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Abstract—Cloud computing has become increasingly 
popular due to deployment of cloud solutions that will 
enable enterprises to cost reduction and more operational 
flexibility. Reliability is a key metric for assessing 
performance in such systems. Fault tolerance methods are 
extensively used to enhance reliability in Cloud Computing 
Systems (CCS). However, these methods impose extra 
hardware and/or software cost. Proper resource allocation is 
an alternative approach which can significantly improve 
system reliability without any extra overhead. On the other 
hand, contemplating reliability irrespective of energy 
consumption and Quality of Service (QoS) requirements is 
not desirable in CCSs. In this paper, an analytical model to 
analyze system reliability besides energy consumption and 
QoS requirements is introduced. Based on the proposed 
model, a new online resource allocation algorithm to find the 
right compromise between system reliability and energy 
consumption while satisfying QoS requirements is suggested. 
The algorithm is a new swarm intelligence technique based 
on imperialist competition which elaborately combines the 
strengths of some well-known meta-heuristic algorithms 
with an effective fast local search. A wide range of 
simulation results, based on real data, clearly demonstrate 
high efficiency of the proposed algorithm. 

Keywords- cloud computing; reliability; analytical model; 
resource allocation; quality of service; energy-aware 
scheduling. 

I. INTRODUCTION 
    Cloud computing is widely referred as the next 
generation of computing systems in which dynamically 
scalable  and often virtualized resources are provided as 
services over the Internet [1]. Service sharing and utility 
computing are the main characteristics of Cloud 
Computing Systems (CCS), which distinguish CCS from 
grid, cluster computing, and other types of distributed 
systems. Nowadays, a wide range of services are provided 
by the cloud providers such as computational resources 
for high performance computing applications, web 
services, social networking, and telecommunications 
services. The users can utilize cloud services from any 
corner of the world in pay-as-you-go manner. In CCSs, a 
Service Level Agreement (SLA) provides a facility to 
agree upon minimum requirements between end-user and 
cloud provider. The SLA contains Service Level 
Objectives (SLOs) that the services need to fulfill. Quality 
of Service (QoS) and dependability are the most 
important SLOs stipulated in the SLA [6]. QoS can be 
defined differently in various systems and from different 

perspectives. In this paper, QoS is defined as the meeting 
rate of service deadlines. Furthermore, only reliability is 
taken into account as a prominent dependability measure 
while other dependability measures such as availability, 
maintainability and security are out of scope of this paper. 
Nevertheless, improving the system reliability could also 
enhance system availability. If the SLOs are violated in 
the sense that the services are not executed within the 
negotiated QoS, agreed upon consequences (usually 
taking the form of penalty payments) go into effect. On 
the other side, fulfilling the SLOs results in an additional 
cost for the service providers (e.g., because the extra 
hardware cost, more energy consumption and the required 
cost to optimize the services). The amount of money that 
should be paid by the users to utilize a service is a 
considerable factor. If a service supplied by a cloud 
provider is more expensive than that provided by others, 
the users may not wish to utilize the services. Therefore, 
cloud providers should struggle to supply services within 
the admissible QoS with the minimum possible cost. 
Energy consumption is a dominant factor which directly 
affects the cost of services. Hence, in this paper energy 
consumption is also taken into account besides QoS, 
reliability and other system constraints.  
    There are several computing and communication 
components in a typical cloud computing system such as 
memory, disk, RAID disk controller, processor, 
communication link etc. Although each of which are 
carefully engineered, they may still fail. Due to large-
scale service sharing, over a wide area network, using 
heterogeneous software/hardware components, having 
complicated interaction among, reliability in the CCS is a 
challenging issue and difficult to obtain [7].  
    A wide variety range of services are provided by the 
CCSs. Each service comprises a set of tasks. The service 
will be terminated once the execution of all corresponding 
tasks have finished. The tasks of a service can be 
allocated to multiple hosts and executed concurrently on 
different cores. We define two important reliability 
measures in CCSs, service reliability and system 
reliability. Service reliability is the probability that all 
tasks of a service run successfully and system reliability is 
the probability that all services in the system run 
successfully. If we assume that all software services are 
perfect, then successful execution of services only 
depends on the hardware reliability. Therefore, in this 
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situation, the system reliability is equivalent to the 
hardware reliability during the execution of all services.  
    Redundancy and/or diversity are prevalent approaches 
to develop a highly reliable CCS and thereby making the 
system more fault tolerant [3][4]. However, they result in 
an extra hardware and/or software cost and thus further 
cost of services. Another alternative to enhance system 
reliability in such systems is an appropriate resource 
allocation. Due to the heterogeneity of CCSs, the hazard 
rate of various hosts and communication links are not 
identical. Consequently, this approach can be potentially 
applied to reach this goal without any additional cost.  
Proper resource allocation in CCSs has been extensively 
applied to achieve different purposes such as load 
balancing, energy management and QoS improvement. 
For example, Ai et al. [5] presented a resource allocation 
algorithm based on a random-key genetic algorithm to 
increase QoS in a hybrid Cloud. However, to the best of 
our knowledge, the resource allocation approach has not 
already been used to enhance system reliability in CCSs. 
    Maximizing reliability without paying attention to 
energy consumption may cause an increase of the cost of 
services as a result of higher energy consumption. It can 
occur when some of the more reliable hosts (i.e., the hosts 
with the lower hazard rate) are consuming more energy, 
for example due to different architectures and/or disparate 
operational environmental conditions. Thus, a reliability-
aware resource allocation in which most of the services 
are allocated to the more reliable hosts may result in a 
higher energy consumption. Furthermore, increasing 
energy consumption leads to a higher operating cost and 
destructive environmental impacts [14]. Thus, we aim to 
evaluate the system reliability besides energy 
consumption and to analyze their impacts on each other. 
    The problem addressed in this paper can be described 
as finding a proper resource allocation to reach the 
equilibrium of the reliability and energy-awareness while 
at the same time satisfying application and resource 
constraints. QoS is taken into account as the application 
constraint. Memory and storage limitation of each server 
and the maximum communication load on each link are 
considered as the principle resource constraints.  
    Since optimal resource allocation in CCSs is known to 
be NP-hard in the general case [6], the mentioned 
problem is also NP-hard in the strong sense. The problem 
is formulated using Integer Linear Programming (ILP). 
There are two general options for dealing with the ILP 
problem; namely, offline and online. The online 
schedulers should be executed in a shorter time in 
comparison to offline schedulers. However, ILP-solvers 
typically take a long execution time. Thus, most of the 
proposed ILP-solvers used in the context are employed as 
offline schedulers. On the other hand, in order to cope 
with the dynamic nature of CCSs, an online scheduler is 
required. Consequently, we need a fast online ILP-solver 
while at the same time it should be able to find a high 

quality solution. In the paper, a new swarm intelligence 
technique based on the Imperialist Competitive Algorithm 
(ICA) is introduced as an efficient online scheduler. ICA 
was originally proposed by Atashpaz-Gargari and Lucas 
in 2007 to solve the continuous optimization problems 
[2]. In this paper we present an extended version of ICA 
intensified by an effective fast local search to tackle with 
the problem. Simulation results demonstrate the potential 
of ICA to decrease the energy consumption significantly 
along with substantial improvement of the system 
reliability. ICA is compared with GA which has been 
recently applied to minimize energy consumption [17]. It 
should be mentioned that in order to carry out a 
comprehensive evaluation, we equip GA in such a way 
that it also considers system reliability along with energy 
consumption. The results manifest that energy 
consumption is reduced by 17% and system reliability is 
increased by 9%.  
    The remainder of the paper is organized as follows: In 
Section II, a brief survey on related works is presented. 
The problem is described in detail and assumptions are 
defined in Section III. Section IV presents a mathematical 
model to evaluate the reliability besides energy 
consumption and it formulates the system and application 
constraints. A new online resource scheduling algorithm is 
proposed in Section V. Section VI describes simulation 
and performance evaluation of the proposed algorithms. 
Finally, concluding remarks and future works are 
presented in Section VII. 

II. RELATED WORKS 
    Reliability analysis is one of the challenging research 
areas in the classical distributed systems. Some prominent 
studies have been proposed based on meta-heuristic 
algorithms to find optimal or near optimal solutions by 
proper task allocation [26][27][28][31]. Also, in another 
work, maximizing reliability in real-time distributed 
systems was investigated [29].  
    On cloud computing, previous works can be 
categorized into two main groups. The former group has 
discussed about the reliability in CCS without considering 
QoS requirements. For example, Dai et al. [7] 
investigated various types of failures in CCS and they 
achieved a comprehensive picture about cloud service 
reliability. They also modeled the cloud failures using 
Queuing theory and Markov models. Another important 
effort on this category belongs to Lin and Chang [8] 
which evaluated system reliability for a typical CCS with 
imperfect nodes. They proposed an algorithm based on 
the branch and bound approach. Nevertheless, their 
algorithm is reasonable only for small-scale platforms. 
The latter group has investigated QoS in CCSs without 
considering reliability. For example, Cao et al. [9] 
introduced a new service-oriented model to support QoS 
in the cloud while releasing the resources. They utilized 
service-oriented QoS-Assured in a multi agent cloud 

14701470



computing architecture. In addition, Armstrong and 
Djemame [10] addressed QoS provisioning in the cloud 
and they have explained the differences of QoS issues in 
cloud and grid computing. Although an analytical model 
to evaluate reliability of CCSs along with QoS 
requirements was recently presented by Faragardi et al. 
[30], it has not considered energy.  
    The problem of energy-aware resource allocation in 
cloud environments has been investigated in several 
works. Buyya et. al [14] have expressed the problem, 
challenges and requirements. Also, they have proposed a 
green cloud architecture for CCSs to support the energy-
awareness. A taxonomy and survey of energy-efficient 
cloud computing is published by [15] that explains 
reasons of energy consumption in clouds along with 
different power management solutions. The problem of 
scheduling with consideration of energy consumption has 
many constraints in the real world. Nevertheless, most 
previous studies have considered homogenous cloud 
systems [16][22][23], single core processors [24][32][33] 
or the deadline-free situations [17]. In addition, some 
papers have studied scheduling algorithms that use the 
DVS technique. For example, [17][18] have proposed two 
energy-efficient algorithms using DVS which calculate 
energy consumption in different ways and investigate a 
trade-off between make-span and energy consumption. 
The DVS technique is not used in our paper because 
working with the lower voltage levels can potentially 
result in a reliability reduction.  
 
    The main contributions of this paper can be stated as 
follows: 

1. We present a reliability model for CCSs based 
on the resource allocation approach. 

2. We contemplate reliability besides energy 
consumption, QoS requirements and other 
system constraints. 

3. We propose a new online scheduler based on the 
imperialist competitive algorithm to find the 
right compromise between reliability and energy 
consumption as a bi-objective optimization 
problem. 

III. PROBLEM DESCRIPTION 
    The cloud computing system used in this work includes 
several hosts which are connected together through a 
communication network. Each host consists of multiple 
components such as a multicore processor, hard disks 
handled by a RAID controller, memory modules etc., and 
failing each of which could result in a host failure. Due to 
unequal hazard rate of  the underlying components, hosts’ 
hazard rates may differ from one host to another. The 
communication links between the hosts may have 
different bandwidths and failure rates. In our model, we 
suppose other system components such as IO devices, 
hypervisors, operating systems and database systems are 

perfect. A fully connected mesh is considered as the 
network topology. It is worth noting that we assume that 
each pair of hosts communicate with each other just 
through the direct link. Consequently, if the direct link 
between a pair of hosts fails, then these hosts cannot 
continue to communicate with each other through an 
alternative path.  

Each component of the system (processor, memory, 
hard disk, RAID controller and communication link) can 
be in one of two states: operational or failed. We ignore 
the degradation mode for components to simplify our 
model, and consider this as a potential future work. 
Additionally, the small fixed-size failure-notice messages 
are exchanged over the network in order to detect failed 
components. As the overhead of these messages is 
negligible, it can be disregarded. We define a critical 
failure as the one which causes a service failure. Failure 
of a component during an idle period is not considered as 
a critical failure because it can be replaced by a spare. It is 
should be noted that due to lack of any fast recovery 
mechanism (such as partial restart), transient and 
intermittent failures along with permanent failures are 
considered as critical failures. The failure of a component 
follows a Poisson process with a constant rate. 
Furthermore, failures of components are statistically 
independent. The reliability of the mentioned CCS 
depends on: 

• The number of hosts composing the CCS and 
their individual likelihoods of failure.  

• The likelihood of failure for each link between a 
pair of servers. 

We presume that a service can be divided into a set of 
tasks which can be allocated to various hosts and executed 
concurrently on different cores. The tasks of the given 
service require resources including memory, storage space, 
computation power and a specific communication 
bandwidth. The tasks of a service can be represented as an 
undirected graph called Task Interaction Graph (TIG). 
Each node of the TIG displays a task and the arcs show 
the inter-task communication. There is a label on each arc 
that indicates the amount of data that should be 
transferred through the communication links between the 
tasks. Communication between services is not taken into 
account. Fig. 1 illustrates a TIG instance. In this system, 
task execution times are processor dependent, meaning 
that the execution time of a task may vary from one core to 
another. We assume that the data transmission mechanism 
between the cores on the same host is perfect. Hence, the 
failure rate of the links between the cores of a server is set 
to zero. 
    The precedence relation between the tasks is also out of 
scope of this paper. Each service has a certain deadline 
corresponding to its QoS, and its execution should be 
completed before the deadline in order to guarantee QoS 
requirements. Since, Earliest Deadline First (EDF) is an 
optimal real-time scheduling algorithm on a single 
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processor [11], we assume EDF as the scheduler on each 
core. Although there is not any explicit deadline for the 
tasks in the mentioned problem, and the deadlines are 
considered in terms of services, we associate each 
service’s deadline to all of its tasks. If all the tasks of a 
specific service complete their jobs prior to the service 
deadline, then the service definitely meets its deadline. 
Hence, EDF orders the tasks according to the deadline of 
corresponding services. 

 
Figure 1. A TIG instance of a cloud service 

 

    If the goal is to guarantee QoS, then resource allocation 
should be performed such that the subset of tasks assigned 
to each core can be scheduled by EDF and no task misses 
its deadline. If some of the services do not have the 
deadline constraint, then we set their deadlines to the 
infinite value and the model is still valid.  

During design time, all required information such as the 
number of tasks of each service, the average execution 
time of each task on each core, the amount of data that 
should be transferred between the tasks etc. can be 
gathered by the system designers by employing some 
profiling tools and compiler aids. In addition, the provided 
services by a cloud provider are usually constant. Hence, 
the assumption that all information is known in advance is 
reasonable and the proposed model can be practically 
applied. 

IV. SYSTEM MODELING 
A. Notation 
    The notations used to model the system are listed as 
follows:     
• � represents the number of hosts. 
• ��  represents �th host. 
• �� is a set of processors (cores) on the �th host. 
• �� represents the number of processors (cores) on ��. 
• 	 represents the total number of processors in the 

system; 	 
 � ����
� . 
• �� represents rth processor �� � � � 	�. A general 

numbering is used for representation of the processors 
in the system. In this representation, the jth processor 
of �th host is denoted by �� where � 
 �� ������
� � �. 

• �  represents the number of services. 
• � 
{ ��� ��� � � �  } is the service set ordered 

according to service deadlines in ascending manner. 

• !��is the deadline of service �� and all of its tasks 
should be finished before !� .  

• "� represents the number of tasks which compose ��. 
• # represents the total number of tasks; # 
 � "� �
� . 
• $%� represents the kth task �� � & � #�. A general 

numbering is used for tasks representation in which 
the jth task of the ith service is denoted by $%� where & 
 �� "�����
� � �. 

• '�&� is a function which indicates that $%� belongs to 
which service and it returns a service number. 

• (�  is the hard disk hazard rate for ��. 
• )�  is the hazard rate of RAID controller for ��.   
• *�  is the memory hazard rate for ��. 
• +��is the processor hazard rate of ,� . 
• -�.  is the execution time of task $��on processor ,.. 
• !/�.  is a direct link between �� and �.. 
• 0 
 12�.3 is task to precessor assignment matrix 

where 2�.  equals one, if and only if $��is assigned to 
,.; otherwise 2�. 
 45 

• 6�.�is the communication bandwidth of !/%�. 
• 7%��0� is the allocated communication load to !/%� 

by assignment X. 
• 8%�� is the maximum allowed load on !/%� . 
• 9:�.�is the amount of transmitted data between $��and 

$.. 
• $;!�  is the task interaction density which indicates 

the number of collaborative tasks in ��. 
• <�.�shows communication hazard rate for !/�. . 
• #-#��is the amount of memory for �th server. 
• "=". represents the memory needed by task $.. 
• �$>�  is the storage amount of the �th server. 
• ?@A. represents the storage needed by task $.. 
• :B�0� is the system reliability for assignment 0. 
• :BC�0� is the system reliability without considering 

failure of links. 
• :BCC�0� is the system reliability without considering 

failure of servers. 
• 9�0��is the cost of assignment 0 (will be defined 

shortly). 
• $9�0� is the total cost of assignment 0 (will be 

defined shortly).  
• ,�DEF is the maximum power when ��  is fully 

utilized. 
• ,��G�H   is the power consumption of ��  at idle state. 
• &� is the fraction of ,�DEFconsumed by ��  at idle state 

i.e., &� 
 ,��G�HI,�DEF . 
• $,�0� is the total power consumption of assignment 

X. 
• J�0� is the total energy consumption. 
• SP is the scheduling period. 
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B. Principle constraints 
    In this section, we outline the principal constraints of 
the system and we formally define them. 
• Memory: The memory of each host is no less than the 

total amount of memory requirements for its all 
assigned tasks. Eq. 1 formulates this constraint. � � "="K�
� � LMNO.�PQRST � #-#%    � � U � V�       (1) 

• Storage: The total amount of required storage for the 
tasks assigned to each host should be less than the 
available storage on that host. � � ?@AK�
� � LMNO.�PQRST � �$>%       � � U � V            (2) 

• QoS: All of the services should be finished before 
their respective deadlines. We assume that EDF is 
used as scheduler in each processor and we assign the 
deadline of each service to all of its tasks. If all of the 
tasks of a service finish their jobs before the specific 
deadline of that service, it will result in meeting the 
deadline of that service. In other words, all of the 
tasks of �� are executed before all of the tasks of �. if � W �. Moreover, if $X and $Y belong to the same 
service (i.e., have the same deadline) and�Z W �, $X is 
executed before�$Y. Accordingly, the QoS constraint 
can be formulated as follows: � [MNLMN\M
� � ]^�%�  � � � � 	� � � & � #                  (3) 

 

• Communication load constraint: The total amount of 
transmitted data between servers through a specific 
link !/%� should not exceed the maximum allowed 
load of that link. To formulate this constraint, the 
load of each link should be computed first. It is 
computed as follows: 
7%���0� 
 � � � � 2�X2.�K.
�_�K���
�O��P`RSaOX�PbRST 9:�.  (4)  
Thus, the communication load constraint is 
formulated as: 
7%���0� �� 8&c��������1� & W c � V                               (5) 
 

• No task redundancy: This paper considers a model 
where a task must be allocated to exactly one 
processor, i.e., no task redundancy. That is, the 
following equality must hold with each task �: � LMNdN
� 
 �             1� � W #                                 (6) 

C. Reliability Evaluation                                                                                            
We formulate the system reliability in four steps. First, 

the reliability of each processor (core) is considered. 
Based on the reliability of processors, host reliability is 
computed. Afterwards, the reliability of links between 
hosts will be formulated. Finally, by using host and link 
reliabilities, system reliability will be modeled. 
1. Reliability of processor: The reliability of processing 

node �. in time interval [0,t] can be modeled by: 

:PQ�@� 
  =�e fQ�g�Gghi                                                (7) 
where j.�k� is processor hazard rate at time k. 
Assuming a constant hazard rate, Eq. 7 reduces to: 

:PQ�@� 
  =�fQl                                                        (8)                       
As the total time for executing the tasks assigned to 
processor �. by assignment 0 is m -�.2�.n

M
� , the 
reliability of processor �. can be expressed by 

:PQ�0� 
 =�fQo pqQFqQr
qst                                          (9) 

 

2. Host reliability: for modeling host reliability, 
memory, hard disk, RAID controller and processor 
reliability of each host should be determined. 
Processor reliability was formulated by Eq. 9 and the 
reliability of other components of &th host can be 
computed as follows if we assume that they are 
statistically independent:  
:uT�0� 
 =�vTlwT�x���5 =�yTlwT�x��5 =�zTlwT�x��       

 =��vT_yT_zT�lwT�x���                                             (10) 
where @YT�0� is the required time to execute all of the 
assigned tasks to �th host for assignment 0. The 
processing nodes of a server run tasks 
simultaneously. Hence, @YT�0�� is calculated as 
follows: @YT�0� 
 �{|LO.�PRST�� -�.2�.K�
� �                       (11) 
The reliability of each host can be calculated by 
multiplying its processors and other components 
reliability, if we assume that they are independent. 
Therefore, the reliability of the &th host is: 
 :YT�0� 
 :uT�0��5 } :PQ�0�O.�PQRST  


 =��vT_yT_zT� lwT�x��� � pqaFqarqstOa�~aR�T                (12) 
    Failure of the hosts can be supposed independent. 
Ergo, system reliability irrespective of failures of 
links can be modeled by simply multiplying the 
servers’ reliabilities: 
:BC�0� 
 } =��vT_yT_zT� lwT�x��� � pqaFqarqstOa�~aR�T�%
�                      
 

                
 ��o ��vT_yT_zT� lwT�x�_� � pqaFqarqstOaR�T
�
�st �

   
                        (13)                        

3. Reliability of Links: In a similar way, by assuming a 
hazard rate <%���� for link !/%� , the reliability of !/%�  is: 
:��Ta�@� 
 =�e �Ta�g��hi Gg                                         (14)         
Due to the constant hazard rate assumption, this 
relation is simplified as: 
:��Ta�@� 
  =��Tal�Ta�x��                                         (15) 
where @�Ta�0� is the duration in which !/%� is used 
to transmit data between the tasks assigned to �% and �� and it is computed as follows: 
 @�Ta�0� �
 �� 7%���0�I6%�������                                  (16) 
Accordingly, Eq. 16 is rewritten as: 
:%��0� = =��Tal�Ta�x��                                             (17)                         
As we assume independent failure of different links, 
reliability of the system without considering the 
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failure of hosts can be computed by multiplying the 
reliability of the links: 
:BCC�0� 
 } } =��Tal�Ta�x����
%_����%
�                                                                    

                     
 ��� � �Tal�Ta�x���asT�t��tTst                          (18) 
4. System reliability: Due to the independence of host 

and link failures, system reliability can be formulated 
as: :B�0� 
 :BC�0� � :BCC�0�                                    (19)      
Using (13), (17), and (19), :B�0� can be calculated 
by :B�0� 


�=��o ��vT_yT_zT� lwT�x�_� � pqaFqarqstOaR�T
�
�st �_� � �Tal�Ta�x����asT�t��tTst   

(20)                                                                                                                        

D. Power Consumption Evaluation 
    The power consumption of a host consists of the power 
consumed by the CPU, memory, disk storage and network 
interfaces. It is shown by [19] that power consumption of 
the CPU dominates the overall power consumption of a 
host. Accordingly, power consumption of a host could be 
achieved by a linear model defined in Eq. 21 based on the 
CPU utilization.  ,��� 
 & � Pmax + (1- k) � Pmax � u                              (21) 
where ,��� is the power consumption of the host when 
its CPU utilization is u,  Pmax is the maximum power of a 
fully utilized host and k is the fraction of power consumed 
by idle host. It is cost-effective to turn the host off when 
its utilization is equal to zero. However, we need a more 
accurate model to compute the power consumption in this 
situation. Indeed, the hosts still consume energy when 
they are off. It is observed by [20] that off-consumption, 
(i.e., the consumption of a plugged-host when it is off) is 
15% of the idle consumption. Thus, off-consumption is 
also taken into consideration. Accordingly, Eq. 22 can 
model the power consumption of the sth host.  
 

,B�0� 
 �&B � ,BDEF �� �� ��&B� � ,BDEF � �B�0��������� � 445�� � ,�G�H� �������������������������������������������������������� 
 4  
(22) 

where �B�0� is the utilization of the sth host for 
assignment X, and it is computed by 

�B�0� 
 #����� � � FqQpqQOQ�~QR�Trqst
���q �                              (23) 

    Accordingly, the total power consumption by the CCS 
for assignment 0 can be achieved by $,�0� 
 � ,?�0��B
�                                                      (24) 
 

    Finally, because the CPU utilization is a function of 
time in the sense that it varies over time due to different 
assignments, the total energy consumption is calculated 
by J�0� 
 $,�0� . SP                                                  (25) 
    As minimizing power consumption leads to a 
minimization of energy, we concentrate on Eq. 24. 

E. Multi-Objective Optimization 
    According to the stated constraints and the reliability 
model, we can define our problem as an Integer Linear 
Programming (ILP) problem as follows: 
 

Maximize :B�0� and Minimize $,�0�                       (26) 
Subject to (1),(2),(3),(5) and (6)                                   
 

    To incorporate this problem in our solution framework, 
it is more convenient that we integrate the constraints and 
objective function into a single cost function which is 
called total cost. In this way, the goal is only to minimize 
the total cost function. The violation of each constraint 
can be represented by a penalty function. The 
corresponding penalty functions for violation of memory, 
storage, QoS and communication load constraints are 
formulated in Eq. 27, 28, 29 and 30 respectively: 
 ,K 
 � #�2�4� � � "="K�
� � 2�.O.RST ��#-#%��%
�          (27) 
 ,� 
 � #�2�4� � � ?@AK�
� � 2�.O.RST ���$>%��%
�       (28) 
 ,� 
 � � #�2�4� � -�P2�Pl�
� ��Kl
��P
� !^�l�)            (29) 
 ,� 
 � � #�2�4������
%_����%
� 7%���0� � 8%��)                          (30) 
 

    The QoS penalty function can be efficiently 
implemented using a dynamic programming approach 
in���	#�5��In addition, to take the reliability aspects into 
account, define a reliability cost function C(X) as follows 
 

9�0� 
o ��(& �)& � *&� @YT�0��� � -��2��K�
�O�RST
�
\
� � �

� � <%�@�Ta�0���
%_����%
�                                                           (31)      

    From 20 and 31 we have�:B�0� �
 =���x�. Therefore, 
maximizing the system reliability, :B�0�, is equal to 
minimizing the reliability cost function, �� �. According 
to the definition of penalty functions and this cost 
function, we define the total cost of an assignment 0 as 
the weighted sum of reliability cost, total power 
consumption and all penalties: 

 $9�0� 
 ¡5 9�0� � ¢5 $,�0� � £�5 ,K � £�5 ,B �£¤5 ,� � £¥5 ,�                                                   (32) 
 

where coefficients ¡, ¢, £�, £�,�£¤�and £¥ are used to 
show importance of each function. In fact, they should be 
selected in such a way that solving the above-mentioned 
problem is equal to minimizing�9�0� and $,�0� while all 
constraints are met. In other words, they should guide the 
search towards valid solutions and away from invalid 
ones. Because of having the same importance of penalty 
functions in our model (since none of them can be 
violated), we assume that the penalty coefficients are 
equivalent. Thus, we replace £�, £�,�£¤ and £¥ with a 
common value, �, which yields:  
 $9�0� 
 ¡5 9�0� � ¢5 $,�0� � k�,K � ,B � ,� � ,��        (33) 
 

    Accordingly, the main goal is to minimize the total cost 
function. It is worth noting that another option to 
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determine the penalty coefficients is to pa
the level of importance of each correspo
function. For example, in a soft real-time 
missing a low number of deadlines may b
may be set to a lower value which results 
of its importance in comparison to other con

V. SOLUTION APPROACH

    In this section, we propose an online t
algorithm which is inspired by imperialisti
This section starts by introducing the a
demonstrating how it can be applied to solv

A. Imperialist Competitive Algorithm 
    ICA was originally proposed from 
Atashpaz-Gargari and Lucas [2] to solv
optimization problems. ICA is a socio-polit
optimization strategy which starts by an ini
similar to many other evolutionary algorithm
individuals called country are divided int
colonies and imperialists. Imperialists are 
the best countries (i.e. the lowest cost coun
remaining countries form the colonies. All t
the initial population are divided among th
based on their power. The power of an 
inversely proportional to its cost. Therefo
with lower costs (i.e. higher powers) will 
colonies. Each imperialist along with its co
empire. The total cost of an empire is dete
cost of its imperialist along with the cost o
This fact is modeled by the following equati
 $9� 
 9¦?@��"�=���c�?@�� � §5"=���9¦?@��¦c¦��=
where $9� is the total cost of the nth empir
colonies impact rate which is a positive nu
zero and one. Increasing § will increase t
colonies in determining the total power of a
competition among imperialists forms the
algorithm. During the competition, weak em
and the most powerful ones remain. 
continues until the stopping condition is me
    After the initialization of the countries, a
improved by a fast local search. The ne
algorithm is moving colonies to t
imperialists. The movement is a simpl
policy which is modeled by a directed v
colony to the corresponding imperialist. I
causes any colony to have lower cost of t
imperialist, they will change their positio
revolution process begins between the em
modeled by doing a simple local search t
imperialists. 
    In the imperialistic competition, the wea
the weakest empire will be exchanged fro
empire to another empire with the most
possess it. The imperialist competition w

ay attention to 
onding penalty 
system, where 

be tolerable, £¤ 
in a reduction  

nstraints. 

H 
task allocation 
ic competition. 
algorithm and 

ve the problem.  

the work of 
ve continuous 
tically inspired 
itial population 
ms. Population 
to two groups: 

selected from 
ntries) and the 
the colonies of 
he imperialists 

imperialist is 
ore imperialists 

achieve more 
olonies form an 
ermined by the 
of its colonies. 
ion. 
=?�¦¨�="���=���  

(34) 
re and § is the 

umber between 
the role of the 
an empire. The 
e basis of the 
mpires collapse 

This process 
t. 
all of them are 

ext step in the 
their relevant 
e assimilation 
vector from a 
If assimilation 
than that of its 
ons. Then the 

mpires. This is 
to improve the 

akest colony of 
om its current 
t likelihood to 
will gradually 

result in an increase in the power
and a decrease in the power of the
that cannot succeed in the com
power will ultimately collapse.  
    The final step in the algorithm 
imperialist in the imperialistic com
better after a certain iteration tim
satisfied. This way a new empire
same random amount of the init
initialization step. Then the best
existing empires will be selec
repeats again. Global war can e
from local optima. The algorithm
condition is satisfied. It can be si
when only one empire is left.  
    ICA is used to find a near o
problem which is modeled in Sec
following structures:  

• Initial solution: It can be g
using a heuristic method
Heuristic (SH) algorithm 
solution. SH works as follo
tasks with higher executio
the nodes with lower 
reliability will be improved
communication load const
and storage are taken into
tasks with respect to th
descending manner and it a
respect to their hazard rat
Then the first task (the 
execution time) is assigned
(the node with lowest hazar
free space). After assign
algorithm tries to assign th
feasible node. SH continu
have been assigned. Then
applied to the solution. The
local search is given in 
repeats M*� times and each
checked. To investigate 
function should be executed

• Solution Representation: w
with a vector of M element
integer value between one 
illustrative example for 
element of this example is
the third task is assigne
Furthermore, this represent
of the no redundancy con
each task should be assign
core. Formally, $� 
 &�im
otherwise�2�% 
 4. 
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• Assimilation: It is modeled by cho
tasks from the vectors of colonies (
tasks to be chosen is given by the f
changing their assigned nod
corresponding values in the imperi

• Revolution: A local search is a
imperialists’ vectors.  

• Global War: If the best imperialis
any better after a specific number
global war is performed. A new
generated randomly and the empir
Then the worst existing empires a
the best new empires and a new wo

• Stopping condition: The algorith
after a predetermined number of gl

     

ALGORITHM I. LOCAL SEARCH 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Input: initial solution S, coefficient  ©   Output:ª« = S 
i = ¬�­® 
Select i random tasks; //¯°,¯� ,…, ¯M 
for each random task Rj 

      V= S[¯N]; //the node that task ¯N is assigned t
      Select the best neighbor of S where task ¯N is
node V and this task of S is called ª±; 
      if (TC (ª±) < TC(ª«)) 
            ª« = ª±; 
      end if 
end for 

 

The pseudo code of the local search an
provided in Alg. I and II respectively. Fu
initial values of ICA are determined in Tab.

B. Online Scheduling Algorithm 
    The online scheduler is called to alloca
that have waited in the execution queue 
every scheduling period. Furthermore, un
which are remaining from previous per
migrated from the current host to another
scheduler decision. The migrated tasks can
executions on the new hosts. As a result, 
allocates new incoming services in each pe
potential reallocation of older tasks that hav
their executions yet. It should be menti
migration overhead is ignored in this resea
[14]. Because, it can be imagined infinite
migration supported by pre-copying ta
destination host before starting its execution
 

Figure 3. An scheduling period schem
 

oosing random 
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 I. 

ate the services 
at the start of 
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r based on the 

n continue their 
the algorithm 

eriod besides a 
ve not finished 
ioned that the 
arch similar to 
esimal for live 
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me 

    New incoming services are 
meeting deadlines before we pu
queue. If the execution time of 
incoming service on the faste
remaining time until the next s
greater than the service deadli
marked as a strict service. Furth
scheduler and to make it more 
scheduler in real-world systems, a
is considered. The algorithm 
execution time becomes more tha
period. Therefore, the overhead o
dependent on both the schedulin
other hand, limiting execution tim
decrease in the solution quality o
to satisfy all the constraints 
Fortunately, as it is seen in S
appropriate values for �² and S
occurs only in the few experimen
for all experiments.  
    The scheduler can run with oth
Fig. 3 illustrates the kth scheduli
Each period is divided into two
ICA is run while the hosts are ru
arrived in the (k-2)th period or e
the services which arrived in th
hosts. 

 

ALGORITHM II. ICA 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

Initialize the empires by SH heurist
Move the colonies towards their em
Randomly change characteristics of
if there is a colony which TCcol < TC
      Exchange the positions of that im
end if 
Compute the total cost of all empire
Pick the weakest colony from the w
empire that has the most likelihood 
if there is an empire with no colonie
      Eliminate this empire; 
end if 
if there is only one empire then 
      Stop condition satisfied; 
else 
      go to 2; 
end if 

        
   Table I. Initial Values fo

Algorithm 
P t

Descri
	³´³ Initial Pop

� Local Search

µM¶³ Number of im

	Y·� Number of

¡EB Assimilatio

¸ Colonies im

¹ Iterations befor

;º» Global w

examined in terms of 
ut them in the execution 
f the longest task of the 
est processor, plus the 
cheduling invocation, is 

ine, then the service is 
hermore, to expedite the 
applicable as an online 

a new stopping condition 
is terminated once its 
an ²¼ of the scheduling 
of scheduling is strongly 
ng period and�². On the 
me of ICA may lead to a 
r it may even not be able 

for heavy workloads. 
Section V, by selecting 
SP, violating constraints 
nts and it is less than 3% 

her services concurrently. 
ing period in the system. 
o phases. In the former, 
unning the services which 
earlier. ICA are assigned 
he (k-1)th period to the 

ic; 
mpires (Assimilation); 
f some countries (Revolution); 
Cimp then 
mperialist and colony; 

es (TCemp); 
weakest empire and give to the 

to possess it; 
es then 

or ICA parameters 

ption Initial 
l

pulation 30 

h coefficient 0.5 

mperialists 5 

f colonies 25 

on factor 0.3 

mpact rate 0.25 

re global war 30 

war flag 0 
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    If a strict service arrives in this phase, it will be 
dropped and is not put in the execution queue. After 
finishing the first phase, the Running phase is started in 
which the scheduler allocates all tasks of the strict 
services to the feasible hosts as soon as they arrive. A 
feasible host is a one which has adequate available 
resources to execute the incoming service besides running 
other services which have been already allocated to it. 
Moreover, in both phases if a normal service arrives, it 
will be added to the execution queue. Consequently, the 
maximum waiting time for normal services is �, ��,I�4. Additionally, strict services will certainly meet 
their deadlines or they will be dropped when they arrive 
in the system. 

VI. PERFORMANCE EVALUATION 
    To evaluate the performance of the proposed algorithm 
based on real world data, we consider a cloud computing 
system composed of some common hosts in data centers 
similar to [25]. These servers are categorized into four 
different types. Specification of each kind is outlined at 
Tab. II. To extract the Power Consumption column, 
SPECpower [21] is deployed as reference. We also 
consider available storage for the hosts as the Disk 
column at the table. 
    In the problem, each host includes a certain amount of 
memory, storage and computing capacity. To provide 
computing power, each host uses a multicore processor. It 
should be mentioned that the hazard rates of the 
components are based on [13] in which 100,000 servers 
are examined for a 14 month period. Hazard rates of 
components and other system configuration are stated at 
Tab. III. The application specification is also expressed at 
Tab. IV. 
     As we mentioned before, we turn the host off if the 
CPU utilization of the host equals to zero in order to 
prevent negative impact of idle consumption. In this 
situation, the host consumes off-consumption which is 
15% of its Pidle. As shown in the Tab. II various hosts 
consumed a different amount of energy at the idle state 
and thus making the decision about which host should be 
off is also a considerable issue which affect the total 
energy consumption.   

 Table II. Specification of the Hosts 

Host 
Processor Disk 

(GB) 
Memory 

(GB) 

Power Consumption 

CPU MHz Cores @active 
idle 

@100% 
utilization 

1   
Intel 
Xeon 
7020 

2660 8 800 16 520 833 

2 
Intel 
Xeon 
7110 

2600 8 800 16 575 732 

3 
Intel 
Xeon 
3040 

1860 2 500 4 86 117 

4 
Intel 
Xeon 
3075 

2660 2 500 4 93.7 135 

    In order to assess of the proposed algorithm, we 
implement ICA and express the results at Tab. V. In 
addition, as a solution based on the genetic algorithm has 
been recently applied in the literature to minimize energy 
consumption [17], ICA is compared with GA. Our GA 
solution is also modified in such a way that it considers 
system reliability along with energy consumption in order 
to comprehensive evaluation of the proposed algorithm. 
For each problem size, both algorithms run 20 times to 
reach 95% confidence interval. We suppose that the 
arrival rate of services follows a Poisson process and its 
parameter is denoted by the Service Arrival Rate per 
scheduling period in the Tab. V. We also consider 0.2 as 
the rate of strict service arrival in each period for all 
simulations. Reliability, energy and total cost are 
computed towards each set of hosts and the different 
service arrival rates for both algorithms. � and � are two 
coefficients which adjust the influence of reliability and 
energy respectively. Therefore the algorithm strive to 
maximize reliability irrespective of energy while �=1 and 
�=0. In order to achieve a fair trade off between reliability 
and energy, we should set the value of � and � to 0.5 and 
finally for considering energy without taking reliability 
into account, � and � are set to zero and one respectively. 
 

 Table III. System parameters and the corresponding value ranges

System 
Parameters 

Description Value Ranges 

(� Hard Disk Hazard Rate [100, 200] 

*� Memory Hazard Rate [100, 200] 

)� RAID Controller Hazard Rate [0.00005, 0.00010] 

+� Core Hazard Rate [0.0001, 0.0005] 

CHR Communication link Hazard Rate [0.00015, 0.00030] 

CBW Link Bandwidth [1, 4] 

8 Maximum link communication load [20,50] 

     

    The results in Tab. V indicate that in terms of solution 
quality, the Imperialist-based algorithm works 
significantly better than the genetic algorithm. The energy 
consumption of ICA is reduced by 17% and system 
unreliability by 9% in comparison with GA. In addition, 
the results show that when reliability and energy are 
considered simultaneously (i.e., �=�=0.5), energy 
consumption is decreased by 83% in comparison with the 
none power-aware policy in which the hosts are not 
turned-off and consume maximum power. 

 

Table IV. Application parameters and the corresponding value ranges
Parameters Description Value Ranges 

- Task Execution Time (sec) [1, 15] 

"=" Task Memory (MB) [5, 50] 

9: Amount of Communication Data [0.5, 2] 

! Service Deadline (sec) [5, 75] 

TID Task Interaction Density 0.5 

m Number of Tasks in each Service [4, 8] 
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Table V. Simulation Results 
Hardware 

Configuration Service Configuration Imperialist Genetic Algorithm 

# of hosts # of cores Service Arrival 
Rate (Per Period) # of tasks Reliability Energy Total cost Reliability Energy Total Cost 

� = 1 

12 60 4 20 0.99865 0.61164 0.00134 0.96978 0.71633 0.07961 

12 60 7 30 0.99461 0.85875 0.00538 0.89374 0.76328 0.69522 
12 60 8 40 0.98531 0.90409 0.01478 0.83909 0.81455 3.8884 
16 80 5 20 0.99881 0.44202 0.00118 0.98455 0.47783 0.06217 

� = 0 16 80 6 30 0.99545 0.69307 0.00454 0.79068 0.66171 0.52066 

16 80 9 40 0.98774 0.85394 0.01232 0.75506 0.77033 1.4418 
20 100 4 20 0.99888 0.42475 0.00110 0.99518 0.44234 0.06144 
20 100 6 30 0.99596 0.5853 0.00403 0.83068 0.5732 0.43147 
20 100 8 40 0.98935 0.70277 0.01069 0.77739 0.67701 1.19941 

� = 0.5 

12 60 4 20 0.99292 0.15448 0.08078 0.95531 0.17393 0.22281 
12 60 7 30 0.97066 0.19009 0.10993 0.87777 0.54773 0.72739 
12 60 8 40 0.93400 0.29057 0.17948 0.79101 0.67446 0.79544 
16 80 5 20 0.99449 0.14234 0.07392 0.96275 0.06731 0.18735 
16 80 6 30 0.97723 0.17116 0.09709 0.85368 0.32614 0.55302 

� = 0.5 16 80 9 40 0.93625 0.19098 0.12842 0.78927 0.61829 1.05423 

20 100 4 20 0.99496 0.13463 0.06984 0.97581 0.05032 0.13241 
20 100 6 30 0.98015 0.08798 0.08798 0.87694 0.25143 0.45164 
20 100 8 40 0.95126 0.19942 0.12410 0.79762 0.45272 0.96161 

� = 0 

12 60 4 20 0.98163 0.15274 0.15274 0.91387 0.07935 0.07935 
12 60 7 30 0.90289 0.17146 0.17146 0.85544 0.37014 0.37014 
12 60 8 40 0.84761 0.19080 0.19080 0.78411 0.67461 0.67461 
16 80 5 20 0.98228 0.14085 0.14085 0.96464 0.05124 0.05124 

� = 1 16 80 6 30 0.94651 0.15397 0.15397 0.79038 0.17051 0.17051 

16 80 9 40 0.74391 0.16789 0.16789 0.73202 0.47911 0.47911 
20 100 4 20 0.96860 0.13363 0.13363 0.95662 0.06009 0.06009 
20 100 6 30 0.93179 0.14404 0.14404 0.89445 0.09009 0.09009 
20 100 8 40 0.86475 0.15442 0.15442 0.79101 0.25471 0.25471 

 

 
Figure 4. Reliability and Energy Consumption Percentage 

 

    The simulation results presented in Fig. 4 show the 
percentage of reliability and energy consumption of our 
proposed algorithm (ICA) for 20 hosts and 8 services. The 
results imply that by increasing reliability, more energy is 
consumed. This fact becomes crucial when the maximum 
reliability is desirable. Although ICA helps to keep 
energy consumption less than 32% of its maximum in 
most cases, it is noticeable that energy consumption 
increases by 40% when reliability grows up to 0.98. 
Consequently, system designers can choose the 
appropriate � value to reach the acceptable level of 
reliability which is stated at the SLA besides minimizing 
the energy consumption. In other words, they will be able 

to present negotiated QoS with the lowest cost based on 
the outcome of this research.         

VII. CONCLUSION 
    Cloud providers supply a set of services to their end-
users. Allocating the services on hosts of a CCS may 
result in different system reliability and energy 
consumption. In the paper, we proposed a mathematical 
model to evaluate reliability based on a proper service 
allocation approach. Processor, memory, hard disk, RAID 
controller and communication link failures were taken 
into consideration in order to present a holistic reliability 
model which is only based on a fully connected mesh 
topology. Furthermore, an energy model was also 
proposed. This model considers host energy consumption 
with respect to its CPU utilization. Off-consumption is 
also considered in order to present a comprehensive 
model. Moreover, service deadlines as QoS besides other 
resource constraints were formulated elaborately. By 
integrating the reliability model, the energy model and the 
system constraints, an ILP solution was suggested. 
Subsequently, an efficient online resource scheduler is 
introduced to find a solution with the right compromise 
between reliability and energy consumption while 
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satisfying QoS and other system constraints. The 
proposed solution was compared with an alternative 
solution using genetic algorithms for a wide range of 
problem sizes. The simulation results indicate that the 
energy consumption of ICA is reduced by 17% and 
system unreliability by 9%. Also, results manifest that 
energy consumption is decreased by 83% in comparison 
with a none power-aware policy.  
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