
Reduced Buffering Solution for
Multi-Hop HaRTES Switched Ethernet Networks

Mohammad Ashjaei1, Moris Behnam1, Paulo Pedreiras2, Reinder J. Bril1,4, Luis Almeida3, Thomas Nolte1

1 MRTC/Mälardalen University, Västerås, Sweden
2 DETI/IT/University of Aveiro, Aveiro, Portugal

3 IT/DEEC/University of Porto, Portugal
4 Technische Universiteit Eindhoven (TU/e), The Netherlands

Abstract—In the context of switched Ethernet networks, multi-
hop communication is essential as the networks in industrial
applications comprise a high amount of nodes, that is far beyond
the capability of a single switch. In this paper, we focus on
multi-hop communication using HaRTES switches. The HaRTES
switch is a modified Ethernet switch that provides real-time traffic
scheduling, dynamic Quality-of-Service and temporal isolation
between real-time and non-real-time traffic. Herein, we propose
a method, called Reduced Buffering Scheme, to conduct the traffic
through multiple HaRTES switches in a multi-hop HaRTES
architecture. In order to enable the new scheduling method
we propose to modify the HaRTES switch structure. Moreover,
we develop a response time analysis for the new method. We
also compare the proposed method with a method previously
proposed, called Distributed Global Scheduling, based on their
traffic response times. We show that, the new method forwards
all types of traffic including the highest, the medium and the
lowest priority, faster than the previous method in most of the
cases. Furthermore, we show that the new method performs even
better for larger networks compared with the previous one.

I. INTRODUCTION

The complexity of the communications in networked real-
time embedded systems has increased over the last decades
such that the conventional communication protocols have
shown to be impotent. Advances in embedded equipments,
increments in their functionalities and a massive amount of
exchanged data within the network are the origin of this com-
plexity. For instance, in automotive industries using innovative
applications and entertainment devices is becoming popular,
which requires a high bandwidth network to support them.
Meanwhile, new challenging requirements have been raised in
real-time communications. Such requirements include handling
a combination of traffic activation types (event-triggered and
time-triggered) and dynamic reconfiguration support.

Ethernet technology was introduced as one of the promis-
ing approaches for the communication among embedded sys-
tems due to its properties such as low cost, availability and
expandability. Nevertheless, the non-deterministic behavior of
COTS Ethernet diminished its use in time-critical applications.

Consequently, many real-time Ethernet protocols (e.g., [1]
and [2]) have been developed preserving the profits of tradi-
tional Ethernet technology such as high throughput and wide
availability, while providing determinism. However, it turned
out that, despite the performance and timeliness guarantee of
these protocols, they have expressed severe limitations when
applied on dynamic real-time applications. For instance, they

cannot tolerate evolving requirements such as on-line recon-
figuration of components (e.g., add or remove of streams).

As a result, the Hard Real-Time Ethernet Switching archi-
tecture (HaRTES) [3] has been developed in order to deliver
adaptivity, dynamicity and effective distribution of resources
in networked embedded systems. HaRTES supports real-time
periodic, real-time sporadic and non-real-time traffic. The
former is classified as synchronous traffic and the second is
categorized as asynchronous traffic. Also, HaRTES creates
temporal isolation among different traffic types by reserving
specific bandwidth for each. The non-real-time traffic is sched-
uled in the background.

The networked embedded systems in industrial applications
comprise a high amount of nodes, which is far beyond the ca-
pability of a single switch. Thus, the multi-hop communication
is necessary for such applications. In the work presented in [4],
we proposed a scheduling method, called Distributed Global
Scheduling (DGS), to forward messages through multiple
HaRTES switches. However, the DGS method produces high
response times due to the specification of the method which
messages are buffered in all switches in their route. In this
paper, we propose a new solution, which compared with the
DGS method, delivers the traffic to the destination much faster
in most of the cases.

The main contributions of this paper are:

1) We propose a new scheduling method, named Re-
duced Buffering Scheme (RBS), to forward the traffic
through multiple HaRTES switches in a multi-hop
HaRTES architecture.

2) We modify the HaRTES switch structure to be able
to apply the new scheduling method.

3) We develop a response time analysis for both
synchronous and asynchronous traffic in the RBS
method. In order to perform the analysis, we use an
algorithm to capture the behavior of the RBS method,
which is different than the analysis in [4].

4) We compare the RBS method with the DGS method
using the proposed response time analysis. We show
that the response time of the messages in the RBS
method is lower than in the DGS method in most of
the cases.

The rest of the paper is organized as follows. The next sec-
tion describes the related work. Then, Section III presents the
HaRTES architecture. Section IV presents the DGS method,

while Section V proposes the RBS method. Section VI presents
the system model, and Section VII describes the response time
analysis. Section VIII shows the evaluation of the proposed
method and finally Section IX concludes the paper and presents
some directions for future work.

II. RELATED WORK

The literature on switched Ethernet is vast and there
have been many works addressing its adequacy to real-time
communication. There are relatively old research proposals
such as EtheReal [5] and the EDF Scheduled Switch [6], both
based on channel reservations supported on enhanced switches.

Later, many solutions, which eventually made it to the
market, were proposed such as TTEthernet [1] and PROFINET
IRT [2], both optimized for time-triggered operation. Also,
EtherCAT [7] was developed, which is optimized for quick
forwarding with dynamic update of the Ethernet frames while
traversing the nodes.

Moreover, AFDX [8] is developed as a network commu-
nication specification with enhanced forwarding. AFDX has
been used mainly in avionics. More recently, Audio Video
Bridging (AVB) [9], as a set of technical standards developed
by IEEE, is gaining a momentum, and it is mainly designed
for use in the automotive industry. Ethernet AVB supports
clock synchronization, bandwidth reservation and traffic shap-
ing services. Nevertheless, this protocol has some intrinsic
limitations, such as the low number of priorities (maximum
8) and lack of explicit support of synchronous traffic. These
limitations restricted the capabilities of the protocol in terms
of specification of the stream properties.

Several solutions were also researched based on overlay
protocols that control the traffic submitted to COTS switches.
Ethernet POWERLINK [10] and the FTT-SE [11] protocol,
both using master-slave techniques, are such those solutions.

The FTT-SE protocol provides a bandwidth-efficient solu-
tion, however it presents some structural limitations because
of using COTS switches. In fact, all nodes need to be FTT-
compliant. This leads to have a specific network device driver
in the operating system. The HaRTES switch overcomes this
problem by inserting the master module inside the switch.
Thus, the HaRTES switch maintains the capabilities of adding
traffic confinement. In this paper, we focus on the HaRTES
switch.

Despite the similarities between FTT-SE and HaRTES,
there are also subtle but important differences, which have
a strong impact in the operation and performance of both
protocols. In particular, in HaRTES it is possible to have
different reserved bandwidth in different links, according to
the actual load. Moreover, unlike the COTS switches, HaRTES
has ability to buffer the traffic. Therefore, the results previ-
ously developed for multi-hop communication in the FTT-SE
networks (e.g. [12]) would result in sub-optimal performance.
These, in fact, are the main reasons that motivated this work.

Regarding the timing analysis of multi-hop Ethenet net-
works, several methods are utilized. In the work presented
in [13], Network Calculus is used to analyze the end-to-end de-
lays of the traffic in a single-master and multi-switch network
topology using the FTT-SE protocol, presented in [14]. In [15]

three methods are used to derive the end-to-end traffic delays
in a multi-hop AFDX network. These three methods include
Network Calculus, network simulation and model checking,
among which Network Calculus exhibited a higher pessimism.
A tighter end-to-end delay analysis for AFDX networks is
achieved using the trajectory approach as presented in [16].
However, in [17], the authors showed that for some corner
cases the trajectory approach introduces some optimism, even
though these corner cases have not existed in any AFDX
configuration.

In the context of Ethernet AVB, the work presented in [18]
has utilized the Network Calculus method to derive traffic
end-to-end delays. Also, the work in [19] presents a worst-
case delay verification of in-vehicle Ethernet networks using
the same analytical framework to generate upper bounds and
checking them against experiments in worst-case scenarios.

A different approach is followed in [20] and [21] that
derive end-to-end delay bounds for a single flow in FIFO
multiplexed sink-tree networks using a modified Network Cal-
culus framework. These works use partitioning of a network
topology into a set of logically separated sink-trees having
egress nodes at the root and ingress nodes at the leaves.
The traffic is aggregated in the nodes by introducing a FIFO
policy called aggregated scheduling. A class of service curves
is introduced to determine the service that is received in an
aggregate scheduling network. Furthermore, the work in [22]
utilized the mentioned method to investigate an admission
control in sink-tree networks.

In our previous work presented in [12], we computed the
worst-case end-to-end delay of traffic for multi-hop communi-
cation using the FTT-SE protocol and we compared the results
with the ones computed using Network Calculus. We showed
that, Network Calculus generates higher pessimism.

In this paper we propose a response time analysis based
on an algorithm for the Reduced Buffering Scheme method, as
Network Calculus showed higher pessimism in similar cases.

III. HARTES ARCHITECTURE

In this section, we describe the functional structure of the
HaRTES switch and we present the traffic scheduling in a
network using the HaRTES switch.

A. HaRTES Switch Structure

The HaRTES switch is a modified Ethernet switch based on
a master-slave technique where the master module is developed
inside the switch. The abstract functional structure of the
HaRTES switch is illustrated in Figure 1. The packets arriving
at the input ports are analyzed by the Packet Classification
module, which is implemented for each input port. This
module distinguishes the traffic types and appends them to the
associated memory queue in the Memory Pool module, i.e.,
the packets, depending on their types, are stored in different
memory sections of the Memory Pool.

The Master module contains the scheduler, admission con-
trol, QoS management and a repository of the traffic attributes.
The traffic attributes include the deadline, minimum inter-
arrival time/period, message length and priority. The scheduler
in the Master module will be described in Section III-B.

Packet
Classification

Memory
Pool

Packet
Classification

Master

Packet
Forwarding

Port 1

Port n

In
p

u
t

P
o

rt
s

Port 1

Port n

O
u

tp
u

t
P

o
rt

s

Sy
n

/A
sy

n
/N

R
T

FI

FO
 Q

u
e

u
e

D
is

p
at

ch
e

r

Sy
n

/A
sy

n
/N

R
T

FI

FO
 Q

u
e

u
e

D
is

p
at

ch
e

r

Fig. 1. HaRTES Functional Structure

For each output port three FIFO queues are implemented to
handle synchronous, asynchronous and non-real-time packets,
which are identified as Syn, Asyn and NRT respectively in
Figure 1. The dispatcher allows packet transmission from each
queue during the associated windows only, hence it handles the
transmission in the reserved bandwidths, and thereby enforcing
temporal isolation.

The Packet Forwarding module inquires the repository
to determine the set of ports where the consumers of the
packet are attached and it inserts the packet into the output
FIFO queue based on the packet type. Note that, the non-
real-time packets are forwarded the same way as done by
standard Ethernet switches based on the MAC address. Thus,
the HaRTES switch behaves as a COTS switch for the non-
real-time traffic, yet with restricted bandwidth reserved for
such a traffic.

B. HaRTES Traffic Scheduling

The HaRTES architecture is a micro-segmented network
composed by HaRTES switches. The Master module is re-
sponsible to schedule the traffic in fixed-duration time-slots,
designated Elementary Cycle (EC). The scheduling is carried
out on-line according to any desired scheduling, e.g., Fixed
Priority Scheduling Policy. The EC is divided between two
windows, one for scheduling the synchronous traffic (Syn-
chronous Window) and the other one for asynchronous traffic
(Asynchronous Window), as shown in Figure 2. Note that, non-
real-time traffic is transmitted within the asynchronous window
after transmission of asynchronous traffic.

HaRTES

Synchronous Window Asynchronous Window

Elementary Cycle (EC)

TM

Fig. 2. The EC Partitioning in HaRTES

In each EC the switch determines the new activations of the
synchronous messages, it updates the ready queue and checks
whether the ready synchronous messages can be transmitted
within their associated window. The scheduled messages are
encoded into a particular message, named Trigger Message
(TM), to be transmitted to the slave nodes at the beginning of
the EC (Figure 2). The messages that do not fit in the window
are kept in the ready queue for the following ECs. The slave
nodes receive the TM, decode it and initiate the transmission
of the messages identified in the TM.

Conversely, the activation of asynchronous messages are
unknown in advance. In the HaRTES architecture, the asyn-

chronous messages are transmitted autonomously without be-
ing triggered by the associated switch. The switch forwards
them immediately through a hierarchy of servers [3]. Note that
the asynchronous messages are not allowed to be transmitted
within the synchronous window. Thus, during the synchronous
window, such messages are buffered in the switch.

The HaRTES switch generates two types of delay, known
as store-and-forward and hardware fabric latency. The former
corresponds to the time required to receive the message before
forwarding it, hence it is equal to the message size in time,
whereas the latter delay is due to the processing speed of the
switch. The hardware fabric latency is a bounded value. The
summation of the two delays is called switching delay.

All messages that are scheduled to be transmitted in one
EC, should be received by the end of the EC. In order to
prevent overruns, scheduling of messages that cannot be fully
transmitted within the transmission window is delayed for the
next EC, e.g., m3 in Figure 3. This behavior introduces an idle
time in each transmission window.

m3 HaRTES

Synchronous Window

m5

EC k

Synchronous Window

EC k+1

m6 m1 m3

Idle Time

Fig. 3. Inserted Idle Time

IV. MULTI-HOP HARTES ARCHITECTURE

In this section, we present the multi-hop HaRTES topology
and we describe a method, called Distributed Global Schedul-
ing (DGS), to forward the traffic through multiple HaRTES
switches. This method was proposed in [4]. In this paper, we
compare the new proposed method with the DGS method.

A. Multi-Hop HaRTES Topology

The multi-hop HaRTES architecture is built by connecting
multiple HaRTES switches in a tree topology as it presents
a good compromise between cabling length and routing com-
plexity. Such a network is depicted in Figure 4.

H1

H2

A B C

D

H3

E F

Fig. 4. The Multi-Hop HaRTES Topology

In this architecture we define two types of messages consid-
ering their transmission route. Messages that are sent through
a single switch are called local messages, while messages
that are sent through multiple switches are called global
messages. Moreover, we distinguish the links as follows. The
link connected between a node and a switch is called local-
link, whereas a link between two switches is called inter-link.

B. Distributed Global Scheduling

In this method, the scheduling of the messages is carried
out with all involved switches. First, the switch, to which the

source node is connected to, schedules the message to be
transmitted from the source node and buffers it in its own
memory. Then, the second switch in the route of the message
schedules the message to be sent from the first switch in a
posterior EC. Again, the message is stored in the second switch
to be scheduled for the next hop in the next EC. The hop-by-
hop scheduling of the message continues until the last switch,
where the destination node is connected to. The message is
not buffered in the last switch, being immediately forwarded
to the destination node in one EC.

All switches have a repository containing the message
attributes. In this method, a phase for a message is one of
those attributes, which is defined to have different values in
each switch. The phase is specified in number of ECs and
it determines the time difference between activation of the
message in the switch and the activation time in the source
node. This parameter is essential to guarantee that, in each
switch, the message being forwarded is always received from
the previous switch.

Figure 5 illustrates the transmission of a message m1 from
node D, connected to switch H2, to node E, connected to
switch H3, in the network depicted in Figure 4. Assume that,
the phase for m1 in switch H2 is 0, while it is 1 and 2 in switch
H1 and H3, respectively. When m1 is activated in ECk, switch
H2 schedules that to be sent and stored in switch H2 itself. The
message is activated in switch H1 in the next EC (ECk+1) as
the phase is 1, hence switch H1 schedules that to be transmitted
from the internal memory of switch H2 to the internal memory
of switch H1. In ECk+2 the message is activated in switch H3,
again since the phase is 2 for the message in switch H3. Also,
the destination node, i.e., node E, is connected to switch H3.
Therefore, switch H3 schedules m1 to be sent from the internal
memory of switch H1 and forwarded to node E. Note that, the
switching delay has no impact in the first two switches as the
message is buffered. However, in the last switch the message
transmission is affected by the switching delay.

D

Synchronous Window

H2

H1

m1

m1

EC k

E

Synchronous Window

EC k+1

Synchronous Window

EC k+2

m1

m1

m1

m1

Scheduled by H2, with
phase = 0 and
buffered in H2

Scheduled by H1, with
phase = 1 and
buffered in H1

Scheduled by H3, with
phase = 2 and

forwarded to E

H3
m1

m1

out

out

out

out

out

in

in

in

in

in

Fig. 5. The Operation of the DGS Method

This method, due to the definition of the phase, requires
that the switches are timely synchronized. The synchronization
is achieved by the TM transmission from a switch to all
nodes and the other switches down the tree topology. In this
architecture, the switches synchronize with their parent switch.

Note that, the DGS method was proposed to handle the syn-
chronous messages, only, whereas, the RBS method provides
a scheduling method for both synchronous and asynchronous
messages.

V. REDUCED BUFFERING SCHEME

In this section, we propose a new method, called Reduced
Buffering Scheme (RBS), to forward the traffic through mul-
tiple HaRTES switches. In order to enable this method on
the multi-hop HaRTES architecture, we modified the switch
structure, which we first describe. Note that we consider the
same multi-hop HaRTES topology depicted in Section IV.

A. HaRTES Switch Structure Modification

In this proposal, we modified the following modules in the
HaRTES switch: (i) the scheduler in the Master module, and
(ii) the output queues attached to the output ports.

As it can be seen in Figure 1, each output port has three
FIFO queues, for synchronous, asynchronous and non-real-
time traffic. We modified the queues for synchronous and
asynchronous traffic to be priority queues. The non-real-time
packets are still forwarded using the FIFO queue.

B. RBS Scheduling Method

In this method all links are partitioned between two win-
dows, synchronous and asynchronous window, the same way
as in the DGS method. The allocated window size in each
link is differentiated and it is selected based on the actual
local and global load crossing that link. Different sizes for
the transmission windows increases the efficiency of using the
bandwidth in the links. Figure 6 shows the EC partitioning in
the RBS method. A particular window (Guard Win) is reserved
in the beginning of each EC for different purposes in the RBS
method, which is described in this section.

Source
Local-Link

Syn Window Asyn Window

Elementary Cycle (EC)

Inter-Link

Destination
Local-Link

Guard Win

Syn Window

Syn Window

Asyn Window

Asyn Window

Fig. 6. The EC Partitioning in the RBS Method

The switch to which the source node of a synchronous
message is connected to, schedules the message similarly to
the single switch case and informs the source node using the
TM. The TM is transmitted at the beginning of the EC within
the Guard Window (Figure 6).

The source node receives the TM, decodes that and initiates
the transmission of the identified messages in the TM. The
switch receives the message and inserts it into the priority
queue of the output port. If there is enough time within the
synchronous window in the current EC, the switch forwards
the message to the next switch in the route of the message.
However, if the time to transmit the message within the
associated window is not enough, the message will be buffered
for the next EC. In other words, a message is transmitted
through multiple switches as long as there is enough time in
the associated window to forward.

Figure 7 shows the same scenario for m1 presented in
Figure 5, yet using the RBS method. In ECk the message
is scheduled by switch H2 to be sent from its source node
(node D). Then, it is received by switch H2 and inserted to the
priority queue in the output link. As there is still enough time
in the synchronous window in ECk, switch H2 forwards m1 to
switch H1. Similarly to switch H2, switch H1 forwards m1 to
switch H3 as there is still enough time in the synchronous
window. However, the transmission of m1 is suspended in
switch H3 due to the lack of remaining time in the synchronous
window. In ECk+1 the transmission is resumed and m1 is
received by the destination node (node E).

D

Synchronous Window

H2

H1

m1

EC k

H3

Synchronous Window

EC k+1

Transmitted as long as
there is time in the window

m1 is buffered in H3,
transmitted to node E

E

out
in

out
in

out
in

out
in

out
in

m1

m1

m1

m1

m1

m1

m1

Fig. 7. The Operation of the Reduced Buffering Scheme

The asynchronous messages are forwarded similarly, ex-
cept that their transmission from their source nodes are au-
tonomous without being triggered by the associated switch.
The non-real-time messages are sent within the asynchronous
window after transmission of asynchronous messages.

The time synchronization among the HaRTES switches is
required to increase the efficiency of the RBS method. For
the RBS method, we propose to use a clock synchronization
according to the IEEE 1588, which was proposed in [23] for
a similar case. The required signaling is carried out within
the Guard Window. However, a detailed study of the clock
synchronization for the multi-hop HaRTES architecture is out
of the scope of this paper.

Comparing RBS and DGS, it is clear that RBS sends the
messages faster than that in the DGS method. This is due to the
fact that, in the DGS method the messages are buffered in each
hop, whereas in the RBS method buffering only occurs when
there is not enough time in the current window to continue
forwarding. This is achieved thanks to the priority queues in
the output ports.

Moreover, the DGS method requires to compute a phase
for a message in each switch, which is based on the worst-case
response time from the source node to the switch. Applying
the worst-case response time for the phases of a message may
introduce an unnecessary delay for the message.

VI. SYSTEM MODEL

In this paper, we use the real-time periodic model to
represent both synchronous and asynchronous messages. The
message set, composed by N messages, is defined as follows:

Γ = {mi(Ci,PKi,Di,Ti,Si,Dsi,Pi,Li,ni), i = 1...N} (1)

In this model, Ci is the total transmission time of the
message including its packets. PKi is the maximum packet

size among the packets that compose mi. Di is the relative
deadline and Ti is the period of mi, where Di ≤ Ti. The period
and deadline for the messages are expressed as an integer
number of ECs. For asynchronous messages Ti is the minimum
inter-arrival time. Moreover, Si is the source node and Dsi
is the destination node of the message. Currently we restrict
our analysis to unicast streams, hence only one destination
port per message is considered. Pi denotes the priority of the
message. Note that, messages may have the same priority. Li
is the set of links that mi passes through, including inter-links,
source and destination local-links. Each element in Li presents
a tuple l =< x,y > which shows a link l between node/switch
x to node/switch y. The sequence inside the tuple shows the
direction of the message transmission in that link. Also, ni
represents the number of links in Li, i.e., ni = |Li|. The set of
links in the route of mi is presented in (2).

Li = {lk|k = 1...ni} (2)

Moreover, a set of links which mi crosses from a specific
link la until another specific link lb in its route is defined in
(3), where Li,a,b ⊆ Li and 1≤ a≤ b≤ ni.

Li,a,b = {lh|h = a...b} (3)

We consider a fixed-priority scheduling policy for the
scheduler and we assume that the priority of messages is
assigned according to the Rate-Monotonic algorithm.

The switching delay, which is the sum of store-and-forward
delay and the hardware fabric latency, is specified by SWDi.

The total response time for a message mi is specified by
RTi and it is the time interval between the activation time of
the message in the source node and the reception time in the
destination node. Moreover, we define the response time of a
message mi crosses the links between link la and link lb as
the time duration when the messages is inserted to the priority
queue in the switch/node with output link la, and the time the
message is inserted to the priority queue in the switch/node
with input link lb. This response time is denoted by RTi,a,b.
Note that both the total response time and the response time
between two particular links are expressed in number of ECs.
In addition, the idle time is denoted by Id.

VII. RESPONSE TIME ANALYSIS

According to the RBS method described in Section V,
the synchronous and asynchronous messages are transmitted
within separated windows, hence they cannot interfere with
each other. In this section we develop a response time analysis
for both synchronous and asynchronous messages.

A. Response Time Analysis for Synchronous Messages

In the RBS method, a message crosses HaRTES switches
in its route until there is not enough time in the transmission
window. Then, the message is buffered to be sent in the next
EC. In the response time analysis, we capture this behavior
by calculating the response time link-by-link from the source
node and check whether the message is buffered in any switch
connected to that link.

Suppose that, we are calculating the response time of m1
that is transmitted from node D to node F in the network
depicted in Figure 4. First, we compute the response time for
the link from node D to switch H2, i.e., the source local-
link. We continue to compute the response time for two links
from node D to switch H1. Then, we compare the the two
computed response times (in number of ECs), i.e., the one for
source local-link and the one from node D to switch H1. If
they are equal, we continue to calculate the response time for
three links from node D to switch H3. However, if they are not
equal, we save the response time of the source local-link to the
total response time and we start computing the response time
from the link between switch H2 to switch H1. We continue the
same way until the last link, i.e., the destination (node F) local-
link. This way we capture the behavior of the RBS method that
has a combination of buffering and forwarding instances for
a message through switches. Algorithm 1 illustrates such a
calculation.

Algorithm 1 Response Time Calculation for mi

1: RTi = 0
2: a = b = 1
3: while b≤ ni do
4: rti,a,b = responseTimeCalc(i,a,b)
5: RTi,a,b =

⌈
rti,a,b
EC

⌉
6: if (a ! = b) && (RTi,a,b ! = RTi,a,(b−1)) then
7: RTi = RTi +RTi,a,(b−1)
8: a = b
9: else

10: b = b+1
11: end if
12: end while
13: RTi = RTi +RTi,a,(b−1)

The algorithm starts by initializing the total response time
to zero (line 1). Also, it initializes the links included in the
response time calculation to 1 (line 2). Then, the main loop of
the algorithm starts to calculate the response time until the last
link, i.e., while the condition b≤ ni is true (line 3). In line 4, the
response time of mi from link la until link lb in the route of mi
is calculated. Whenever both links la and lb are the same, e.g.,
when they are initialized to 1, the responseTimeCalc(i, a,
b) in the algorithm calculates the response time of mi when it
crosses just one link, e.g., from one switch to another (la = lb).
The algorithm scales the response time to the number of ECs
to be able to compare that with the previous response time
(line 5).

When the algorithm computes the response time in one
link (i.e., la = lb), the previous response time is not available
to compare with the latest response time. In this case, the loop
continues for the next link in the route of mi. This checking
is carried out in line 6 and continues in line 9. In contrast, if
the response time computation is for several links from link
la to link lb, and if the latest response time is not equal to the
response time calculated until the previous link (line 6), the
message mi is buffered in the previous switch. Therefore, the
algorithm stops calculating and adds up the calculated response
time until previous link l(b−1) to the total response time RTi
(line 7). This means that, we calculate the response time for
mi until link l(b−1), where the message is buffered. Then, the

algorithm commences to compute the response time from link
lb. Thus, line 8 sets the starting link la to the link that the
calculation stopped, i.e., link lb. This procedure continues until
the last link in the route of mi and the algorithm adds up the
last response time to the stored total response time during the
calculation (line 13).

As it is explained, the function responseTimeCalc(i, a,
b) computes the response time for mi from link la until link lb
in the route of the message. In this paper, we use the classical
response time calculation based on accumulating delays within
iterations. However, due to having specified windows for the
message transmission, the messages are not allowed to be sent
at any time other than their associated window. Therefore, an
inflation factor should be taken into account when performing
the response time analysis. This issue has been considered
previously in [24] and the proposed solution was to inflate
the transmission time of the message by a percentage of the
bandwidth availability.

Note that, according to the RBS method, the windows size
in each link can be different. Also, since Algorithm 1 calculates
the response time between two specific links, the inflation
factor αi,a,b for mi should be presented between link la and
link lb. Therefore, the inflation factor is calculated in (4) by
considering a minimum length of windows in the links between
la and lb to assume that the worst-case situation is taken into
account. Note that, LWl is the length of a transmission window
in link ll and Idi,l is the idle time in the transmission windows
of link ll (LWl).

αi,a,b =
min

l=a..b
(LWl− Idi,l)

EC
(4)

The idle time is the maximum packet size among the
highest and the same priority synchronous messages that share
links with mi in link ll and the message itself. The idle time
is calculated in (5).

Idi,l = max
∀r∈[1,N]

∧ mr∈hep(mi)
∧ l∈Lr

(PKr,PKi) (5)

The response time of mi, shown in line 4 in Algorithm 1,
is evaluated iteratively in (6) by considering the transmission
time of the message itself and the interference from other
messages. The interference of other messages is categorized
in three following parts: (i) the interference from higher and
the same priority messages that share links with mi between
link la and link lb, which is specified by Ii,a,b, (ii) the blocking
from the lower priority messages sharing the links with mi
between link la and lb, which is denoted by Bi,a,b, and (iii)
the switching delay of the message that is denoted by SDi,a,b.
Note that, the interfering and blocking messages are of the
synchronous type.

rt(x)i,a,b =
Ci

αi,a,b
+ Ii,a,b +Bi,a,b +SDi,a,b (6)

The iteration can start from x(0) = Ci
αi,a,b

, and the response
time of mi between link la and link lb is calculated in (7).

rti,a,b = rt(x)i,a,b when rt(x)i,a,b = rt(x−1)
i,a,b (7)

The first interference term in (6) is caused by the higher
and the same priority synchronous messages (hep(mi)) that
share links with mi between link la and link lb in the route of
the message. This interference is computed in (8). Note that,
the interference should be inflated by the same inflation factor.

Ii,a,b = ∑
∀ j∈[1,N], j 6=i
∧ m j∈hep(mi)
∧ L j∩Li,a,b 6= /0

 rt(x−1)
i,a,b

Tj

 C j

αi,a,b
(8)

According to the RBS method, a message received by a
HaRTES switch is inserted to the output priority queue. If
there is enough time in the EC, the message is transmitted to
the next switch. However, it may happen that, concurrently
with the insertion, a lower priority message is transmitted
through the same priority queue. Therefore, the arrival message
is blocked with the lower priority message. Note that, one
particular lower priority message can block mi only once in the
route. Therefore, the same blocking messages in the next links
are excluded from the calculation. Also note that, the blocking
is at most one packet as the other packets are preempted by
mi. The blocking for mi is calculated in (9), where l p(mi) is
the set of lower priority synchronous messages than that of mi.

Bi,a,b = ∑
t=a+1..b,a6=b

max
∀p∈[1,N]
∧ mp∈l p(mi)
∧ lt∈Lp

∧ ∀y,a+1≤y<t,ly /∈Lp

(
PKp

αi,a,b
) (9)

In the RBS method, synchronous messages are transmitted
by the source node when indicated in the TM. Therefore,
in the source local-link the blocking from the lower priority
messages cannot occur. Moreover, blocking may only occur
when a higher priority message is received and transmitted
within one EC (not buffered). Therefore, a message crossing
one link does not cross a switch, hence it is never blocked,
i.e., Bi,a,b = 0 when la = lb. Thus, in (9) the summation is
performed when a 6= b, only. Moreover, the blocking appears
at the switch output link. This leads to exclude the first link
(la) to be accounted for blocking as it is always the input link.
Therefore, the summation starts from link l(a+1).

The last term in (6) is the switching delay of the message.
As it is described in the system model, the switching delay is
the delay of buffering an arrival message before transmitting.
This delay is different than the blocking and the interference.
The switching delay occurs for a message crossing a switch
even without being blocked or delayed by another message.
However, the switching delay of other messages that share
links with the message under analysis mi do not affect the
switching delay of mi. In order to show the effect of switching
delay of a message on other messages, we consider three
different cases that cover all possible scenarios for m1 and
m2 transmitted through one switch as follows:

Case 1: m1 and m2 share an input link, only. In this case
the messages have different output links, thus they are stored
in the switch independently before transmission. Therefore, the
switching delay of each message is equal to its transmission
time.

Case 2: m1 and m2 share an output link, only. In this
scenario the messages are arriving from different source nodes,
thus the switch handles them separately and inserts them into
the same priority queue. Therefore, the switching delay of each
message equals to its transmission time.

Case 3: m1 and m2 share both input and output links. In
this scenario the first message is stored in the switch and
transmitted to the output link. During the transmission of
the first message, the second message is being stored and
wait for the transmission. Figure 8 shows the transmission of
these messages. The switching delay of m2 is not equal to its
transmission time, and in fact it is equal to the transmission
time of m1, assuming C1 >C2. This is due to the storing time
of m2 which is carried out concurrently with transmission of
m1. Thus, when calculating the switching delay for m2, the
switching delay of m1 should be considered. This scenario
occurs when both messages are transmitted in series from the
input to the output of a switch.

Link 1

Synchronous Window

m1

EC k

m2

Link 2
m1 m2

Switching delay
of m2

Concurrent storing
and transmitting

Fig. 8. Switching Delay Example

In general, we can conclude that, the switching delay for mi
is the maximum transmission time between the synchronous
messages that share both input and output links with mi, and
the message itself. Note that, all messages including high and
low priority messages are taken into account. The reason is
that, there might be some lower priority messages ahead of
mi due to the blocking situation in the previous switches. The
switching delay for mi transmitted between link la and link lb
is calculated in (10).

SDi,a,b = ∑
t=a+1..b,a6=b

max
∀q∈[1,N]
∧ lt∈Lq
∧ l(t−1)∈Lq

(
SWDi,SWDq

αi,a,b
) (10)

Note that, when calculating the response time in one link,
the message does not cross any switch. Thus, the switching
delay does not exist, i.e., SDi,a,b = 0 when la = lb. Moreover,
the same as blocking, the switching delay does not appear in
the first link as it is the input link. Thus, the summation starts
from the second link l(a+1).

B. Response Time Analysis for Asynchronous Messages

The asynchronous messages are forwarded through multi-
ple HaRTES switches in the same way as the synchronous
messages except that they are not triggered by the TM in
the source node. Therefore, blocking may occur in the source
local-link, in contrast with the synchronous messages, i.e.,
Bi,1,1 6= 0. However, in other links than the source local-link,
when computing the response time for one link, the blocking

does not exist as the message was buffered and the concurrent
transmission with a possible lower priority message did not
occur. Thus, Bi,a,b = 0 when la = lb 6= l1.

In addition, the asynchronous messages are pended during
the synchronous window. Thus, they cannot interfere with
the synchronous messages. Therefore, when calculating the
response time the interfering messages and blocking messages
are of the asynchronous type. Also, the inflation factor is
calculated considering the asynchronous window for LW .

Algorithm 1 calculates the total response time (RTi) for an
asynchronous message mi, where the response time between
two particular links la and lb are calculated using (6) and (7).

C. Algorithm Complexity

The complexity of Algorithm 1 is O(N ×M) for all
messages in a set, where N is the number of messages
in the set and M is the maximum number of links in the
route of the messages, i.e., M = max∀i∈[1,N](ni). Moreover, the
response time calculation for a message, shown in line 4 of
Algorithm 1, is pseudopolynomial. Therefore, the complexity
of the algorithm remains pseudopolynomial.

VIII. EVALUATION

In this section, we compare the RBS method, proposed in
this paper, with the DGS method presented in [4] based on the
response time analysis. We show that the RBS method provides
a significantly lower response time for the messages compared
with the DGS method. In order to present this difference, we
defined two networks, a small network consisting of 3 switches
and a larger network having 7 switches.

A. Evaluation of a Three-Switches Network

In this section, we considered a network comprising 3
switches along with 6 nodes, as illustrated in Figure 9.

HaRTES1

HaRTES2 HaRTES3

n1

n3 n5 n6 n4

n2

Fig. 9. Three-Switches Network

We generated 50000 sets each containing 20 messages.
These messages are generated randomly and all of them
are defined as global and of synchronous type to evaluate
the method in a multi-hop architecture. The periods of the
messages are selected within [2,22]EC and their priorities are
assigned based on the Rate Monotonic algorithm within [1,10],
where 1 represents the highest priority. Note that, the messages
can share a priority level in this example when their periods
are equal. Moreover, the transmission time of the messages are
chosen within [80,123]µs, where 123µs equals to 1542KB and
it is the maximum Ethernet packet size. Thus, messages are
composed by only one packet in this evaluation.

In addition, the network capacity is set to 100Mbps and
the hardware fabric latency is 3µs. The EC size was set to
1ms, where 700µs are allocated for the synchronous window.

Note that, despite the capability of the RBS method to handle
different sizes for each link, for the sake of simplicity, we
considered the synchronous window in all links to be equal.

In this example, we tagged three messages in each set,
a lowest priority, a medium priority and a highest priority.
Then, we calculated the response time of the tagged messages
according to the DGS and the RBS methods. Note that, we
consider only schedulable sets. We compute the difference
between the two response times for the tagged messages and
we normalize the results using (11).

Di f f =
RT DGS−RT RBS

max(RT DGS,RT RBS)
×100 (11)

Furthermore, we counted the sets where the normalized
difference of their response times for the tagged messages is
within a certain value. These values go from −20% until 90%
with an interval of 5%. Note that, the normalized difference
cannot reach 100% as the response time in the RBS method
cannot be zero in (11). The negative value for Di f f shows
that the response time for the tagged messages is smaller in
the DGS method, whereas the positive value for Di f f indicates
that the response time for the tagged messages is smaller in
the RBS method. Also, the bigger value shows the bigger
difference between the response times. Figure 10 depicts an
evaluation for the network in Figure 9.

In Figure 10, the x-axis presents the percentage of the
normalized difference between the response times in the RBS
and the DGS methods for the tagged messages. The y-axis
shows the percentage of the sets that have the value within
each interval in the x-axis.

As it can be seen, the difference for the highest priority
message is never negative. This means, the RBS method
conducts the highest priority message always faster than in
the DGS method. Moreover, around 46% of the sets have a
response time difference within [50%,55%) for the highest pri-
ority message. In other words, in around half of the generated
sets, the highest priority message has around two times better
response time in the RBS method compared with the DGS
method. Also, in around 46% of the sets, the difference of
the response times for the highest priority messages is within
[65%,70%). The rest of the sets have the other differences, for
instance, around 4% have the difference within [75%,80%).

The reason for the big difference of the response times
for the highest priority message is that, in the DGS method
the message is buffered in each switch. However, in the RBS
method, the message can be forwarded as long as there is time
available in the transmission window. Therefore, the higher
priority messages can be conducted through multiple switches
as the interference to delay them is very low.

The difference of the response times for the medium
priority message is always zero or positive. Around 25% of
the sets, the medium priority has within [0%,5%) difference
of the response times. However, still 12% of the sets have
a difference within [40%,45%), and 14% of the sets have a
difference within [50%,55%).

The same for the lowest priority message, the response time
in the RBS method is smaller than in the DGS method. This

0

5

10

15

20

25

30

35

40

45

50

N
um

be
r

of
 S

et
s

(%
)

Normalized Difference between the DGS and the FFS Response Times (Diff) (%)

Highest priority

Medium priority

Lowest priority

Fig. 10. The Difference between the Response Times in 3-Switches Network

says, even though the lower priority messages are delayed by
the higher priority messages, still there might be a chance to
cross more than one switch in one EC using the RBS method.
Whereas, using the DGS method, the lower priority messages
are buffered in all switches in the route of the messages.

Furthermore, we observed 0,21% of the sets having a
negative difference [−15%,−10%) for the lowest priority
message. We will explain the reason for the case where the
DGS method gives better results using an example.

Let us assume that m1 crosses switch H to reach node A in
Figure 11, i.e., switch H is the last switch. Also, assume that
ma, mb and mc are interfering with m1 in the input link, and
again ma and mb are interfering with m1 in the output link.

In the DGS method, we calculate the response time of m1
considering ma, mb and mc as interfering messages in both
input and output links simultaneously. The reason is, according
to the DGS method, the message is not buffered in the last
switch and it is forwarded to the destination node immediately
when there is enough bandwidth.

H
A

From other
switches

Fig. 11. Special-Case Example

In contrast, in the RBS method, according to Algorithm 1,
we compute the response time of m1 link-by-link. Thus, we
calculate the response time in the input link considering ma,
mb and mc as interfering messages. Then, we compute the
response time in the output link taking ma and mb as the
interfering messages again, that might increase the response
time of m1. This is due to the fact that, in the RBS method,
the message can be buffered in the last switch. However, when
calculating the response time for the output link, ma and mb
may not interfere as their effect was already accounted for
the input link and they arrived to the destination. This leads
to a pessimism in the analysis which is rather complicated
to resolve. In fact, the analysis requires to keep track of the
interfering messages whether they are interfering. Removing
this pessimism remains for future work.

B. Evaluation of a Seven-Switches Network

In this section, we extended the size of the network to
seven switches with seven nodes, as depicted in Figure 12.

HaRTES1

HaRTES2 HaRTES3 n1

n2 n3 HaRTES4

HaRTES6

HaRTES5

HaRTES7
n4

n6

n5

n7

Fig. 12. Seven Switches Network

We generated 50000 sets, each of which containing 30
messages. Similar to the previous section, the messages are
generated randomly as global and synchronous type. The prop-
erties of the messages are similar to the previous evaluation.
Moreover, the network properties are also the same as in the
previous evaluation. However, in this example, we set the EC
size to 2ms and we allocated 1500µs for the synchronous
window equally in all links.

We tagged three messages in these sets, a lowest priority,
a medium priority and a highest priority. Then, we computed
their response times according to the DGS and the RBS
methods. Again, we counted the sets that have a normalized
difference of the response times within a certain value. Fig-
ure 13 illustrates this evaluation.

As it can be seen, compared to the smaller network with
three switches, the difference is bigger, i.e, the bars in the
figure are shifted to the right. For instance, around 33% of
the sets have now a difference of the response times within
[80%,85%) for the highest priority message. The reason is
that, when we increase the number of switches in the route of
a message, the number of occurrence of buffering is enhancing
the response time in the DGS method. Whereas, under the
RBS method the same message has a chance to cross multiple
switches in one EC, in particular for the higher priority
messages with lower interference. That is, in fact, the reason
for why in Figure 13 the difference of the response times for
the highest priority message is always greater than 50%.

Note that, we again observed 0.016% of the sets, where
the lowest priority message has a negative difference within
[−15%,−10%) which is not visible in the figure.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a method, named Re-
duced Buffering Scheme (RBS), that effectively schedules
real-time traffic in multi-hop HaRTES architectures. In order

0

5

10

15

20

25

30

35

40

45

50

N
um

be
r

of
 S

et
s

(%
)

Normalized Difference between the DGS and the FFS Response Times (Diff) (%)

Highest priority

Medium priority

Lowest priority

Fig. 13. The Difference between the Response Times in 7-Switches Network

to apply this method for the HaRTES architecture, we have
modified the HaRTES switches by changing the output port
queue management. The RBS method is based on forwarding
messages through switches as long as there is time available
in the associated transmission window. Moreover, we have
developed a response time analysis for both synchronous and
asynchronous messages in the multi-hop HaRTES architecture
using the RBS method. Finally, we compared the performance
of the RBS method with the Distributed Global Scheduling
(DGS) method presented in our previous work by applying
the response time analysis of each method on two different
networks. We have showed that the response time of the
highest priority message is always smaller using the RBS
method and the response time of the lowest and medium
priority messages can be equal and however are in most of the
cases smaller than the case when applying the DGS method.
Also, we have showed that this difference increases for larger
networks. Our future work aims at implementing the proposed
method and experimentally validate the methodology as well
as removing some pessimism of the analysis.

ACKNOWLEDGMENT

This work is supported by the Swedish Foundation for
Strategic Research via the PRESS project, and the Swedish
Knowledge Foundation. Also, it is partially supported by
the Portuguese Government through FCT grants Serv-CPS
PTDC/EEA-AUT/122362/2010.

REFERENCES

[1] W. Steiner, G. Bauer, B. Hall, M. Paulitsch, and S. Varadarajan,
“TTEthernet dataflow concept,” in 8th IEEE International Symposium
on Network Computing and Applications, 2009.

[2] Z. Hanzalek, P. Burget, and P. Sucha, “Profinet IO IRT message
scheduling,” in 21st Euromicro Conf. on Real-Time Sys. (ECRTS), 2009.

[3] R. Santos, M. Behnam, T. Nolte, P. Pedreiras, and L. Almeida, “Multi-
level hierarchical scheduling in ethernet switches,” in Proceedings of
the Int. Conference on Embedded Software (EMSOFT), October 2011.

[4] M. Ashjaei, P. Pedreiras, M. Behnam, R. J. Bril, L. Almeida, and
T. Nolte, “Response time analysis of multi-hop HaRTES ethernet switch
networks,” in 9th Int. Workshop on Factory Communication Systems
(WFCS), May 2014.

[5] S. Varadarajan and T. Chiueh, “EtheReal: a host-transparent real-time
fast ethernet switch,” in 6th Int. Conference on Network Protocols, 1998.

[6] H. Hoang and M. Jonsson, “Switched real-time ethernet in industrial
applications - deadline partitioning,” in 9th Asia-Pacific Conference on
Communications (APCC), 2003.

[7] “IEC 61158, industrial communication networks - Fieldbus specifica-
tions,” 2010.

[8] I. Land and J. Elliott, Architecting ARNIC 664 (AFDX) Solutions, 2011.
[9] “Audio/video bridging task group of ieee 802.1, available at

http://www.ieee802.org/1/pages/avbridges.html.”
[10] “Powerlink, available at http://www.ethernet-powerlink.org/.”
[11] R. Marau, L. Almeida, and P. Pedreiras, “Enhancing real-time com-

munication over COTS Ethernet switches,” in 6th IEEE International
Workshop on Factory Communication Systems (WFCS), June 2006.

[12] M. Ashjaei, M. Behnam, L. Almeida, and T. Nolte, “Performance
analysis of master-slave multi-hop switched ethernet networks,” in 8th
IEEE Int. Symp. on Industrial Embedded Systems (SIES), June 2013.

[13] A. Mifdaoui, F. Frances, and C. Fraboul, “Performance analysis of
a master/slave switched ethernet for military embedded applications,”
IEEE Transactions on Industrial Informatics, 2010.

[14] M. Zhang, J. Shi, T. Zhang, and Y. Hu, “Hard real-time communication
over multi-hop switched ethernet,” in The IEEE Int. Conference on
Networking, Architecture, and Storage (NAS), 2008.

[15] H. Charara, J.-L. Scharbarg, J. Ermont, and C. Fraboul, “Methods for
bounding end-to-end delays on an AFDX network,” in 18th Euromicro
Conference on Real-Time Systems, 2006.

[16] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Improving the worst-case
delay analysis of an AFDX network using an optimized trajectory
approach,” IEEE Trans. on Industrial Informatics, 2010.

[17] G. Kemayo, F. Ridouard, H. Bauer, and P. Richard, “Optimistic prob-
lems in the trajectory approach in fifo context,” in 18th IEEE Conf. on
Emerging Technologies Factory Automation (ETFA), September 2013.

[18] R. Queck, “Analysis of Ethernet AVB for automotive networks using
network calculus,” in IEEE International Conference on Vehicular
Electronics and Safety (ICVES), July 2012.

[19] M. Manderscheid and F. Langer, “Network calculus for the validation of
automotive ethernet in-vehicle network configurations,” in International
Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), October 2011.

[20] L. Lenzini, L. Martorini, E. Mingozzi, and G. Stea, “Tight end-to-
end per-flow delay bounds in FIFO multiplexing sink-tree networks,”
Elsevier Performance Evaluation, vol. 63, October 2006.

[21] J. Schmitt, F. Zdarsky, and M. Fidler, “Delay bounds under arbitrary
multiplexing: When network calculus leaves you in the lurch...” in The
27th IEEE Conference on Computer Communications, April 2008.

[22] L. Lenzini, L. Martorini, E. Mingozzi, and G. Stea, “A novel approach to
scalable CAC for real-time traffic in sink-tree networks with aggregate
scheduling,” in the 1st ACM international conference on Performance
evaluation methodolgies and tools, October 2006.

[23] M. Ashjaei, M. Behnam, G. Rodriguez-Navas, and T. Nolte, “Imple-
menting a clock synchronization protocol on a multi-master switched
ethernet network,” in 18th Conference on Emerging Technologies Fac-
tory Automation (ETFA), September 2013.

[24] R. Marau, L. Almeida, P. Pedreiras, K. Lakshmanan, and R. Rajkumar,
“Utilization-based schedulability analysis for switched ethernet aiming
dynamic QoS management,” in 15th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), 2010.

