Simulation Results and Algorithm Details for Value
Based Overload Handling

Jan Carlson, Tomas Lennvall and Gerhard Fohler
Department of Computer Engineering,
Malardalen University, Sweden
{jen,tlv,gfr}@Qmdh.se

Abstract

In this paper we present the simulation results for a proposed algorithm
for value based task rejection in the presence of offline scheduled tasks for
which a timely execution have to be guaranteed. We also describe in detail
the algorithm for computing overload amounts.

1 Algorithm for computing overload amount

Given the deadlines and remaining execution times of the aperiodic tasks, and the
spare capacity (slots not reserved for offline scheduled tasks) of consecutive intervals,
this algorithm computes the overload amount of each aperiodic task.

Let 71 ... 7, be a sequence of aperiodic tasks sorted by increasing deadline. Also,
assume a sequence of consecutive, non-empty, time intervals, each associated to a
number of offline scheduled tasks as defined by the slotshifting algorithm [Foh95].
The following additional notation is used in the algorithm.

dl, the deadline of 7,
¢, the remaining execution time of 7,
end, the end time of interval number z
sc, the spare capacity of interval number x
oa, will be assigned the overload amount of 7,

Algorithm

Let ¢t be the current time, and ¢i the number of the interval that ¢t belongs to.
Further, assign oa; := ¢;. If the algorithm is called with compute-oa(ct, 1, ci, sc.;),
then oa contains the overload values for 7 to 7,,, upon termination.

function compute-oa(t,d,i,c)
if d < n then
if dl; < end; then
tmp := min(c,dly — t)
oaq = oaq — tmp
if d < n then oayy1 = oaq + c441
compute-oa(dly,d + 1,1, ¢ — tmp)
else
oaq :=oaq — ¢
compute-oa(end;, d,i + 1,5¢;11)

Note that the function is tail-recursive and thus can be implemented with
bounded memory, e.g., as a standard imperative loop.

Complexity

Before considering the complexity of the algorithm, we formulate an invariant, i.e.,
a proposition that is true every time the function is called. For this, we define in(x)
to be the number of the interval containing the time z. This allow us to formulate
the invariant as i < in(dly).

The correctness of the invariant is proven as follows. For the initial call to the
function, we have i = ¢i < in(dl;) since no task in the sequens has already violated
its deadline. Next, we assume that the invariant holds for one call, and show that
this implies that it must hold for the next recursive call as well.

If the first branch of the if-then-else statement is selected, ¢ is unchanged and
dis increased by one in the next recursive call. Since in(dly) < in(dlgy1), and since
i < in(dly) by assumption, we have i < in(dlg4+1) so the invariant holds for the next
call as well.

If, instead, the else branch is selected, we must have dly > end;. Assume further
that the invariant does not hold for the next call. Than, since it holds for the
current call, we must have i = in(dly). This implies that end; > dl;, which leads to
a contradiction and thus proves that the invariant must hold for the next call.

By induction, we have now shown that the invariant holds each time the function
is called.

Since we have d < n, the invariant implies ¢ < in(dl,). Also, we know that d
and ¢ are never decreased, that one of them is increased in each recursive call, and
that they are initalised to 1 and ci respectivly. This implies that the total number
of calls to the function can be no more than n + m, where m is the number of
intervals between the current time, and the deadline of 7,,. Thus, the worst case
time complexity of the algorithm is in O(n 4+ m).

2 Simulations

We have implemented the algorithms described in [CLFO03], and have simulated
various scenarios. The simulated system consists of 8 processing nodes, connected
via a network where all necessary messages can be sent during one time slot.

Each simulation has a length of 2000 slots. The randomly created offline sched-
ules have a load of 0.4, evenly distributed over the nodes, and their length varies
between 300 and 1000 slots.

Worst case computation time for both offline and aperiodic tasks varies uni-
formly in the range 1-10. Aperiodic tasks are assigned an actual execution time
uniformly distributed between 0.5 and 1.0 of its wcet, and relative deadlines varying
between 1-3 times wecet.

Arrival times of aperiodic tasks are distributed over the simulation length, with
the restriction that no task have a deadline exceeding the simulation length. Finally,
values of aperiodic tasks vary uniformly in the range 1-100.

The total system load varies between 0.8 and 3.0, the offline load of 0.4 included.
The load parameter is based on wcet, and thus represents the load as perceived by
the overload algorithm. The actual system load is lower!, since execution time is
less than wcet.

IThe actual system load varies approximately between 0.7 and 2.35 in the experiments, calcu-
lated from the distribution of actual execution times

Experiment 1: Method comparison

We have studied the total accumulated value of aperiodic tasks that finished in
time, and the following methods have been compared:

1. The full method presented in the paper (Migration).
2. The overload handling algorithm, without task migration (Local).

3. A basic algorithm that uses the offline schedule, assigning idle slots to aperi-
odic tasks based on value density (Offline Valuedensity).

4. Same as 3, but aperiodic tasks are ordered by value (Offline Value).
5. Same as 3, but aperiodic tasks are ordered EDF (Offline EDF).
6. Same as 3, but aperiodic tasks are serviced in order of arrival. (Offline FCFS).

Methods 1 and 2 implement the efficiency improvements suggested in [CLF03]. Each
point in the figures represents some 300 simulations.

In the first part of the experiment, all nodes in the system are subject to the
same amount of load. The result is presented in Figure 1. Here, the possibility
of task migration does not provide any significant improvement. Compared to the
basic method, the performance of the proposed method is significantly higher.

The second part of the experiment, shown in Figure 2, is a scenario of unevenly
distributed load. Half of the nodes have no aperiodic tasks arriving, only offline
scheduled tasks. Here, the task migration algorithm clearly increases the system
performance, compared to overload handling without migration, because tasks can
migrate to nodes with no aperiodic load.

Experiment 2: Restrictions

The theoretical worst case time complexity of the overload algorithm, for a ready
queue of length n, is O(n?). This experiment shows how the execution time is af-
fected by system load, and the impact on performance from restricting the algorithm
as suggested in [CLF03] to deal with complexity issues.

The parameter cutoff denotes the maximum length of the ready queue. lL.e.,
tasks that are inserted at a position greater than cutoff are automatically rejected,
which means that they are placed in the maybe-later queue (if they just arrived,
or if they were in the ready queue during the previous slot), or not stolen (if they
were from a maybe-later queue).

We have measured the total accumulated value of aperiodic tasks that finished in
time (similar to experiment 1) for different cutoff values. Execution time has been
approximated by the number of arithmetic, comparison and assignment operation
performed in the overload algorithm, including the computation of o-values.

The parameters are the same as in experiment 1, with the load evenly distributed
over the nodes, and using the full method from the paper (Migration). Figure 3
shows the accumulated value for different cutoff values. In Figure 4, the average
number of operations for a single call to the overload algorithm is presented. Fig-
ure 5 gives the maximum number of operations performed during a single call to
the overload algorithm. Each point in the figures represents some 300 simulations.
Thus, in figures 4 and 5, each point represents over 4 million calls to the overload
algorithm (8 nodes, and a simulation length of 2000).

In practice, the execution time is not as big an issue as the theoretical complex-
ity suggests. None of the 57 million calls to the overload algorithm made during
simulations needed more than 720 operations to be performed.

Accumulated value *107

Accumulated value *10°

—— 1. Migration
——2. Local

—&— 3. Offline Valuedensity
—>%—4. Offline Value
—©—5. Offline EDF

—&— 6. Offline FCFS

1,2 14 16 18 2

System load

22 24 26

Figure 1: Accumulated value for even load distribution.

2,8

—— 1. Migration
—4—2. Local

—&— 3. Offline Valuedensity
—%—4. Offline Value

—6—5. Offline EDF
—&— 6. Offline FCFS

1,6

1,8 2
System load

22 24 26

Figure 2: Accumulated value for uneven load distribution.

2,8

200

—— cutoff=15
175 L cutoff
s —&— cutoff=10
T 150
o —@— cutoff=5
=]
5 125
>
© 100
£ P
3 75
S
3 50 o
<
25
0 T T T T T T T T T T
08 1 12 14 16 18 2 22 24 26 28
System load
Figure 3: Accumulated value for different cutoff values.
100
—i—cutoff=15
80 4 —e—cutoff=10 /!/.
—&— cutoff=5
£ 60
I
@
& 40
20 ././
0 T T T T

0,8 1 12 14 16 138 2 22 24 26 28
System load

Figure 4: Average number of operations for different cutoff values.

750

—B— cutoff=15 W
| | —e—cutoff=10
—8— cutoff=5 / /.\

e

(o))

o

o
!

Operations
w N
S Iy
o o

N
A
o

0,8 1 1,2 14 16 18 2 22 24 26 28 3
System load

Figure 5: Maximum number of operations for different cutoff values.

This is partly because the ready queue size (which is the parameter used in
the complexity analysis) is not proportional to system load. Also, the worst case
assumes that none of the restrictions are trivially solved by the solution to the
previous ones, which is highly unlikely when the queue is long.

The simulations show that restricting the length of the ready queue significantly
reduces worst case execution time, with only a moderate performance decrease.

References

[CLF03] J. Carlson, T. Lennvall, and G. Fohler. Enhancing time triggered schedul-
ing with value based overload handling and task migration. In 6th IEEE
International Symposium on Object-oriented Real-time distributed Com-
puting, Hakodate, Japan, May 2003.

[Foh95] G. Fohler. Joint scheduling of distributed complex periodic and hard ape-
riodic tasks in statically scheduled systems. In Proceedings of the 16th
Real-Time Systems Symposium, Pisa, Italy, Dec. 1995.

