
Saving Energy by Means of Dynamic Load
Management in Embedded Multicore Systems

Matthias Becker∗, Adriaan Schmidt†, Martin Orehek‡, Thomas Nolte∗
∗MRTC / Mälardalen University, Västerås, Sweden

{matthias.becker, thomas.nolte}@mdh.se
†Fraunhofer Institute for Embedded Systems and Communication Technologies ESK, Munich, Germany

adriaan.schmidt@esk.fraunhofer.de
‡University of Applied Sciences Munich, Munich, Germany

martin.orehek@hm.edu

Abstract—Load balancing is widely used to optimize response
times and throughput of software systems. When considering
embedded systems, however, additional optimization goals like
energy consumption become relevant. In this paper, we explore
the use of load balancing in embedded multicore applications. We
present extensions to three prominent load balancing schemes,
enabling them to dynamically scale the number of active cores.
We integrated the algorithms in a proprietary operating system
targeting multicore embedded systems. Our evaluation, which
is based on a telecommunication (VoIP) scenario, shows that a
significant reduction in energy consumption is possible.

I. INTRODUCTION

One important problem in the context of multicore systems
is the scheduling of computational tasks onto the available
cores [1]. In contrast to single core systems, where the only
decision is when to execute which software, the scheduling
problem is now two-dimensional: in addition to the time
domain, there is a space domain. The decision becomes when
and where, that is on which core, software is executed. The
goal is to optimally utilize the available processing power,
maximize throughput, and minimize system response times.
Modern operating systems with Symmetric Multi Processing
(SMP) architectures address both dimensions simultaneously,
performing dynamic scheduling and load balancing. Tasks are
automatically assigned to cores, and are migrated when the
utilization of the cores changes. This way, some of the com-
plexity of the platform is hidden from the software developer.

While this approach is successful in desktop and server
applications, its use in embedded systems is limited. Applica-
tions with real-time requirements often cannot tolerate the non-
determinism associated with SMP architectures. The sources
of non-determinism include locks on shared data structures
within the kernel [2], as well as the dynamic scheduling itself.
In addition, SMP is not suited for some of the hardware plat-
forms encountered in embedded systems. The shared memory
programming model commonly used in the implementation of
SMP systems requires a coherent cache infrastructure. In our
work, we target a specific embedded platform that omits a
cache coherence fabric to save chip area and costs, and can
therefore not execute SMP operating systems. Heterogeneous
hardware platforms form another class of systems that do not
easily support SMP architectures.

Instead, many embedded systems use Asymmetric Multi
Processing (AMP), where cores operate independently, either

running different instances of the same operating system, or
completely different environments altogether. This splits the
two-dimensional scheduling problem, with the scheduler on
each core only handling the time domain by performing local
scheduling. In strict AMP systems, placement of tasks onto
cores is performed at design time and does not change at
runtime. While this approach can give the developer better
control over the system behavior and permits analyses to verify
that timing requirements are met, it also creates more static
systems than SMP.

In this paper, we explore the benefits of load management
in embedded multicore systems. We target soft real-time
systems, i.e., systems that are optimized for throughput, but
while there are real-time requirements, violations of deadlines
are permitted to a certain degree. Examples of such systems are
devices that process media (audio/video) streams. The concrete
use-case on which our evaluation is based is a system that
performs encoding and decoding of multiple Voice-over-IP
(VoIP) streams in real-time.

To achieve management of load, we extend a single-
core operating system with algorithms for inter-core com-
munication, task migration and load balancing. To maintain
independence of cores, our approach is designed to solely
communicate via asynchronous message passing; no shared
data structures are used. Our extensions introduce no additional
synchronization, which means that all advantages of the AMP
architecture remain. The resulting architecture can be regarded
as a multikernel operating system [3]. These design decisions
make it possible to use existing load balancing schemes from
the area of distributed systems as the starting point of our work
[4].

The common optimization goal in load balancing is an even
distribution of computational load to achieve minimal response
times and highest possible throughput. In many embedded
systems, this goal can be relaxed: often a system has to meet
certain deadlines, but there is no gain in finishing execution
ahead of time. So the response time does not need to be “as fast
as possible”, it just needs to be “fast enough”, in the context
of the system in question. On the other hand, there may exist
different optimization goals in embedded systems, e.g., low
energy consumption to reduce cost and heat dissipation. With
this in mind, we extend existing load balancing algorithms to
make them “energy aware”. This means that during system



S

S

S

SS

M

(a) Centralized Load Balancing:
Master-slave communication; only the
master (M) has information on global
system state.

N

N

N

NN

(b) Distributed Load Balancing:
Nodes (N) communicate directly with
their neighbors; all nodes have informa-
tion on global system state.

N

N

N

NN

(c) Heuristic Load Balancing:
Nodes (N) communicate based on a
heuristic pattern; no node has informa-
tion on global system state.

Fig. 1. Communication structure of different load balancing strategies.

operation, the number of active cores is scaled dynamically
according to system load, thus reducing power consumption
of the processor.

We select three different load balancing schemes: one
centralized, one distributed, and one heuristic approach. Their
different communication structures are shown in Fig. 1. We im-
plement each of them, first based on the original concept, and
then with our extensions for energy awareness. We evaluate
the implementations in an embedded multicore system, with
different types of load, representative of applications in the area
of telecommunication. To quantify the difference between the
algorithms, we measure execution times and deadline misses
of our load applications as well as energy consumption of the
processor cores. Finally, we provide an estimate of the possible
energy savings when using energy aware load balancing in a
real-world system.

The system architecture we propose, i.e., asymmetric mul-
tiprocessing extended with dynamic, energy aware load bal-
ancing, offers several benefits. Being based on AMP concepts,
the approach maintains its suitability for embedded and real-
time applications. At the same time the dynamic load balancing
enables high throughput, with no need for a static allocation of
tasks to cores. In addition, the measures to scale the number of
active cores according to system load can significantly reduce
the energy consumption of the embedded system.

The rest of this paper is structured as follows. Section II
summarizes the related work, including the existing load bal-
ancing schemes we use as basis for our own implementations.
Section III describes in detail the selected load balancing
approaches. In Section IV we present our extensions that scale
the number of active cores according to system load, and
thus make the algorithms energy aware. Section V describes
our evaluation methodology and results. Finally, Section VI
concludes the paper.

II. RELATED WORK

Much research has been conducted in the field of power
aware scheduling. Most proposed approaches apply Dynamic
Voltage and Frequency Scaling (DVFS) to adapt the processor
speed to the workload. This is done either at design time or
during runtime. The power aware scheduling by Aydin et al. [5]
is one example for a single core DVFS scheduler. They use an

offline based static worst case solution to set an initial proces-
sor speed which is then modified during runtime based on the
actual workload and on speculative adaption based on future
executions. Muthukaruppan et al. [6] propose a hierarchical
power management framework. They focus on asymmetric
multicore platforms and an evaluation is performed on real
hardware. Different control loops are used to assign tasks to
cores and frequencies to clusters. Annamalai, et al. [7] propose
a dynamic thread scheduling for AMPs. They use hardware
counters as feedback while keeping the OS unaware of the
concrete microarchitecture used. If the power consumption
of one thread changes during execution it is detected by the
monitor, and thread swapping is applied. For our case, where
we assume identical cores, such an AMP based approach could
be considered if we set different frequencies for each core like
done in [8]. However, changing the operation frequency at
runtime comes with drawbacks. A different frequency leads
to a different worst case execution time, affecting latency and
introducing jitter. Considering these effects in the algorithms
can lead to more complexity and larger overhead. Therefore we
restrict our approach to using only two states active and idle.
Switching between the two states is done based on thresholds.
Pinheiro et al. [9] use load unbalancing to scale the number
of nodes in a cluster of workstations or PCs. If the system
load increases, additional cluster nodes are turned on, while at
times of low load, cluster nodes are turned off. Jeon et al. [10]
use a similar principle on an embedded multicore processor.
They use rate-monotonic priority assignment and exploit the
utilization threshold to concentrate the periodic tasks on as few
cores as possible. For tasks with unknown duration, shortest-
queue scheduling is applied, and thus they are distributed to
all available cores. Liu and Yang [11] propose a two level
hierarchical scheduling scheme for hard real-time tasks on a
homogeneous multicore embedded processor. Similar to [10],
they consider the two task types periodic and aperiodic.

With increasing number of cores on one processor, there
is need for operating system support to fully utilize the pro-
cessors’ potential. In contrast to traditional operating system
concepts, like the monolithic kernel of Linux, distributed
operating system designs gain in popularity. Monolithic kernel
operating systems require locking of kernel data structures.
With rising core numbers, the wait time for those locks
increases, and they can become bottlenecks [2]. Baumann et



al. [3] propose a multikernel operating system. They show
how ideas from distributed systems and networks can be used
in such a design to reduce problems of traditional designs.
Wetzlaff and Agarwal [12] use a similar approach for their
factored operating system (fos). The main objective of fos
is the scalability to future manycore systems with hundreds
of cores. fos uses message passing between the cores with
Internet-like communication structures. Holmbacka et al. [13]
extend FreeRTOS with a task migration mechanism, allowing
it to run individual instances of the operating system on
the cores of an embedded multicore processor. The cores
use message passing to communicate, and thus implement
a multikernel architecture. Like argued in [4], well known
algorithms from distributed systems can be transfered to such
operating systems.

Willebeek-LeMair and Reeves [14] compare five different
dynamic load balancing algorithms and illustrate the trade-
off between the accuracy of information the different nodes
have on the overall system state and the overhead introduced
by the algorithm. Their simulations indicate that, from the
algorithms they compared, the Receiver Initiated Diffusion
approach performs best for a large variety of applications
and a large range of system topologies. Lan and Yu [15]
propose a centralized load balancing algorithm using two
thresholds to split the load levels into LOW, NORMAL and
HIGH. Their algorithm reduces the average task response time
compared to previously proposed centralized load balancing
algorithms. Additionally, Lan and Yu explore different invo-
cation strategies, comparing instantaneous load balancing, that
reacts immediately to load changes, to periodically invoked
load balancing. Their work shows that instantaneous load
balancing reduces average task response times at the cost of
greater message overhead compared to periodic load balancing.
More recently, a non-blocking work-stealing algorithm has
been proposed by Arora et al. [16]. This approach becomes
increasingly popular especially in industry since it shows good
results for a range of applications [17]–[19].

III. LOAD BALANCING IN EMBEDDED MULTICORE
SYSTEMS

Load Balancing is the process of distributing workload to
a number of resources, in our case the cores of a multicore
processor. The main goal of load balancing in distributed
systems is to achieve an equal workload distribution over
all cores to obtain minimal response times and maximize
throughput. The load balancing process can be divided into
four steps [14]:

1) Processor load evaluation: To measure the work-
loads of the cores a common metric is defined, and
the load is evaluated according to this metric.

2) Load balancing profitability determination: Dur-
ing this phase the decision is made whether load
balancing is profitable at the current time.

3) Task migration strategy: If load balancing is found
profitable, the source and the destination cores are de-
termined, along with the amount of load to exchange.

4) Task selection strategy: The source core selects the
tasks for effective load balancing and migrates them
to the destination core.

Phases two and three are addressed by the actual load
balancing algorithm and represent the main focus of this paper.

For the work of this paper, we selected three prominent
load balancing algorithms. One of the main criteria in selecting
the algorithms is to cover a variety of different strategies to
get an overview of their benefits and downsides.

We selected one centralized, one distributed and one heuris-
tic algorithm (Fig. 1). The centralized approach makes all load
balancing decisions at a central point in the system, whereas
the decentralized approach lacks such a component; instead all
elements are equally allowed to make load balancing decisions.
The last approach initiates load balancing based on a heuristic
principle, which sets it apart from the first two.

During operation, all three algorithms rely on a message
passing infrastructure provided by the OS. Incoming messages
are handled at each operating system tick, with the period
defined as tperiod, OS. The load balancing algorithms themselves
are invoked periodically, at a lower frequency than the oper-
ating system tick: pLB · tperiod, OS.

Table I lists all messages used by the three algorithms,
including the arguments passed as message data. In the de-
scriptions of messages and algorithms, we refer to processor
cores as Pi, and to their load as Li.

A. Centralized Load Balancing Approach

We selected the Central Scheduler Load Balancing (CSLB)
algorithm as representative of the centralized load balancing
schemes. The CSLB algorithm was proposed by Lan and Yu
[15]. It is originally designed for distributed systems, and
we adapted it to fit the needs of the embedded multicore
platform. Each participating core is a so called local node.
A central component, the central scheduler, keeps track of the
different load levels of the system and performs load balancing
if needed.

When the load level on a local node changes, a Load
Update message is sent to the central scheduler. To lower the
volume of these messages, the algorithm uses two thresholds,
TLOW and THIGH, to split the load levels of the local nodes
into three states: LOW, NORMAL and HIGH. Messages are
only sent when the load level crosses one of the thresholds.

The central scheduler is the main component of the al-
gorithm. It consists of two main parts, the load list and the
decision maker. Additionally, it has a queue to receive update
messages from the local nodes. The load list is implemented
as ordered list and sorted by load. Each element of the list
represents one local node consisting of its ID and its current
load.

The profitability of load balancing is determined by the
decision maker, based on information received in the Load
Updates from the local nodes. If the decision maker detects an
imbalance in load levels it initiates load balancing. This is the
case if the load list contains at least one node in state LOW
and one node in state HIGH.

For the third phase, the task migration strategy, the algo-
rithm takes the entry with the smallest load and the entry
with the biggest load from the load list. Those entries are
called Plow and Phigh. It then attempts to balance the load



TABLE I. MESSAGES USED BY THE LOAD BALANCING ALGORITHMS,
INCLUDING THEIR ARGUMENTS

Central Scheduler Load Balancing
New Threshold Notification of new thresholds, sent by

central scheduler
Thigh new threshold for HIGH state
Tlow new threshold for LOW state

Balance Load balancing request, sent by central
scheduler

LE amount of load to migrate
Pdestination destination core

Load Update Notification of change in load level,
sent by local nodes

Pi sending core
Li load level of core Pi

Receiver Initiated Diffusion
Load Update Notification of change in load level

Pi sending core
Li load level of core Pi

Load Request Request to migrate load
Pi core requesting the load
Lrequest amount of load requested

Request Handled notification that load request was han-
dled

— (no arguments)

Load Stealing
Steal Request Request to migrate load

Pthief core requesting the load
Lthief load level of core Pthief

between those two nodes. This is done until no more high/low
combinations are found in the list. Load balancing algorithms
that first balance the lowest with the highest node in the system
are called fair as stated by Lan and Yu [15].

To balance the load between Plow and Phigh the excess load,
LE , is computed from their respective load levels, Llow and
Lhigh:

LE =
Lhigh + Llow

2
− Llow

The central scheduler then sends a Balance message to Phigh,
requesting it to migrate its excess load to Plow.

The central scheduler is also responsible to manage the
thresholds Tlow and Thigh. These are computed dynamically
and broadcast to the local nodes whenever they change. The
threshold values are based on the average system load,

LAV = 1
N

N−1∑
i=0

Li, where N is the number of local nodes and

Li is the load of node i. They are calculated as:

Thigh = max{Thigh min, h · LAV}
Tlow = max{Tlow min, l · LAV}

The parameters l and h are used to configure the behavior
of the algorithm. With the following restrictions: l ≤ 1 and
h ≥ 1.

B. Distributed Load Balancing Approach

Here we describe a distributed approach to load balancing
based on the Receiver Initiated Diffusion (RID) algorithm,

originally proposed by Willebeek-LeMair and Reeves [14].
Receiver initiated approaches have the advantage that the load
balancing overhead occurs on cores with low load in contrary
to sender initiated approaches where the highly loaded cores
perform most of the load balancing calculations. RID achieves
load balancing through a fully distributed asynchronous ap-
proach. The same algorithm runs on each core independently.

In the original algorithm, the target system is viewed as
a graph, with cores represented by nodes and their communi-
cation channels by edges. Each node balances its load among
a set of neighbors, its “domain”. As the algorithm originates
from distributed systems, the domains are defined by the given
hardware topology. We can assume that, on an embedded
multicore processor, all cores can directly communicate with
each other. Thus, the graph of communication channels is
always fully connected, and we can simplify the algorithms
accordingly. Luque et al. [20] showed that under these condi-
tions, a distributed diffusion approach reaches the equilibrium
after just one load balancing step.

To determine if load balancing is profitable, two steps
are taken. First the load of the node has to be less than a
user defined threshold Tlow. If low load is detected, the node

computes the average load of its domain as LAV = 1
N

N−1∑
i=0

Li.

To avoid unnecessary load migrations, a second threshold,
Tdiff, is used by the algorithm. This threshold describes the
minimal needed difference between LAV and Li to proceed
with the algorithm.

If LAV−Li ≥ Tdiff, the third load balancing phase is started,
and a weight hk is assigned to each neighbor:

hk = max{0, Lk − LAV}

The weights are added up to determine the total surplus Hi of
all nodes in the domain of core Pi:

Hi =

N−1∑
k=0

hk

After each neighbor has been assigned a weight portion we
can compute the load amount the node Pi requests from those
neighbors:

δk = (LAV − Li)
hk
Hi

Because the algorithm operates asynchronously on the different
cores, messages can be based on old information. Specifically,
cores can request more load than the respective node can
spare. To avoid this situation, we introduce a load budget,
Lbudget = Li

2 . In one load balancing cycle, a node does
not migrate more than half its load; additional Load Request
messages are ignored.

The load update strategy, i.e., the time and frequency
of load updates, is one crucial factor in order to obtain
good results. This is especially important in distributed load
balancing algorithms, because too many updates increase the
overhead and may slow down the performance of the system,
while too few updates result in many requests based on old
information that can not be satisfied. Willebeek-LeMair and
Reeves [14] propose a variable update interval that yields a



constant error percentage in the load information but reduces
the overhead due to the update messages.

A factor Fupdate is introduced. In combination with the last
update value sent, Llast, two thresholds are computed:

Tupdate low = Llast · Fupdate

Tupdate high =
Llast

Fupdate

This leads to update messages on the order of logFupdate
(Llast)

and the error percentage of the load information will be at
most 1/Fupdate [14].

The frequency of update messages increases as the load
decreases. This means that information is most accurate for
nodes with low load, which is where it is most important for
the load balancing algorithm.

C. Heuristic Load Balancing Approach

The non-blocking work-stealing algorithm of Arora et al.
[16] takes a heuristic approach in load balancing and is the
basis for all work-stealing algorithms. Work-stealing is one of
the most popular load balancing techniques in both industry
and academia [21] due to its simplicity and effectiveness.

Each core acts independently, and work stealing is only
initiated once a core detects that it is underloaded. Unlike the
previously described algorithms, in work-stealing no core has
any information about the load levels on the other cores. If
a core detects that it is underloaded, another core is chosen
at random, and the core attempts to steal load from this core.
The algorithm described by Arora et al. was designed to steal
only one element with each steal attempt. However, several
authors argue that the algorithms can be improved if more
than one element is stolen at a time [17], [22]. The basic
load balancing algorithm we implement is similar to the one
described by Hendler and Shavit [21]. Their algorithm allows
stealing of up to half the load from other cores. They assume a
local work queue for each core. Stealing cores access the other
cores’ queues directly. Thus the case where two parties access
one work queue at the same time must be considered. The
multikernel architecture prevents such situations. If one core
attempts to steal, it has to use the message passing mechanism
provided by the operating system, which provides an implicit
synchronization of the queue accesses.

The load balancing profitability determination is spread
over two cores. One core (the thief) initiates load stealing if
its load is lower than a predefined threshold Tlow. If this is the
case the core selects one of its neighbors at random (the victim)
and attempts to steal load by sending a Steal Request message.
The receiving core now has to decide whether load balancing
is profitable, and the steal attempt should succeed, or whether
the request should be ignored. Load balancing is considered
profitable, if the load of the stealing core is below the load of
the victim by at least a margin of Tdiff: Lthief ≤ Lvictim − Tdiff.
If this is the case, the victim migrates as much load to the
thief as needed to balance those two:

LE =
Lthief + Lvictim

2
− Lvictim

If the victim core discards the steal attempt, no reply message
is sent. The thief detects a discarded steal attempt if the victim

core did not send any load until the next load balancing period.
In this case the thief selects a new victim core.

In the Load Stealing algorithm, the distinction between the
second and third phases of load balancing is not as clear as
for the CSLB and RID algorithms. With the selection of a
random node for the steal attempt, the migration strategy is
already partly decided: the source and destination cores are
determined, even before it is known whether load balancing is
profitable.

IV. ENERGY AWARE LOAD BALANCING

Load balancing itself does not provide support to adapt the
number of active cores to the current computational demand of
the system. This is not always optimal for embedded systems
because even a small number of tasks is distributed to all cores.
Thus all cores are running and use the maximal power.

The basic idea to resolve this problem is the consolidation
of work on a subset of cores as long as the load on those cores
is tolerable. As the introduced load balancing algorithms differ
in their information and communication patterns, different
solutions were applied, as described in this section. The
additional messages that are sent to manage the number of
active cores are listed in Table II.

A. Central Scheduler Load Balancing

We used an approach similar to the load unbalancing
strategies proposed by Jeon et al. [10] and Pinheiro et al. [9]. A
new threshold TE is introduced. TE is assumed to be the level
of load tolerable on one core. The central scheduler computes
the hypothetical average load LAV−1 if one core were to be
turned off:

LAV−1 = LAV ·
N

N − 1

If LAV−1 is lower than TE , we know that we can turn off one
core and still have a tolerable average load per core. If LAV
increases and is greater than TE we need to turn on a sleeping
core. A hysteresis, Thyst, is introduced to avoid oscillation
of core states. Both parameters, TE and the hysteresis, are
configurable and can be changed to affect the performance
characteristics.

The process of turning cores off and on is usually not
instantaneous. The processor hardware may need time to adjust
to a new clock frequency, and there may be additional software
necessary to handle power management. Therefore it is not
profitable to send cores to sleep for short periods. To prevent
situations like this, a minimal sleep time, tmin sleep, is used and
measured in load balancing periods.

B. Receiver-Initiated Diffusion

To extend the RID algorithm, we use the same approach
as described in Section IV-A. However, several details were
adapted to meet the requirements of RID. The principle of
distributed load balancing schemes stating that all nodes are
equal and act independently and asynchronously conflicts
with the objective to concentrate the load on fewer nodes.
Independent decisions on when to reduce the number of active
nodes can lead to situations where multiple cores are switched
off simultaneously. This is avoided by introducing a so called



TABLE II. ADDITIONAL MESSAGES INTRODUCED BY THE LOAD
ENERGY AWARENESS EXTENSIONS, INCLUDING THEIR ARGUMENTS

Central Scheduler Load Balancing
Sleep Request Request to enter sleep state, sent by

central scheduler
Pdestination core that receives remaining load

Sleep Response Response to sleep request
R response (confirmed or denied)

Receiver Initiated Diffusion
Sleep Request Request to enter sleep state, sent by

current owner of sleep token
Pdestination core that receives remaining load

Sleep Notification Broadcast notification that core enters
sleep state

Pi core that enters sleep state
Awake Notification Broadcast notification that core leaves

sleep state
Pi core that leaves sleep state

Move Token Message to transfer the sleep token
from the current to the new owner

— (no arguments)

Load Stealing
— (no additional messages)

sleep token. Only the current owner of the token is allowed to
make sleep decisions.

Analog to Section IV-A, a threshold TE is introduced,
describing the tolerable load for one core. The node holding
the sleep token computes LAV−1. If this load is less than TE
one node can be turned off. If LAV is bigger than TE one
sleeping node is turned on. To reduce negative effects of the
migration of large amounts of load, the algorithm always turns
off the node with the smallest load. To prevent oscillation of
the number of active nodes, a hysteresis Thyst is introduced.

All nodes participating in the RID algorithm need to be
aware of the current domain, i.e., the set of active nodes, in
order to make appropriate load balancing decisions. Turning
nodes on and off changes the domain. Thus nodes notify other
nodes in their domain if they wake up or go to sleep, using
Sleep Notification and Awake Notification messages.

To ensure that the nodes are always aware of their current
domain, even after waking up from a sleep state, we use a
distributed stack like the one described by Aridor et al. [23].
Each node keeps track of the nodes it turned off using a stack.
If the owner of the sleep token finds itself as the node with
the smallest load in the system, it transfers the sleep token to
another node randomly chosen from the active nodes and goes
to sleep. If nodes need to be turned on, the current owner pops
one node from its stack and wakes it. If the stack is empty it
wakes the node it received the sleep token from and returns
the token. This way the nodes wake up in reverse order as
they went to sleep, and after waking up their information on
the current members of their domain will still be correct.
C. Load Stealing

In load stealing no core has information about the load and
state of other cores in the system. Therefore, the extensions
to adapt the number of active cores according to the current
computational demand of the system cannot be based on the

load unbalancing schemes as done for the previous algorithms.
To our knowledge, no previous work has addressed this prob-
lem for the load stealing algorithm. The extension proposed is
based on a heuristic principle like load stealing itself.

In addition to the load stealing algorithm described in
Section III-C, all cores count the number of consecutive
rejected load stealing attempts. If this number exceeds a user
defined threshold, Tdenied, it is assumed that the average system
load is low enough to reduce the number of cores, and the core
goes to sleep. The other cores are not informed of this, which
means that they can continue to send Steal Request that will
obviously go unanswered. However, this also means that the
core has to wake itself after a certain time, as the other cores
are not aware of its sleep phase. The sleep time, Tsleep, can
be configured by the user. After waking up, the core resets
the reject counter, discards Steal Requests that were received
during its sleep phase, and tries to acquire load by sending out
new Steal Requests.

A core can still have load after the number of denied steal
attempts reaches Tdenied. In this case, the core needs to migrate
all its load before going to sleep. As it is generally unknown
which cores in the system are currently active, we introduce
a so called base core. This core does not participate in the
energy awareness protocol, thus it is always active and able to
receive excess load from cores going to sleep.

V. EXPERIMENTAL EVALUATION

To evaluate the algorithms, we implemented them on a
target system consisting of a 6-Core MIPS32 processor [24].
Each core has a private first level cache, and all cores share one
second level cache. No cache coherence fabric is implemented.
The target system provides no DVFS support, however, each
core provides the functionality to disable its clock if the
computational power is not needed.

As mentioned in Section I, we base our work on a
multikernel operating system. Scheduling in the space domain
is handled by the individual load balancing algorithm and
scheduling in the time domain is handled on each core locally.
Each core schedules its task set using a round robin scheduler.
Ready tasks are managed in a so called ready queue and
currently inactive tasks are managed in a so called suspended
queue.

The presented algorithms only cover phases two and three
of the four load balancing phases. We used the current number
of tasks in the run and suspended queue as load descriptor
(phase one), as it is the most trustworthy and easiest to measure
workload descriptor. Despite the simplicity of this parameter
it also shows the best results in the experiments performed by
Kunz [25]. Since the load balancing algorithms compute the
amount of load to migrate from one core to another as real
number and tasks only exist as discrete quantities, we migrate
the integer part of the computed values. To select tasks for
migration (phase four), we use a simple method. Tasks are
always taken from the end of the suspended queue, or, in case
this queue is empty, from the end of the run queue.

A. Methodology

The system needs to be under changing load in order to
evaluate the implemented load balancing algorithms and their



TABLE III. CONFIGURATION VALUES FOR THE TEST SYSTEM AND ALL
ALGORITHMS

System and Load Tasks
tperiod, OS 1 Operating system tick period in ms
p 20 Load task period in ms
e 4 Load task execution time in ms
tcall 2 Simulated call duration in s

CSLB, Basic
Tlow min 1 Minimum allowed value for threshold Tlow

Thigh min 3 Minimum allowed value for threshold Thigh

l 0.95 Factor to compute threshold Tlow

h 1.40 Factor to compute threshold Thigh

pLB 25 Load balancing period in OS ticks

RID, Basic
Tlow 2 Threshold to initiate load balancing
Tdiff 0.5 Minimal needed difference to LAV

Fupdate 9/10 Factor to compute update interval
pLB 5 Load balancing period in OS ticks

LS, Basic
TLS 3 Threshold to initiate load balancing
Tdiff 2 Minimal difference needed
pLB 15 Load balancing period in OS ticks

CSLB, Energy Aware
TE 4 Threshold for load on one node
Thyst 2 Hysteresis used in EA mode
tmin sleep 2 Minimal sleep time in tperiod,CSLB

RID, Energy Aware
TE 5 Threshold for load on one node
Thyst 1 Hysteresis used in EA mode

LS, Energy Aware
Tdenied 6 Number of denied requests before node

goes to sleep
tsleep 250 Time one core sleeps in ms

extensions to scale the number of active cores. The target
platform we used to implement the algorithms is designed
to address next-generation high-density VoIP applications in
telecommunication systems. We therefore use artificial tasks
with a frequency and duration representative of those used in
the respective codecs in telecommunication systems. The tasks
used to simulate the behavior of the codec are periodic with
implicit deadlines. Each task invokes a series of jobs and each
job requires a certain amount of work to perform before the
end of the period. Tasks are allowed to preempt or migrate
between cores at any time. As we simulate VoIP codecs we
use a packet period of 20ms [26]. The execution time for one
packet was computed according to the data given in [27] (for
a high complexity codec), and the performance of one core of
the target system, resulting in an execution time of 4ms for
each packet of one call.

To obtain clean results, without side effects from tasks
other than the load task, only Core 1 to Core 5 are used for
measurements. Core 0 is not included in the measurements
and used as tester responsible for load generation, logging and
trace coordination.

Load generation itself is done in two different patterns,
“load step” and “random load”. For the load step pattern a
number of tasks enter an empty system at the same time.
This represents the worst case scenario for a load balancing
algorithm as stated by Willebeek-LeMair and Reeves [14].
The number of tasks, i.e., the height of the load step, can
be changed, while all tasks have the same duration.

The random load pattern simulates different calls entering
and leaving the system. The calls themselves are modeled
using a Poisson distributed random variable for the call arrival
and an exponentially distributed random variable for the call
duration [28]. To obtain a predefined average number of tasks,
n, measurements start out with a load of n calls, and the arrival
rate of additional calls is chosen accordingly.

To compare the different algorithms, several properties are
measured. This is done using minimally intrusive instrumen-
tation of the software. To achieve this, each core records trace
messages for each measurement in private memory which are
then collected by the test core and submitted to a host PC for
further evaluation. Missed deadlines, the start and end times
of tasks and jobs, and all scheduling events are recorded this
way.

One important metric used in most evaluations of load
balancing algorithms designed for distributed systems is the
average job execution time [15], [29], [30]. This is done by
instrumenting the start and end time of the job. The average
execution time is expected to be larger than the theoretical
execution time since operating system overhead and preemp-
tion of the task has to be considered. Despite its popularity in
distributed systems, this metric is not the most important one
for our use case. Since we consider streaming oriented load,
the execution time is not important as long as the computation
finishes before the deadline. Thus we use a second metric,
the percentage of deadline misses during one measurement, to
evaluate the algorithms.

To evaluate our energy awareness extensions, we measure
the average power during execution. This is done using a power
analyzer [31] that allows us to measure the supply voltage of
the digital cores separately from the other components of the
target system.

The various parameters of the algorithms are chosen ac-
cording to Table III. The table also includes parameters of the
operating system and the load generation.

B. System Utilization

This section compares the system utilization for a different
number of load tasks. The utilization shown in the figures was
measured for the experiments with load step, both with and
without our energy awareness extensions. Fig. 2 compares the
three different algorithms without extensions. As expected, the
utilization is linear dependent on the number of tasks in the
system. At a utilization of 80%, with a load of n = 18 tasks,
all algorithms reach saturation and the curves start to differ.

Fig. 3(a) shows the same scenario as Fig. 2 but with
enabled extensions to scale the number of active cores. The
computed utilization refers to the average number of ac-
tive cores used by the respective algorithm for the different
workload scenarios which is shown in Fig. 3(b). Despite the



0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20 22 24 26

U
til

iz
at

io
n

in
%

Number of Load Tasks

CSLB
RID

LS

Fig. 2. System utilization during measurements with the “load step” pattern,
and load balancing without energy awareness.

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20 22 24 26

U
til

iz
at

io
n

in
%

Number of Load Tasks

CSLB
RID

LS

(a) System utilization

0

1

2

3

4

5

6

2 4 6 8 10 12 14 16 18 20 22 24 26

C
or

es
A

ct
iv

e

Number of Load Tasks

CSLB
RID

LS

(b) Mean number of active cores

Fig. 3. System utilization and mean number of active cores during measure-
ments with the “load step” pattern, and load balancing with energy awareness.

similarity of the extensions for the CSLB and RID algorithm,
the utilization curves differ clearly. Partly because the CSLB
algorithm has an additional task, the central scheduler. This
task has little computational overhead, compared to the load
tasks used to simulate the calls, but the current load descriptor
does not distinguish between different task types. Thus the
load balancing algorithm provides more computational power
than is needed by the actual workload, which can be seen in
the figure. The curve of the load stealing algorithm has a more
moderate slope than the linear part in Fig. 2 but shows the most
continuous curve of the three algorithms due to the heuristics
used in the extensions.

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20 22 24 26

D
ea

dl
in

e
M

is
se

s
in

%

Average Number of Calls

CSLB
RID

LS

(a) Deadline misses

4

5

6

7

8

9

10

11

12

2 4 6 8 10 12 14 16 18 20 22 24 26

E
xe

cu
tio

n
Ti

m
e

in
M

ill
is

ec
on

ds

Average Number of Calls

CSLB
RID

LS

(b) Mean execution time for one job

Fig. 4. Deadline misses and mean job execution times during measurements
with the “random load” pattern, and load balancing with energy awareness.

C. Algorithm Comparison

This section compares the algorithms with their energy
awareness extensions under realistic conditions. Load was
generated according to the “random load” pattern. Fig. 4(a)
shows the average percentage of missed deadlines in the
measurements and Fig. 4(b) compares the respective average
execution times of the jobs taken from the same measurements.

The peak in the curve of the Load Stealing algorithm
is due to the nature of the energy awareness extension. If
the system loaded is low, there is only a small probability
for one steal request to succeed. It is thus likely for one
core to count enough rejected requests to reach the threshold
Tdenied and go to sleep. After the system contains enough load
and the steal requests are more likely to succeed the load is
spread over a greater number of cores and thus the average
execution times for the load stealing algorithm declines again.
The execution time behaves analogously. The CSLB algorithm
has few missed deadlines, starting at 50% utilization. The RID
algorithm again behaves best, with no deadline misses up to
n = 18 tasks.

All average execution times and deadline misses start to
increase after the system contains enough load to reach the
saturated utilization levels discussed in Section V-B.



0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18 20 22 24 26

A
ve

ra
ge

Po
w

er
C

on
su

m
pt

io
n

in
W

Average Number of Calls

CSLB
RID

LS

Fig. 5. Comparison of average energy consumption during measurements
with the “random load” pattern, and load balancing with energy awareness.

D. Energy Consumption

Fig. 5 summarizes the results of the measurements with
enabled extensions to scale the number of active cores. The
diagram shows the average power consumption for the dif-
ferent load levels plotted as bar graph. All three algorithms
perform similar. Since the load stealing algorithm constantly
searches for load in the system it consumes more energy than
its competitors if the system is under less load.

E. Real-World Example

In this section we show the effects of the implemented
algorithms if they are applied in a realistic scenario. As we
modeled VoIP calls we compare the energy savings of the
proposed algorithms if applied to the call profile of one sample
day. We used the data provided in Willkomm et al. [28, Fig. 2].
The figure shows the distribution of system wide average call
arrival rates over one sample day.

The data was used to compute the utilization for each
hour of the day. The results of the power measurements with
artificial load at different average number of calls is used
as performance data of our algorithms. Note that we used
the same average call duration in all our measurements. This
simplification is not consistent with real data, as Willkomm
et al. [28] showed, but sufficient to show the possible effects
of our algorithms. With this assumption we can use Little’s
Law [32] to compute the average number of calls in the
system. This number is then scaled to fit the maximum number
of calls in our system. The resulting data n(t) is shown in
Fig. 6. Additionally, the average number of deadline misses for
each algorithm is depicted for the respective number of active
calls. As discussed before, the RID algorithm outperforms its
competitors.

We calculate the average power consumed during the
sample day as:

Pday =
1

24

h=23∑
h=0

p(n(h))

where h is the hour of the day, n(t) is the average calls per
hour, and p(x) is the average power consumption for x calls
in the system. Note that one call equals one task in our setup.

A
ve

ra
ge

nu
m

be
r

of
ca

lls

D
ea

dl
in

e
M

is
se

s
in

%

Hour of day

n(t)

CSLB
RID

LS

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

Fig. 6. Load profile for one sample day. Data was obtained from Willkomm
et al. [28, Fig. 2].

Table IV presents the resulting values for the average con-
sumed power Pday on the sample day. We compared the three
algorithms with extensions to scale the number of active cores
and the CSLB algorithm without extensions as a representative
of algorithms which do not adapt the number of active cores
during runtime. Additionally, the savings compared to the
algorithm without energy awareness are given in percent. As
we used one core to manage the load generation and to record
the trace data, this core is included in the raw measurements.
Therefore the table contains two evaluations. The first columns
(“Raw Values”) show the average power consumption of all
cores, measured using the power analyzer. Core 0 is part
of the measurement setup, so it does not contribute to the
actual application. As Core 0 never enters a sleep state, it is
responsible for 1/6 of the total power consumption without
energy awareness, which amounts to 0.5W. The rightmost
columns of Table IV show the power savings, only considering
the cores that actually execute the application. Also the CSLB
algorithm consumes more power than its competitors in the
range of 10 to 18 calls (see Fig. 5) it performs best in this
experiment. This is due to the call profile of the sample day.
Only minor part of the time is spent in the range of 10 to 18
calls where CSLB performs worse, most time is spent either
in the fully utilized state where all algorithms perform almost
equal or in the less utilized state where CSLB performs almost
as well as RID.

VI. CONCLUSION

In this paper, we explored different load balancing strate-
gies for embedded multicore systems. We adapted and ex-
tended three prominent algorithms from the area of distributed
computing. Our extensions make the algorithms “energy
aware”, which means that they dynamically scale the number
of active cores according to the current system load. We
implemented the algorithms and evaluated them by measuring
deadline misses and energy consumption of an embedded soft
real-time application.

We showed that load balancing algorithms can be success-
fully applied in embedded applications, and that our energy
awareness extensions can significantly reduce the energy de-
mand of the system. Applied to a real-word example, a VoIP
application processing telephone calls with a realistic load, up
to 30% of the energy consumed by the cores was saved.



TABLE IV. POWER CONSUMPTION OF THE SYSTEM DURING THE SAMPLE DAY, COMPARING THE ENERGY AWARENESS EXTENSIONS OF ALL THREE
LOAD BALANCING ALGORITHMS. THE POWER CONSUMED WHEN ALL CORES ARE ACTIVE AT ALL TIMES IS USED AS A REFERENCE TO COMPUTE THE

OBTAINED SAVINGS.

Raw Measurements Without Core 0
Algorithm Av. Power Reduction Av. Power Reduction
Central Scheduler LB 2.2625 W 24.6% 1.7625 W 29.5%
Receiver-Initiated Diffusion 2.2888 W 23.7% 1.7888 W 28.5%
Load Stealing 2.3358 W 22.1% 1.8358 W 26.6%
No Energy Awareness 3.0000 W 0.0% 2.5000 W 0.0%

The optimal choice of algorithm and its parameters depends
on the requirements of the application. There is a trade-off
between energy consumption and the expected number of
missed deadlines. We found that Receiver Initiated Diffusion
provides the best performance in terms of energy savings to
missed deadlines ratio, out of the three examined algorithms.

REFERENCES

[1] J. D. Ullman, “Np-complete scheduling problems,” J. Comput. Syst.
Sci., vol. 10, no. 3, pp. 384–393, Jun. 1975.

[2] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,
R. Morris, and N. Zeldovich, “An analysis of linux scalability to many
cores,” in 9th USENIX conference on Operating systems design and
implementation, OSDI’10, pp. 1–8, 2010.

[3] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: a new
os architecture for scalable multicore systems,” in 22nd symposium on
Operating systems principles, SOSP ’09, pp. 29–44, 2009.

[4] A. Baumann, S. Peter, A. Schüpbach, A. Singhania, T. Roscoe,
P. Barham, and R. Isaacs, “Your computer is already a distributed
system. why isn’t your os?” in 12th conference on Hot topics in
operating systems, HotOS’09, pp. 12–12, 2009.

[5] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Power-
aware scheduling for periodic real-time tasks,” IEEE Transactions on
Computers, vol. 53, no. 5, pp. 584–600, May 2004.

[6] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and
S. Vishin, “Hierarchical power management for asymmetric multi-core
in dark silicon era,” in 50th Annual Design Automation Conference,
DAC ’13, pp. 174:1–174:9, 2013

[7] A. Annamalai, R. Rodrigues, I. Koren, and S. Kundu, “Dynamic
thread scheduling in asymmetric multicores to maximize performance-
per-watt,” in 26th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum, IPDPSW ’12, pp. 964–971,
2012.

[8] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Efficient operating
system scheduling for performance-asymmetric multi-core architec-
tures,” in 20th Conference on Supercomputing, SC ’07, pp. 1–11, 2007.

[9] E. Pinheiro, R. Bianchini, E. V. Carrera, , and T. Heath, “Load balancing
and unbalancing for power and performance in cluster-based systems,”
in Department of Computer Science Rutgers University Technical Re-
port DCS-TR-440, 2011.

[10] H. Jeon, W. H. Lee, and S. W. Chung, “Load unbalancing strategy
for multicore embedded processors,” IEEE Transactions on Computers,
vol. 59, no. 10, pp. 1434–1440, 2010.

[11] J. Liu and M. Yang, “Task scheduling of real-time systems on multi-core
embedded processor,” in 18th International Conference on Intelligent
Systems and Knowledge Engineering, ISKE ’10, pp. 580–583, 2010.

[12] D. Wentzlaff and A. Agarwal, “Factored operating systems (fos): the
case for a scalable operating system for multicores,” SIGOPS Oper.
Syst. Rev., vol. 43, no. 2, pp. 76–85, 2009.

[13] S. Holmbacka, W. Lund, S. Lafond, and J. Lilius, “Task migration
for dynamic power and performance characteristics on many-core dis-
tributed operating systems,” in 21st Euromicro International Conference
on Parallel, Distributed and Network-Based Processing, PDP ’13, pp.
310–317, 2013.

[14] M. Willebeek-LeMair and A. Reeves, “Strategies for dynamic load
balancing on highly parallel computers,” IEEE Transactions o Parallel
and Distributed Systems, vol. 4, no. 9, pp. 979–993, 1993.

[15] Y. Lan and T. Yu, “A dynamic central scheduler load balancing mecha-
nism,” in 14th Annual International Phoenix Conference on Computers
and Communications, pp. 734–740. 1995.

[16] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling for
multiprogrammed multiprocessors,” in 10th annual ACM symposium on
Parallel algorithms and architectures, SPAA ’98, pp. 119–129, 1998.

[17] P. Berenbrink, T. Friedetzky, and L. Goldberg, “The natural work-
stealing algorithm is stable,” in 42nd IEEE Symposium on Foundations
of Computer Science, FOCS ’01, pp. 178–187, 2001.

[18] D. Chase and Y. Lev, “Dynamic circular work-stealing deque,” in 17th
ACM symposium on Parallelism in Algorithms and Architectures, SPAA
’05, pp. 21–28, 2005.

[19] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime sys-
tem,” SIGPLAN Not., vol. 30, no. 8, pp. 207–216, 1995.

[20] E. Luque, A. Ripoll, A. Cortes, and T. Margalef, “A distributed
diffusion method for dynamic load balancing on parallel computers,”
in Euromicro Workshop on Parallel and Distributed Processing, pp.
43–50, 1995.

[21] D. Hendler and N. Shavit, “Non-blocking steal-half work queues,” in
21st annual symposium on Principles of Distributed Computing, PODC
’02, pp. 280–289, 2002.

[22] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal, “A simple load balancing
scheme for task allocation in parallel machines,” in 3rd annual ACM
symposium on Parallel Algorithms and Architectures, SPAA ’91, pp.
237–245, 1991.

[23] Y. Aridor, M. Factor, and A. Teperman, “cjvm: A single system image
of a jvm on a cluster,” in 28th International Conference on Parallel
Processing, ICPP ’99, pp. 4–11, 1999.

[24] MIPS32 24KEc Processor Core Datasheet, MIPS Technologies, 2008.
[25] T. Kunz, “The influence of different workload descriptions on a heuristic

load balancing scheme,” IEEE Transactions on Software Engineering,
vol. 17, no. 7, pp. 725–730, 1991.

[26] VoIP Bandwidth Calculation, Newport Networks, 2005.
[27] Cisco Unified Communications Solution Reference Network Design

(SRND), Cisco Systems, Inc., Americas Headquarters Cisco Systems,
Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA, 2008.

[28] D. Willkomm, S. Machiraju, J. Bolot, and A. Wolisz, “Primary user
behavior in cellular networks and implications for dynamic spectrum
access,” IEEE Communications Magazine, vol. 47, no. 3, pp. 88–95,
2009.

[29] T. Suen and J. Wong, “Efficient task migration algorithm for distributed
systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 3, no. 4, pp. 488–499, 1992.

[30] S. Zhou, “A trace-driven simulation study of dynamic load balancing,”
IEEE Transactions on Software Engineering, vol. 14, no. 9, pp. 1327–
1341, 1988.

[31] Agilent Technologies DC Power Analyzer - Model N6705, 9th ed.,
Agilent Technologies, Inc. 2007-2012, 2012.

[32] J. D. C. Little, “Or forum—little’s law as viewed on its 50th anniver-
sary,” Oper. Res., vol. 59, no. 3, pp. 536–549, 2011.


