̃a
T]T∈Thrd, x̃, l̃〉 ∈ C̃ f : ∀T ∈ Thrd :

(pcc̃
T = pc′T∧ ta′

T ∈ γ t(t̃a
T))))∧

∀c ∈C : ∀c′@〈[T,pc′T,r
′
T, t

a′
T]T∈Thrd,x

′,l′〉 ∈ Conf :
((c−→prg . . .−→prg c′∧ (CYCLE(Thrdc′

lock ,E
c′)∨

∃T ∈ Thrd : ∃lck ∈ Lck :
(STM(T,pc′T) = [lock lck]pc′T ∧

OWN(l′ lck) 6∈ {⊥thrd,T}∧
STM(OWN(l′ lck),pc′OWN(l′ lck)) =

[halt]
pc′

OWN(l′ lck))))⇒
(C̃t 6= /0∨C̃d 6= /0))

(Lemma 6.8). It is thus apparent that if C̃d∪C̃t 6= /0, there might exist an infinite
transition sequence in the concrete case. However, it is easy to see that (as
returned by the algorithm)−∞ is a safe approximation of the BCET and that ∞

is a safe approximation of the WCET for all such (and all other) cases.
If C̃d ∪ C̃t = /0, then all concrete transition sequences are of finite

length and ∀c ∈ C : ∀c′@〈[T,pc′T,r
′
T, t

a′
T]T∈Thrd,x

′,l′〉 ∈ Conf : ((c−→prg

. . .−→prg c′ ∧∀T ∈ Thrd : STM(T,pc′T) = [halt]pc′T)⇒ ∃〈[T,pcc̃
T, r̃T, t̃a

T]T∈Thrd,

x̃, l̃〉 ∈ C̃ f : (pcc̃
T = pc′T∧ta′

T ∈ γ t(t̃a
T))) (Lemma 6.8). Thus, since the structure of

the algorithm trivially gives that the smallest possible estimation of the BCET,
BCET , and the largest possible estimation of the WCET, WCET , among the
derived final abstract configurations in C̃ f are found (c.f., Definition 6.9), it
must be that ∀c∈C : ∀c′@〈[T,pc′T,r

′
T, t

a′
T]T∈Thrd,x

′,l′〉 ∈Conf : ((c−→prg . . .−→prg

c′ ∧ ∀T ∈ Thrd : STM(T,pc′T) = [halt]pc′T) ⇒ ∀T ∈ Thrd : BCET ≤ ta′
T ≤

WCET). But, then it must also be that ∀c ∈ C : ∀c′@〈[T,pc′T,r
′
T, t

a′
T]T∈Thrd,

x
′,l′〉 ∈ Conf : (c−→prg . . .−→prg c′ ⇒ ∀T ∈ Thrd : ta′

T ≤ WCET) since time only
moves forward (c.f., Assumption 5.50), which concludes the proof. �

Chapter 7

Examples

To clarify and explain the analysis defined in Chapters 5 and 6, this chapter
instantiates it for some example PPL programs.

7.1 Communication
This case shows the recursive behavior of ABSEXE; i.e., how it peeks into the
future to derive safe write histories for unsafe load-statements.

For the program, Thrd = {T1,T2,T3}, defined in Table 7.1, it is easy to see
that RegT1

= {r}, RegT2
= {r}, RegT3

= {r}, Var = {x,y,z} and Lck = /0.
Note that r represents local memory within each thread; i.e., the register-name
r can refer to three different memory locations – what location it refers to
depends on which thread is considered.

Assume that ABSTIME(c̃,T), where c̃@〈[T,pcT, r̃T, t̃a
T]T∈Thrdc̃

, x̃, l̃〉 ∈

T1@(1, [load r from x]1;[store r to y]2;[halt]3)

T2@(2, [load r from y]1;[store r to z]2;[halt]3)

T3@(3, [if r <= 3 goto 4]1;[store r to x]2;[skip]3;[halt]4)

Table 7.1: Communicating threads – Program.

161

162 Chapter 7. Examples

Cõnf and T ∈ Thrdc̃, is such that for any c̃, it assumes the values described by
the below table.

pcT T1 T2 T3

1 [1,5] [2,6] [1,4]
2 [1,3] [2,3] [3,4]
3 − − [3,3]

Also assume that c̃0
0@〈[T,pcT, r̃T, t̃a

T]T∈Thrd, x̃, l̃〉 is as described in Table 7.2.
(Due to the semantics of the program, the parts of the states that are left out
from the table are of no interest for this case study.)

Tables 7.2 and 7.3 collect all the configurations derived by ABSEXE({c̃0
0},

[−∞,∞]) during the analysis described by ANALYSIS({c̃0
0}, [−∞,∞]). A ‘−’

indicates that the entry is not applicable to (i.e., not included in) the config-
uration. Figure 7.4 shows the order in which the configurations are derived;
i.e., the relation between the derived configurations. In the figure, final config-
urations are circled and timed-out configurations are circled and marked with
a ‘t’. To see how new recursive instances of ABSEXE are created, note that
when Thrdc̃ = {T1,T2,T3}, then Varg = {x,y}; when Thrdc̃ = {T1,T3}, then
Varg = {x}; and when Thrdc̃ = {T2,T3}, then Varg = /0.

It is apparent that ABSEXE({c̃0
0}, [−∞,∞]) = ({c̃0

11, c̃
0
23}, /0, /0); i.e., c̃0

11 and
c̃0

23 are final-state configurations and there are no deadlocked or timed-out con-
figurations. According to Algorithm 6.13, it is thus easy to see that the esti-
mated timing bounds are:

BCET = min({max({min(γ t(t̃a
T)) | T ∈ Thrd}) |

〈[T,pcT, r̃T, t̃a
T]T∈Thrd, x̃, l̃〉 ∈ {c̃

0
11, c̃

0
23}}) = 4

WCET = max({max({max(γ t(t̃a
T)) | T ∈ Thrd}) |

〈[T,pcT, r̃T, t̃a
T]T∈Thrd, x̃, l̃〉 ∈ {c̃

0
11, c̃

0
23}}) = 11

7.1
C

om
m

unication
163

c̃ pcT1
pcT2

pcT3
r̃T1 r r̃T2 r r̃T3 r t̃a

T1
t̃a
T2

t̃a
T3

(x̃ x) T3 (x̃ y) T1 (x̃ z) T2

c̃0
0 1 1 1 [0,0] [0,0] [2,4] [0,0] [0,0] [0,0] {([1,1], [0,0])} {([5,5], [0,0])} {(⊥̃val,⊥̃t)}

c̃11
0 − 1 1 − [0,0] [2,4] − [0,0] [0,0] {([1,1], [0,0])} {([5,5], [0,0])} {(⊥̃val,⊥̃t)}

c̃11
11 − 2 4 − [5,5] [2,3] − [2,6] [1,4] {([1,1], [0,0])} {([5,5], [0,0])} {(⊥̃val,⊥̃t)}

c̃11
12 − 3 4 − [5,5] [2,3] − [4,9] [1,4] {([1,1], [0,0])} {([5,5], [0,0])} {(⊥̃val,⊥̃t),

([5,5], [4,9])}
c̃11

21 − 2 2 − [5,5] [4,4] − [2,6] [1,4] {([1,1], [0,0])} {([5,5], [0,0])} {(⊥̃val,⊥̃t)}

c̃11
22 − 3 3 − [5,5] [4,4] − [4,9] [4,8] {([1,1], [0,0]),

([4,4], [4,8])}
{([5,5], [0,0])} {(⊥̃val,⊥̃t),

([5,5], [4,9])}
c̃12

0 1 − 1 [0,0] − [2,4] [0,0] − [0,0] {([1,1], [0,0])} {([5,5], [0,0])} {(⊥̃val,⊥̃t)}

c̃22
0 − − 1 − − [2,4] − − [0,0] {([1,1], [0,0])} {([5,5], [0,0])} {(⊥̃val,⊥̃t)}

c̃22
11 − − 4 − − [2,3] − − [1,4] {([1,1], [0,0])} {([5,5], [0,0])} {(⊥̃val,⊥̃t)}

c̃22
21 − − 2 − − [4,4] − − [1,4] {([1,1], [0,0])} {([5,5], [0,0])} {(⊥̃val,⊥̃t)}

c̃22
22 − − 3 − − [4,4] − − [4,8] {([1,1], [0,0]),

([4,4], [4,8])}
{([5,5], [0,0])} {(⊥̃val,⊥̃t)}

c̃ pcT1
pcT2

pcT3
r̃T1 r r̃T2 r r̃T3 r t̃a

T1
t̃a
T2

t̃a
T3

(x̃ x) T3 (x̃ y) T1 (x̃ z) T2

Table 7.2: Communicating threads – Configurations (First half).

164
C

hapter
7.

E
xam

ples

c̃ pcT1
pcT2

pcT3
r̃T1 r r̃T2 r r̃T3 r t̃a

T1
t̃a
T2

t̃a
T3

(x̃ x) T3 (x̃ y) T1 (x̃ z) T2

c̃12
1 2 − 1 [1,4] − [2,4] [1,5] − [0,0] {([1,1], [0,0])} {([5,5], [0,0])} {(⊥̃val,⊥̃t)}

c̃12
11 3 − 4 [1,4] − [2,3] [2,8] − [1,4] {([1,1], [0,0])} {([5,5], [0,0]),

([1,4], [2,8])}
{(⊥̃val,⊥̃t)}

c̃12
21 3 − 2 [1,4] − [4,4] [2,8] − [1,4] {([1,1], [0,0])} {([5,5], [0,0]),

([1,4], [2,8])}
{(⊥̃val,⊥̃t)}

c̃12
22 3 − 3 [1,4] − [4,4] [2,8] − [4,8] {([1,1], [0,0]),

([4,4], [4,8])}
{([5,5], [0,0]),
([1,4], [2,8])}

{(⊥̃val,⊥̃t)}

c̃0
1 2 2 1 [1,4] [1,5] [2,4] [1,5] [2,6] [0,0] {([1,1], [0,0])} {([5,5], [0,0])} {(⊥̃val,⊥̃t)}

c̃0
11 3 3 4 [1,4] [1,5] [2,3] [2,8] [4,9] [1,4] {([1,1], [0,0])} {([5,5], [0,0]),

([1,4], [2,8])}
{(⊥̃val,⊥̃t),
([1,5], [4,9])}

c̃0
21 3 3 2 [1,4] [1,5] [4,4] [2,8] [4,9] [1,4] {([1,1], [0,0])} {([5,5], [0,0]),

([1,4], [2,8])}
{(⊥̃val,⊥̃t),
([1,5], [4,9])}

c̃0
22 3 3 3 [1,4] [1,5] [4,4] [2,8] [4,9] [4,8] {([1,1], [0,0]),

([4,4], [4,8])}
{([5,5], [0,0]),
([1,4], [2,8])}

{(⊥̃val,⊥̃t),
([1,5], [4,9])}

c̃0
23 3 3 4 [1,4] [1,5] [4,4] [2,8] [4,9] [7,11] {([1,1], [0,0]),

([4,4], [4,8])}
{([5,5], [0,0]),
([1,4], [2,8])}

{(⊥̃val,⊥̃t),
([1,5], [4,9])}

c̃ pcT1
pcT2

pcT3
r̃T1 r r̃T2 r r̃T3 r t̃a

T1
t̃a
T2

t̃a
T3

(x̃ x) T3 (x̃ y) T1 (x̃ z) T2

Table 7.3: Communicating threads – Configurations (Second half).

7.1
C

om
m

unication
165

absExe({c̃00}, [−∞,∞])

c̃00

absExe({c̃110 }, [1, 5])

c̃110

c̃1111

c̃1112

c̃1121

c̃1122
t

absExe({c̃120 }, [2, 6])

c̃120

c̃121

c̃1211 c̃1221

c̃1222
t

absExe({c̃220 }, [2, 5])

c̃220

c̃2211 c̃2221

c̃2222
t

c̃01

c̃011 c̃021

c̃022

c̃023

Figure 7.4: Communicating threads – Configuration relations.

166 Chapter 7. Examples

T1@(1, [lock la]1;[lock lb]2;[unlock la]3;[unlock lb]4;[halt]5)

T2@(2, [lock la]1;[lock lb]2;[halt]3)

Table 7.5: Synchronization (Deadlock) – Program.

7.2 Synchronization – Deadlocks
This case shows how ABSEXE identifies deadlocked configurations and how it
discontinues deadlocked configurations that lack concrete counterparts.

For the program, Thrd = {T1,T2}, defined in Table 7.5, it is easy to
see that RegT1

= /0, RegT2
= /0, Var = /0 and Lck = {la,lb}. Assume that

ABSTIME(c̃,T), where c̃@〈[T,pcT, r̃T, t̃a
T]T∈Thrd, x̃, l̃〉 ∈ Cõnf and T ∈ Thrd,

is such that for any c̃, it assumes the values described by the below table.

pcT T1 T2

1 [2,2] [1,2]
2 [1,2] [1,2]
3 [1,1] −
4 [1,1] −

Also assume that c̃0
0@〈[T,pcT, r̃T, t̃a

T]T∈Thrd, x̃, l̃〉 is as described in Table 7.6.
(Due to the semantics of the program, the parts of the states that are left out
from the table are of no interest for this case study.)

Table 7.6 collects all the configurations derived by ABSEXE({c̃0
0}, [−∞,∞])

during the analysis described by ANALYSIS({c̃0
0}, [−∞,∞]). Figure 7.7 shows

the order in which the configurations are derived; i.e., the relation between the
derived configurations. In the figure, final configurations are circled, dead-
locked configurations are circled and marked with a ‘d’ and discontinued con-
figurations are crossed out. Note that c̃4

2 occurs since T2 has been waiting to
acquire la and is now assigned it, which means that T2’s accumulated execu-
tion time will be advanced to simulate the spin-lock waiting of the concrete
semantics (c.f., the discussion in the proof of Lemma 5.57).

It is apparent that ABSEXE({c̃0
0}, [−∞,∞]) = ({c̃7

2},{c̃2
4}, /0); i.e., c̃7

2 is a
final-state configuration, c̃2

4 is a deadlocked configuration, and there are no
timed-out configurations.

7.2
Synchronization

–
D

eadlocks
167

c̃ pcT1
pcT2

t̃a
T1

t̃a
T2

l̃ la l̃ lb

c̃0
0 1 1 [0,0] [0,0] (unlocked,⊥thrd,⊥̃t ,⊥thrd,⊥̃t) (unlocked,⊥thrd,⊥̃t ,⊥thrd,⊥̃t)

c̃1
1 2 1 [2,2] [0,0] (locked,T1, [−∞,2],⊥thrd,⊥̃t) (unlocked,⊥thrd,⊥̃t ,⊥thrd,⊥̃t)

c̃2
1 2 1 [2,2] [0,0] (locked,T1, [−∞,2],⊥thrd,⊥̃t) (unlocked,T2, [−∞,4],⊥thrd,⊥̃t)

c̃2
2 3 1 [3,4] [0,0] (locked,T1, [−∞,2],⊥thrd,⊥̃t) (locked,T1, [−∞,4],⊥thrd,⊥̃t)

c̃3
1 4 1 [4,5] [0,0] (unlocked,⊥thrd, [−∞,2],T1, [4,5]) (locked,T1, [−∞,4],⊥thrd,⊥̃t)

c̃4
1 5 1 [5,6] [0,0] (unlocked,T1, [−∞,12],T1, [4,5]) (unlocked,⊥thrd, [−∞,4],T1, [5,6])

c̃4
2 4 1 [4,5] [1,2] (unlocked,T2, [−∞,12],T1, [4,5]) (locked,T1, [−∞,4],⊥thrd,⊥̃t)

c̃5
1 4 2 [4,5] [4,12] (locked,T2, [−∞,12],T1, [4,5]) (locked,T1, [−∞,4],⊥thrd,⊥̃t)

c̃6
1 5 2 [5,6] [4,12] (locked,T2, [−∞,12],T1, [4,5]) (unlocked,⊥thrd, [−∞,4],T1, [5,6])

c̃7
1 5 2 [5,6] [4,12] (locked,T2, [−∞,12],T1, [4,5]) (unlocked,T1, [−∞,18],T1, [5,6])

c̃7
2 5 3 [5,6] [5,18] (locked,T2, [−∞,12],T1, [4,5]) (locked,T2, [−∞,18],T1, [5,6])

c̃1
2 1 2 [0,0] [1,2] (locked,T2, [−∞,2],⊥thrd,⊥̃t) (unlocked,⊥thrd,⊥̃t ,⊥thrd,⊥̃t)

c̃2
3 1 2 [0,0] [1,2] (locked,T2, [−∞,2],⊥thrd,⊥̃t) (unlocked,T1, [−∞,4],⊥thrd,⊥̃t)

c̃2
4 1 3 [0,0] [2,4] (locked,T2, [−∞,2],⊥thrd,⊥̃t) (locked,T2, [−∞,4],⊥thrd,⊥̃t)

c̃ pcT1
pcT2

t̃a
T1

t̃a
T2

l̃ la l̃ lb

Table 7.6: Synchronization (Deadlock) – Configurations.

168 Chapter 7. Examples

absExe({c̃00}, [−∞,∞])

c̃00

c̃11

c̃21 c̃22

c̃31

c̃41 c̃42

c̃51

c̃61

c̃71 c̃72

c̃12

c̃23 c̃24
d

Figure 7.7: Synchronization (Deadlock) – Configuration relations.

According to Algorithm 6.13, it is thus easy to see that the estimated timing
bounds are: BCET =−∞

WCET = ∞

7.3 Synchronization – Deadline Miss 169

T1@(1, [lock l]1;[halt]2)

T2@(2, [lock l]1;[halt]2)

Table 7.8: Synchronization (Deadline miss) – Program.

7.3 Synchronization – Deadline Miss
This case illustrates how the analysis discontinues configurations for which an
assigned lock owner does not acquire the lock in time. It also illustrates how
the analysis detects deadlocks.

For the program, Thrd= {T1,T2}, defined in Table 7.8, it is easy to see that
RegT1

= /0, RegT2
= /0, Var = /0 and Lck = {l}. Assume that ABSTIME(c̃,T),

where c̃@〈[T,pcT, r̃T, t̃a
T]T∈Thrd, x̃, l̃〉 ∈ Cõnf and T ∈ Thrd, is such that for

any c̃, it assumes the values described by the below table.

pcT T1 T2

1 [5,5] [10,10]

Also assume that c̃0@〈[T,pcT, r̃T, t̃a
T]T∈Thrd, x̃, l̃〉 is as described in Table 7.9.

(Due to the semantics of the program, the parts of the states that are left out
from the table are of no interest for this case study.)

Table 7.9 collects all the configurations derived by ABSEXE({c̃0}, [−∞,∞])
during the analysis described by ANALYSIS({c̃0}, [−∞,∞]). Figure 7.10 shows
the order in which the configurations are derived; i.e., the relation between the
derived configurations. In the figure, deadlocked configurations are circled and
marked with a ‘d’ and discontinued configurations are crossed out. It is appar-
ent that ABSEXE({c̃0}, [−∞,∞]) = (/0,{c̃1}, /0); i.e., there are no final-state or
timed-out configurations, and c̃1 is a deadlocked configuration. According to
Algorithm 6.13, it is thus easy to see that the estimated timing bounds are:BCET =−∞

WCET = ∞

c̃ pcT1
pcT2

t̃a
T1

t̃a
T2

l̃ l

c̃0 1 1 [0,0] [0,0] (unlocked,⊥thrd,⊥̃t ,⊥thrd,⊥̃t)

c̃1 2 1 [5,5] [0,0] (locked,T1, [−∞,5],⊥thrd,⊥̃t)

c̃2 1 1 [0,0] [10,10] (unlocked,T2, [−∞,5],⊥thrd,⊥̃t)

c̃ pcT1
pcT2

t̃a
T1

t̃a
T2

l̃ l

Table 7.9: Synchronization (Deadline miss) – Configurations.

absExe({c̃0}, [−∞,∞])

c̃0

c̃1
d

c̃2

Figure 7.10: Synchronization (Deadline miss) – Configuration relations.

Chapter 8

Conclusions

In this chapter, some distinguishing properties of the defined analysis will be
discussed. Feedback on the Research Questions and issues to be further con-
sidered and investigated will also be given.

8.1 The Underlying Architecture

The analysis is defined for an arbitrary underlying architecture (that is, how-
ever, restricted to the constraints in Assumptions 4.1 and 4.3). The actual un-
derlying system could be an operating system as well as raw hardware as long
as both thread-private and globally shared memory, and some form of syn-
chronization primitive, correlating to the description given in the beginning
of Chapter 4 is provided. The assumed architecture should be fairly realistic
since any mature operating system and any common (single- or multi-core)
CPU provides the described features at some abstraction level. For example,
any Real-Time operating system should provide spin-locks for thread synchro-
nization and any CPU instruction set should provide the ability to lock the
system bus to provide atomic execution of a set of machine operations (since
one single instruction of the instruction set often is mapped to a set of machine
instructions).

The lock- and unlock-statements could be used to model the LOCK prefix
in the x86 instruction set. This prefix is used for asserting atomic execution
of an instruction [41, 81]. The lock- and unlock-statements also trivially
correspond to higher level spin-locking primitives, such as those provided by

171

172 Chapter 8. Conclusions

the POSIX thread library [10, 39].
Many of the principles applied in the analysis presented in Chapters 5 and

6 to solve the problems arising from abstracting time using intervals are also
applicable to analysis of systems with distributed address spaces. If consider-
ing processes on one and the same CPU, then communication between these
processes is often implemented using a memory buffer which is then to be con-
sidered as shared memory. This means that the same principles as those pre-
sented in this thesis would be applicable to such an analysis. If communication
is performed using, for example, message passing and “Any”-communication
is available (i.e., several processes could send a message to a given receiving
process and/or several processes could receive a message sent from a given
process), this would also require some form of prediction of what values could
be transferred between processes.

The necessity of allowing TIME(c,T)= 0 for some configuration, c∈Conf,
and thread, T ∈ Thrd, is apparent when considering the following case. If
mutual exclusion is inherent in some instruction of the modeled instruction set,
for example, store, then the lock- and unlock-statements could be regarded
as macros without timing that should encapsulate all store-statements in a
program.

PPL is designed to bring the focus of the analysis to thread synchronization
and global data flow. The method presented in this thesis might have to be
extended in order to cover all the aspects of a real instruction set, such as those
of for example the ARM or PowerPC architectures [5, 42]. This will be further
investigated.

If limiting the register (and variable) sizes the architecture would be-
come more realistic. However, wrap-around effects could render loops
non-terminating in the abstract case even if this would not concretely occur.
See Section 8.3 for a discussion on more non-terminating cases.

8.2 Algorithmic Structure & Complexity

The analysis presented in Chapters 5 and 6 is based on synchronously advanc-
ing the threads of a program between their respective program points while
keeping the threads fairly synchronized in time (c.f., Algorithm 6.1 and Tables
5.5 and 5.6). The advantage of this approach (i.e., abstracting time using inter-
vals) in conjunction with the defined domain for variable states (c.f., Section
5.5) is that a relatively high precision is achieved. And, when |Thrd|= 1, the
analysis result will be equivalent to that of the corresponding sequential ana-

8.2 Algorithmic Structure & Complexity 173

lysis (c.f., [28]). Another advantage is that the time-complexity of the analysis
is more dependent on the number of program points in each thread than on
the timing behavior of the program, compared to stepping through strict timing
events, like in the concrete semantics.

Keeping the threads fairly synchronized in the analysis is also an advantage
when considering its memory-complexity. Keeping the threads synchronized
means that the write history for any thread on any variable will always be as
small as possible since writes become outdated after a minimal amount of steps
in the analysis and are then trimmed away from the history. In other words, the
write history for any thread on any variable will never be larger than absolutely
necessary.

One of the main disadvantages with keeping write history for each thread
on each variable (which is expected to be necessary in order to keep the over-
approximations at a reasonable level) is that the history must be trimmed. Trim-
ming is an advantage for the memory-complexity as discussed above, but could
be a serious disadvantage for the time-complexity if the analyzed program con-
sists of many variables and many write-intensive threads.

The definition of the abstract state for locks contains some concrete parts
(e.g., the owners of the locks). This is necessary since too much precision
would be lost, and the timing approximations would become useless (i.e., too
over-approximate), otherwise. However, this is very bad from a complexity
point of view. The result of not abstracting some parts of a state is that (at
least) all the concrete counterparts must be evaluated. Any reasonably precise
abstractions of the parts of the lock states that are currently kept concrete have
not been found. In case of serious complexity issues (which are very likely to
occur), candidate domains for such abstractions must be further investigated.

It should be apparent that a given (abstract) configuration could result in
two or more configurations for each thread issuing an if- or a lock-statement
in a transition (c.f., Tables 5.5 and 5.6). Merging of configurations could be
performed to reduce the complexity of the analysis. Using the Control Flow
Graph (CFG) of the program, suitable merge-points within each thread can be
found [25]. Typically, such points have multiple incoming edges. However,
even if adding merging to the analysis, it will most probably happen very in-
frequently (if ever at all). This is since all the concrete parts (i.e., the program
counters, lock owners, etc.) must be equal between the configurations to merge.
As discussed above, domains for abstraction of the concrete parts of the con-
figuration might have to be further investigated in case of serious complexity
issues. Abstracting more parts of the configurations would also increase the
possibility that merging could be more frequently performed. Although, the

174 Chapter 8. Conclusions

T1

T2

t

lock lck
max(γt(dlLock(c̃, lck)))

lock lck

Figure 8.1: Lock owner assignments based on c̃ ∈ Cõnf resulting in one valid
and one invalid configuration.

derived timing approximations could become very pessimistic.
It is very important to note that several configurations that lack valid con-

crete counterparts (c.f., Definition 4.4) are added to the work-list for several
situations. One such situation is when one sole thread issues lock lck for some
free lock, lck ∈ Lck, in a transition. A unique transition (i.e., resulting config-
uration) is possible for each thread that might issue lock lck somewhere in the
program. A new configuration for each such thread, where the given thread is
the new owner of lck, will thus be derived. Consider the situation depicted in
Figure 8.1 (c.f., the case study in Section 7.3). T1 is obviously the thread issu-
ing lock lck first in any considered case. However, two new configurations are
derived on the transition; one where T1 is the new owner of lck and one where
T2 is the new owner of lck. Obviously, only the configuration for which T1 is
the owner of lck has valid concrete counterparts since T2 will not acquire lck
before some other thread (i.e., T1) is guaranteed to have acquired lck. Thus,
the case that T2 is the new owner of lck will be discontinued since the lock is
not acquired by T2 before the deadline expires (c.f., Algorithm 6.6).

Another such situation will result for the program described in Fig-
ure 8.2a, assuming that the timing of the first lock-statement in the two
threads overlap (c.f., the case study in Section 7.2). (Note that the given
code is guaranteed not to deadlock, provided that both threads eventually
release the two locks again.) Assume that the program is described by c̃@
〈[T,pcT, r̃T, t̃a

T]T∈Thrd, x̃, l̃〉 ∈ Cõnf and that pcT1
= pcT2

= 1. The resulting
lock-owner assignments (i.e., configurations) are given in Figure 8.2b. Ob-
viously, only c̃11 and c̃22 have valid concrete counterparts. c̃12 and c̃21 will
be discontinued (i.e., removed from the work-list) since there is a cycle in the
dependency graph containing at least one lock (here, that lock is lck′) that has
the state unlocked (c.f., Algorithm 6.6). If c̃12 and c̃21 were not discontinued,
the analysis would itself deadlock.

It is easy to see that all these complexity hazards really explode when com-

8.3 Non-terminating Transition Sequences 175

T1 : [lock lck]1;[lock lck′]2; . . .

T2 : [lock lck]1;[lock lck′]2; . . .

(a) The program described by c̃.

c̃

˜own(̃l1 lck) = T1

c̃1

˜own(̃l2 lck) = T2

c̃2

˜own(̃l11 lck ′)
= T1

c̃11

˜own(̃l12 lck ′)
= T2

c̃12

˜own(̃l21 lck ′)
= T1

c̃21

˜own(̃l22 lck ′)
= T2

c̃22
(b) Resulting configurations.

Figure 8.2: Lock owner assignments based on c̃ ∈ Cõnf resulting in two valid
and two invalid (i.e., falsely deadlocked) configurations.

bined (e.g., when they occur in different threads for a single transition). This
could render the analysis extremely complex. A good thing to notice, though,
is that a well structured parallel program will be less complex to analyze [53].
The threads in a well structured program typically work as much as possible
on local data and do not synchronize more than is absolutely necessary.

Another good thing to notice is that the complexity is lowered by keeping a
high precision in the calculation of the accumulated execution time for threads
issuing lock-statements. Since Tim̃e = Intv, a high precision in this calcu-
lation will give a narrow accumulated execution time. This will lead to that a
minimum number of states need to be explored since the timing of individual
threads will not overlap more than necessary. Of course, this part of the com-
plexity is also dependent on the precision of ABSTIME; i.e., the accuracy in the
model of the underlying architecture.

8.3 Non-terminating Transition Sequences
As previously discussed, ISDEADLOCK catches some configurations that will
never reach the final state (c.f., Algorithm 6.4). However, it is not guaranteed
to identify all such configurations. This means that the analysis could actually
deadlock for some cases that ISDEADLOCK misses to identify as never reach-

176 Chapter 8. Conclusions

ing the final state. The corresponding can be said if ISVALID wrongly identifies
a configuration as valid (c.f., Algorithm 6.6).

Infinite loops are recognized by ISTIMEOUT(c̃, t̃to), given that time moves
forward and the timeout is finite; i.e., it cannot be that 0 ∈ ABSTIME(c̃′,T) for
all c̃′ ∈ Cõnf occurring in the loop in T and max(γ t(t̃to)) = ∞. If ABSTIME in-
cludes 0 for all statements of an infinite loop in some thread, then the algorithm
will not terminate.

To avoid part of this problem, another timeout variable could be added to
the analysis. This timeout could be used to identify that the upper bound of a
single thread’s accumulated execution time has reached a limit. However, this
does not resolve the case that, for all c̃′ ∈ Cõnf in the loop, ABSTIME(c̃′,T) =
[0,0].

To address this case, a transition counter could be used. There could be one
counter for each thread individually and/or one counter for all threads com-
bined. The counter(s) could either count all transitions or only transitions that
are consecutively done in [0,0] amount of time, depending on whether a second
timeout is used. When the counter reaches a specific limit, the configuration
could be considered to be timed out, which means that the corresponding tran-
sition sequence could be of infinite length.

Even if all concrete transition sequences given some initial configuration
terminate, all abstract transition sequences resulting from the corresponding
abstract initial configuration are not guaranteed to terminate. This is due to
over-approximations inherent in the abstract interpretation of the PPL seman-
tics. Thus, all the complications discussed above can occur in the abstract case
even if they do not in the concrete case.

8.4 The Research Questions

Question 1: “What are the distinguishing features of a parallel computer sys-
tem (i.e., the hardware and software combination) that must be taken
into account in a timing analysis on the code level?”

The most important aspects found are some means of communication and syn-
chronization between the parallel entities. In this thesis, only the software (i.e.,
code) level is considered: shared memory is used to represent the communica-
tion medium; locks that can be acquired in a mutually exclusive manner using
spin-locking are used to represent the synchronization medium; and threads are
used to represent the parallel entities.

8.5 Other Applications of the Analysis 177

Question 2: “How can a parallel computer system be analyzed to derive safe
and tight estimations on its timing bounds?”

It has been shown that Abstract Interpretation is a suitable technique for deriv-
ing safe timing bound estimates for a given program and timing model. The
resulting tightness of the estimates depends both on the precision of the used
abstract domains, the precision of the timing analysis itself and the precision of
the timing model. Further evaluation, preferably based on an implementation
of the analysis, must be performed before the tightness of the approach used in
this thesis can be commented upon.

Question 3: “How can analysis termination be guaranteed?”

Some techniques to increase the termination-probability have been already in-
corporated into the analysis and were discussed in the previous sections; one
such technique is the discontinuation of configurations that lack concrete coun-
terparts. Further techniques should be investigated and could most probably be
derived based on an implementation and evaluation of the analysis. One such
example, as discussed above, is to include a second timeout variable in the
analysis. Another example, as also discussed above, is to include a transition
counter.

As previously discussed, merging of configurations is not expected to be a
usable technique since the configuration contains a lot of concrete information
(e.g., the threads’ program counters and the owners of the program locks).

The techniques discussed above (a second timeout combined with a transi-
tion counter) should basically guarantee termination of the analysis, provided
that suitable limits are chosen. But note that this is still an open question for
the analysis presented in this thesis.

8.5 Other Applications of the Analysis
Given that the analysis terminates, some interesting results follow. The analysis
could be used as a precise deadlock analysis including the timing behavior of
the program. If the set of deadlocked configurations (c.f., C̃d in Algorithm 6.1)
is empty, the program is deadlock free up until (and including) the point in time
described by the timeout.

Furthermore, the analysis could also be used to determine whether a pro-
gram is guaranteed to terminate. If the sets containing deadlocked and timed-
out configurations (i.e., C̃d and C̃t in Algorithm 6.1, respectively) are empty,
the program is guaranteed to terminate within the returned timing bounds.

178 Chapter 8. Conclusions

8.6 Future Work
Some concrete tasks that will be performed in the near future is to implement
and evaluate the analysis presented in this thesis. The implementation will be
done in a suitable programming language. Which language is yet to be decided,
but C/C++ and Erlang are top candidates.

Since PPL is rudimentary and designed to put focus on global data flow
and thread synchronization, the implementation could use and analyze a more
realistic instruction set. Some candidate instruction sets are LLVM [87], ALF
[26, 27], ARM [5] and PowerPC [42]. It could also be possible to make the
implementation a flexible framework which could allow the analyzed instruc-
tion set to be switched. This could be done by dividing instructions into special
classes.

Some model of the underlying architecture (i.e., the function ABSTIME)
must also be derived. Since the focus of this thesis has excluded any form
of definition of ABSTIME, some very simple, and perhaps even non-realistic,
timing model will most probably be used. Several different timing models
should be evaluated to investigate how the characteristics of their definitions
affect the complexity of the analysis.

The evaluation will be performed on some suitable benchmark suite of par-
allel programs. Such a suite is currently being established within the TACLe
EU COST Action [86] (a European network of leading researchers within the
field of WCET analysis) and will include parallel versions of some of the pro-
grams in the Mälardalen WCET Benchmark suite [24]. The benchmark suite
should include different types of parallel programs, each of them stressing the
analysis in a different way.

It is expected that the evaluation will result in hints pointing to some parts
of the analysis that suffer from severe complexity problems. Thus, improve-
ments and strategies for complexity reduction for these parts should be derived
and implemented. One point that is already apparent in the case study in Sec-
tion 7.2 is that the calculations in DLLOCK, defined in Algorithm 5.11, should
be made tighter if possible (c.f., the result of the Study in Section 7.2, as shown
in Table 7.6).

Bibliography

[1] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A
tutorial. Technical report, Rice University and Western Research Labora-
tory, 1995.

[2] R. Alur. Timed automata. In Lecture Notes in Computer Science, volume
1633/1999. Springer Berlin / Heidelberg, Jan. 1999.

[3] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183 – 235, Apr. 1994.

[4] A. Andrei, P. Eles, Z. Peng, and J. Rosén. Predictable implementation of
real-time applications on multiprocessor systems-on-chip. International
Conference on VLSI Design, 21:103–110, 2008.

[5] ARM Ltd. Arm Information Center, 2013. http://infocenter.
arm.com/help/index.jsp.

[6] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. OTAWA: An open
toolbox for adaptive WCET analysis. In Software Technologies for Em-
bedded and Ubiquitous Systems, pages 35–46. Springer, 2011.

[7] G. Behrmann, A. David, and K. G. Larsen. A tutorial on UPPAAL. In
Proc. 4th International School on Formal Methods for the Design of Com-
puter, Communication, and Software Systems, volume 3185, pages 200–
236. Springer Berlin / Heidelberg, Dec. 2004.

[8] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and
tools. In Lecture Notes in Computer Science, volume 3098/2004, pages
87–124. Springer Berlin / Heidelberg, July 2004.

179

180 Bibliography

[9] A. Burns and A. Wellings. Real-Time Systems and Programming Lan-
guages. Addison-Wesley, third edition, 2001.

[10] D. R. Butenhof. Programming with POSIX Threads. Addison-Wesley,
1997.

[11] S. Chattopadhyay, C.-L. Kee, A. Roychoudhury, T. Kelter, P. Marwedel,
and H. Falk. A unified WCET analysis framework for multi-core plat-
forms. In 18th IEEE Real-time and Embedded Technology and Applica-
tions Symposium (RTAS’12), Beijing, China, Apr. 2012.

[12] A. Colin and G. Bernat. Scope-tree: a program representation for sym-
bolic worst-case execution time analysis. In Proc. 14th Euromicro Con-
ference on Real-Time Systems, (ECRTS’02), pages 50–59, Vienna, June
2002.

[13] A. Colin and I. Puaut. Worst case execution time analysis for a processor
with branch prediction. Journal of Real-Time Systems, 18(2/3):249–274,
May 2000.

[14] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Proc. 4th ACM Symposium on Principles of Programming Lan-
guages, pages 238–252, Los Angeles, Jan. 1977.

[15] M. B. Dwyer and L. A. Clarke. Data flow analysis for verifying properties
of concurrent programs. In Proc. ACM SIGSOFT ’94 Symposium on the
Foundations of Software Engineering, pages 62–75, Dec. 1994.

[16] J. Engblom. Processor Pipelines and Static Worst-Case Execution Time
Analysis. PhD thesis, Uppsala University, Dept. of Information Technol-
ogy, Uppsala, Sweden, Apr. 2002. ISBN 91-554-5228-0.

[17] A. Ermedahl. A Modular Tool Architecture for Worst-Case Execution
Time Analysis. PhD thesis, Uppsala University, Dept. of Information
Technology, Uppsala University, Sweden, June 2003.

[18] A. Ermedahl, J. Gustafsson, and B. Lisper. Deriving WCET bounds by
abstract execution. In C. Healy, editor, Proc. 11th International Workshop
on Worst-Case Execution Time Analysis (WCET’2011), Porto, Portugal,
July 2011.

Bibliography 181

[19] A. Ermedahl and M. Sjödin. Interval analysis of C-variables using ab-
stract interpretation, 1996.

[20] C. Ferdinand, R. Heckmann, and B. Franzen. Static memory and timing
analysis of embedded systems code. In 3rd European Symposium on Ver-
ification and Validation of Software Systems (VVSS’07), Eindhoven, The
Netherlands, number 07-04 in TUE Computer Science Reports, pages
153–163, Mar. 2007.

[21] D. Grunwald and H. Srinivasan. Data flow equations for explicitly paral-
lel programs. In Proc. Fourth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 159–168, 1993.

[22] N. Guan, M. Stigge, W. Yi, and G. Yu. New response time bounds for
fixed priority multiprocessor scheduling. In Proc. 30th IEEE Real-Time
Systems Symposium (RTSS’09), pages 387–397, Dec. 2009.

[23] J. Gustafsson. Analyzing Execution-Time of Object-Oriented Programs
Using Abstract Interpretation. PhD thesis, Dept. of Information Technol-
ogy, Uppsala University, Sweden, May 2000.

[24] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen
WCET benchmarks – past, present and future. In B. Lisper, editor,
Proc. 10th International Workshop on Worst-Case Execution Time Ana-
lysis (WCET’2010), pages 137–147, Brussels, Belgium, July 2010. OCG.

[25] J. Gustafsson and A. Ermedahl. Merging techniques for faster derivation
of WCET flow information using abstract execution. In R. Kirner, editor,
Proc. 8th International Workshop on Worst-Case Execution Time Analysis
(WCET’2008), Prague, Czech Republic, July 2008.

[26] J. Gustafsson, A. Ermedahl, and B. Lisper. ALF (ARTIST2 Language for
Flow Analysis) specification. Technical report, Mälardalen University,
Västerås, Sweden, Jan. 2009.

[27] J. Gustafsson, A. Ermedahl, B. Lisper, C. Sandberg, and L. Källberg.
ALF – a language for WCET flow analysis. In N. Holsti, editor,
Proc. 9th International Workshop on Worst-Case Execution Time Analysis
(WCET’2009), pages 1–11, Dublin, Ireland, June 2009. OCG.

[28] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. Automatic
derivation of loop bounds and infeasible paths for WCET analysis using

182 Bibliography

abstract execution. In Proc. 27th IEEE Real-Time Systems Symposium
(RTSS’06), pages 57–66, Rio de Janeiro, Brazil, Dec. 2006. IEEE Com-
puter Society.

[29] A. Gustavsson. Worst-case execution time analysis of parallel systems.
In Proc. of Real Time in Sweden 2011 (RTiS2011), 2011.

[30] A. Gustavsson, A. Ermedahl, B. Lisper, and P. Pettersson. Towards
WCET analysis of multicore architectures using UPPAAL. In B. Lisper,
editor, Proc. 10th International Workshop on Worst-Case Execution Time
Analysis (WCET’2010), pages 103–113, Brussels, Belgium, July 2010.
OCG.

[31] A. Gustavsson, J. Gustafsson, and B. Lisper. Toward static timing ana-
lysis of parallel software. In T. Vardanega, editor, Proc. 12th Interna-
tional Workshop on Worst-Case Execution Time Analysis (WCET’2012),
volume 23 of OpenAccess Series in Informatics (OASIcs), pages 38–47,
July 2012.

[32] A. Gustavsson, J. Gustafsson, and B. Lisper. Toward static timing ana-
lysis of parallel systems – technical report. Technical Report 2796, Dept.
of Computer Science and Engineering, Mälardalen University, Apr. 2012.

[33] A. Gustavsson, J. Gustafsson, and B. Lisper. Timing analysis of paral-
lel software using abstract execution. In Will be submitted to the 15th

International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI), 2014.

[34] D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten WCET esti-
mates for multi-core processors with shared instruction caches. In Proc.
30th IEEE Real-Time Systems Symposium (RTSS’09), pages 68–77, 2009.

[35] C. Healy, R. Arnold, F. Müller, D. Whalley, and M. Harmon. Bound-
ing pipeline and instruction cache performance. IEEE Transactions on
Computers, 48(1):53–70, Jan. 1999.

[36] C. Healy, M. Sjödin, V. Rustagi, D. Whalley, and R. van Engelen. Sup-
porting timing analysis by automatic bounding of loop iterations. Journal
of Real-Time Systems, 18(2-3):129–156, May 2000.

[37] N. Holsti and S. Saarinen. Status of the Bound-T WCET tool. In
Proc. 2nd International Workshop on Worst-Case Execution Time Ana-
lysis (WCET’2002), 2002.

Bibliography 183

[38] B. Huber and M. Schoeberl. Comparison of implicit path enumeration
and model checking based WCET analysis. In Proc. 9th International
Workshop on Worst-Case Execution Time Analysis (WCET’2009), 2009.

[39] IEEE and The Open Group. The Open Group Base Specifications
Issue 6, 2004. http://pubs.opengroup.org/onlinepubs/
009695399/.functions/pthread spin lock.html.

[40] V. Illingworth, editor. Oxford Dictionary of Computing. Oxford Univer-
sity Press, fourth edition, 2003.

[41] Intel Corporation. Intel Architecture Software Developer’s Manual, Vol-
ume 2: Instruction Set Reference, 1999.

[42] International Business Machines (IBM) Corporation. PowerPC User In-
struction Set Architecture, 2005.

[43] J.-P. Katoen and Friedrich-Alexander. Concepts, algorithms, and tools
for model checking. In Lecture Notes of the Course “Mechanised Valida-
tion of Parallel Systems” (course number 10359) Semester 1998/1999, at
Universität Erlangen-Nürnberg.

[44] T. Kelter, T. Harde, P. Marwedel, and H. Falk. Evaluation of resource
arbitration methods for multi-core real-time systems. In C. Maiza, ed-
itor, Proc. 13th International Workshop on Worst-Case Execution Time
Analysis (WCET’2013), pages 1–10. Schloss Dagstuhl, 2013.

[45] S. C. Kleene. Introduction to Metamathematics. North-Holland Publish-
ing Co, Jan. 1980.

[46] J. Knoop, B. Steffen, and J. Vollmer. Parallelism for free: Efficient and
optimal bitvector analyses for parallel programs. ACM Trans. Program.
Lang. Syst., 18(3):268–299, May 1996.

[47] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Inter-
national Journal on Software Tools for Technology Transfer (STTT), 1(1-
2):134–152, Dec. 1997.

[48] J. Lee, S. P. Midkiff, and D. A. Padua. A constant propagation algo-
rithm for explicitly parallel programs. International Journal of Parallel
Programming, 26(5):563–589, Oct. 1998.

184 Bibliography

[49] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury. Chronos: A timing
analyzer for embedded software. Science of Computer Programming,
69(1 - 3):56–67, 2007.

[50] Y.-T. S. Li and S. Malik. Performance analysis of embedded software
using implicit path enumeration. In Proc. ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Real-Time Systems (LCT-RTS’95),
La Jolla, CA, June 1995.

[51] S. Lim, J. Han, J. Kim, and S. L. Min. A worst case timing analysis
technique for multiple-issue machines. In Proc. 19th IEEE Real-Time
Systems Symposium (RTSS’98), Dec. 1998.

[52] S.-S. Lim, Y. H. Bae, C. T. Jang, B.-D. Rhee, S. L. Min, C. Y. Park,
H. Shin, K. Park, and C. S. Ki. An accurate worst-case timing ana-
lysis for RISC processors. IEEE Transactions on Software Engineering,
21(7):593–604, Jul 1995.

[53] B. Lisper. Towards parallel programming models for predictability. In
T. Vardanega, editor, Proc. 12th International Workshop on Worst-Case
Execution Time Analysis (WCET’2012), volume 23 of OpenAccess Series
in Informatics (OASIcs), pages 48–58, July 2012.

[54] C. Liu and J. Layland. Scheduling Algorithms for Multiprogramming in
a Hard-Real-Time Environment. Journal of the ACM, 20(1):46–61, 1973.

[55] T. Lundqvist. A WCET Analysis Method for Pipelined Microprocessors
with Cache Memories. PhD thesis, Chalmers University of Technology,
Göteborg, Sweden, June 2002.

[56] T. Lundqvist and P. Stenström. Timing Anomalies in Dynamically Sched-
uled Microprocessors. Technical Report 99-5, Chalmers University of
Technology, Apr 1999.

[57] M. Lv, N. Guan, W. Yi, Q. Deng, and G. Yu. Efficient instruction cache
analysis with model checking. In Proc. 16th IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS’10), Work-in-
Progress Session, pages 33–36, Apr. 2010.

[58] M. Lv, N. Guan, W. Yi, and G. Yu. Combining abstract interpretation with
model checking for timing analysis of multicore software. In S. Brandt,
editor, Proc. 31st IEEE Real-Time Systems Symposium (RTSS’10), pages
339–349, San Diego, CA, Dec. 2010. IEEE.

Bibliography 185

[59] MERASA. MERASA project, 2013. http://www.merasa.org.

[60] A. Metzner. Why model checking can improve WCET analysis. In
Lecture Notes in Computer Science, volume 3114/2004, pages 298–301.
Springer Berlin / Heidelberg, July 2004.

[61] R. Mittermayr and J. Blieberger. Timing analysis of concurrent programs.
In Proc. 12th International Workshop on Worst-Case Execution Time Ana-
lysis (WCET’2012), pages 59–68, 2012.

[62] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis,
2nd edition. Springer, 2005. ISBN 3-540-65410-0.

[63] H. R. Nielson and F. Nielson. Semantics with Applications – A Formal
Introduction. John Wiley & Sons (1992), July 1999.

[64] OpenMP. OpenMP Application Program Interface, Version 3.0,
May 2008. http://www.openmp.org/mp-documents/
spec30.pdf.

[65] H. Ozaktas, C. Rochange, and P. Sainrat. Automatic WCET Analysis of
Real-Time Parallel Applications. In Proc. 13th International Workshop on
Worst-Case Execution Time Analysis (WCET’2013). Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2013.

[66] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and M. Valero. Hard-
ware support for WCET analysis of hard real-time multicore systems.
In Proc. 36th International Symposium on Computer Architecture (ISCA
2009), pages 57–68, 2009.

[67] M. Paolieri, E. Quiñones, F. J. Cazorla, and M. Valero. GAMC: A generic
analyzable memory controller for hard real-time multicore processors.
Technical report, Departament d’Arquitectura de Computadors, Univer-
sitat Politècnica de Catalunya, May 2009.

[68] C. Y. Park and A. C. Shaw. Experiments with a program timing tool based
on a source-level timing schema. IEEE Computer, 24(5):48–57, 1991.

[69] parMERASA. parMERASA | multi-core execution of paral-
lelised hard real-time applications supporting analysability, 2013.
http://www.parmerasa.eu.

186 Bibliography

[70] D. A. Patterson and J. L. Hennessy. Computer Organization and De-
sign. Morgan Kaufmann Publishers Inc., 4th edition, Nov. 2008. ISBN
9780123744937.

[71] D. Potop-Butucaru and I. Puaut. Integrated Worst-Case Execution Time
Estimation of Multicore Applications. In Proc. 13th International Work-
shop on Worst-Case Execution Time Analysis (WCET’2013). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013.

[72] A. Prantl, M. Schordan, and J. Knoop. TuBound – a conceptually
new tool for worst-case execution time analysis. In R. Kirner, editor,
Proc. 8th International Workshop on Worst-Case Execution Time Analysis
(WCET’2008), pages 141–148, Prague, Czech Republic, July 2008.

[73] P. P. Puschner and A. Burns. A Review of Worst-Case Execution-Time
Analysis. Real-Time Systems, 18(2/3):115–128, 2000.

[74] P. P. Puschner and A. V. Schedl. Computing maximum task execution
times – a graph-based approach. Journal of Real-Time Systems, 13(1):67–
91, July 1997.

[75] Rapita Systems. Rapitime white paper, 2009.
www.rapitasystems.com/system/files/RapiTime-
WhitePaper.pdf.

[76] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger,
and B. Becker. A definition and classification of timing anomalies. In
Proc. 6th International Workshop on Worst-Case Execution Time Analysis
(WCET’2006), July 2006.

[77] M. Rinard. Analysis of multithreaded programs. In P. Cousot, editor,
Proc. 8th Static Analysis Symposium, Vol. 2621 of Lecture Notes in Com-
put. Sci., pages 1–19, Paris, France, July 2001. Springer-Verlag.

[78] C. Rochange, A. Bonenfant, P. Sainrat, M. Gerdes, J. Wolf, T. Un-
gerer, Z. Petrov, and F. Mikulu. WCET analysis of a parallel 3D multi-
grid solver executed on the MERASA multi-core. In B. Lisper, editor,
Proc. 10th International Workshop on Worst-Case Execution Time Ana-
lysis (WCET’2010), pages 90–100, Brussels, Belgium, July 2010. OCG.

[79] J. Rosen, A. Andrei, P. Eles, and Z. Peng. Bus access optimization
for predictable implementation of real-time applications on multiproces-
sor systems-on-chip. In Proc. 28th IEEE Real-Time Systems Symposium

Bibliography 187

(RTSS’07), pages 49–60, Washington, DC, USA, 2007. IEEE Computer
Society.

[80] J. Schneider and C. Ferdinand. Pipeline behaviour prediction for super-
scalar processors by abstract interpretation. In Proc. ACM SIGPLAN
Workshop on Languages, Compilers and Tools for Embedded Systems
(LCTES’99). ACM Press, May 1999.

[81] T. Shanley. x86 Instruction Set Architecture. Mindshare Press, Dec. 2009.

[82] A. C. Shaw. Reasoning about time in higher-order software. In IEEE
Transactions on Software Engineering, volume 15, pages 737–750, 1989.

[83] F. Stappert and P. Altenbernd. Complete worst-case execution time ana-
lysis of straight-line hard real-time programs. Journal of Systems Archi-
tecture, 46(4):339–355, 2000.

[84] F. Stappert, A. Ermedahl, and J. Engblom. Efficient longest executable
path search for programs with complex flows and pipeline effects. In
Proc. 4th International Conference on Compilers, Architecture, and Syn-
thesis for Embedded Systems, (CASES’01), Nov. 2001.

[85] J. Staschulat, S. Schliecker, M. Ivers, and R. Ernst. Analysis of mem-
ory latencies in multi-processor systems. In R. Wilhelm, editor, Proc.
5th International Workshop on Worst-Case Execution Time Analysis
(WCET’2005), Palma de Mallorca, July 2005.

[86] TACLe. Timing Analysis on the Code Level (TACLe), 2013.
http://www.tacle.eu.

[87] The LLVM Project. The LLVM Compiler Infrastructure Project, 2013.
http://llvm.org.

[88] S. Thesing. Safe and Precise WCET Determination by Abstract Interpre-
tation of Pipeline Models. PhD thesis, Saarland University, 2004.

[89] UPPAAL. UPPAAL website, 2013. http://uppaal.org.

[90] R. White, F. Müller, C. Healy, D. Whalley, and M. Harmon. Timing Ana-
lysis for Data Caches and Set-Associative Caches. In Proc. 3rd IEEE
Real-Time Technology and Applications Symposium (RTAS’97), pages
192–202, June 1997.

188 Bibliography

[91] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The worst-case execution
time problem — overview of methods and survey of tools. ACM Trans-
actions on Embedded Computing Systems (TECS), 7(3):1–53, 2008.

[92] Wind River. Wind River VxWorks RTOS, 2013.
http://www.windriver.com/products/vxworks.

[93] L. Wu and W. Zhang. Bounding worst-case execution time for multicore
processors through model checking. In Proc. 16th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS’10), Work-in-
Progress Session, pages 17–20, Apr. 2010.

[94] J. Yan and W. Zhang. WCET analysis for multi-core processors with
shared L2 instruction caches. In Proc. 14th IEEE Real-Time and Embed-
ded Technology and Applications Symposium (RTAS’08), pages 80–89,
June 2008.

[95] J. Yan and W. Zhang. Accurately estimating worst-case execution time
for multi-core processors with shared direct-mapped instruction caches.
In Proc. 15th International Conference on Real-Time Computing Systems
and Applications (RTCSA’09), pages 455–463, Aug. 2009.

Appendix A

Notation & Nomenclature

exp1@exp2 exp1 and exp1 denote the same thing, often a short and
a long notation for a configuration.

b ? exp1 : exp2 If b, then exp1, otherwise exp2.

(o1, . . . ,on) Ordinary tuple containing n elements.

〈o1, . . . ,on〉 Special tuple containing n elements. Used to denote
complete lattices, Galois connections, configurations,
etc.

[o1, . . . ,on]e∈{e1,...,em}
Expands to o1

1, . . . ,o
1
n, . . . ,o

m
1 , . . . ,o

m
n ; i.e., one in-

stance of o1, . . . ,on for each e ∈ {e1, . . . ,em}. Used
inside special tuples.

S An arbitrary set (capitalized, italic notation).

S A standard set (capitalized, blackboard bold nota-
tion); e.g., Z.

Set A set of analysis-specific elements (first letter capital-
ized, bold notation); e.g., Thrd.

P(S) The powerset of S; i.e., {S′ | S′ ⊆ S}.

S×S′ The Cartesian product; i.e., {(e,e′) | e ∈ S∧ e′ ∈ S′}.

Pe∈{e1,...,em}(exp(e)) Expands to exp(e1)× . . .× exp(em).

189

190 Appendix A. Notation & Nomenclature

e,e′ ∈ S Short for e ∈ S∧ e′ ∈ S.

λe ∈ S.exp A function from e, which is an element of S, to exp, which is
often dependent on the specific e.

f (s) The function f applied on s.

f ◦g(o) Equivalent to f (g(o)).

f [[o1]]o2 Equivalent to (f (o1))(o2).

f s The function f applied on s. This notation is used when derefer-
encing mappings.

f Denotes a state (i.e., a function/mapping from elements to val-
ues); e.g., r.

f[s′ 7→ exp] Remap; defined as: f[s′ 7→ exp] s =
{

exp if s = s′

f s otherwise

ALGFUNC A function defined in a table or algorithm.

T One of the threads defined in the analyzed program.

Π, Thrd The analyzed program; i.e., a set of threads.

r Register (thread-local memory).

RegT The set of registers used by thread T.

x Variable (global memory).

Var The variables defined in the program.

lck Lock (shared resource).

Lck The locks defined in the program.

pc Program counter (unique for each thread).

f̃ f defined in some abstract domain; i.e., an abstraction of f .

r, r̃ Mapping from registers to their values (unique for each thread).

ta, t̃a Accumulated execution time (unique for each thread).

x, x̃ Mapping from variables to mappings from threads to their write
history for the given variable.

191

l, l̃ Mapping from locks to their values.

c, c̃ Configuration (system state).

v Partial order relation.

⊥ The bottom element in a complete lattice.

> The top element in a complete lattice.⊔
The least upper bound operator.

⊔ The greatest lower bound operator.

α Abstraction function.

γ Concretization function.

−→
ax , −̃→ax Transition relation for statements (i.e., axioms).

−→
prg , −̃→prg Transition relation for threads (i.e., the program).

tto, t̃to The timeout variable used by the analysis.

. Begins a comment within algorithms.

Final configurations are configurations in which all the threads issue the
halt-statement.

Final states is an alternative notation for final configurations.

Deadlocked configurations are configurations that can never reach the final
state.

Timed-out configurations are configurations that cannot reach the final state
before a given point in time, the timeout.

Truly deadlocked configurations are abstract configurations that are dead-
locked and have valid concrete counterparts; i.e., there is at least one
semantically valid concrete configuration that can be abstracted by the
given configuration. It must thus be that all threads included in the dead-
lock are owners of some lock, which has the state locked, and are waiting
to acquire some other lock, which also has the state locked.

Falsely deadlocked configurations are abstract configurations that are dead-
locked and do not have any valid concrete counterpart; i.e., there is no

192 Appendix A. Notation & Nomenclature

semantically valid concrete configuration that can be abstracted by the
given configuration. It could thus be that some thread included in the
deadlock is the owner of some lock, which has the state unlocked, and
that some other thread included in the deadlock is waiting to acquire that
lock.

Axiom statements are labeled statements; i.e., statements that are not com-
posed of several statements.

Composed statements are statements that are composed by two or more ax-
iom (i.e., labeled) statements.

Active statements are the axiom statements pointed to by the threads’ pro-
gram counters. The active statement is the statement that is executed
when the thread is executed. Only one statement in each thread can be
active at any given point in time since all the axiom statements within a
thread are uniquely labeled.

Frozen threads are threads in an abstract configuration whose active state-
ments are lock-statements and the locks they are trying to acquire are
currently owned by some other thread.

Active threads are not frozen and their active statements are not halt. Note
that this applies to all threads in any concrete configuration, given that
they are not issuing the halt-statement, since only threads in an abstract
configuration can be frozen.

Executing threads are the active threads that will execute their active state-
ment at the nearest point in time.

BCET (Best-Case Execution Time) is the shortest possible execution time of
the program, given a certain set of initial states.

WCET (Worst-Case Execution Time) is the longest possible execution time
of the program, given a certain set of initial states.

Appendix B

List of Assumptions

4.1 TIME is non-negative . 47
4.3 TIME is non-zero when spin-locking 47

5.50 ABSTIME is safe and non-negative 89

193

Appendix C

List of Definitions

3.1 Monotone function . 16
3.2 Completely additive function 16
3.3 Completely multiplicative function 17
3.9 Galois connection . 20
3.10 Galois insertion . 20
3.11 Induced function . 21
3.12 Adjunction . 21
3.26 Partial order . 32
3.27 Greatest lower bound . 32
3.28 Least upper bound . 32
3.29 Abstraction function, α . 32
3.30 Alternative definition – Concretization function, γ 32
3.31 Interval . 33
3.32 concretization of intervals . 33
3.33 Partial order for intervals . 33
3.34 Greatest lower bound for intervals 33
3.35 Least upper bound for intervals 34
3.36 Abstraction to interval . 34

4.4 Valid concrete configuration 50
4.7 Collecting semantics . 52

5.1 Concretization of an abstract register state 54
5.2 Partial order for abstract register states 54

195

196 Appendix C. List of Definitions

5.3 Greatest lower bound of abstract register states 54
5.4 Least upper bound of abstract register states 56
5.5 Abstraction of a set of register states 56
5.7 Boolean restriction . 57
5.8 Concretization of an abstract variable state 58
5.9 Abstraction of a set of variable states 58
5.11 Partial order of writes, ṽw 60
5.12 Least upper bound of writes,

⊔̃
w 60

5.13 Time precedence, <̃t . 60
5.14 Partial order for abstract variable states 61
5.15 Greatest lower bound of abstract variable states 61
5.16 Least upper bound of abstract variable states 61
5.17 Time of most recent write . 61
5.18 Safe write history . 62
5.19 Safe value of x as seen by thread T 62
5.20 Safe partial order of abstract variable states 65
5.21 Safe lower bound of abstract variable states 65
5.22 Safe upper bound of abstract variable states 65
5.28 Concretization of an abstract lock state 74
5.29 Abstraction of a set of lock states 74
5.30 Partial order of abstract lock states 76
5.31 Greatest lower bound of abstract lock states 76
5.32 Least upper bound of abstract lock states 76
5.35 Concretization of an abstract configuration 79
5.36 Partial ordering of two abstract configurations 79
5.38 Greatest lower bound for two abstract configurations 80
5.39 Least upper bound for two abstract configurations 80
5.40 Abstraction of a set of configurations 81
5.42 Abstraction of a set of axiom input configurations 83
5.43 Concretization of an abstract axiom input configuration 83
5.44 Abstraction of a set of axiom output configurations 83
5.45 Concretization of an abstract axiom output configuration . . . 83
5.48 Soundness of the abstract axiom transition relation 85

6.9 BCET and WCET . 158

Appendix D

List of Figures

4.6 Illustration of how Thrdexe is determined. 46

5.3 The time-stamps of the writes considered by READ. 68
5.7 Abstract lock state transitions. 132

6.1 Timeout for recursion in ABSEXE. 151

7.4 Communicating threads – Configuration relations. 165
7.7 Synchronization (Deadlock) – Configuration relations. 168
7.10 Synchronization (Deadline miss) – Configuration relations. . . 170

8.1 Lock owner assignments based on c̃ ∈ Cõnf resulting in one
valid and one invalid configuration. 174

8.2 Lock owner assignments based on c̃ ∈ Cõnf resulting in two
valid and two invalid (i.e., falsely deadlocked) configurations. . 175

197

Appendix E

List of Tables

4.1 The Syntax of PPL. 38
4.2 Semantics of concrete axiom transitions. 42
4.3 Semantics of concrete program transitions. 43
4.4 Definition of STM and LABELS. 44
4.5 Definition of STT, OWN, DL, POWN and REL. 45
4.7 Semantics of concrete evaluation of arithmetic expressions. . . 48
4.8 Semantics of concrete evaluation of boolean expressions. . . . 48

5.1 PPL operators defined for interval arguments. 55
5.2 The abstract function evaluating arithmetic expressions. 57
5.4 Definition of ˜STT, ˜OWN, D̃L, ˜POWN and ˜REL. 75
5.5 Semantics of abstract axiom transitions. 84
5.6 Semantics of abstract program transitions. 88

7.1 Communicating threads – Program. 161
7.2 Communicating threads – Configurations (First half). 163
7.3 Communicating threads – Configurations (Second half). 164
7.5 Synchronization (Deadlock) – Program. 166
7.6 Synchronization (Deadlock) – Configurations. 167
7.8 Synchronization (Deadline miss) – Program. 169
7.9 Synchronization (Deadline miss) – Configurations. 170

199

Appendix F

List of Algorithms

5.1 Partial Order of Abstract Variable States 63
5.2 Earliest Write for a Thread 64
5.3 Meeting Two Abstract Variable States 66
5.4 Joining Two Abstract Variable States 67
5.5 Write to Variable . 68
5.6 Read from Variable . 69
5.7 Time of Most Recent Write 69
5.8 Time of Most Recent Write in Thread 69
5.9 Trim Variable State . 72
5.10 Split Set of Writes . 72
5.11 Determine Deadline for Lock Owner Assignment 90
5.12 Determine Accumulated Execution Time 90
5.12 Cont. Determine Accumulated Execution Time 91

6.1 Abstract Execution . 138
6.2 Choose an Element . 139
6.3 Final Abstract Configuration 139
6.4 Deadlocked Abstract Configuration 140
6.5 Timed-Out Abstract Configuration 140
6.6 Valid Abstract Configuration 140
6.7 Determine if Graph Has Cycles 141
6.8 Threads Executing a Possibly Unsafe Load Statement 141
6.9 Global Variables in an Abstract Configuration 142

201

202 Appendix F. List of Algorithms

6.10 Threads to Execute in Abstract Configuration 142
6.11 Get Variable in Load Statement 142
6.12 Get Register in Load Statement 142
6.13 BCET/WCET Analysis . 157

Appendix G

List of Lemmas

3.4 Completely multiplicative functions 17
3.14 Relation between α and γ . 22
3.15 Galois connection – Existence 23
3.18 Monotonicity of αP . 25
3.19 Monotonicity of γP . 26
3.23 Monotonicity of γs . 28
3.37 Monotonicity of γ int . 34
3.38 Monotonicity of αint . 34

4.2 Time only moves forward . 47
4.5 −→

prg preserves lock state validity 50

4.6 Properties of l′′ . 51

5.23 Soundness of WRITE . 68
5.24 Soundness of MOSTRECENTWRITETIMETHREAD 70
5.25 Soundness of MOSTRECENTWRITETIME 70
5.26 Soundness of READ . 70
5.27 Soundness of TRIM . 71
5.33 Monotonicity of γ lock . 77
5.37 Monotonicity of γconf . 79
5.49 Soundness of −̃→ax . 85
5.51 Time accumulation . 94
5.52 Thread isolation . 94

203

204 Appendix G. List of Lemmas

5.53 Soundness of DLLOCK . 95
5.54 Partial soundness of ACCTIME 100
5.55 Properties of owner assignment for lock-transitions 104
5.56 Soundness of −̃→prg , no frozen thread 108
5.57 Soundness of −̃→prg , frozen thread 119
5.58 Soundness of −̃→prg , final state 130

6.1 Soundness of CYCLE . 141
6.2 Soundness of EXETHRD . 143
6.3 Soundness of GLOBALVAR 144
6.4 Soundness of EXELOADTHRD 144
6.5 Soundness of ISDEADLOCK 145
6.6 Soundness of ISTIMEOUT 145
6.7 Soundness of ISVALID . 146
6.8 Soundness of ABSEXE . 148
6.10 Soundness of ANALYSIS . 158

Appendix H

List of Theorems

3.5 Complete lattice – Lifting . 18
3.6 Complete lattice – Cartesian product 18
3.7 Complete lattice – Total function space 19
3.8 Complete lattice – Monotone function space 19
3.13 Adjunctions and Galois connections 21
3.16 Galois connection – Independent attribute method 24
3.17 Galois connection – Lifted independent attribute method . . . 24
3.20 Galois connection – Double lifting 26
3.21 Not a Galois connection – Double lifting 27
3.22 Galois connection – Function space 28
3.24 Galois connection – Lifted function space 29
3.25 Galois connection – Indexing 30
3.39 Galois insertion – Intervals 35

5.6 Galois connection – Register states 56
5.10 Galois connection – Variable states 59
5.34 Galois connection – Lock states 77
5.41 Galois connection – Configurations 81
5.46 Galois connection – Axiom input configurations 83
5.47 Galois connection – Axiom output configurations 83

205

Index

NOTE, 15, 37, 39, 53, 54, 60, 62, 65,
100, 137, 156

abstract domain, 6, 20
abstract execution, 6–9, 12
abstract interpretation, 6, 7, 11, 13,

15, 39, 176
abstraction, 6, 7, 9, 20, 48, 53, 56,

137, 171, 173, 190
anti-symmetric relation, see relation

BCET, BCET , 3, 4, 6–9, 12, 157–159,
162, 168, 169, 192

Best-Case Execution Time, see
BCET, BCET

bottom element, 16
bounds

lower, 16
greatest, 16

upper, 16
least, 16

calculation, 4
completely additive function, see

function
completely multiplicative function,

see function
concrete domain, 20
COST Action, 178

dynamic analysis, 4

embedded system, 1
estimation

safe, 3, 4
tight, 4

fixed-point calculation, 92
flow analysis, 4
function

completely additive, 16
completely multiplicative, 16
monotone, 16
partial, 16
total, 16

global memory, see variable
greatest lower bound, see bounds

halting-problem, 5

least upper bound, see bounds
local memory, see register
lock, 37
low-level analysis, 4
lower bound, see bounds

Mälardalen WCET Benchmark suite,
178

model-checking, 1, 5, 6, 12, 13
monotone function, see function
multi-core CPU, 2, 3, 7, 12–14, 37,

53, 171

207

208 Index

partial function, see function
partial ordering, 16

real-time system, 1–3, 5–7
hard, 2, 3
soft, 2

reflexive relation, see relation
register, 37
relation, 15

anti-symmetric, 16
reflexive, 16
transitive, 16

safe estimation, see estimation
shared memory, 2–4, 7, 13, 14, 37,

172, 176
single-core CPU, 5, 14
static analysis, 4

TACLe, see COST Action
tight estimation, see estimation, 7
top element, 16
total function, see function
transitive relation, see relation

UPPAAL, 6, 12
upper bound, see bounds

variable, 37

WCET, WCET , 3–9, 11–14, 157–159,
162, 168, 169, 178, 192

Worst-Case Execution Time, see
WCET, WCET

	Introduction
	Real-Time Systems
	Timing Analysis of Real-Time Systems
	Research Questions
	Pilot Study
	Approach
	Contribution
	Included Publications
	Thesis Outline

	Related Work
	Static Timing Analysis
	Multi-Core Analyzability

	Preliminaries
	Partially Ordered Sets & Complete Lattices
	Constructing Complete Lattices
	Galois Connections & Galois Insertions
	Constructing Galois Connections
	Constructing Galois Insertions
	The Interval Domain

	PPL: A Parallel Programming Language
	States & Configurations
	Semantics
	Collecting Semantics

	Abstractly Interpreting PPL
	Arithmetical Operators for Intervals
	Abstract Register States
	Abstract Evaluation of Arithmetical Expressions
	Boolean Restriction
	Abstract Variable States
	Abstract Lock States
	Abstract Configurations
	Abstract Semantics

	Safe Timing Analysis by Abstract Execution
	Abstract Execution
	Timing Analysis

	Examples
	Communication
	Synchronization – Deadlocks
	Synchronization – Deadline Miss

	Conclusions
	The Underlying Architecture
	Algorithmic Structure & Complexity
	Non-terminating Transition Sequences
	The Research Questions
	Other Applications of the Analysis
	Future Work

	Bibliography
	Notation & Nomenclature
	List of Assumptions
	List of Definitions
	List of Figures
	List of Tables
	List of Algorithms
	List of Lemmas
	List of Theorems
	Index

