Evaluation of Dynamic Reconfiguration Architecture
in Multi-Hop Switched Ethernet Networks

Mohammad Ashjaeil, Paulo Pedreiras?, Moris Behnam!, Luis Almeida®, Thomas Nolte!
I MRTC/Milardalen University, Visteras, Sweden
2 DETI/IT/University of Aveiro, Aveiro, Portugal
3IT/DEEC/University of Porto, Porto, Portugal

Abstract—On-the-fly adaptability and reconfigurability are
recently becoming an interest in real-time communications. To
assure a continued real-time behavior, the admission control
with a quality-of-service mechanism is required, that screen
all adaptation and reconfiguration requests. In the context
of switched Ethernet networks, the FTT-SE protocol provides
adaptive real-time communication. Recently, we proposed two
methods to perform the online reconfiguration in multi-hop FTT-
SE architectures. However, the methods lack the experimental
evaluation. In this paper, we evaluate both methods in terms of
the reconfiguration time.

I. INTRODUCTION

The interest of using Ethernet switches in real-time dis-
tributed applications is rapidly increasing due to its features
such as wide availability, low cost and high throughput. How-
ever, using commercially available (COTS) switches in time
critical applications may hinder the ability to provide real-time
guarantees. In addition, operating conditions may change, for
example triggered by changes in the environment that may lead
to increased communication requirements. In turn, this calls
upon adequate dynamic adaptation and reconfiguration policies
that ensure continued timeliness in the communications.

The limitations imposed by the simple use of COTS
switches have been addressed in [1]. Some relatively old
solutions are based on enhanced switches such as EtheReal [2]
and the EDF Scheduled Switch [3], both using reserved
channels for traffic transmission. Some other solutions made it
to the market, such as PROFINET-IRT [4] and TTEthernet [5],
both optimized for time-triggered operation. However, these
switches are configured in ways that are not suited for dynamic
real-time systems that are operating in dynamic environments.
despite the performance improvements offered by using these
enhanced switches, their usage result in a high cost and a lower
availability compared to COTS switches.

A more effective solution is to control the traffic submitted
to the COTS switch avoiding queue build up and then to use
adequate traffic scheduling policies. This can be achieved with
a master-slave technique which is the case of the FTT-SE
protocol [6].

The FTT-SE (Flexible Time-Triggered Switched Ethernet)
protocol is a bandwidth-efficient master-slave protocol that
handles all types of message streams including real-time peri-
odic, real-time sporadic and non-real-time traffic. The protocol
provides temporal isolation between the message types by
defining specific reserved bandwidth for each type of message
streams. Moreover, it caters for requirements of dynamic
reconfiguration and adaptability.

The multi-hop communication over the FTT-SE protocol
was addressed in [7] and [8], where three architectures were

studied. It turned out that, among those architectures, the one
where several master nodes coexist to control the traffic in
a group of switches performs better in terms of bandwidth
utilization [8]. This architecture is called hybrid architecture.

Recently, we proposed two different methods for on-line
reconfiguration in the hybrid architecture [9]: centralized and
distributed. However, the methods lack the experimental eval-
uation. In this paper, we evaluate both methods in terms of the
reconfiguration time.

The paper organizes as follow. The next section describes
the hybrid FTT-SE architecture. Section III presents the re-
configuration methods. Section IV depicts the evaluation of
the methods and Section V concludes the paper and shows
future directions.

II. THE HYBRID ARCHITECTURE

An example of the hybrid architecture is depicted in Fig. 1.
In this architecture, a group of switches along with their
associated nodes that have the same parent switch form a
cluster (e.g., Cluster2 in Fig. 1). The traffic within a cluster is
controlled by one master node connected to the parent switch
of the cluster (e.g., M2 is a master node for Cluster2). Note
that, the master of the root cluster (M1 in Fig. 1) is included
in its cluster since it cannot be accounted as one cluster itself.

Fig. 1. The Hybrid Architecture

Considering different clusters, the message types are cat-
egorized as follows. A message that is transmitted within a
cluster is called internal, while a message that is transmitted
across clusters is called external.

The master nodes schedule the respective traffic on-line
according to any desired scheduling policy (e.g., Fixed Priority
Scheduling), on a cyclic basis. The basic cycle has a fixed
duration of time and it is called Elementary Cycle (EC). In
the hybrid architecture, each EC is partitioned among the traf-
fic types, i.e., internal/external and synchronous/asynchronous
traffic (Fig. 2). The external asynchronous window is further
split into cluster sub-windows.

The scheduler in the master node computes the activation
instants of the synchronous messages and schedules them EC

by EC, ensuring that they fit in the respective window. Master
nodes schedule both internal and external messages in parallel
and communicate the scheduled messages in each EC to the
nodes through a message sent in the beginning of each cycle
called the Trigger Message (TM).

Elementary Cycle

TRD Synchronous Window Asynchronous Window

—
luster) (Cluster2)

—J

Internal External Internal External

Fig. 2. The Elementary Cycle in the Hybrid Architecture

The activation of asynchronous messages is unknown in
advance. Therefore, a Signaling Message (SIG) is transmitted
in parallel with the TM but in the opposite direction (the links
are full duplex) informing the master node of the respective
cluster about the pending requests (e.g., A from S4 to M2 in
Fig. 2). The master then schedules the asynchronous messages
adequately and inserts them into the TM.

The slave nodes initiate message transmissions after receiv-
ing the TM and decoding it, which takes an amount of time
called the Turn Around Time (TRD) (Fig.2). The reader is
referred to [8] for more details about the hybrid architecture.

III. RECONFIGURATION METHODS

According to the FTT-SE protocol, in the master node the
System Requirements Data Base (SRDB) contains the traffic
parameters. The scheduler scans the information in the SRDB
to schedule the traffic for the following ECs. In addition, in
each slave node, the Node Requirements Data Base (NRDB)
holds the traffic parameters related to that specific node. Upon
each TM reception, the node checks the NRDB to decide
whether it is the transmitter of any of the scheduled messages
in that cycle. These databases, SRDB and NRDB, must be
synchronized, i.e., the messages and their parameters need to
be identical in both databases.

The online reconfiguration includes four steps. The first
step is the negotiation between the slave nodes and the master
node. The negotiation may refer to removing/adding streams,
or changing the parameters of the streams and it may be
triggered by slave or master nodes, as well as by dedicated QoS
broker node. The second step is the admission control, to verify
the feasibility of the proposed changes. In this step a response
time analysis is used to check the available resources. The
third step is the resource reservation in which the resources,
after being distributed by the QoS management, are allocated
to the message streams. The final step is the mode-change
where the SRDB and NRDBs are updated. This transition is
done gradually, yet in a bounded time, in order to provide a
safe mode-change in the system.

In order to negotiate and perform the mode-change two
real-time asynchronous messages are provided, one for sending
the request from the slave node to the master node, and
the other to send the update for the slave nodes. Note that
the reconfiguration procedure is fully deterministic to achieve
timeliness guarantee. Therefore, the mentioned steps are car-
ried out in a bounded time including the request and update
message transmission between slave nodes and the master
node, i.e., the response time of the assigned asynchronous
messages for request and update is bounded and known.

In [9] we proposed two reconfiguration methods in the
hybrid architecture, the centralized and the distributed re-
configurations. The former method uses one master node to
perform all the decisions regarding the change requests, while
the latter method is fully distributed and all masters process
the requests in parallel. Herein, we briefly review the methods.

A. Centralized Reconfiguration

Some of the mentioned reconfiguration steps, like admis-
sion control and QoS re-distribution, may encompass com-
putationally intensive operations ([10], [11]). Providing short
response times to reconfiguration requests in those cases may
require a considerable amount of processing power, much
higher than the one necessary to carry out the “regular” master
operations (e.g. scheduling, control messages handling). In this
scenario, it may be more resource-efficient having a single
node, embodied with a higher processing capacity, in charge of
processing all the reconfiguration requests. The results are then
communicated to the network master nodes, which only need
to carry out a minimum extra processing. This architecture is
designated centralized method.

Without loss of generality, lets assume that the root master
is the one responsible for deciding about the reconfiguration
requests. The centralized method requires that all requests
made by the slave nodes reach the root master. It is also
necessary to allow the root master to communicate its decisions
to the other masters. Thus, it is necessary to create a two-way
channel between the root master and each one of the other
masters, to convey the reconfiguration requests and replies. The
global event sequence involved in a reconfiguration is depicted
in Fig. 3, where Slave 1 (S1), belonging to the cluster managed
by Master 2 (M2), issues a reconfiguration request that also
affects a message that is produced/consumed by Slaves 2 (S2)
and 3 (S3). S2 also belongs to the cluster managed by M2,
while S3 belongs to the cluster managed by MI1.

s1 sS2 S3--e-e-- Sn M1 M2 M3---e=- RootM

Lo —

[——————Islv_request
P |
—t3) Inst_request]

—
%ﬁ

Admission Control
+ QoS distribution

—
//ﬁ
<]

Fig. 3. Centralized Reconfiguration Event Sequence

Slave 1 requests a reconfiguration at ¢ = fg, issuing a
slv_request message to its cluster head (M2). M2 forwards the
request to the root master (RootM), via a mst_request, at time
t =t1. RootM carries out the Admission Control and eventually
the QoS redistribution. The results of these operations are then
communicated to the other master(s) at time tr = t,. If the
change request is denied, RootM sends a mst_update message
to M2, notifying the decision, and no SRDB updates are
required. Conversely, if the decision is positive, RootM sends a
mst_update message to all masters, specifying which changes
must be made to the respective SRDBs. For both cases the
masters inform the slaves of the result of the reconfiguration,
to synchronize the SRDBs and the NRDBs.

Note that a single request may cause changes in several
messages, due to the QoS redistribution. This may happen
e.g. after deleting a message in a highly loaded system. The
bandwidth that becomes free may be distributed, by the QoS

manager, among other messages that may take advantage of
it. As a side effect, for systems with many external messages,
mst_update and slv_update messages may have to be frag-
mented in several Ethernet frames.

Updating the SRDB and NRDB may take several ECs to
complete. It is necessary that all the masters instantiate the
updates at the same time, in order to schedule the external
traffic consistently. Therefore, the mst_update messages en-
code the EC in which the changes should take effect. The
RootM node is able to compute a safe upper bound to this
value because the messages involved in the communication of
its decisions (mst_update and slv_update) use asynchronous
real-time (thus predictable) channels and RootM has global
network knowledge.

B. Distributed Reconfiguration

This approach is possible because the masters have a
consistent view of the shared resources (external messages
are known by all masters and external windows have the
same size in all clusters) and the admission control and
QoS management algorithms are deterministic. Under these
circumstances, despite operating quasi-independently, masters
will reach consistent decisions. The only problem that remains
is guaranteeing that the reconfiguration decisions are applied
synchronously by all masters. Assuring this implies obtaining
an upper bound to the execution time of the Admission Control
and QoS tasks in all masters, in addition to an upper bound to
the delivery of management messages. These constraints can
also be met, since masters must have some sort of real-time
support (executive or RTOS), as they have to carry out several
real-time tasks (e.g. scheduling, TM dispatching), thus it is
possible to bound the execution time of those algorithms. Ad-
ditionally, as in the centralized approach, the reconfiguration
is supported by real-time channels, thus the communication
time can also be bounded. Fed with these two bounds, the
master that receives a reconfiguration request may compute
a time bound and encode it in the reconfiguration requests
that it sends to its peers, permitting the synchronization of the
instantiation of the reconfiguration results.

The global event sequence involved in a distributed recon-
figuration is depicted in Fig. 4, where a network configuration
similar to the one considered in Section II is assumed.

S1 sends a reconfiguration request to M2 at ¢t = #g. Sub-
sequently M2 computes an upper bound to the processing
time required by the reconfiguration request and forwards this
information, together with the actual reconfiguration request,
to all other masters (mst_request messages). Such requests are
delivered until t =, and then processed. Up =t3 —t, represents
the upper bound of the processing time of all masters. Then
each master notifies its slaves about the eventual changes to the
NRDB, via the slv_update messages. Since these messages use
a real-time channel, they are delivered on time by each master,
thus they take effect at the predefined time ¢ = #4.

s1 s2 S3--=---- Sn M1 M2 M3------ Mk

ol | |

————_Isiv_request
]

t1
%ﬁ . request
e \tz
T "1 -1 - " | TAdmission Control
A o A + QoS distribution
| ————— U =] (Up)

eal L T e

Fig. 4. Distributed Reconfiguration Event Sequence

It may occur that two conflicting requests are issued from
two slave nodes, i.e., the consequence changes of the requests
are in conflict. In order to handle this situation, some sort
of agreement among the master nodes are required to be
established. Therefore, a priority for each request based on
the priority of the affecting stream is considered. The master
nodes in case of receiving two or more conflicting requests,
discard the lower priority ones, and in turn, apply only the
highest priority request.

1V. EVALUATION

In this work, we evaluated the reconfiguration time which
is divided into two parts: the computational time and the
reconfiguration signaling time. The computational time is the
time required to compute the response time of all the messages
in a set by one master node. The reconfiguration signaling time
is the time required for negotiation and update steps. In order
to evaluate these two parameters we considered two network
examples, one small network with three switches and the other,
a larger network with five switches. The two networks are
depicted in Figure 5 and 6.

Fig. 5. A Network with Three Switches

Fig. 6. A Network with Five Switches

A. Computational Time

In this evaluation, we generated 1000 sets of messages
randomly. The periods of the messages are selected within
[2,10]EC and their priorities are assigned based on the Rate
Monotonic algorithm within [1,4], where 1 represents the
highest priority. Note that, the messages can share a priority
level in this evaluation when their periods are equal. Moreover,
the transmission time of the messages are chosen within
[80, 123]us, where 123us is the transmission time of a frame
with 1542KB and it is the maximum Ethernet packet size.
Moreover, the network capacity is set to 100Mbps and the EC
size is set to 2ms.

As a master node in the network, we considered an Atmel
evaluation kit EVK1100 with an Atmel 32-bit AVR UC3A
microcontroller. Remember that, this node is responsible to
compute the response time for the messages. The response
time calculation is done based on the analysis presented in [8].
Note that, in both centralized and distributed reconfiguration
methods, all master nodes should calculate the response time
of all messages.

The computational time for the generated sets containing
different number of messages is presented in Table I and
Table II, for the networks depicted in 5 and 6, respectively.

No.of Msg [5 |10 [15 [20 [30 |40 |

Min (us) 2666 | 9717 | 21066 | 56566 | 60215 | 80854
Mean (us) 2671 | 9724 | 21073 | 56571 | 60223 | 80857
Max (us) 2677 | 9728 | 21077 | 56577 | 60225 | 80865

TABLE 1. COMPUTATIONAL TIME FOR SMALL NETWORK
[No.ofMsg [5 |10 |15 [20 [30 [40 |
Min (us) | 2677 | 9770 | 21408 | 57142 | 61527 | 81435
Mean (us) | 2682 | 9778 | 21412 | 57151 | 61535 | 81532
Max (us) | 2688 | 9781 | 21418 | 57153 | 61537 | 81604

TABLE II. COMPUTATION TIME FOR LARGE NETWORK

As it can be seen in both tables, the computational time
is increasing sharply by increasing the number of messages.
Considering the EC size of 2ms for this evaluation, the average
computational time for 10 messages in both small and large
networks is 2 ECs and it is increasing up to 41 ECs for 40
messages. This shows that using a centralized reconfiguration
method is more efficient for the networks with high number
of messages as we can have a high capacity node to compute
the reconfiguration parameters and the rest of the master nodes
can be regular capacity nodes.

Moreover, the size of network (number of clusters and
nodes) does not affect significantly the computational time as
in both small and large network examples, for the same number
of messages, the computational time is the same (2EC).In fact,
the only part that changes in the response time calculation by
increasing the size of a network is finding the interference in
all routes which is much faster than computing the response
time in several iterations.

B. Reconfiguration Signaling Time

In this evaluation, we assumed a change request from node
S2 in Figure 5. Then, we measured the response time of the
negotiation and update signaling, i.e., the response time of the
request and update messages. As the reconfiguration messages
are asynchronous, we filled up the asynchronous window in
the EC with other asynchronous data messages. However, the
reconfiguration messages have the priority of 1 (the highest),
hence they are scheduled before the data messages. Note
that, the data messages are generated randomly with the same
setting as the previous evaluation.

Table III shows the reconfiguration signaling time for
the small network example considering different number of
messages in the set. Note that, the response time is represented
in number of ECs.

[Number of Messages | 10 [20 [30 [40 [50 |

Centralized (EC) 4 4 4 4 4
Distributed (EC) 4 4 4 4 4
TABLE III. THE RECONFIGURATION SIGNALING TIME

As it can be seen increasing the number of data messages
does not affect the reconfiguration signaling time. The reason
is that the reconfiguration messages have the highest priority
and their transmission times are very small, hence they are
scheduled always before the data messages. Also, in both
centralized and distributed methods, the signaling time of
reconfiguration is the same. This is because the requests, in
both methods, are crossing only one hop.

Table IV shows the reconfiguration signaling time for the
network example depicted in Figure 6.

By increasing the size of the network to 3 clusters, the
centralized method requires more time for reconfiguration, as

shown in Table IV. This is due to passing the requests to
the root master and sending back the decision to the masters.
However, in the distributed method, the master sends the
requests to all other masters and the decision is sent to the
slave nodes directly.

[Number of Messages | 10 [20 [30 [40 [50 |

Centralized (EC) 8 8 8 8 8
Distributed (EC) 6 6 6 6 6
TABLE 1V. THE RECONFIGURATION SIGNALING TIME

Although the reconfiguration signaling time is less when
using the distributed method, considering the computational
time that has bigger effect, it is still more efficient to use
the centralized method. Moreover, handling the concurrent
requests in centralized method is much easier due to the
serialization of the requests in that method.

V. CONCLUSION AND FUTURE WORK

In this paper, we evaluated the reconfiguration methods
in terms of the computational time and the reconfiguration
signaling time. The results show that the centralized reconfigu-
ration method is more efficient for networks with high number
of messages, even though the reconfiguration signaling time
is less when using the distributed method. Moreover, in the
centralized method, there is no need to consider the concurrent
handling of the requests in as the requests are handled in serial
with one master node. The ongoing work aims at implementing
the methods on the hardware.

ACKNOWLEDGMENT

This work is supported by the Swedish Foundation for
Strategic Research via the PRESS project. Also, it is partially
supported by the Portuguese Government through FCT grants
Serv-CPS PTDC/EEA-AUT/122362/2010.

REFERENCES

[1] P. Pedreiras and L. Almeida, “Approaches to enforce real-time behavior
in ethernet,” in CRC Press, Feb. 2005.

[2] S. Varadarajan and T. Chiueh, “Ethereal: a host-transparent real-time
fast ethernet switch,” in 6th Int. Conference on Network Protocols, 1998.

[3] H. Hoang and M. Jonsson, “Switched real-time ethernet in industrial
applications - deadline partitioning,” in 9th Asia-Pacific Conference on
Communications (APCC), 2003.

[4] Z. Hanzalek, P. Burget, and P. Sucha, “Profinet io irt message schedul-
ing,” in 21st Euromicro Conf. on Real-Time Systems (ECRTS), 2009.

[S] W. Steiner, G. Bauer, B. Hall, M. Paulitsch, and S. Varadarajan,
“Ttethernet dataflow concept,” in 8th IEEE International Symposium
on Network Computing and Applications, 2009.

[6] R.Marau, L. Almeida, and P. Pedreiras, “Enhancing real-time communi-
cation over cots ethernet switches,” in 6th IEEE International Workshop
on Factory Communication Systems (WFCS), June 2006.

[71 R. Marau, M. Behnam, Z. Igbal, P. Silva, L. Almeida, and P. Portugal,
“Controlling multi-switch networks for prompt reconfiguration,” in 9th
Int. Workshop on Factory Communication Sys. (WFCS), May 2012.

[8] M. Ashjaei, M. Behnam, L. Almeida, and T. Nolte, “Performance
analysis of master-slave multi-hop switched ethernet networks,” in 8th
IEEE Int. Symposium on Ind. Embedded Systems (SIES), June 2013.

[91 M. Ashjaei, P. Pedreiras, M. Behnam, L. Almeida, and T. Nolte,
“Dynamic reconfiguration in multi-hop switched ethernet networks,”
in 6th Workshop on Adaptive and Reconfigurable Embedded Systems,
April 2014.

[10] R. Marau, L. Almeida, P. Pedreiras, K. Lakshmanan, and R. Rajkumar,
“Utilization-based schedulability analysis for switched ethernet aiming
dynamic qos management,” in /5th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), Sep. 2010.

[11] J. Silvestre-Blanes, L. Almeida, R. Marau, and P. Pedreiras, “Online
qos management for multimedia real-time transmission in industrial
networks,” IEEE Trans. on Ind. Electronics, vol. 58, no. 3, Mar 2011.

