
INFORMATION ORGANIZER
A comprehensive view on reuse

Erik Gyllenswärd
Department of Computer Engineering, Mälardalen University, Box 883, 721 23 Västerås, Sweden

Department of Industrial Information and Control Systems, Royal Institute of Technology, 100 44 Stockholm, Sweden
Compfab AB,Hylsvägen 4, 721 30 Västerås, Sweden, www.compfab.se

Email: erik.gyllensward@mdh.se

Mladen Kap
Department of Computer Engineering, Mälardalen University, Box 883, 721 23 Västerås, Sweden

Compfab AB,Hylsvägen 4, 721 30 Västerås, Sweden, www.compfab.se
Email: mladen.kap@mdh.se

Rikard Land
Department of Computer Engineering, Mälardalen University, Box 883, 721 23 Västerås, Sweden

Email: rikard.land@mdh.se

Keywords: Reuse, integration, legacy systems, Business Object Model, software components, extensible, lifecycle
support.

Abstract: Within one organization, there are often many conceptually related but technically separated information
systems. Many of these are legacy systems representing enormous development efforts, and containing large
amounts of data. The integration of these often requires extensive design modifications. Reusing
applications “as is” with all the knowledge and data they represent would be a much more practical solution.
This paper describes the Business Object Model, a model providing integration and reuse of existing
applications and cross applications modelling capabilities and a Business Object Framework implementing
the object model. We also present a product supporting the model and the framework, Information
Organizer, and a number of design patterns that have been built on top of it to further decrease the amount
of work needed to integrate legacy systems. We describe one such pattern in detail, a general mechanism for
reusing relational databases.

1. INTRODUCTION

It is commonly believed that software reuse put
into practice would solve many problems related to
software development (Krueger 1992; Ambler
1998). There are many aspects of reuse: one can (at
least in theory) reuse anything from mere concepts
to data, information, program code, and executable
components (see e.g. Krueger (1992)). However, in
spite of the potential benefits of reuse, it has proved
hard to put reuse into practice in a large scale.
Related to reuse is the idea of integration – many
organizations have a large number of legacy

systems; an integration of these would provide great
benefits by increasing the possibility to provide
appropriate and related information in a timely
manner. Is there any elegant solution to both of these
problems – reuse and integration? We believe there
is. In this paper we present a model for integrating
existing applications, information and component
reuse. The model is intended to cope with all aspects
of an object and extensible enough to be used during
the whole lifetime of a system.

The concept of reusing whole applications has
been somewhat neglected in discussions of reuse.
With this, we do not mean modifying applications to
include new functionality, but rather to reusing
whole applications, “as is”, without need of access
to source code, recompiling, reconfiguration or any

other modification whatsoever, much like “compo-
nents” as defined by Szyperski (1998). If this is
possible, integration is facilitated at a very low cost.
Such attempts have been done (OMG; DCOM,
1996; DCOM, 1997) but have mostly been focused
on debating the different competing standards for
interoperability. Other attempts (IEC 1346-1; IT4,
1991; Krantz, L., 2000) focus more on information
reuse and integration.

We have developed the Business Object Model,
BOM, which defines a conceptual model for the
integration of applications. To make BOM “come
alive”, it has been implemented in Business Object
Framework, BOF. This implementation is the “core”
of Information Organizer, a commercial product
itself made possible through extensive reuse.
Information Organizer has been used as the base for
the implementation of several application patterns,
such as a pattern for workflow applications and a
pattern for database connection. For applications
conforming to these patterns, it is possible to
configure them to a particular organization’s need
with a minimum of effort.

We will thus cover three aspects of reuse
throughout the paper: reuse of existing applications
(through integration in a larger system), reuse of
application patterns, and reuse to make the
construction of Information Organizer possible.

We will use Information Organizer as a starting
point and describe the features of the model and how
it is realized in a framework in section 2; we then
continue by describing the application patterns in
section 3, and conclude with a discussion and a
summary in sections 4 and 5.

2. THE MODEL AND THE
FRAMEWORK

The Business Object Model, BOM, is a model
which extend the concept of “directory enabled
applications” (MSDN; Howes, T., 1997; King, R.,
1999; Schwartz, R., 2000) with important capa-
bilities for integration and modelling inspired by
OMG (OMG) and IEC 1346-1 (IEC 1346-1). The
Business Object Model, BOM, represents different
entities of importance in a uniform way to the user.
Business Object Model defines five central
concepts: objects, aspects, roles, relations and
views. Objects represent quite large grained entities
such as issues, pumps or valves. An object can be
described as an empty container; business logic is
added in form of aspects. An object can play a
number of roles, implemented by means of aspects.
A relation connects objects, and finally, the concept

of views provides a means to restrict access to a
system and all its information.

While the Business Object Model is a conceptual
model, the Business Object Framework, BOF, is a
design environment provided to assist application
programmers in building components and appli-
cations, and integrating existing applications. BOF
thus provides an implementation of objects, aspects,
relations, views and roles, as defined by BOM. It
also contains tools for creating instances of these,
finding them in a distributed environment and
communicating with them. Business Object
Framework can be described as a toolbox with a
number of tools and software components common
to different applications for effective reuse. The
Business Object Framework is thus the
implementation of BOM; it is based on Microsoft
Active Directory and COM, and follows existing
standards and de facto standards.

2.1 Business Object Model - BOM

We have designed Business Object Model to
support cross-application integration and to be easily
extensible. It supports integration through the means
of aspects: different aspects can be associated with
completely different systems. It is extensible in that
an object can be extended with new aspects during
its entire lifetime (without affecting other aspects of
the object). It is important to understand that this
model is independent of the manner in which the
different external systems model their part of the
entire activity; BOM resides “above” the systems it
integrates – these systems need not be “BOM-
enabled” in any way.

The five central concepts of the Business Object
Model – objects, aspects, relations, roles, and views
– are described in more detail below. Their
relationships between these are also described in
Figure 1.

Aspect

Business Object

1

0..n

1

0..n

Relat ion

2

*

2

*

View

*

*

*

*

* ** *

*
*

*
*

Figure 1: The relationships between the concepts.

Objects – The most central concept of BOM is

the concept of objects (or business objects, to
distinguish our notion from other uses of the term);
these represent entities of interest in one or several
applications. Examples of objects are issues, steps in
a workflow, organizations, departments, or pumps
and valves. An object usually contains very little, if
any, information or implementation in itself. Rather,
objects offer a uniform way to assemble related
information through the concept of aspects.

Aspects – Instead of attempting to permit an
object itself to represent all its behavior, part of its
behavior is delegated to different aspects. This
means that new aspects can be added to the object at
any time during its entire life without necessarily
affecting other aspects or the object itself. Objects
and aspects offer the possibility of componentizing
applications in a natural manner due to the fact that
new business logic can be added to the object when
the object is ready for a new role (roles are
explained below). Aspects can either contain all
business logic themselves or be used to associate
existing applications or parts of existing applications
with an object and thereby their reuse. For an issue,
aspects could include mail, Excel sheets, PowerPoint
presentations, reports, or video sequences; for
objects in other domains, examples of aspects are
process dialogs, CAD drawings, and invoices. It
should be emphasized that both objects and aspects
are complex entities, encapsulated into the system
without applying any changes on the components
themselves.

Relations – To be able to build a usable
information system, objects can be related to other
objects. The Business Object Model offers a relation
model with both generic relations and typed
relations i.e. relations with a strong semantic
significance. New relation types can be defined in
the system during its service life. Any number of

relations can be associated with an object, and in this
way both hierarchic structures and net structures can
be built. New relation instances can be associated
with an object at any time. This means that new
relations can be associated with an object even if the
object cannot utilize them, because the object is not
aware of the relation and not implemented in such
way that the relation can be used; however, these
relations may be useful if an external user
understands them and can interpret their semantics.
With “external user” we mean both other
applications and human users browsing through the
information. Relations and aspects often occur
together since aspects provide the semantics with
which it is possible to interpret and utilize the
relation. By extracting the relations and locating
them outside the object, the architecture becomes
adaptable in a changing world as new types of
relation and instances can be added to the system,
without affecting the existing functionality. This
introduces a risk, however, since an object may
assume that certain relations are present that has in
fact been removed (without the object being
informed).

Roles – The concept of roles is somewhat
abstract, and must be seen in connection with
objects, aspects, and relations. To take a simple
example, a “person” object may play the role of a
husband – to be able to play this role, it must have
certain aspects, such as “being male” and “being
grown-up”. A more business-oriented example of a
role is “to be participant in a workflow”. A role can
thus be said to define a certain function, or a set of
capabilities, that can be offered by an object, and it
is implemented by one or more aspects. A relation
type associates two roles. A generic relation can
associate any types of object as all objects are of the
generic type.

Views – Views make possible the arrangement of
objects, aspects and relations to limit the extent to

Figure 2: An issue with its aspects, relations, and views.

which they are accessible to different categories of
users. This is necessary, partly because certain
information is classified but also to reduce the
volume of information presented to make it easier
for the user to understand. Initially, a system most
often contains a number of predefined views. A
selected object will remain in focus if the user
changes view – this is useful when a user finds an
object in one view (such as his personal view) and
changes to another (e.g. a process view, describing
the object in the context of a workflow). The
concept of views is very important when integrating
different systems – a personal view would e.g. show
all issues per individual, even if the issues originate
from different issue management systems. Views
can of course be added in the same dynamic manner
as objects, aspects and relations.

Let us illustrate the relations between the five

concepts using an example. In the center of Figure 2,
there is a business object (BO) representing an issue
in an issue-management system. With the circle we
try to describe the visibility of the object in different
views; in an issue-management system we can easily
imagine the following views: a personal view
showing all the persons dealing with issues and the
issues for which they are responsible, a process view
showing the issue’s location in a workflow, and an
organizational view describing the organization and
all its employees. In the personal view, the issue and
its relation to a user (its “owner”) are visible; the
object also has the aspect “A-Notes” indicating that
personal notes has been added to it. To be able to
participate in a workflow, the issue has been
allocated the aspect “A-Workflow” and a relation to
a workflow step; when the issue is processed, this
relation will move to the next step (there are of
course more steps visible in the process view than is
shown in the figure). The organizational view shows
how the organization is structured and, for each
organizational unit such as a department, the issues
associated with the department concerned. The
aspect “A-Document” is placed on the white line to
indicate that the document is visible in both the
organizational view and the process view.

A user interested in how far in the workflow an
issue has progressed can either browse through the
process view to the issue of interest, or enter via
another view, e.g. the personal view, find the object,
select it and then change to the process view. The
issue will then be in focus but visible in the process
view, with the relevant relations and aspects.

2.2 Business Object Framework -
BOF

Business Object Model is just a model, requiring
considerable support in the form of tools and default
implementations to be usable. Business Object
Framework provides this support as a set of tools for
building business objects. Some of these tools and
functions are:
– A generic implementation of aspects, objects,

views and relations.
– A configuration environment with tools and

models for the simple creation of new instances
of existing types and the easy configuration of
new types.

– A development environment making it possible
to programmatically add new components in the
form of objects and aspects. The development
environment of Business Object Framework is
completely integrated with Microsoft Visual
Studio, permitting the programming of objects
and aspects, easily and in any of several well-
known languages.

– There is also an API allowing dynamic creation
of relations and views.

– A runtime environment making it possible to
execute components locally on a client machine
or centrally on one or more server machines.
Business Object Framework also provides
services for finding and calling components over
both the Internet and an intranet.

BOF could be said to be the “core” of

Information Organizer, because this is where BOM
is implemented. In addition to this “engine”, where
the concepts of BOM are realized, Information
Organizer includes other features, such as a user
interface. The primary user interface for a user of the
system is a standard browser. The system is largely
based on the concept of “thin clients”, even if “fat
clients” are used with respect to certain functions
and applications. An advantage with thin clients is
that no code need be installed and maintained on the
client machine. But if the system integrates legacy
applications built without the Internet being taken
into consideration, these applications must be
installed in each client machine anyhow. The system
also provides support for access to information via
WAP.

2.3 Structuring and Search
Mechanisms

The problem in large systems is not lack of
information. The problem is often defective

mechanisms to keep related information together
and ways to find accurate information when needed.
This is one of the key problems we tried to solve
with the Business Object Framework. That is why
the framework provides three major ways to
structure and search information.
– The first way is the most fundamental and is

provided by the core of the framework and the
object model. Information can, as we have
described, be structured in form of objects in
both multiple structures and multiple views. This
can be used to create information models
spanning several integrated applications.

– The Relational Database Connector is the second
way to search for information. As good as every
application has its own information model – i.e.
internal structures. In case of database
applications these structures are very often
represented as database relations. The design
pattern implemented in the Relational Database
Connector provides a common way to follow
these relations via an Internet-enabled user
interface regardless of from which applications
they originate.

– The third way is based on the concept of
indexing. The basic idea is that information
visible to a user can be indexed; usually it means
that different kinds of files (such as documents)
are indexed. Due to the fact that very much
information is presented in the form of generated
cards it is important that these cards can be
indexed and in case of a hit the object
represented by the card presented. By doing this,
information in the system can be searched in the
same familiar way as on the Internet; for
example, keywords such as AND, OR and
NEAR can be used.

Our experiences are that in large systems with

huge number of objects the more static way to
structure information is used to a less extent. The
choice of structuring mechanism also depends on the
nature of the application domain. In for example the
automation industry some structures are of a quite
static nature such as a structure representing the
physical location of equipment. Thus are these
structure quite familiar to people and they are used
to follow for example the location structure to find a
pump and all its aspects.

On the other hand when it comes to for example
an issue management system people are very much
influenced of the way information are structured and
search for in a relational database. They are used to
search for information in a variety of ways, which
are impossible to foresee, and therefore more static
structures cannot be used.

2.4 Integration

Aspects represent information included in the
integrated system. The aspects can integrate infor-
mation on different levels – at least three levels of
integration can be identified: application level,
business logic level and data level.

If the system is integrated on the application
level, the application does not provide an API to its
internal parts. When the application is referred to
from an aspect, the application will be activated and
the user will enter at the top level and is required to
navigate to that part of the application at which the
object (e.g. an issue) concerned is located.

To be able to integrate on the level of business
logic the application must be componentized or
provide an API permitting access to its different
parts. I.e., when called, the application could itself
receive a number of input parameters describing the
part in which the user is actually interested and with
the help of this information, navigate to the part
concerned. The input parameters very much depend
on the application to be integrated and are often
stored in the aspect instance. The aspect can be seen
as a gateway in between the framework and the
integrated application. The complexity of the aspect
implementation very much depends on the level of
integration but also which kind of application to be
integrated. If the application is COM based it is very
likely to be easier because the framework itself is
COM based. To manipulate the data, in this case an
issue, the application’s own dialogs are used i.e. its
own business logic. For the user, a
modular/component-based picture of the integrated
application would be presented even if it is not
implemented in a component-based manner.

Integration at data level means that data is
accessed directly without invoking the business
logic (code), which the integrated system itself
makes available for the presentation, and processing
of data. In many applications, this is an appropriate
level of integration. It can be used to present
information from many different systems but to
change data, system dialogs already available should
be used. The Relational Database Connector,
described in section 3, is an example of a component
providing support for the integration of applications
on this level. By using the connector information
stored in a relational database can easily integrated.
If data is stored in some other data source a specific
connector for that particular data source must be
implemented. In practice, this level has been found
to be very useful as a rapid integration can be
performed and Business Object Framework features
(such as access control) can be applied to each row

in the database because they are represented as
Business Objects.

Integration at data level is most often a suitable

level of ambition at which to begin. The level of
ambition can be raised subsequently and integration
can then be performed on the business logic level.

3. APPLICATION PATTERNS -
ONE WAY OF REUSE

A design pattern is a solution to a problem that
occurs over and over again (Gamma et al, 1995;
Buschmann et al, 1996). We have identified three
major application patterns and implemented these in
Information Organizer, using Business Object
Framework and the concepts defined by the
Business Object Model. With an application pattern,
we mean a solution to a problem that occurs in many
applications, such as a “workflow” pattern. In our
case a pattern is implemented as a number of
objects, aspects, and relations. These patterns
present a number of benefits: first, they are common
to many applications and can thus be used in many
contexts, and secondly, application boundaries are
crossed. Moreover, due to the modular model of
BOM, several patterns can be applied
simultaneously; any object can be extended with the
aspects implementing a pattern. We have used a
number of patterns in practice when developing a
document and issue-management system (Arch
Issue).

3.1 Patterns Implemented

The following three major application patterns
have been implemented.

Business Process Support, BPS, provides

support when building workflow applications, such
as issue-management systems. This pattern is
applicable when the items handled by the system
flows between steps or phases, such as in a system
implementing the review process of a scientific
paper. Such systems are relatively easily built using
the implementation of objects, aspects etc. that
makes up this pattern. Worth to note is that BPS
provides workflow functionality extending beyond
application limits.

Document Management Support, DMS, sup-
ports management and generation of documents over
the Internet, using templates and information from
objects associated with the document. The
template’s “hot spots” are filled dynamically with

information from business objects. One use of this
pattern would be generation of reports on the history
of an issue: dates of completion and names of people
associated with different workflow steps would be
filled in dynamically.

Relational Database Connector, RDC, pro-
vides a function by means of which, with the
assistance of XML, external relation databases can
be defined and imported. To import a database
means that all the database objects are represented in
Information Organizer but the data itself remains in
the database. The RDC also provides support for
building dialogues, which can present information
from one or more data sources, and support for
simple navigation between different lines in a
database. All such navigation is performed with the
help of URL’s. In an imported database, all rows are
represented as Business Object Framework objects
which in turn means that they acquire all the
properties which characterize a Business Object
Framework object, such as strong security, the
ability to keep all aspects of an object together. One
feature worth to note is that security on row level
can be obtained since Information Organizer
represents each row in the database by an object, and
the security properties can be set on each object
independently.

The rest of section 3 discusses the Relational

Database Connector in more detail.

3.2 Relational Database Connector

Many database applications have very little
business logic and provide some kind of standard
mechanism for accessing data directly (usually
SQL). From the integration perspective, a viable
solution is thus to provide such a generic front-end
“connector” as we have done; it understands the
target application’s data (relational database con-
cepts in this case) and provides components capable
of encapsulating data from external databases for
management, navigation, access and manipulation
purposes. Since such a connector has no business
logic whatsoever, it is unable to replace the original
application entirely, but according to our work it can
usually provide 60 to 80% percent of the original
application functionality without any extension. The
business logic of an application is however less
often restricting “reads”, and more often of the kind
restricting how data can be modified or added. If an
application contains much such logic, it is still
possible to integrate database access but only permit
reads. Such read-only integration can be of great
benefit, if use cases including only reads are more
common than use cases including writes.

Since the connector is generic, it is highly
reusable because it can solve integration problems
for many target applications with similar problems.
An additional benefit is that the RDC components
are fully integrated into the framework and can thus
offer a much broader range of functions than that of
the original application.

3.3 Description Files in XML

To define which parts of a database should be
represented by objects in Active Directory, and how
to present and interact with the database data, a
number of XML description files are used. For each
table in the database, three XML files have to be
defined.
– The first one is mainly used to describe the

table’s columns and their data types. For each
column it is possible to define whether it is
editable or not and if a new data item has to be
initiated or not. Related tables can also be
described; for example, in a file describing a
“decision”, information is provided in form of
keys to be able to find a way back to the correct
issue. And in the “issue” object, file information
is provided to be able to present the owner of, or
all documents belonging to the issue.

– The second file defines how information can be
presented in “summary cards”, and describes
available predefined queries. Whenever a row is
selected in table, the data is presented according
to the specification in the file. The XML file can
of course be edited, and thus the summary card’s
appearance is modified. This approach provides
an easy way to configure displays for different
tables within a database, but also to present
information originating from different database
systems in a homogeneous manner. These
summary cards are also the foundation to
provide a powerful and common search
mechanism for different information systems,
integrated in Information Organizer.

– The third file provides means to map to the
language of your choice.

The business logic using the description files are

implemented as a number of Active Server Pages
and COM objects.

4. DISCUSSION

The following describes some of the lessons
learned from practical experience gained from the
development of Information Organizer (Information

Organizer) and the document and issue management
system Arch Issue (Arch Issue).

4.1 Reuse

The overall and certainly the most important
lesson learned is that reuse can be highly profitable.
For organizations with limited resources undertaking
relatively ambitious development projects, it is the
only viable - and therefore practically mandatory -
approach. With a very limited investment, Compfab
(Compfab) was able to build a functionally
comprehensive framework for its intended purpose,
which in addition is secure, scalable, and reliable.
This would not have been possible without total
commitment to the reuse of not only platform
components, but also architectural and design
patterns, as well as “best practices” known for the
platform.

We chose a set of standard products integrating
e.g. Internet access and security. These not only
provide a runtime and design-time environment but
also a large number of components and knowledge
of how to build user interface components. The word
“build” was intentionally used to emphasize that a
significant part of the development time was spent in
learning the full capabilities and impacts of existing
technologies and components on functionality and
features targeted in the resulting framework.
Development of custom functions for the framework
actually occupied a smaller part of the total project
time. Our impression is that this is one of the main
reasons why verbal commitments to component-
based development often fall short in practice.

4.2 Practical Experience

Information Organizer is currently used for
developing an issue-management system (Arch
Issue), and therefore our practical experience of
using Information Organizer, and the concepts of
BOM, is somewhat limited.

However, experience from the application of the
framework to real world problems only reinforced
most of the conclusions arrived at from experience
from the development of the framework itself. In
general, integrating modern, well-componentized
applications is easy and straightforward, provided
the application is designed to run on the same
platform at which the framework is targeted (or
provides “proxies” for accessing it when running on
other platforms).

Integrating monolithic applications with poor or
no defined application programming interfaces is
difficult and cumbersome – sometimes to such a

degree that the original motivation for integrating
such applications becomes highly questionable. For
example, if there is an order management
application which encapsulates orders, customers,
responsible personnel etc into well defined
components, and another invoice management
application which is monolithic and provides access
to its logical parts only through the proprietary user
interface, there is no way to automate management
of relations between logically related objects in these
two applications, even at the user interface level.
Unfortunately, many database-centred applications
existing today are precisely of that kind. However,
since many of these applications have very little
business logic but provide a SQL interface for data
access, the Relational Database Connector is a
simple but very useful means to integrate database
applications in Information Organizer.

5. SUMMARY

Reuse by integration of applications and
information and reuse based on component-based
development are two equally important ways to
improve software development. Information
Organizer emphasizes this and provides an object
model, a framework and a number of components to
encourage the building of integrated solutions. By
taking the concept of “directory enabled
applications” defined by Microsoft further by adding
a number of important properties defined in
standards such as IEC 1346-1 (defining the concept
of aspects which relates all relevant information to
an object), OMG (defining a powerful relation
model) and IT4 (defining a way to build integrated
industrial applications), we have achieved a strong
and powerful environment based on a standard
concept to build integrated systems. The total
commitment to reuse not only platform components,
but also architectural and design patterns and known
“best practices” for the platform has been vital to the
success of building not only the product itself but
also components and applications based on it.

We have thus covered three aspects of reuse.

First, with Information Organizer, implementing the
concepts of BOM, it is possible to reuse whole
applications, not originally intended for reuse. The
level of integration can be chosen somewhat: either
on user interface level or data level (using Relational
Database Connector). Second, using the BOM
concepts, we have implemented generic, i.e.
reusable, application patterns. Third, we also
described shortly how reuse of existing technologies
made Information Organizer possible.

In the future, we will explore how different

categories of users react to an integrated approach to
different separate applications. How does the system
respond to extremely large data quantities? How
well does it support the maintenance of relationships
when the original data sources changes? The “loose”
coupling between objects and applications may
prove to give rise to maintenance and consistency
problems.

REFERENCES

Ambler, S., 1998. A Realistic Look at Object-Oriented
Reuse. In Software Development Magazine, January
1998. URL: http://www.sdmagazine.com.

Arch Issue. URL: http://www.compfab.se.
Buschmann, F., 1996. Pattern-Oriented Software

Architecture, A System of Patterns. John Wiley &
Sons. Chichester

Compfab. URL: http://www.compfab.se.
DCOM, 1996. Technical Overview, MSDN Library. URL:

http://msdn.microsoft.com.
DCOM, 1997. A Business Overview, MSDN Library.

URL: http://msdn.microsoft.com.
Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995.

Design Patterns - Elements of Reusable Object
Oriented software. Addison-Wesley. Upper Saddle
River, NJ.

Howes, T., 1997. Ldap : Programming Directory-Enabled
Applications With Lightweight Directory Access
Protocol, MacMillan Technology Series.

IEC 1346-1, Industrial systems, installations and
equipment and industrial products – Structuring
principles and reference designations, IEC 1346-1,
First edition, 1996-03, International Electrotechnical
Commission

Information Organizer. URL: http://www.compfab.se.
IT4, 1991. Knowledge-Based Real-Time Control Systems,

Phase II, Studentlitteratur, Lund, Sweden.
King, R., 1999. Mastering Active Directory. Network

Press.
Schwartz, R., 2000. Windows 2000® Active Directory

Survival Guide, Wiley, England.
Krantz, L. 2000, ABB Industrial IT: The next way of

thinking, http://www.abb.com .
Krueger C. W., 1992. Software reuse. In ACM Computing

Surveys, volume 24, issue 2, pp. 131-183.
MSDN (Microsoft Developer Network). URL:

http://msdn.microsoft.com.
OMG (Object Management Group). URL:

http://www.omg.org.
Szyperski C., 1998. Component Software - Beyond Object-

Oriented Programming. Addison-Wesley. Harlow.

