
Towards Energy-Aware Resource Scheduling to Maximize Reliability in
Cloud Computing Systems

Hamid Reza Faragardi1, Aboozar Rajabi2, Reza Shojaee2 and Thomas Nolte1
1Mälardalen Real-Time Research Centre, Mälardalen University, Västeras, Sweden
2School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

{hamid.faragardi@mdh.se, ab.rajabi@ut.ac.ir, r.shojaee@ut.ac.ir, thomas.nolte@mdh.se}

Abstract—Cloud computing has become increasingly
popular due to deployment of cloud solutions that will
enable enterprises to cost reduction and more operational
flexibility. Reliability is a key metric for assessing
performance in such systems. Fault tolerance methods are
extensively used to enhance reliability in Cloud Computing
Systems (CCS). However, these methods impose extra
hardware and/or software cost. Proper resource allocation is
an alternative approach which can significantly improve
system reliability without any extra overhead. On the other
hand, contemplating reliability irrespective of energy
consumption and Quality of Service (QoS) requirements is
not desirable in CCSs. In this paper, an analytical model to
analyze system reliability besides energy consumption and
QoS requirements is introduced. Based on the proposed
model, a new online resource allocation algorithm to find the
right compromise between system reliability and energy
consumption while satisfying QoS requirements is suggested.
The algorithm is a new swarm intelligence technique based
on imperialist competition which elaborately combines the
strengths of some well-known meta-heuristic algorithms
with an effective fast local search. A wide range of
simulation results, based on real data, clearly demonstrate
high efficiency of the proposed algorithm.

Keywords- cloud computing; reliability; analytical model;
resource allocation; quality of service; energy-aware
scheduling.

I. INTRODUCTION
 Cloud computing is widely referred as the next
generation of computing systems in which dynamically
scalable and often virtualized resources are provided as
services over the Internet [1]. Service sharing and utility
computing are the main characteristics of Cloud
Computing Systems (CCS), which distinguish CCS from
grid, cluster computing, and other types of distributed
systems. Nowadays, a wide range of services are provided
by the cloud providers such as computational resources
for high performance computing applications, web
services, social networking, and telecommunications
services. The users can utilize cloud services from any
corner of the world in pay-as-you-go manner. In CCSs, a
Service Level Agreement (SLA) provides a facility to
agree upon minimum requirements between end-user and
cloud provider. The SLA contains Service Level
Objectives (SLOs) that the services need to fulfill. Quality
of Service (QoS) and dependability are the most
important SLOs stipulated in the SLA [6]. QoS can be
defined differently in various systems and from different

perspectives. In this paper, QoS is defined as the meeting
rate of service deadlines. Furthermore, only reliability is
taken into account as a prominent dependability measure
while other dependability measures such as availability,
maintainability and security are out of scope of this paper.
Nevertheless, improving the system reliability could also
enhance system availability. If the SLOs are violated in
the sense that the services are not executed within the
negotiated QoS, agreed upon consequences (usually
taking the form of penalty payments) go into effect. On
the other side, fulfilling the SLOs results in an additional
cost for the service providers (e.g., because the extra
hardware cost, more energy consumption and the required
cost to optimize the services). The amount of money that
should be paid by the users to utilize a service is a
considerable factor. If a service supplied by a cloud
provider is more expensive than that provided by others,
the users may not wish to utilize the services. Therefore,
cloud providers should struggle to supply services within
the admissible QoS with the minimum possible cost.
Energy consumption is a dominant factor which directly
affects the cost of services. Hence, in this paper energy
consumption is also taken into account besides QoS,
reliability and other system constraints.
 There are several computing and communication
components in a typical cloud computing system such as
memory, disk, RAID disk controller, processor,
communication link etc. Although each of which are
carefully engineered, they may still fail. Due to large-
scale service sharing, over a wide area network, using
heterogeneous software/hardware components, having
complicated interaction among, reliability in the CCS is a
challenging issue and difficult to obtain [7].
 A wide variety range of services are provided by the
CCSs. Each service comprises a set of tasks. The service
will be terminated once the execution of all corresponding
tasks have finished. The tasks of a service can be
allocated to multiple hosts and executed concurrently on
different cores. We define two important reliability
measures in CCSs, service reliability and system
reliability. Service reliability is the probability that all
tasks of a service run successfully and system reliability is
the probability that all services in the system run
successfully. If we assume that all software services are
perfect, then successful execution of services only
depends on the hardware reliability. Therefore, in this

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $26.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.208

1469

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $31.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.208

1469

situation, the system reliability is equivalent to the
hardware reliability during the execution of all services.
 Redundancy and/or diversity are prevalent approaches
to develop a highly reliable CCS and thereby making the
system more fault tolerant [3][4]. However, they result in
an extra hardware and/or software cost and thus further
cost of services. Another alternative to enhance system
reliability in such systems is an appropriate resource
allocation. Due to the heterogeneity of CCSs, the hazard
rate of various hosts and communication links are not
identical. Consequently, this approach can be potentially
applied to reach this goal without any additional cost.
Proper resource allocation in CCSs has been extensively
applied to achieve different purposes such as load
balancing, energy management and QoS improvement.
For example, Ai et al. [5] presented a resource allocation
algorithm based on a random-key genetic algorithm to
increase QoS in a hybrid Cloud. However, to the best of
our knowledge, the resource allocation approach has not
already been used to enhance system reliability in CCSs.
 Maximizing reliability without paying attention to
energy consumption may cause an increase of the cost of
services as a result of higher energy consumption. It can
occur when some of the more reliable hosts (i.e., the hosts
with the lower hazard rate) are consuming more energy,
for example due to different architectures and/or disparate
operational environmental conditions. Thus, a reliability-
aware resource allocation in which most of the services
are allocated to the more reliable hosts may result in a
higher energy consumption. Furthermore, increasing
energy consumption leads to a higher operating cost and
destructive environmental impacts [14]. Thus, we aim to
evaluate the system reliability besides energy
consumption and to analyze their impacts on each other.
 The problem addressed in this paper can be described
as finding a proper resource allocation to reach the
equilibrium of the reliability and energy-awareness while
at the same time satisfying application and resource
constraints. QoS is taken into account as the application
constraint. Memory and storage limitation of each server
and the maximum communication load on each link are
considered as the principle resource constraints.
 Since optimal resource allocation in CCSs is known to
be NP-hard in the general case [6], the mentioned
problem is also NP-hard in the strong sense. The problem
is formulated using Integer Linear Programming (ILP).
There are two general options for dealing with the ILP
problem; namely, offline and online. The online
schedulers should be executed in a shorter time in
comparison to offline schedulers. However, ILP-solvers
typically take a long execution time. Thus, most of the
proposed ILP-solvers used in the context are employed as
offline schedulers. On the other hand, in order to cope
with the dynamic nature of CCSs, an online scheduler is
required. Consequently, we need a fast online ILP-solver
while at the same time it should be able to find a high

quality solution. In the paper, a new swarm intelligence
technique based on the Imperialist Competitive Algorithm
(ICA) is introduced as an efficient online scheduler. ICA
was originally proposed by Atashpaz-Gargari and Lucas
in 2007 to solve the continuous optimization problems
[2]. In this paper we present an extended version of ICA
intensified by an effective fast local search to tackle with
the problem. Simulation results demonstrate the potential
of ICA to decrease the energy consumption significantly
along with substantial improvement of the system
reliability. ICA is compared with GA which has been
recently applied to minimize energy consumption [17]. It
should be mentioned that in order to carry out a
comprehensive evaluation, we equip GA in such a way
that it also considers system reliability along with energy
consumption. The results manifest that energy
consumption is reduced by 17% and system reliability is
increased by 9%.
 The remainder of the paper is organized as follows: In
Section II, a brief survey on related works is presented.
The problem is described in detail and assumptions are
defined in Section III. Section IV presents a mathematical
model to evaluate the reliability besides energy
consumption and it formulates the system and application
constraints. A new online resource scheduling algorithm is
proposed in Section V. Section VI describes simulation
and performance evaluation of the proposed algorithms.
Finally, concluding remarks and future works are
presented in Section VII.

II. RELATED WORKS
 Reliability analysis is one of the challenging research
areas in the classical distributed systems. Some prominent
studies have been proposed based on meta-heuristic
algorithms to find optimal or near optimal solutions by
proper task allocation [26][27][28][31]. Also, in another
work, maximizing reliability in real-time distributed
systems was investigated [29].
 On cloud computing, previous works can be
categorized into two main groups. The former group has
discussed about the reliability in CCS without considering
QoS requirements. For example, Dai et al. [7]
investigated various types of failures in CCS and they
achieved a comprehensive picture about cloud service
reliability. They also modeled the cloud failures using
Queuing theory and Markov models. Another important
effort on this category belongs to Lin and Chang [8]
which evaluated system reliability for a typical CCS with
imperfect nodes. They proposed an algorithm based on
the branch and bound approach. Nevertheless, their
algorithm is reasonable only for small-scale platforms.
The latter group has investigated QoS in CCSs without
considering reliability. For example, Cao et al. [9]
introduced a new service-oriented model to support QoS
in the cloud while releasing the resources. They utilized
service-oriented QoS-Assured in a multi agent cloud

14701470

computing architecture. In addition, Armstrong and
Djemame [10] addressed QoS provisioning in the cloud
and they have explained the differences of QoS issues in
cloud and grid computing. Although an analytical model
to evaluate reliability of CCSs along with QoS
requirements was recently presented by Faragardi et al.
[30], it has not considered energy.
 The problem of energy-aware resource allocation in
cloud environments has been investigated in several
works. Buyya et. al [14] have expressed the problem,
challenges and requirements. Also, they have proposed a
green cloud architecture for CCSs to support the energy-
awareness. A taxonomy and survey of energy-efficient
cloud computing is published by [15] that explains
reasons of energy consumption in clouds along with
different power management solutions. The problem of
scheduling with consideration of energy consumption has
many constraints in the real world. Nevertheless, most
previous studies have considered homogenous cloud
systems [16][22][23], single core processors [24][32][33]
or the deadline-free situations [17]. In addition, some
papers have studied scheduling algorithms that use the
DVS technique. For example, [17][18] have proposed two
energy-efficient algorithms using DVS which calculate
energy consumption in different ways and investigate a
trade-off between make-span and energy consumption.
The DVS technique is not used in our paper because
working with the lower voltage levels can potentially
result in a reliability reduction.

 The main contributions of this paper can be stated as
follows:

1. We present a reliability model for CCSs based
on the resource allocation approach.

2. We contemplate reliability besides energy
consumption, QoS requirements and other
system constraints.

3. We propose a new online scheduler based on the
imperialist competitive algorithm to find the
right compromise between reliability and energy
consumption as a bi-objective optimization
problem.

III. PROBLEM DESCRIPTION
 The cloud computing system used in this work includes
several hosts which are connected together through a
communication network. Each host consists of multiple
components such as a multicore processor, hard disks
handled by a RAID controller, memory modules etc., and
failing each of which could result in a host failure. Due to
unequal hazard rate of the underlying components, hosts’
hazard rates may differ from one host to another. The
communication links between the hosts may have
different bandwidths and failure rates. In our model, we
suppose other system components such as IO devices,
hypervisors, operating systems and database systems are

perfect. A fully connected mesh is considered as the
network topology. It is worth noting that we assume that
each pair of hosts communicate with each other just
through the direct link. Consequently, if the direct link
between a pair of hosts fails, then these hosts cannot
continue to communicate with each other through an
alternative path.

Each component of the system (processor, memory,
hard disk, RAID controller and communication link) can
be in one of two states: operational or failed. We ignore
the degradation mode for components to simplify our
model, and consider this as a potential future work.
Additionally, the small fixed-size failure-notice messages
are exchanged over the network in order to detect failed
components. As the overhead of these messages is
negligible, it can be disregarded. We define a critical
failure as the one which causes a service failure. Failure
of a component during an idle period is not considered as
a critical failure because it can be replaced by a spare. It is
should be noted that due to lack of any fast recovery
mechanism (such as partial restart), transient and
intermittent failures along with permanent failures are
considered as critical failures. The failure of a component
follows a Poisson process with a constant rate.
Furthermore, failures of components are statistically
independent. The reliability of the mentioned CCS
depends on:

• The number of hosts composing the CCS and
their individual likelihoods of failure.

• The likelihood of failure for each link between a
pair of servers.

We presume that a service can be divided into a set of
tasks which can be allocated to various hosts and executed
concurrently on different cores. The tasks of the given
service require resources including memory, storage space,
computation power and a specific communication
bandwidth. The tasks of a service can be represented as an
undirected graph called Task Interaction Graph (TIG).
Each node of the TIG displays a task and the arcs show
the inter-task communication. There is a label on each arc
that indicates the amount of data that should be
transferred through the communication links between the
tasks. Communication between services is not taken into
account. Fig. 1 illustrates a TIG instance. In this system,
task execution times are processor dependent, meaning
that the execution time of a task may vary from one core to
another. We assume that the data transmission mechanism
between the cores on the same host is perfect. Hence, the
failure rate of the links between the cores of a server is set
to zero.
 The precedence relation between the tasks is also out of
scope of this paper. Each service has a certain deadline
corresponding to its QoS, and its execution should be
completed before the deadline in order to guarantee QoS
requirements. Since, Earliest Deadline First (EDF) is an
optimal real-time scheduling algorithm on a single

14711471

processor [11], we assume EDF as the scheduler on each
core. Although there is not any explicit deadline for the
tasks in the mentioned problem, and the deadlines are
considered in terms of services, we associate each
service’s deadline to all of its tasks. If all the tasks of a
specific service complete their jobs prior to the service
deadline, then the service definitely meets its deadline.
Hence, EDF orders the tasks according to the deadline of
corresponding services.

Figure 1. A TIG instance of a cloud service

 If the goal is to guarantee QoS, then resource allocation
should be performed such that the subset of tasks assigned
to each core can be scheduled by EDF and no task misses
its deadline. If some of the services do not have the
deadline constraint, then we set their deadlines to the
infinite value and the model is still valid.

During design time, all required information such as the
number of tasks of each service, the average execution
time of each task on each core, the amount of data that
should be transferred between the tasks etc. can be
gathered by the system designers by employing some
profiling tools and compiler aids. In addition, the provided
services by a cloud provider are usually constant. Hence,
the assumption that all information is known in advance is
reasonable and the proposed model can be practically
applied.

IV. SYSTEM MODELING
A. Notation
 The notations used to model the system are listed as
follows:
• � represents the number of hosts.
• �� represents �th host.
• �� is a set of processors (cores) on the �th host.
• �� represents the number of processors (cores) on ��.
• 	 represents the total number of processors in the

system; 	
 � ����� .
• �� represents rth processor �� � � � 	�. A general

numbering is used for representation of the processors
in the system. In this representation, the jth processor
of �th host is denoted by �� where �
 �� ������� � �.

• � represents the number of services.
• �
{ ��� ��� � � � } is the service set ordered

according to service deadlines in ascending manner.

• !��is the deadline of service �� and all of its tasks
should be finished before !� .

• "� represents the number of tasks which compose ��.
• # represents the total number of tasks; #
 � "� �� .
• $%� represents the kth task �� � & � #�. A general

numbering is used for tasks representation in which
the jth task of the ith service is denoted by $%� where &
 �� "������ � �.

• '�&� is a function which indicates that $%� belongs to
which service and it returns a service number.

• (� is the hard disk hazard rate for ��.
•)� is the hazard rate of RAID controller for ��.
• *� is the memory hazard rate for ��.
• +��is the processor hazard rate of ,� .
• -�. is the execution time of task $��on processor ,..
• !/�. is a direct link between �� and �..
• 0
 12�.3 is task to precessor assignment matrix

where 2�. equals one, if and only if $��is assigned to
,.; otherwise 2�.
 45

• 6�.�is the communication bandwidth of !/%�.
• 7%��0� is the allocated communication load to !/%�

by assignment X.
• 8%�� is the maximum allowed load on !/%� .
• 9:�.�is the amount of transmitted data between $��and

$..
• $;!� is the task interaction density which indicates

the number of collaborative tasks in ��.
• <�.�shows communication hazard rate for !/�. .
• #-#��is the amount of memory for �th server.
• "=". represents the memory needed by task $..
• �$>� is the storage amount of the �th server.
• ?@A. represents the storage needed by task $..
• :B�0� is the system reliability for assignment 0.
• :BC�0� is the system reliability without considering

failure of links.
• :BCC�0� is the system reliability without considering

failure of servers.
• 9�0��is the cost of assignment 0 (will be defined

shortly).
• $9�0� is the total cost of assignment 0 (will be

defined shortly).
• ,�DEF is the maximum power when �� is fully

utilized.
• ,��G�H is the power consumption of �� at idle state.
• &� is the fraction of ,�DEFconsumed by �� at idle state

i.e., &�
 ,��G�HI,�DEF .
• $,�0� is the total power consumption of assignment

X.
• J�0� is the total energy consumption.
• SP is the scheduling period.

14721472

B. Principle constraints
 In this section, we outline the principal constraints of
the system and we formally define them.
• Memory: The memory of each host is no less than the

total amount of memory requirements for its all
assigned tasks. Eq. 1 formulates this constraint. � � "="K�� � LMNO.�PQRST � #-#% � � U � V� (1)

• Storage: The total amount of required storage for the
tasks assigned to each host should be less than the
available storage on that host. � � ?@AK�� � LMNO.�PQRST � �$>% � � U � V (2)

• QoS: All of the services should be finished before
their respective deadlines. We assume that EDF is
used as scheduler in each processor and we assign the
deadline of each service to all of its tasks. If all of the
tasks of a service finish their jobs before the specific
deadline of that service, it will result in meeting the
deadline of that service. In other words, all of the
tasks of �� are executed before all of the tasks of �. if � W �. Moreover, if $X and $Y belong to the same
service (i.e., have the same deadline) and�Z W �, $X is
executed before�$Y. Accordingly, the QoS constraint
can be formulated as follows: � [MNLMN\M� �]^�%� � � � � 	� � � & � # (3)

• Communication load constraint: The total amount of
transmitted data between servers through a specific
link !/%� should not exceed the maximum allowed
load of that link. To formulate this constraint, the
load of each link should be computed first. It is
computed as follows:
7%���0�
 � � � � 2�X2.�K.�_�K����O��P`RSaOX�PbRST 9:�. (4)
Thus, the communication load constraint is
formulated as:
7%���0� �� 8&c��������1� & W c � V (5)

• No task redundancy: This paper considers a model
where a task must be allocated to exactly one
processor, i.e., no task redundancy. That is, the
following equality must hold with each task �: � LMNdN�
 � 1� � W # (6)

C. Reliability Evaluation
We formulate the system reliability in four steps. First,

the reliability of each processor (core) is considered.
Based on the reliability of processors, host reliability is
computed. Afterwards, the reliability of links between
hosts will be formulated. Finally, by using host and link
reliabilities, system reliability will be modeled.
1. Reliability of processor: The reliability of processing

node �. in time interval [0,t] can be modeled by:

:PQ�@�
 =�e fQ�g�Gghi (7)
where j.�k� is processor hazard rate at time k.
Assuming a constant hazard rate, Eq. 7 reduces to:

:PQ�@�
 =�fQl (8)
As the total time for executing the tasks assigned to
processor �. by assignment 0 is m -�.2�.n

M� , the
reliability of processor �. can be expressed by

:PQ�0�
 =�fQo pqQFqQr
qst (9)

2. Host reliability: for modeling host reliability,
memory, hard disk, RAID controller and processor
reliability of each host should be determined.
Processor reliability was formulated by Eq. 9 and the
reliability of other components of &th host can be
computed as follows if we assume that they are
statistically independent:
:uT�0�
 =�vTlwT�x���5 =�yTlwT�x��5 =�zTlwT�x��

 =��vT_yT_zT�lwT�x��� (10)
where @YT�0� is the required time to execute all of the
assigned tasks to �th host for assignment 0. The
processing nodes of a server run tasks
simultaneously. Hence, @YT�0�� is calculated as
follows: @YT�0�
 �{|LO.�PRST�� -�.2�.K�� � (11)
The reliability of each host can be calculated by
multiplying its processors and other components
reliability, if we assume that they are independent.
Therefore, the reliability of the &th host is:
 :YT�0�
 :uT�0��5 } :PQ�0�O.�PQRST

 =��vT_yT_zT� lwT�x��� � pqaFqarqstOa�~aR�T (12)
 Failure of the hosts can be supposed independent.
Ergo, system reliability irrespective of failures of
links can be modeled by simply multiplying the
servers’ reliabilities:
:BC�0�
 } =��vT_yT_zT� lwT�x��� � pqaFqarqstOa�~aR�T�%�

 ��o ��vT_yT_zT� lwT�x�_� � pqaFqarqstOaR�T
�
�st �

 (13)

3. Reliability of Links: In a similar way, by assuming a
hazard rate <%���� for link !/%� , the reliability of !/%� is:
:��Ta�@�
 =�e �Ta�g��hi Gg (14)
Due to the constant hazard rate assumption, this
relation is simplified as:
:��Ta�@�
 =��Tal�Ta�x�� (15)
where @�Ta�0� is the duration in which !/%� is used
to transmit data between the tasks assigned to �% and �� and it is computed as follows:
 @�Ta�0� �
 �� 7%���0�I6%������� (16)
Accordingly, Eq. 16 is rewritten as:
:%��0� = =��Tal�Ta�x�� (17)
As we assume independent failure of different links,
reliability of the system without considering the

14731473

failure of hosts can be computed by multiplying the
reliability of the links:
:BCC�0�
 } } =��Tal�Ta�x����%_����%�

 ��� � �Tal�Ta�x���asT�t��tTst (18)
4. System reliability: Due to the independence of host

and link failures, system reliability can be formulated
as: :B�0�
 :BC�0� � :BCC�0� (19)
Using (13), (17), and (19), :B�0� can be calculated
by :B�0�

�=��o ��vT_yT_zT� lwT�x�_� � pqaFqarqstOaR�T
�
�st �_� � �Tal�Ta�x����asT�t��tTst

(20)

D. Power Consumption Evaluation
 The power consumption of a host consists of the power
consumed by the CPU, memory, disk storage and network
interfaces. It is shown by [19] that power consumption of
the CPU dominates the overall power consumption of a
host. Accordingly, power consumption of a host could be
achieved by a linear model defined in Eq. 21 based on the
CPU utilization. ,���
 & � Pmax + (1- k) � Pmax � u (21)
where ,��� is the power consumption of the host when
its CPU utilization is u, Pmax is the maximum power of a
fully utilized host and k is the fraction of power consumed
by idle host. It is cost-effective to turn the host off when
its utilization is equal to zero. However, we need a more
accurate model to compute the power consumption in this
situation. Indeed, the hosts still consume energy when
they are off. It is observed by [20] that off-consumption,
(i.e., the consumption of a plugged-host when it is off) is
15% of the idle consumption. Thus, off-consumption is
also taken into consideration. Accordingly, Eq. 22 can
model the power consumption of the sth host.

,B�0�
 �&B � ,BDEF �� �� ��&B� � ,BDEF � �B�0��������� � 445�� � ,�G�H� ��
 4
(22)

where �B�0� is the utilization of the sth host for
assignment X, and it is computed by

�B�0�
 #����� � � FqQpqQOQ�~QR�Trqst
���q � (23)

 Accordingly, the total power consumption by the CCS
for assignment 0 can be achieved by $,�0�
 � ,?�0��B� (24)

 Finally, because the CPU utilization is a function of
time in the sense that it varies over time due to different
assignments, the total energy consumption is calculated
by J�0�
 $,�0� . SP (25)
 As minimizing power consumption leads to a
minimization of energy, we concentrate on Eq. 24.

E. Multi-Objective Optimization
 According to the stated constraints and the reliability
model, we can define our problem as an Integer Linear
Programming (ILP) problem as follows:

Maximize :B�0� and Minimize $,�0� (26)
Subject to (1),(2),(3),(5) and (6)

 To incorporate this problem in our solution framework,
it is more convenient that we integrate the constraints and
objective function into a single cost function which is
called total cost. In this way, the goal is only to minimize
the total cost function. The violation of each constraint
can be represented by a penalty function. The
corresponding penalty functions for violation of memory,
storage, QoS and communication load constraints are
formulated in Eq. 27, 28, 29 and 30 respectively:
 ,K
 � #�2�4� � � "="K�� � 2�.O.RST ��#-#%��%� (27)
 ,�
 � #�2�4� � � ?@AK�� � 2�.O.RST ���$>%��%� (28)
 ,�
 � � #�2�4� � -�P2�Pl�� ��Kl��P� !^�l�) (29)
 ,�
 � � #�2�4������%_����%� 7%���0� � 8%��) (30)

 The QoS penalty function can be efficiently
implemented using a dynamic programming approach
in���	#�5��In addition, to take the reliability aspects into
account, define a reliability cost function C(X) as follows

9�0�
o ��(& �)& � *&� @YT�0��� � -��2��K��O�RST
�
\� � �

� � <%�@�Ta�0���%_����%� (31)

 From 20 and 31 we have�:B�0� �
 =���x�. Therefore,
maximizing the system reliability, :B�0�, is equal to
minimizing the reliability cost function, �� �. According
to the definition of penalty functions and this cost
function, we define the total cost of an assignment 0 as
the weighted sum of reliability cost, total power
consumption and all penalties:

 $9�0�
 ¡5 9�0� � ¢5 $,�0� � £�5 ,K � £�5 ,B �£¤5 ,� � £¥5 ,� (32)

where coefficients ¡, ¢, £�, £�,�£¤�and £¥ are used to
show importance of each function. In fact, they should be
selected in such a way that solving the above-mentioned
problem is equal to minimizing�9�0� and $,�0� while all
constraints are met. In other words, they should guide the
search towards valid solutions and away from invalid
ones. Because of having the same importance of penalty
functions in our model (since none of them can be
violated), we assume that the penalty coefficients are
equivalent. Thus, we replace £�, £�,�£¤ and £¥ with a
common value, �, which yields:
 $9�0�
 ¡5 9�0� � ¢5 $,�0� � k�,K � ,B � ,� � ,�� (33)

 Accordingly, the main goal is to minimize the total cost
function. It is worth noting that another option to

14741474

determine the penalty coefficients is to pa
the level of importance of each correspo
function. For example, in a soft real-time
missing a low number of deadlines may b
may be set to a lower value which results
of its importance in comparison to other con

V. SOLUTION APPROACH

 In this section, we propose an online t
algorithm which is inspired by imperialisti
This section starts by introducing the a
demonstrating how it can be applied to solv

A. Imperialist Competitive Algorithm
 ICA was originally proposed from
Atashpaz-Gargari and Lucas [2] to solv
optimization problems. ICA is a socio-polit
optimization strategy which starts by an ini
similar to many other evolutionary algorithm
individuals called country are divided int
colonies and imperialists. Imperialists are
the best countries (i.e. the lowest cost coun
remaining countries form the colonies. All t
the initial population are divided among th
based on their power. The power of an
inversely proportional to its cost. Therefo
with lower costs (i.e. higher powers) will
colonies. Each imperialist along with its co
empire. The total cost of an empire is dete
cost of its imperialist along with the cost o
This fact is modeled by the following equati
 $9�
 9¦?@��"�=���c�?@�� � §5"=���9¦?@��¦c¦��=
where $9� is the total cost of the nth empir
colonies impact rate which is a positive nu
zero and one. Increasing § will increase t
colonies in determining the total power of a
competition among imperialists forms the
algorithm. During the competition, weak em
and the most powerful ones remain.
continues until the stopping condition is me
 After the initialization of the countries, a
improved by a fast local search. The ne
algorithm is moving colonies to t
imperialists. The movement is a simpl
policy which is modeled by a directed v
colony to the corresponding imperialist. I
causes any colony to have lower cost of t
imperialist, they will change their positio
revolution process begins between the em
modeled by doing a simple local search t
imperialists.
 In the imperialistic competition, the wea
the weakest empire will be exchanged fro
empire to another empire with the most
possess it. The imperialist competition w

ay attention to
onding penalty
system, where

be tolerable, £¤
in a reduction

nstraints.

H
task allocation
ic competition.
algorithm and

ve the problem.

the work of
ve continuous
tically inspired
itial population
ms. Population
to two groups:

selected from
ntries) and the
the colonies of
he imperialists

imperialist is
ore imperialists

achieve more
olonies form an
ermined by the
of its colonies.
ion.
=?�¦¨�="���=���

(34)
re and § is the

umber between
the role of the
an empire. The
e basis of the
mpires collapse

This process
t.
all of them are

ext step in the
their relevant
e assimilation
vector from a
If assimilation
than that of its
ons. Then the

mpires. This is
to improve the

akest colony of
om its current
t likelihood to
will gradually

result in an increase in the power
and a decrease in the power of the
that cannot succeed in the com
power will ultimately collapse.
 The final step in the algorithm
imperialist in the imperialistic com
better after a certain iteration tim
satisfied. This way a new empire
same random amount of the init
initialization step. Then the best
existing empires will be selec
repeats again. Global war can e
from local optima. The algorithm
condition is satisfied. It can be si
when only one empire is left.
 ICA is used to find a near o
problem which is modeled in Sec
following structures:

• Initial solution: It can be g
using a heuristic method
Heuristic (SH) algorithm
solution. SH works as follo
tasks with higher executio
the nodes with lower
reliability will be improved
communication load const
and storage are taken into
tasks with respect to th
descending manner and it a
respect to their hazard rat
Then the first task (the
execution time) is assigned
(the node with lowest hazar
free space). After assign
algorithm tries to assign th
feasible node. SH continu
have been assigned. Then
applied to the solution. The
local search is given in
repeats M*� times and each
checked. To investigate
function should be executed

• Solution Representation: w
with a vector of M element
integer value between one
illustrative example for
element of this example is
the third task is assigne
Furthermore, this represent
of the no redundancy con
each task should be assign
core. Formally, $�
 &�im
otherwise�2�%
 4.

Figure 2. Solution rep

r of the powerful empires
e weak ones. Any empire

mpetition to increase its

is global war. If the best
mpetition did not get any

me, the global condition is
e will be formed with the
tial population as in the
t empires from the new
cted and the algorithm
efficiently lead to escape

m stops when the stopping
mply defined as the time

optimal solution for the
ction IV and V under the

generated randomly or by
d. ICA uses a Simple

to generate an initial
ows: We know that if the
on times are assigned to
hazard rates then the

d. We relax deadline and
traints and just memory
o account. SH sorts the
heir execution time in
also sorts the nodes with
es in ascending manner.

task with the longest
d to the first feasible node
rd rate which has enough

ning the first task, the
he second task to the best
ues until all of the tasks
n a fast local search is
e pseudo code for the fast
Alg. I. The main loop
h time N-1 neighbors are
each neighbor the TC

d.
we represent each solution
ts, and each element is an

and N. Fig. 2 shows an
a solution. The third

s two, which means that
ed to the second core.
tation causes satisfaction

nstraint in the sense that
ned to no more than one
mplies that 2�%
 � and

presentation

14751475

• Assimilation: It is modeled by cho
tasks from the vectors of colonies (
tasks to be chosen is given by the f
changing their assigned nod
corresponding values in the imperi

• Revolution: A local search is a
imperialists’ vectors.

• Global War: If the best imperialis
any better after a specific number
global war is performed. A new
generated randomly and the empir
Then the worst existing empires a
the best new empires and a new wo

• Stopping condition: The algorith
after a predetermined number of gl

ALGORITHM I. LOCAL SEARCH
1
2
3
4
5
6
7
8
9

10
11
12

Input: initial solution S, coefficient © Output:ª« = S
i = ¬�®
Select i random tasks; //¯°,¯� ,…, ¯M
for each random task Rj

 V= S[¯N]; //the node that task ¯N is assigned t
 Select the best neighbor of S where task ¯N is
node V and this task of S is called ª±;
 if (TC (ª±) < TC(ª«))
 ª« = ª±;
 end if
end for

The pseudo code of the local search an
provided in Alg. I and II respectively. Fu
initial values of ICA are determined in Tab.

B. Online Scheduling Algorithm
 The online scheduler is called to alloca
that have waited in the execution queue
every scheduling period. Furthermore, un
which are remaining from previous per
migrated from the current host to another
scheduler decision. The migrated tasks can
executions on the new hosts. As a result,
allocates new incoming services in each pe
potential reallocation of older tasks that hav
their executions yet. It should be menti
migration overhead is ignored in this resea
[14]. Because, it can be imagined infinite
migration supported by pre-copying ta
destination host before starting its execution

Figure 3. An scheduling period schem

oosing random
(the number of
factor ¡EB) and

des to their
alist vector.
applied to the

sts did not get
r of iterations,

w population is
res are formed.
are replaced by
orld is created.
hm terminates
lobal wars.

: S1

to it.
s not assigned to

nd the ICA are
urthermore, the
 I.

ate the services
at the start of

nfinished tasks
riods may be
r based on the

n continue their
the algorithm

eriod besides a
ve not finished
ioned that the
arch similar to
esimal for live
ask onto the
n.

me

 New incoming services are
meeting deadlines before we pu
queue. If the execution time of
incoming service on the faste
remaining time until the next s
greater than the service deadli
marked as a strict service. Furth
scheduler and to make it more
scheduler in real-world systems, a
is considered. The algorithm
execution time becomes more tha
period. Therefore, the overhead o
dependent on both the schedulin
other hand, limiting execution tim
decrease in the solution quality o
to satisfy all the constraints
Fortunately, as it is seen in S
appropriate values for �² and S
occurs only in the few experimen
for all experiments.
 The scheduler can run with oth
Fig. 3 illustrates the kth scheduli
Each period is divided into two
ICA is run while the hosts are ru
arrived in the (k-2)th period or e
the services which arrived in th
hosts.

ALGORITHM II. ICA
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Initialize the empires by SH heurist
Move the colonies towards their em
Randomly change characteristics of
if there is a colony which TCcol < TC
 Exchange the positions of that im
end if
Compute the total cost of all empire
Pick the weakest colony from the w
empire that has the most likelihood
if there is an empire with no colonie
 Eliminate this empire;
end if
if there is only one empire then
 Stop condition satisfied;
else
 go to 2;
end if

 Table I. Initial Values fo

Algorithm
P t

Descri
	³´³ Initial Pop

� Local Search

µM¶³ Number of im

	Y·� Number of

¡EB Assimilatio

¸ Colonies im

¹ Iterations befor

;º» Global w

examined in terms of
ut them in the execution
f the longest task of the
est processor, plus the
cheduling invocation, is

ine, then the service is
hermore, to expedite the
applicable as an online

a new stopping condition
is terminated once its
an ²¼ of the scheduling
of scheduling is strongly
ng period and�². On the
me of ICA may lead to a
r it may even not be able

for heavy workloads.
Section V, by selecting
SP, violating constraints
nts and it is less than 3%

her services concurrently.
ing period in the system.
o phases. In the former,
unning the services which
earlier. ICA are assigned
he (k-1)th period to the

ic;
mpires (Assimilation);
f some countries (Revolution);
Cimp then
mperialist and colony;

es (TCemp);
weakest empire and give to the

to possess it;
es then

or ICA parameters

ption Initial
l

pulation 30

h coefficient 0.5

mperialists 5

f colonies 25

on factor 0.3

mpact rate 0.25

re global war 30

war flag 0

14761476

 If a strict service arrives in this phase, it will be
dropped and is not put in the execution queue. After
finishing the first phase, the Running phase is started in
which the scheduler allocates all tasks of the strict
services to the feasible hosts as soon as they arrive. A
feasible host is a one which has adequate available
resources to execute the incoming service besides running
other services which have been already allocated to it.
Moreover, in both phases if a normal service arrives, it
will be added to the execution queue. Consequently, the
maximum waiting time for normal services is �, ��,I�4. Additionally, strict services will certainly meet
their deadlines or they will be dropped when they arrive
in the system.

VI. PERFORMANCE EVALUATION
 To evaluate the performance of the proposed algorithm
based on real world data, we consider a cloud computing
system composed of some common hosts in data centers
similar to [25]. These servers are categorized into four
different types. Specification of each kind is outlined at
Tab. II. To extract the Power Consumption column,
SPECpower [21] is deployed as reference. We also
consider available storage for the hosts as the Disk
column at the table.
 In the problem, each host includes a certain amount of
memory, storage and computing capacity. To provide
computing power, each host uses a multicore processor. It
should be mentioned that the hazard rates of the
components are based on [13] in which 100,000 servers
are examined for a 14 month period. Hazard rates of
components and other system configuration are stated at
Tab. III. The application specification is also expressed at
Tab. IV.
 As we mentioned before, we turn the host off if the
CPU utilization of the host equals to zero in order to
prevent negative impact of idle consumption. In this
situation, the host consumes off-consumption which is
15% of its Pidle. As shown in the Tab. II various hosts
consumed a different amount of energy at the idle state
and thus making the decision about which host should be
off is also a considerable issue which affect the total
energy consumption.

 Table II. Specification of the Hosts

Host
Processor Disk

(GB)
Memory

(GB)

Power Consumption

CPU MHz Cores @active
idle

@100%
utilization

1
Intel
Xeon
7020

2660 8 800 16 520 833

2
Intel
Xeon
7110

2600 8 800 16 575 732

3
Intel
Xeon
3040

1860 2 500 4 86 117

4
Intel
Xeon
3075

2660 2 500 4 93.7 135

 In order to assess of the proposed algorithm, we
implement ICA and express the results at Tab. V. In
addition, as a solution based on the genetic algorithm has
been recently applied in the literature to minimize energy
consumption [17], ICA is compared with GA. Our GA
solution is also modified in such a way that it considers
system reliability along with energy consumption in order
to comprehensive evaluation of the proposed algorithm.
For each problem size, both algorithms run 20 times to
reach 95% confidence interval. We suppose that the
arrival rate of services follows a Poisson process and its
parameter is denoted by the Service Arrival Rate per
scheduling period in the Tab. V. We also consider 0.2 as
the rate of strict service arrival in each period for all
simulations. Reliability, energy and total cost are
computed towards each set of hosts and the different
service arrival rates for both algorithms. � and � are two
coefficients which adjust the influence of reliability and
energy respectively. Therefore the algorithm strive to
maximize reliability irrespective of energy while �=1 and
�=0. In order to achieve a fair trade off between reliability
and energy, we should set the value of � and � to 0.5 and
finally for considering energy without taking reliability
into account, � and � are set to zero and one respectively.

 Table III. System parameters and the corresponding value ranges

System
Parameters

Description Value Ranges

(� Hard Disk Hazard Rate [100, 200]

*� Memory Hazard Rate [100, 200]

)� RAID Controller Hazard Rate [0.00005, 0.00010]

+� Core Hazard Rate [0.0001, 0.0005]

CHR Communication link Hazard Rate [0.00015, 0.00030]

CBW Link Bandwidth [1, 4]

8 Maximum link communication load [20,50]

 The results in Tab. V indicate that in terms of solution
quality, the Imperialist-based algorithm works
significantly better than the genetic algorithm. The energy
consumption of ICA is reduced by 17% and system
unreliability by 9% in comparison with GA. In addition,
the results show that when reliability and energy are
considered simultaneously (i.e., �=�=0.5), energy
consumption is decreased by 83% in comparison with the
none power-aware policy in which the hosts are not
turned-off and consume maximum power.

Table IV. Application parameters and the corresponding value ranges
Parameters Description Value Ranges

- Task Execution Time (sec) [1, 15]

"=" Task Memory (MB) [5, 50]

9: Amount of Communication Data [0.5, 2]

! Service Deadline (sec) [5, 75]

TID Task Interaction Density 0.5

m Number of Tasks in each Service [4, 8]

14771477

Table V. Simulation Results
Hardware

Configuration Service Configuration Imperialist Genetic Algorithm

of hosts # of cores Service Arrival
Rate (Per Period) # of tasks Reliability Energy Total cost Reliability Energy Total Cost

� = 1

12 60 4 20 0.99865 0.61164 0.00134 0.96978 0.71633 0.07961

12 60 7 30 0.99461 0.85875 0.00538 0.89374 0.76328 0.69522
12 60 8 40 0.98531 0.90409 0.01478 0.83909 0.81455 3.8884
16 80 5 20 0.99881 0.44202 0.00118 0.98455 0.47783 0.06217

� = 0 16 80 6 30 0.99545 0.69307 0.00454 0.79068 0.66171 0.52066

16 80 9 40 0.98774 0.85394 0.01232 0.75506 0.77033 1.4418
20 100 4 20 0.99888 0.42475 0.00110 0.99518 0.44234 0.06144
20 100 6 30 0.99596 0.5853 0.00403 0.83068 0.5732 0.43147
20 100 8 40 0.98935 0.70277 0.01069 0.77739 0.67701 1.19941

� = 0.5

12 60 4 20 0.99292 0.15448 0.08078 0.95531 0.17393 0.22281
12 60 7 30 0.97066 0.19009 0.10993 0.87777 0.54773 0.72739
12 60 8 40 0.93400 0.29057 0.17948 0.79101 0.67446 0.79544
16 80 5 20 0.99449 0.14234 0.07392 0.96275 0.06731 0.18735
16 80 6 30 0.97723 0.17116 0.09709 0.85368 0.32614 0.55302

� = 0.5 16 80 9 40 0.93625 0.19098 0.12842 0.78927 0.61829 1.05423

20 100 4 20 0.99496 0.13463 0.06984 0.97581 0.05032 0.13241
20 100 6 30 0.98015 0.08798 0.08798 0.87694 0.25143 0.45164
20 100 8 40 0.95126 0.19942 0.12410 0.79762 0.45272 0.96161

� = 0

12 60 4 20 0.98163 0.15274 0.15274 0.91387 0.07935 0.07935
12 60 7 30 0.90289 0.17146 0.17146 0.85544 0.37014 0.37014
12 60 8 40 0.84761 0.19080 0.19080 0.78411 0.67461 0.67461
16 80 5 20 0.98228 0.14085 0.14085 0.96464 0.05124 0.05124

� = 1 16 80 6 30 0.94651 0.15397 0.15397 0.79038 0.17051 0.17051

16 80 9 40 0.74391 0.16789 0.16789 0.73202 0.47911 0.47911
20 100 4 20 0.96860 0.13363 0.13363 0.95662 0.06009 0.06009
20 100 6 30 0.93179 0.14404 0.14404 0.89445 0.09009 0.09009
20 100 8 40 0.86475 0.15442 0.15442 0.79101 0.25471 0.25471

Figure 4. Reliability and Energy Consumption Percentage

 The simulation results presented in Fig. 4 show the
percentage of reliability and energy consumption of our
proposed algorithm (ICA) for 20 hosts and 8 services. The
results imply that by increasing reliability, more energy is
consumed. This fact becomes crucial when the maximum
reliability is desirable. Although ICA helps to keep
energy consumption less than 32% of its maximum in
most cases, it is noticeable that energy consumption
increases by 40% when reliability grows up to 0.98.
Consequently, system designers can choose the
appropriate � value to reach the acceptable level of
reliability which is stated at the SLA besides minimizing
the energy consumption. In other words, they will be able

to present negotiated QoS with the lowest cost based on
the outcome of this research.

VII. CONCLUSION
 Cloud providers supply a set of services to their end-
users. Allocating the services on hosts of a CCS may
result in different system reliability and energy
consumption. In the paper, we proposed a mathematical
model to evaluate reliability based on a proper service
allocation approach. Processor, memory, hard disk, RAID
controller and communication link failures were taken
into consideration in order to present a holistic reliability
model which is only based on a fully connected mesh
topology. Furthermore, an energy model was also
proposed. This model considers host energy consumption
with respect to its CPU utilization. Off-consumption is
also considered in order to present a comprehensive
model. Moreover, service deadlines as QoS besides other
resource constraints were formulated elaborately. By
integrating the reliability model, the energy model and the
system constraints, an ILP solution was suggested.
Subsequently, an efficient online resource scheduler is
introduced to find a solution with the right compromise
between reliability and energy consumption while

14781478

satisfying QoS and other system constraints. The
proposed solution was compared with an alternative
solution using genetic algorithms for a wide range of
problem sizes. The simulation results indicate that the
energy consumption of ICA is reduced by 17% and
system unreliability by 9%. Also, results manifest that
energy consumption is decreased by 83% in comparison
with a none power-aware policy.

REFERENCES
[1] G. Gruman and E. Knorr, “What Cloud Computing really

means,” Technical report, Info World Inc., 2008.
[2] E. Atashpaz-Gargari and C. Lucas, “Imperialist Competitive

Algorithm: An algorithm for optimization inspired by
imperialistic competition,” IEEE Congress on Evolutionary
Computation, 2007.

[3] K. Church, A. Greenberg, and J. Hamilton, “On Delivering
Embarrassingly Distributed Cloud Services,” 2008.

[4] L. Pamies-Juarez, P. García-López, M. Sánchez-Artigas, and
B. Herrera, “Towards the design of optimal data redundancy
schemes for heterogeneous cloud storage infrastructures,”
Computer Networks, vol. 55, no. 5, pp. 1100–1113, Apr. 2011.

[5] L. Ai, M. Tang, and C. Fidge, “QoS-oriented Resource
Allocation and Scheduling of Multiple Composite Web
Services in a Hybrid Cloud Using a Random-Key Genetic
Algorithm,” vol. 12, no. 1, pp. 29–34, 2010.

[6] Q. Li, “Optimization of Resource Scheduling in Cloud
Computing,” 2010 12th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing, no. 1, pp.
315–320, Sep. 2010.

[7] Y. Dai, B. Yang, J. Dongarra, and G. Zhang, “Cloud Service
Reliability : Modeling and Analysis,” 15th IEEE Pacific Rim
International Symposium on Dependable Computing. 2009.

[8] Y. Lin and P. Chang, “Evaluation of System Reliability for a
Cloud Computing System with Imperfect Nodes,” pp. 83–94,
2011.

[9] B. Cao, B. Li, and Q. Xia, “A Service-Oriented Qos-Assured
and Multi-Agent Cloud Computing Architecture,” pp. 644–
649, 2009.

[10] D. Armstrong and K. Djemame, “Towards Quality of Service
in the Cloud,” in Proc. of the 25th UK Performance
Engineering Workshop, 2009.

[11] J. W. S. W. Liu, Real-time systems. Prentice Hall PTR, 2000.
[12] S. M. Shatz, J.-P. Wang, and M. Goto, “Task allocation for

maximizing reliability of distributed computer systems,”
Computers, IEEE Transactions on, vol. 41, no. 9, pp. 1156–
1168, 1992.

[13] K. V. Vishwanath, N. Nagappan, "Characterizing cloud
computing hardware reliability", ACM Symposium on Cloud
Computing, USA, 2010.

[14] R. Buyya, A. Beloglazov, and J. Abawajy, “Energy-Efficient
Management of Data Center Resources for Cloud
Computing : A Vision, Architectural Elements, and Open
Challenges,” Proc. of the 2010 International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA), Las Vegas, USA, July 12-15, 2010.

[15] A. Beloglazov, Y. C. Lee, and A. Zomaya, “A Taxonomy and
Survey of Energy-Efficient Data Centers and Cloud
Computing Systems,” vol. 82., 2010.

[16] Y. C. Lee and A. Y. Zomaya, “Energy efficient utilization of
resources in cloud computing systems,” The Journal of
Supercomputing, vol. 60, no. 2, pp. 268–280, Mar. 2010.

[17] M. Mezmaz, N. Melab, Y. Kessaci, Y. C. Lee, E.-G. Talbi, a.
Y. Zomaya, and D. Tuyttens, “A parallel bi-objective hybrid
metaheuristic for energy-aware scheduling for cloud
computing systems,” Journal of Parallel and Distributed
Computing, vol. 71, no. 11, pp. 1497–1508, Nov. 2011.

[18] Young Choon Lee; Zomaya, A.Y., "Energy Conscious
Scheduling for Distributed Computing Systems under
Different Operating Conditions," Parallel and Distributed
Systems, IEEE Transactions on , vol.22, no.8, pp.1374,1381,
Aug. 2011.

[19] Fan X, Weber WD, Barroso LA. Power provisioning for a
warehouse-sized computer. Proceedings of the 34th Annual
International Symposium on Computer Architecture (ISCA),
ACM New York, NY, USA, 2007; 13– 23, 2007.

[20] A. Orgerie, L. Lefevre, and J. Gelas, “Demystifying energy
consumption in Grids and Clouds,” Green Computing …,
2010.

[21] The SPECpower benchmark,
http://www.spec.org/power_ssj2008/

[22] K. H. Kim, R. Buyya, and J. Kim, “Power Aware Scheduling
of Bag-of-Tasks Applications with Deadline Constraints on
DVS-enabled Clusters,” Seventh IEEE International
Symposium on Cluster Computing and the Grid (CCGrid
’07), pp. 541–548, May 2007.

[23] B. Rountree, D.K. Lowenthal, S. Funk, V.W. Freeh, B.R. de
Supinski, M. Schulz, Bounding energy consumption in large-
scale MPI programs, in: Proceedings of the ACM/IEEE
Conference on Supercomputing, , pp. 1–9, November 2007.

[24] X. Zhong, S. Member, C. Xu, and S. Member, “Energy-Aware
Modeling and Scheduling for Dynamic Voltage Scaling with
Statistical Real-Time Guarantee,” vol. 56, no. 3, pp. 358–372,
2007.

[25] A. Beloglazov and R. Buyya, “Optimal online deterministic
algorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in Cloud
data centers,” Concurrency and Computation: Practice and
Experience, vol. 24, no. 13, pp. 1397–1420, Sep. 2012.

[26] H. R. Faragardi, R. Shojaee, and N. Yazdani, “Reliability-
Aware Task Allocation in Distributed Computing Systems
using Hybrid Simulated Annealing and Tabu Search,” in 14th
IEEE International Conference on High Performance
Computing and Communications, 2012, pp. 1088–1095.

[27] R. Shojaee, H. R. Faragardi, S. Alaee, and N. Yazdani, “A
New Cat Swarm Optimization based Algorithm for
Reliability-Oriented Task Allocation in Distributed Systems,”
in Sixth International Symposium on Telecommunications
(IST), 2012, pp. 861–866.

[28] H. R. Faragardi, R. Shojaee, M. Mirzazad-Barijough, and R.
Nosrati, “Allocation of hard real-time periodic tasks for
reliability maximization in distributed systems,” in
Computational Science and Engineering (CSE), 2012 IEEE
15th International Conference on, 2012, pp. 42–49.

[29] H. R. Faragardi, R. Shojaee, M. A. Keshtkar, and H. Tabani,
“Optimal Task Allocation for Maximizing Reliability in
Distributed Real-time Systems,” in Computer and Information
Science (ICIS), 2013 IEEE/ACIS 12th International
Conference on, 2013.

[30] H. R. Faragardi, R. Shojaee, H. Tabani, and A. Rajabi, “An
Analytical Model to Evaluate Reliability of Cloud Computing
Systems in the Presence of QoS Requirements,” in Computer
and Information Science (ICIS), 2013 IEEE/ACIS 12th
International Conference on, 2013.

[31] R. Shojaee, H.R. Faragardi and N. Yazdani. “From Reliable
Distributed System toward Reliable Cloud by Cat Swarm
Optimization”, International Journal of Information and
Communication, accepted in August 2013.

[32] A. Rajabi, H.R. Faragardi and N. Yazdani. “Communication-
aware and Energy-efficient Resource Provisioning for Real-
Time Cloud Services”, 17th CSI Symposium on Computer
Architecture & Digital Systems (CADS), Iran, 2013.

[33] A. Rajabi, V. Ebrahimirad, N. Yazdani. “Decision Support-as-
a-Service: An Energy-aware Decision Support Service in
Cloud Computing” 5th International Conference on
Information and Knowledge Technology (IKT), Iran, 2013.

14791479

