
A Framework for Generation of Inter-node Communication in
Component-based Distributed Embedded Systems

Luka Lednicki, Jan Carlson
Mälardalen Real-time Research Centre

Mälardalen University
Västerås, Sweden

luka.lednicki@mdh.se, jan.carlson@mdh.se

Abstract

In component-based and model-driven development it
is common to model embedded applications in a platform-
independent manner. As an example, some approaches
allow development of distributed applications while ab-
stracting away from details of communication between
platform nodes. Using such an approach requires to im-
plement this communication before an executable system
is deployed. Currently it is common to automatically im-
plement this communication on the level of code, while
providing it on the model level is mostly a task that needs
to be done manually. In this paper we present a framework
for automatic generation of inter-node communication by
adding communication components to software models.
The framework provides flexibility in the level of automa-
tion of generation decisions, and is defined in a way which
allows adding support for new communication media or
protocols. We have implemented the generation frame-
work for the IEC 61499 standard and provide a prototype
generation tool, which we use for examining the applica-
bility of the approach.

1 Introduction

Component-based [1, 5] and model-driven [4] devel-
opment approaches have shown potential in improving
the process of development of distributed embedded sys-
tems. A common feature that these approaches tend
to provide is development of systems using platform-
independent software models, reducing the amount of
details that a developer needs to tend to during early
stages of development. Later in the development, these
platform-independent models can be transformed to ei-
ther platform-specific models or synthesized directly to
platform-specific code. Although it is common to gen-
erate platform-specific code without using intermediate
models, generating a platform-specific system model can
provide additional benefits to development. For exam-
ple, platform-specific models can make developers more

aware of consequences of deployment decisions, or make
platform-specific properties available to model-level anal-
ysis tools.

An example of an approach which supports separation
of platform-independent and platform-specific models can
be seen in the IEC 61499 standard [11, 16, 17]. The stan-
dard allows platform-independent development of dis-
tributed applications, abstracting away some of the addi-
tional complexity of communication between distributed
nodes. While some development tools [9, 14] automati-
cally generate code for this communication when deploy-
ing an application to hardware, inter-node communication
can also be implemented using specialized communica-
tion components on the model level. These components
currently need to be added to the models and updated
manually, thus extending the development time and in-
creasing the possibility of introducing errors.

In this paper we present a framework for automatic
generation of inter-node communication on the level of
software models, and provide an implementation of the
framework for the IEC 61499 standard. The generation
is performed by utilizing the models of software, plat-
form and the mapping between the two. The method first
derives a communication model of the system and deter-
mines available communication media. After that, com-
munication media and protocols to be used for implement-
ing the communication are selected. In the end, the com-
munication components are added to the software model
and configured for communication, and the original soft-
ware model is annotated with information about the gen-
erated elements.. We also provide an prototype generation
tool and use it to demonstrate the applicability of the ap-
proach.

The approach allows developers to model distributed
functionality without having to manually implement the
details of inter-node communication. The communication
model elements can be generated even in the early stages
of development, before the system is fully implemented,
which makes it easier to explore different allocation op-
tions. To increase flexibility and make it easier to ap-
ply the method do different component frameworks, we



separate the generation into multiple phases, each with
clearly defined inputs and outputs. The framework also
distinguishes between the generic generation mechanism
and generation of protocol-specific elements, allowing the
method to be extended with support for different proto-
cols.

The rest of the paper is organized as follows: In
Section 2 we provide background information on the
IEC 61499 standard. Section 3 contains detailed descrip-
tion of the communication generation framework. In Sec-
tion 4 we show how the generation method is applied
on an example system, while in Section 5 we provide
information about the prototype implementation of our
method. Section 6 gives an overview of related work and
Section 7 concludes the paper.

2 Background - IEC 61499

The IEC 61499 standard [11, 16, 17] is proposed as a
successor of the IEC 61131-3 standard [10] widely used
in industry to accommodate development of industrial au-
tomation systems. One of the main concerns of the stan-
dard is to allow development of applications distributed
over multiple controllers, which can be geographically
separated in a plant. In the following two sections we will
describe the software, platform and resource-specific soft-
ware model of the standard.

2.1 Software model
The main element of the IEC 61499 software model

is the function block. Function blocks are reusable units
of software that implement a specific functionality with
a clear separation between interface and implementation.

FB

E_i1
E_i2

D_i1
D_i2

E_o1
E_o2

D_o1
D_o2

FB_1

E_o11
E_o12

D_o11
D_o12

FB_2

E_i21

D_i21

E_o21

D_o21

FB_3

E_i31
E_i32

D_i31
D_i32

(b)

(a)

Figure 1. a) An IEC 61499 function block in-
terface. b) An application built using a func-
tion block network.

Device 1

Resource 1

Resource 2

Device 2

Resource 1

Ethernet

Figure 2. Example model of the platform in
IEC 61499.

Although the functionality of function blocks can be im-
plemented in various ways, the work presented in this pa-
per deals with function blocks only on the interface level.
Therefore in this section we will not describe the details
of function block implementation.

The function block interface defines how the function-
ality of a function block is presented to the rest of the sys-
tem. The interface explicitly separates event and data in-
puts and outputs. Event inputs and outputs are used to
specify the execution flow, but do not provide any means
for exchanging data between function blocks. All data
transfers are done by data inputs and outputs.

Relations between event and data ports can be de-
scribed by WITH qualifiers. Defining a WITH qualifier on
an event input port and a set of data input ports describes
which data inputs will be sampled together with the event
port. A WITH qualifier combining an event output port
with a set of data output ports shows which data outputs
will be updated with new values together with an output
at the event output.

Figure 1 (a) shows an example of a function block in-
terface. The figure shows a function block with input
event ports E i1 and E i2, output event ports E o1 and
E o2, data inputs D i1 and D i2, and data outputs D o1
and D o2. The WITH qualifiers are represented by con-
necting the ports with vertical lines, marking each port
belonging to a WITH qualifier by a black rectangle. As
an example, the WITH operator defined on outputs of FB
implies that when an event is generated on E o1, the val-
ues on ports D o1 and D o2 will also be updated.

IEC 61499 applications are implemented by function
block networks. A network consists of a set of function
blocks and connections between the ports of these func-
tion blocks. Applications provide a view of the com-
plete software implementation, no matter how the func-
tion block implementing them are mapped to the platform
nodes.

An example of an application containing function
blocks FB 1, FB 2 and FB 3, and connections between
them, is given in Figure 1 (b).

2.2 Platform model
In IEC 61499 the platform is represented by devices. A

device is an independent physical entity capable of per-



I. Communication 
model extraction

Application 
model

Deployment 
model

Platform 
model

Communication 
model

II. Detection of 
available media

Extended 
communication 

model

Media / protocol 
information

Resource-specific 
software model

III. Protocol selection

Automatic selection

Manual selection

IV. Component creation

Generic generator

Protocol-specific 
generator

Communication 
components

Annotations

Annotations

<Model element> <Generation activity> <Activity element>Legend:

Figure 3. Overview of the communication component generation process.

forming one or more specified functions. Each device
contains one or more resources, which are functional units
with independent control of operation.

Communication networks between devices are mod-
eled by network segments. One device can be connected to
more than one segment, and there is no limit to the num-
ber of devices that can be connected to a single network
segment.

Figure 2 shows an example of platform model consist-
ing of two devices connected via an Ethernet network seg-
ment. Device 1 has two resources, and Device 2 with only
one resource.

Applications are deployed to the platform by mapping
its function blocks to the resources contained by the de-
vices of the platform. Since function blocks are atomic
units of deployment, each function block can be mapped
to only one resource.

2.3 Resource-specific software model
Each resource in a distributed IEC 61499 system con-

tains a local model of the application, containing only a
subset of applications function blocks which are mapped
to that particular resource. This model can however con-
tain additional function blocks which are not visible on
the application level. It is a common practice to use this
option to implement functionality that is specific to the
current mapping of the application, such as adding inter-
resource communication function blocks.

3 Communication generation framework

To solve the problem of automatic generation of inter-
node communication components we define a generation

framework, an overview of which is depicted in Figure 3.
The framework is separated into four activities, each

with clearly defined inputs and outputs, introducing a level
of flexibility which results in multiple benefits. First, the
method can easily be extended to take into account more
information, for example to improve media and proto-
col selection, or the component creation method. Arbi-
trary new communication components, media and proto-
cols can easily be appended to the generation implemen-
tation. The level of automation of the generation process
can be varied, leaving the ability for manual input of a de-
veloper. Also, the separation allows easier adaptation of
the method to different component frameworks.

In the following sections we first introduce the com-
munication model which is used to describe inter-node
communication in our approach, and then give detailed
descriptions of the four generation phases.

3.1 The communication model
We describe the communication between components

located on different nodes by creating a communication
model. The Ecore metamodel of the communication
model can be seen in Figure 4. The main elements of the
model are Channels, which represent data or events pro-
duced together on the same source node, and transferred
as messages to one or more destination nodes.

The content of a message sent through a channel is de-
fined by a set of Data elements. Each data element defines
the type of data it represents using the type attribute.As
events are not distinguished by types, and carry no seman-
tics besides the occurrence of an event, we represent them
by Data elements with type set to none.

In addition to a set of data elements, a channel also con-



Figure 4. Ecore metamodel that defines the
communication model.

tains one Source and one or more Destination elements.
Both of these element types have a reference to the plat-
form node which is the endpoint of the communication.
The Destination element has an additional isLocal flag,
which indicates if the source and destination nodes are
two virtual nodes residing on the same physical node, or if
they are distributed on separate physical nodes. As an ex-
ample, in the IEC 61499 implementation of the generation
method, communication between two resources belonging
to a same device is marked as local. The Source and Des-
tination elements also reference one or more inter-node
connections in the application model which they represent
using the connections attribute.

The source and destination elements also describe how
the messages are created and consumed by components.
This is done by a set of Port elements which are added
either to the sourcePorts set of a source or the destination-
Ports set of a destination. Each of these elements define
from which port of which component in the application
model the message data is read (in case it is added to
a source) or to which port of which component the data
needs to be delivered (in case it is added to a destination).
This is done using the component and port attributes. The
message element that is generated by or delivered to the
referenced port is denoted by a reference to a Data ele-
ment of the Channel.

Each Destination element can also contain a number
of Media elements. These elements are used to describe
which communication media can be used for communica-
tion between the destination and the source of the channel.
Besides the networkSegment attribute which references
the network segment of the platform model, a Media el-
ement also contains a properties attribute which can con-
tain information about how the destination node is con-
nected to the network segment, for example an IP address
of a device on an Ethernet network.

3.2 Communication model extraction
The communication model of an application is ex-

tracted from the application model and the deployment
model. The process starts with detecting event and data
connections in the application which connect components
deployed to different platform nodes. A Channel ele-
ment is generated for each group of connections for which
source events and data are generated at the same time and
on the same node. Then, the Data element set of the chan-
nel is generated based on the data end event sources of the
connections. The channels single Source element is cre-
ated and initialized with the information about the source
node and the represented connection, and Port elements of
the sourcePorts set are created based on the output ports
from which the connections represented by the channel
start.

The represented connections are then grouped by the
nodes that their destination components are mapped to.
For each such group, a Destination element is added to
the channel. A Port element for each connection is then
added to the destinationPorts set, and initialized to point
to the target port of the connection.

In the IEC 61499 implementation of the generation
method, we use WITH operators defined on the output
ports to group connections into channels, as they define
one event and an arbitrary number of data outputs gener-
ated at the same time.

3.3 Communication media detection
Once the communication model has been derived, it

can be used to determine which media alternatives are
available to implement the inter-node communication.
This is done in combination with the model of the plat-
form.

As channels can have multiple destinations, each on
a distinct platform node, media detection has to be per-
formed separately for each channel destination. Available
media for a destination is determined by finding all com-
munication networks in the platform model to which both
the node of the destination and the node of the channel
source are connected. For each available media, a Media
element is added to the Destination and the value of the
properties attribute for the new element is set based on
how the node is connected to the network.

The results of the media detection are added to the ex-
isting communication model and the new extended model
is stored.

3.4 Protocol selection
After the media detection is done, it must be decided

which of the available media will be used to implement the
communication, and how (i.e. using which protocol). The
protocols which can be used to achieve communication
using a specific media are defined by the available proto-
col specific generators, which will be described in the next
section. This process can be a combination of manual and
automated selection. While manual selection allows de-



velopers to use expert knowledge to obtain a desired sys-
tem behavior, automated selection allows optimizations
on the system level and faster development in cases when
there are no specific communication constraints to con-
sider.

As an example of optimization during automated se-
lection, we have implemented an algorithm which reduces
the number of used communication media. The algorithm
finds common media for destination of a communication
channel, and selects the ones which cover the most desti-
nations. In this way the number of generated components
and sent messages will be minimized.

3.5 Communication component creation
The actual creation of the communication components

is based on the extended communication model and the
information about selected communication protocols. It is
done using two mechanisms: a generic generator and a
set of protocol specific generators.

The task of the generic generator is to traverse the
communication model and initiate creation of communi-
cation components for sources and destinations. For each
destination exactly one component is generated on the
destination node. Creation of components on the source
side is more complex. Messages from one source can be
delivered to more than one destination, and each destina-
tion can require different communication media or pro-
tocol. Because of this, in some cases there is a need to
generate more than one communication component for a
single communication channel source, each for a specific
media or protocol. After the communication components
are generated, the generic generator creates connections
between applications components and the generated com-
munication components based on the information stored
in the Port elements of the communication model. In the
end, the information about the connections represented by
sources and destinations is used to annotate these con-
nections with the information about the generated com-
ponents.

The component creation initiated by the generic gener-
ator, as well as configuration of the created components,
is performed by a protocol specific generator. The gen-
eration implementation can have more than one specific
generator, each implementing component creation for a
specific communication media and protocol. The specific
generator to be used for each source and destination is
chosen based on information provided by the protocol se-
lection phase.

In the IEC 61499 context, we have implemented the
generic generator and a protocol specific generator for
communication using the UDP protocol on an Ethernet
network. This type of communication is part of an in-
teroperability provisions defined by Holobloc [8]. In the
resource-specific software model, the communication is
implemented using two standardized function block types:
the PUBLISH function blocks are used to send multicast
UDP messages to the network, while SUBSCRIBE func-

tion blocks receive such multicast messages. There exist
multiple versions of both function block types, each with
a different number of data values they send or receive.
To enable sending messages from one PUBLISH function
block to one or more SUBSCRIBE function blocks, they
must be configured to send and receive messages on the
same UDP port.

The specific generator for UDP over Ethernet gener-
ates PUBLISH function blocks for channel sources, and
SUBSCRIBE blocks for destinations, choosing the correct
versions of the function blocks based on the number of
data values transferred by the channel1. Each channel is
then assigned a unique UDP port which is used to con-
figure all communication blocks belonging to the channel
which will communicate using this protocol.

For the purpose of testing the generation of commu-
nication for different media and protocol types, we have
also created a protocol specific generator for communi-
cation using a CAN bus. However, implementation of
components for such communication does not exist in the
IEC 61499 development tools which we used to build the
prototype generation tool. Because of this, the CAN pro-
tocol specific generator can only be used for testing pur-
poses.

4 Example

We will illustrate the proposed communication compo-
nent generation method on an example system. The dis-
tributed application of the example is shown in Figure 5 a),
and the platform model is given in Figure 5 b). Function
block FB 1 is mapped to run on Resource 1, FB 2 and
FB 3 to Resource 2, and FB 4 to Resource 3.

Figure 5 c) shows the communication model extracted
from the application and deployment models. The extrac-
tion results in two communication channels, one for each
WITH qualifier of FB 1. The first channel is used to trans-
mit one event and two data values from Resource 1 to a
single destination on Resource 2. The model also shows
at which port the message data originates, and which des-
tination ports receive the data. The second channel trans-
mits one event and one data value originating on Re-
source 1, and has two destinations, one on Resource 2 and
one on Resource 3.

Results from communication media detection are also
depicted in Figure 5 c). Both Destination 1 of Channel 1
and Destination 1 of Channel 2 can be reached from their
sources by either the CAN bus or the Ethernet connection.
Ethernet is however the only media that can be used to
communicate between the source of Channel 2 and Desti-
nation 2 of the same channel.

We assume that the developer has manually selected
the CAN bus as the media to be used for Destination 1 of

1Because of the specifics of the implementation of message decoding
in SUBSCRIBE function blocks, in some cases where not all outputs are
used in all destinations, the method generates multiple PUBLISH blocks
and treats each of these as a separate communication channel.



FB_1

E_i11
E_o12

D_o11
D_o12
D_o13

FB_2

E_i21

D_i21
D_i22

FB_4

D_i41

E_i41

FB_3

E_i31

D_i31

c)

a)

FB_1

E_i11
E_o12

D_o11
D_o12
D_o13

FB_2

E_i21

D_i21
D_i22

FB_4

D_i41

E_i41

FB_3

E_i31

D_i31

b)

Device 1

Resource 1

Device 2

Resource 2

Device 3

Resource 3

Ethernet

CAN

Source
node = Resource 1

Port 1
data = Data 1

Port 2
data = Data 2

Port 3
data = Data 3

Destination 1
node = Resource 2

Port 1
data = Data 1

Port 2
data = Data 2

Port 3
data = Data 3

Source
node = Resource 1

Port 1
data = Data 1

Port 2
data = Data 2

Destination 1
node = Resource 2

Port 1
data = Data 1

Port 2
data = Data 2

Destination 2
node = Resource 3

Port 1
data = Data 1

Port 2
data = Data 2

Resource 3Resource 2Resource 1

FB_1

E_i11
E_o12

D_o11
D_o12
D_o13

FB_2

E_i21

D_i21
D_i22

FB_4

D_i41

E_i41

PUBLISH_2

REQ

PARAMS
SD_1
SD_2

PUBLISH_1

REQ

PARAMS
SD_1

SUBSCRIBE_1

IND

RD_1PARAMS

SUBSCRIBE_2

IND

RD_1
RD_2

PARAMS

225.0.0.1
:65001SUBSCRIBE_1

IND

RD_1PARAMS

FB_3

E_i31

D_i31

d)

225.0.0.1
:65001

CAN:512

225.0.0.1
:65001

CAN:512

Channel 2

Data 1
type = none

Data 2
type = int

Channel 1

Data 1
type = none

Data 2
type = int

Data 3
type = bool

Available media
CAN
*Ethernet

Available media
*CAN
Ethernet

Available media
*Ethernet

Figure 5. a) Example application model. b) Platform model of the example system. c) Commu-
nication model derived from the example application and platform model. d) Resource-specific
software models containing generated communication components.

Channel 1, and that media selection for Channel 2 is left
to the tool. As Ethernet is a common available media to
all destinations of Channel 2, it is selected to implement
communication for both destinations by the automated se-
lection process. The selected media are marked with an
asterisk in the model figure.

The result of the component creation can be seen in
Figure 5 d). The figure shows resource-specific software
models of the system resources, which, in addition to the
deployed function blocks, contain the inter-node commu-
nication function blocks. For the sake of simplicity, the
models do not show all ports of PUBLISH and SUBSCRIBE
function blocks, such as the ports used to trigger function
block initialization.

5 Implementation

To demonstrate the applicability of the communication
component generation method we have implemented it as
a prototype tool. The tool has been developed as a plug-in
for the 4DIAC-IDE, an open-source IEC 61499 develop-
ment environment [15]. Integration with 4DIAC allows us
to execute the tool using the graphical model editors, and
perform generation using existing system models. Gener-
ation results in systems which are fully executable without
any need for manual editing of resource-specific software
models or code. A screenshot depicting the 4DIAC-IDE
is shown in Figure 6. The figure contains a) the applica-
tion model from the previous example and the generation
menu added by our plug-in, and b) the resource-specific



Figure 6. Screenshot of a) example application and the automatic generation menu in 4DIAC-
IDE and b) a resource-specific software model containing components created by the prototype
generation tool.

software model for Resource 2 containing the generated
communication blocks. The prototype tool is freely avail-
able for download2.

6 Related work

The general problem of code generation using system
models has been explored by the model-driven develop-
ment research community, and some of the approaches
also allow automatic generation of distributed systems.

In Balasubramanian et al. [2] describe how models of
software, platform and the mapping between the two can
be used to generate parts of code that implement access to
the communication media. Gokhale et al. [7] describe how
embedded systems where communication between nodes
is supported by middleware can be generated using system
models. The authors propose using platform-independent
application models together with the models of platform
to configure pre-existing middleware components. Com-
pared to our generation, which generates communication
on the level of models, the communication that both of
these approaches generate is not visible to the developers
on the model-level, and not available to analysis methods
which are performed using models.

Automatic generation of inter-node communication on
the code level has been implemented in ISaGRAF [9] and
nxtStudio [14] development tools for IEC 61499 systems.
Our approach however generates this communication on
the model level, making it more visible to the system de-
velopers and analysis tools. In our approach we have
also introduced separate generation phases, all of which
have well-defined inputs and outputs, making the genera-
tion easily adaptable to new communication protocols, or
transferable to other component-based frameworks.

2http://www.idt.mdh.se/˜jcn01/research/4DIAC-plugins/

Doukas and Thramboulidis [6] present a real-time
framework that is able to run systems created using func-
tion block models, which also includes automatic gener-
ation of inter-device communication. The communica-
tion is implemented using entities called event-connection
managers, which allow the communication to be more
flexible than implementation using only code. Compared
to our approach, the automatically generated communica-
tion is not visible in function block models, the generation
takes into account only the deployment model as opposed
to the complete platform model, and communication can
only be implemented using IPCP protocol.

Brisolara et al. [3] provide generation of communica-
tion on the level of models as a part of a method which
uses high-level UML models to generates executable and
synthesizable Simulink models. Providing extensive sup-
port for automatic generation of communication was not
the main aim of this work. Compared to work presented
in this paper, the communication generation does not take
into account the model of platform nodes and network
connections between them, and therefore can not generate
communication for different communication media and
protocols. Also, in this approach the information about
generated elements is not propagated back to the UML
model.

7 Conclusion

In this paper we have defined a framework for
automatic generation of inter-node communication in
component-based distributed embedded applications. The
generation is done by first extracting an inter-node com-
munication model from the models of software, plat-
form and deployment. Based on this model, the software
model is updated by adding, configuring and intercon-
necting components which will implement communica-



tion between distributed platform nodes. The generation
method is separated in multiple stages, each with clearly
defined inputs and outputs. The result of this separation
is a flexible and extensible framework which can easily
be updated with support for new communication medias
and protocols, or applied to different component models.
The framework also allows a variable level of automa-
tion of the communication media and protocol selection in
case the communication can be implemented using mul-
tiple protocols. We have described how the generation
framework can be applied to the IEC 61499 standard and
demonstrated the generation on an example system. The
framework has also been implemented in form of a pro-
totype tool, based on the 4DIAC integrated development
environment for IEC 61499 systems.

As future work we would like to validate the generation
framework in a realistic case-study.

We also plan to extend the presented generation
method with a possibility of creating relay communication
components. This approach would enable communication
between two nodes which are not directly connected by
a network, but share a common node to which both are
connected.

Another possibility for future work is to investigate
how the generated communication components and anno-
tations to the application model could be used to improve
the results obtained by model level analysis, such as de-
scribed in [13, 12].

Acknowledgments

This work has been performed as part of the Ralf3
project founded by the Swedish Fundation for Strategic
Research.

References

[1] C. Atkinson, C. Bunse, C. Peper, and H.-G. Gross.
Component-based software development for embedded
systems – an introduction. In Component-Based Software
Development for Embedded Systems, pages 1–7. Springer,
2005.

[2] K. Balasubramanian, A. Gokhale, G. Karsai, J. Szti-
panovits, and S. Neema. Developing applications using
model-driven design environments. Computer, 39(2):33–
40, Feb 2006.

[3] L. B. Brisolara, M. F. S. Oliveira, R. Redin, L. C. Lamb,
L. Carro, and F. Wagner. Using UML as Front-end for
Heterogeneous Software Code Generation Strategies. In
Proceedings of the Conference on Design, Automation and
Test in Europe, DATE ’08, pages 504–509, New York, NY,
USA, 2008. ACM.

[4] S. Burmester, H. Giese, and W. Schäfer. Model-driven
architecture for hard real-time systems: From platform in-
dependent models to code. In Model Driven Architecture–
Foundations and Applications, pages 25–40. Springer,
2005.

[5] I. Crnkovic and M. Larsson. Building reliable component-
based software systems. Artech House Publishers, 2002.

[6] G. Doukas and K. Thramboulidis. A Real-Time-Linux-
Based Framework for Model-Driven Engineering in Con-
trol and Automation. Industrial Electronics, IEEE Trans-
actions on, 58(3):914–924, March 2011.

[7] A. Gokhale, K. Balasubramanian, A. S. Krishna, J. Bala-
subramanian, G. Edwards, G. Deng, E. Turkay, J. Parsons,
and D. C. Schmidt. Model driven middleware: A new
paradigm for developing distributed real-time and embed-
ded systems. Science of Computer Programming, 73(1):39
– 58, 2008. Special Issue on Foundations and Applications
of Model Driven Architecture (MDA).

[8] Holobloc Inc. Function block development kit (FBDK),
May 2012. http://www.holobloc.org/.

[9] ICS Triplex ISaGRAF. ISaGRAF, 2014.
http://www.isagraf.com/.

[10] IEC 61131-3: Programmable Controllers–Part 3: Pro-
gramming Languages. International Electrotechnical
Commission, Geneva, 1993.

[11] IEC 61499-1: Function Blocks-Part 1 Architecture. Inter-
national Electrotechnical Commission, Geneva, 2005.

[12] L. Lednicki, J. Carlson, and K. Sandström. Device uti-
lization analysis for IEC 61499 systems in early stages of
development. In Emerging Technologies Factory Automa-
tion (ETFA), 2013 IEEE 18th Conference on, pages 1–8,
2013.

[13] L. Lednicki, J. Carlson, and K. Sandström. Model Level
Worst-case Execution Time Analysis for IEC 61499. In
Proceedings of the 16th International ACM Sigsoft Sympo-
sium on Component-based Software Engineering, CBSE
’13, pages 169–178, New York, NY, USA, 2013. ACM.

[14] nxtControl. nxtStudio, 2014. http://www.nxtcontrol.com/.
[15] T. Strasser, M. Rooker, G. Ebenhofer, A. Zoitl, C. Sünder,

A. Valentini, and A. Martel. Framework for Distributed
Industrial Automation and Control (4DIAC). In Industrial
Informatics, 2008. INDIN 2008. 6th IEEE International
Conference on, pages 283 –288, july 2008.

[16] V. Vyatkin. IEC 61499 as Enabler of Distributed and In-
telligent Automation: State-of-the-Art Review. Industrial
Informatics, IEEE Transactions on, 7(4):768 –781, nov.
2011.

[17] A. Zoitl, T. Strasser, K. Hall, R. Staron, C. Sünder, and
B. Favre-Bulle. The past, present, and future of IEC
61499. Holonic and Multi-Agent Systems for Manufac-
turing, pages 1–14, 2007.


