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Abstract—Model-based requirements validation is an increas-
ingly attractive approach to discovering hidden flaws in require-
ments in the early phases of systems development life cycle. The
application of using traditional methods such as model checking
for the validation purpose is limited by the growing complexity
of embedded real-time systems (ERTS). The observer-based
technique is a lightweight validation technique, which has shown
its potential as a means of validating the correctness of model
behaviors. In this paper, the novelty of our contributions is three-
fold: 1) we formally define the observer constructs for our formal
specification language namely the Timed Abstract State Machine
(TASM) language and, 2) we propose the Events Monitoring
Logic (EvML) to facilitate the observer specification and, 3)
we show how to execute observers to validate the requirements
describing the functional behaviors and non-functional properties
(such as timing) of ERTS. We also illustrate the applicability of
the extended TASM language through an industrial application
of a Vehicle Locking-Unlocking system.

Index Terms—model-based requirements validation; TASM;
systems functional behaviors and non-functional properties; run-
time monitoring; observer technique

I. INTRODUCTION

Studies [1] [2] have revealed that most of the anomalies
discovered in late phases of systems development life cycle
can be traced back to hidden flaws in the requirements speci-
fication. These deficiencies in the requirements specification
will usually lead to extensive rework costs and sometimes
even unrecoverable failures. For this reason, requirements
validation techniques play a pivotal role in increasing the
confidence that the requirements are correct in the sense of
consistent and complete. This is particularly true for embedded
real-time systems (ERTS) which require a set of stringent
requirements to describe their functional behaviors and non-
functional properties.

With the growing maturity of the model-based development
paradigm, executable requirements specifications (i.e., require-
ments models) become increasingly attractive to cope with the
boosting complexity of modern ERTS as well as to reduce the
underlying anomalies. In this scenario, requirements models
with well-defined semantics can capture the intended behavior
of the system and thus are used as the source of information for
validation purpose. Model checking [3] is a rigorous approach
to assuring that correctness properties hold for the system
under development. In this technique, the system design de-
rived from requirements is specified in terms of analyzable
models at a certain level of abstraction. Further, requirements
are formalized into verifiable queries and then fed into the

models to be checked. In this way, requirements are reasoned
about to resolve contradictions, and it is also verified that they
are neither so strict to forbid desired behaviors, nor so weak to
allow undesired behaviors. However, such validation technique
suffers from the state explosion problem.

The need for a lightweight validation technique to avoid
the aforementioned problem has motivated the development
of our requirements validation technique via observers [4].
To be specific, we choose the Timed Abstract State Machine
(TASM) language [5] as the requirements modeling language
for ERTS, based upon its distinctive features in terms of
the ability to specify systems’ functional behaviors and non-
functional properties, the low learning costs, and a toolset that
supports model execution. Additionally, we extend the TASM
language with the Event and Observer constructs to specify
the corresponding requirements. When the TASM models are
executed, they will generate a number of events reflecting
the functional behaviors and non-functional properties of the
system under consideration, which can be abstracted as a linear
trace of events. An observer monitors the event trace and deter-
mines whether a given correctness property is satisfied by the
system under consideration. In our previous work, we assume
that the observer representing the property of interests can be
specified by following the logic of regular expressions [6],
and the entire event trace generated by the TASM model is
available before the observer starts to monitor. The monitoring
algorithm is implemented in the same way as searching for
the sub-traces that match the observer regular expression.
However, the main drawbacks of these assumptions are two-
fold: 1) the expressiveness power of regular expressions falls
short of expressing unordered fixed-count events where the
occurrence multiplicities of these events are pre-defined but
the corresponding order is random and, 2) the monitoring
algorithm used in [4] can not be applied at runtime because
of the assumption that the entire event trace is pre-achieved.
Therefore, improving the logic used to specify observers is of
paramount importance for our validation technique to achieve
success in practice.

In this paper, we enhance our observer-based requirements
validation technique via proposing a new observer specifi-
cation logic that originates from the Extended Regular Ex-
pressions (ERE) and introducing a rewriting-based monitoring
algorithm. Especially, the novelty of our contributions are
three-fold: 1) we formally define the observer constructs for
our formal specification language namely the Timed Abstract
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State Machine (TASM) language and, 2) we propose the
Events Monitoring Logic (EvML) to facilitate the observer
specification and, 3) we show how to execute observers to
validate the requirements describing functional behaviors and
non-functional properties of ERTS. We also illustrate the
applicability of our technique by using a Vehicle Locking-
Unlocking (VLU) system.

The remainder of this paper is organized as follows: An
introduction to the background knowledge is presented in Sec-
tion II. The improved observer-based technique is described
in Section III. Section IV illustrates the applicability of the
extended TASM through an industrial application of the VLU
system. Section V discusses the related work, and finally
concluding remarks and future work are drawn in Section VI.

II. BACKGROUND

In this section, we briefly introduce the formal specification
language TASM used in our validation approach and ERE for
better understanding of our work.

A. Timed Abstract State Machine

TASM [5] is a formal language for the specification of
ERTS, which extends the Abstract State Machine (ASM) [7]
with the capability of modeling timing properties and resource
consumption of the target system. TASM inherits the easy-
to-use feature from ASM, which is a literate specification
language understandable and usable without extensive mathe-
matical training [8]. A TASM model consists of two parts –
an environment and a set of main machines. The environment
defines the set and the type of variables, and the set of named
resources which machines can consume. The main machine
is made up of a set of monitored variables which can affect
the machine execution, a set of controlled variables which can
be modified by machines, and a set of machine rules. The set
of rules specify the machine execution logic in the form of
“if condition then action”, where condition is an expression
depending on the monitored variables, and action is a set of
updates of the controlled variables. We can also use the rule
“else then action” which is enabled merely when no other
rules are enabled. A rule can specify the annotation of the
time duration and resource consumption of its execution. The
duration of a rule execution can be the keyword next that
essentially states the fact that time should elapse until one of
the other rules is enabled. TASM describes the basic execution
semantics as the computing steps with time and resource an-
notations: In one step, it reads the monitored variables, selects
a rule of which condition is satisfied, consumes the specified
resources, and after waiting for the duration of the execution,
it applies the update set instantaneously. If more than one rules
are enabled at the same time, it non-deterministically selects
one to execute. As a specification language, TASM supports
the concepts of parallelism which stipulates TASM machines
are executed in parallel, and hierarchical composition which is
achieved by means of auxiliary machines which can be used
in other machines. There are two kinds of auxiliary machines
- function machines which can take environment variables

as parameters and return execution result, and sub machines
which can encapsulate machine rules for reuse purpose [5].
Communication between machines, including main machines
and auxiliary machines, can be achieved by defining corre-
sponding environment variables.

B. The Extended Regular Expressions

The Extended Regular Expressions (ERE) [6] represent a
succinct and useful technique to specify patterns in strings
by inductively utilizing the union (+), concatenation (·),
repetition (∗) and complementation (∧) operators. There are
programming and/or scripting languages, such as Perl and
Java, which are mostly based on efficient implementations
of pattern matching via ERE. Because of their convenience
in specifying patterns, ERE have many applications including
but not limited to text searching. The observer-based technique
(a.k.a. runtime monitoring or runtime verification) is one of
the application areas of interests for ERE. Since the running
behaviors of computer programs or executable models can
usually be abstracted as a linear trace of events or system
states, the main idea behind the observer-based technique
is to specify a set of observers (i.e., the extended regular
expressions) that monitor the received events or system states
and report abnormalities. Then, the monitoring process can be
regarded as solving the membership problem for an extended
regular expression R and a given word ω = a1a2 . . . an (an
represents an event or a system state), which is to decide
whether ω is in the regular language generated by R.

The observer-based technique usually assumes that the
events or system states are received incrementally, i.e., each
event is supposed to be processed as it arrives. An efficient
implementation of the incremental membership problem are
of critical importance to this application. A rewriting-based
algorithm has been proposed in [9] for monitoring system
events. The intuition is that in order to incrementally check
the membership of an incoming trace of events to a given
extended regular expression, the algorithm can process the
events as soon as they are available by rewriting the extended
regular expression contingently. Since the event is consumed
incrementally in this way, the event consumption idea is more
suitable for runtime monitoring, comparing the monitoring
algorithm used in [4].

III. THE EXTENSION OF TASM

In this section, we introduce the extension of TASM in terms
of the fundamental concepts, the Events Monitoring Logic, and
the observer execution process.

A. The Fundamental Concepts

The extended constructs comprise two main parts, i.e.,
TASM Event and TASM Observer as shown in Figure 1, which
defines the meta-model of the extended TASM language.

Definition 1: TASM Event. An event e is a tuple
<E, t, r1, r2...>, where E defines the type of an e in the
sense of ResourceUsedUpEvent (ReUUE), ChangeValueEvent
(ChVE), RuleEnableEvent (RuEE), and RuleDisableEvent
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Fig. 1. The Meta-model of the extended TASM language.

(RuDE), t records the time stamp when the event occurs, r1,
r2, etc. denotes the possible consumed resources by the event.

In our extension, an event e which is triggered by the cor-
responding TASM construct c, can be referenced in the form
of c→e. To be specific, the event of ChangeV alueEvent
type triggered by a specific TASM environment vari-
able whenever its value is updated, is referenced in the
form of VariableName→ChVE. The ResourceUsedUpEvent
type triggered by the case whenever the resource of the
application is consumed up, is referenced in the form
of ResourceName→ReUUE. The RuleEnableEvent (resp.
RuleDisableEvent) type triggered whenever a specific
TASM rule is enabled (resp. disabled), is referenced in the
form of MachineName→RuleName→RuEE (resp. Machine-
Name→RuleName→RuDE). Similarly, the time stamp t of an
e is referenced in the form of e→t and the consumed resource
r in the form of e→r. Examples illustrating how a certain
event is referenced can be found in Figure 10.

Here are some useful definitions which are related to TASM
Event:

Definition 2: Event trace. An event trace is a finite sequence
of events, denoted by ω = e1e2 . . . en.

Definition 3: Event pattern. An event pattern is an expres-
sion following a certain logic to describe a set of event traces
of interests in a compact and succinct way, denoted by E. The
set of the event traces of interests (i.e., matching the EvML
expression E), are denoted by L(E).

The TASM Observer monitoring events is defined as com-
prising:

Definition 4: TASM Observer. An observer ob is a tuple
<OE,L,Obv>, where:
• OE denotes the ObserverEnvironment, which is de-

fined as a tuple <OV, TU,EF>, where

– OV denotes the ObserverV ariables, which defines a
set of local typed variables that can only be used by
the L and Obv defined in this observer,

– TU denotes the TypeUniverse, which is a set of types
that include the TASM primitive types (i.e., Reals,
Integers, Boolean and User-defined) and the TASM
extended types in terms of Time and Resource,

– EF denotes the EventsF ilter, which defines a set
of events considered to be relevant or irrelevant to the
observer.

• L denotes the Listener, which is in the form of
“listening keyword: condition then action”, where the
keyword can be either compulsory or optional which will
be further explained in Section III-C, the condition spec-
ifies the event pattern following the Events Monitoring
Logic (EvML) which will be defined in Section III-B,
and the action is a set of actions updating the value
of observer variables when the condition evaluates to be
true.

• Obv denotes the Observation, which is a predicate repre-
senting the properties needed to validate. An observation
can evaluate to be either true or false, depending on the
value of corresponding observer variables.

B. The Events Monitoring Logic

The Events Monitoring Logic (EvML) is inspired by the
extended regular expressions (ERE) that have been widely
applied to solve the pattern matching problem. Although ERE
can provide a compact and powerful implementation of pattern
matching, we encounter an issue when we use it in our
case. When specifying an event pattern by using ERE, the
occurrence order of events is implied in the expression, e.g.,
E = e1e2 implies that the event trace, where the occurrence
of event e1 is immediately followed by the occurrence of
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event e2, will match the pattern. However, in some cases,
the occurrence order of events is trivial. For instance, when
we monitor the synchronization of two events, we are merely
concerned about whether both events do occur in the event
trace, rather than which event comes earlier. To describe an
event trace like this (i.e., unordered event trace, hereafter),
ERE have to list all the possibilities of the occurrence order,
which is a clumsy and error-prone task.

Therefore, we formally define a logic, namely the Events
Monitoring Logic, which can specify an unordered event
trace in a more elegant way. EvML inherits the basic syntax
and semantics from ERE, which defines the set of interested
events by inductively applying union (+), concatenation (·),
repetition (∗), and complementation (∧) operators. To solve the
aforementioned issue, we introduce a new delimiter parallel
and the event multi-set expression into EvML, denoted as
‖M‖, in order to specify unordered event traces.

1) The EvML Syntax: For an alphabet Σ whose elements
are the possible events, an EvML expression E over Σ is
defined as follows:

E::= ∅|ε|e|E + E|E · E|E∗|∧E|‖M‖,
where ∅ denoting the empty set, ε denoting an empty event,
and e∈Σ denoting a regular event. M denotes the event multi-
set expression over Σ, which is defined as a tuple <A,m>:

• A denotes the underlying set of events composing the
unordered event trace,

• m :A→Mul≥0 is a function indicating the multiplicity
of the occurrences of the event eA∈A in the event trace,
denoted as m(eA) ∈Mul≥0 = {0, 1, 2, 3, · · · }∪{∗}. The
repetition operator (∗) denotes that the number of an event
eA∈A is not explicitly-defined, which can be any number
n∈Mul≥0.

We define a set of additional rules to further facilitate the
specification of event pattern:

• In order to keep the expression succinct, we define a
meta-character (.) to represent any event in the alphabet
Σ.

• The concatenation operators between EvML expressions
can be omitted for simplicity (i.e., E1 ·E2 can be denoted
as E1E2),

• The operators (∧) for complementation, (∗) for repetition,
(·) for concatenation, and (+) for union in the EvML
expression are defined in decreasing order of precedence,

• The delimiter “()” for parentheses can increase the prece-
dence of the braced operators,

• The multi-set expression ‖M‖ can be written in the form
of ‖{e1, e2, . . . }, {m(e1),m(e2), . . . }‖

2) The EvML Semantics: Some new notions and notations
are needed before we can define the EvML semantics. For any
given event trace ω, we assume that it is easy to calculate the
underlying set of events composing the trace (denoted as Cω)
and the number of occurrences of a given event e∈ω (denoted
as nω(e)). The semantics of EvML is defined as shown in
Figure 2.

L(∅) = ∅
L(ε) = {ε}
L(e) = {e}

L(E1 + E2) = L(E1) ∪ L(E2)

L(E1 · E2) = {ω1 · ω2|ω1 ∈ L(E1) and ω2 ∈ L(E2)}
L(E∗) = (L(E))∗

L(∧E) = Σ∗\L(E)

L(‖M‖) = {ω|Cω = AM and ∀e ∈ ω, nω(e) = mM (e)}

Fig. 2. The semantics of EvML

Note that the operator (+) is associative and commutative,
and the operator (·) is associative.

(E1 + E2) + E3 ≡ E1 + (E2 + E3)

E1 + E2 ≡ E2 + E1

(E1 · E2) · E3 ≡ E1 · (E2 · E3)

According to the EvML semantics, several simplification
equations are defined, including the following:

E + ∅ ≡ E

E + E ≡ E

E1 · E3 + E2 · E3 ≡ (E1 + E2) · E3

ε · E ≡ E

Figure 3 shows some examples to illustrate the EvML
semantics.

Examples:
Assume that Σ={ε, e1, e2, e3}.

”e1 + e2 ∗ ” denotes {ε, ”e1”, ”e2”, ”e2e2”, ”e2e2e2” . . . }

”(e1 + e2) ∗ ” denotes
↪→{ε, ”e1”, ”e2”, ”e1e1”, ”e1e2”, ”e2e2”, ”e2e1”, ”e1e1e1” . . . }

”‖{e1, e2, e3}, {1, 1, 1}‖” denotes
↪→{”e1e2e3”, ”e1e3e2”, ”e2e1e3”, ”e2e3e1”, ”e3e1e2”, ”e3e2e1”}

”.e1” denotes {”e1”, ”e1e1”, ”e2e1”, ”e3e1”}

”∧e1” denotes {”e2”, ”e3”}

Fig. 3. The examples of the Events Monitoring Logic

3) The EvML Operational Semantics: In this work, the
event pattern matching algorithm is based on the event con-
sumption idea as well, in the sense that the EvML expression
E can consume an event e in the trace and produces another
EvML expression denoted as E{e}, with the property that for
any trace ω, e · ω∈L(E) if and only if ω∈L(E{e}). Roşu et
al. [9] presented a set of rewriting rules and a rewriting-based
algorithm to implement the event consumption idea for ERE.
In our case, since EvML is a further extended version of
ERE, we can easily adapt their work to the Events Monitoring
Logic. We give the rewriting rules which define the EvML
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(E1 + E2){e} → E1{e}+ E2{e} (1)
(E1 · E2){e} → (E1{e}) · E2 + if (ε ∈ L(E1)) then E2{e} else ∅ fi (2)

(E∗){e} → (E{e}) · E∗ (3)
(∧E){e} → ∧(E{e}) (4)
e1{e} → if (e1 = e) then ε else ∅ fi (5)
ε{e} → ∅ (6)
∅{e} → ∅ (7)

‖M‖{e} → if (e ∈ AM and mM (e) 6= 0) then mM (e) = m′M (e) else ∅ fi (8)

Fig. 4. The rewriting rules for EvML

operational semantics recursively, using the structure of the
EvML expression, as shown in Figure 4. In particular, the
Rules 1 to 7 are defined for the inherited ERE operators.
The Rule 8 defines that when the available event is found in
the specified event multi-set, if the occurrence number of the
event is explicitly-defined, the number is decreased by one;
otherwise, the number remains not explicitly-defined, where:

m′M (e) =

{
n− 1 ,mM (e) = n and n > 0
∗ ,mM (e) = ∗

and once all of the explicitly-defined occurrence numbers
decrease to zero, we have the rewriting rule:

‖M‖ → if (∀e ∈ AM ,mM (e) = 0 or ∗)
then ε else ‖M‖ fi (9)

The structure “if then else” taking a boolean term and two
EvML expressions is defined by two rewriting rules:

if (true) then E1 else E2 fi → E1 (10)
if (false) then E1 else E2 fi → E2 (11)

For the evaluation of the boolean expression ε∈L(E), we
define the following rules:

ε ∈ (L(E1) + L(E2)) → ε ∈ L(E1) ∨ ε ∈ L(E2) (12)
ε ∈ (L(E1) · L(E2)) → ε ∈ L(E1) ∧ ε ∈ L(E2) (13)

ε ∈ (L(E∗)) → true (14)
ε ∈ (L(∧E)) → not (ε ∈ L(E)) (15)

ε ∈ L(e) → false (16)
ε ∈ L(ε) → true (17)
ε ∈ L(∅) → false (18)

ε ∈ L(‖M‖) → false (19)

Since we also use the meta-character (.) to specify EvML
expressions for simplicity, we have the rewriting rule for it:

.{e} → ε (20)

Additionally, the Rule 20 for the meta-character (.) is a special
case of the Rule 5, where e1 ≡ e.

These rewriting rules are natural and intuitive. We omit the
proof of the terminating and Church-Rosser property of the
rewriting system, and leave it as our future work.

4) The Event Pattern Matching Algorithm: After introduc-
ing the operational semantics of EvML, we present the Algo-
rithm 1 that describes the event pattern matching algorithm.
The algorithm will be used in the observer execution process
(as stated in Section III-C) to determine that the first m-events
trace (ωm = e1e2 . . . em where m ≤ n) of an input trace
(ω = e1e2 . . . en) matches the event pattern:

Algorithm 1 EventPatternMatching(E,ω)

INPUT: An EvML expression E and an event trace
ω = e1e2 . . . en.

OUTPUT: match when ωm = e1e2 . . . em (m≤n) matches E ;
nomatch when ωm does not match E

let E′ be E; % start the matching process
let m be 1;
while m≤ n do

wait until em is available;
let E′ be E′{em}; % consume one event
if ε ∈ L(E′) then
return match; % the first m-events trace matches E

if E′ = ∅ then % the current event does not match E
return nomatch; % the input trace does not match E

let m be m+1; % consume the next event
return nomatch; % the input trace does not match E

C. The Observer Execution Process

In this section, we introduce the observer execution process
operated to enable an observer working with a given event
trace. Briefly speaking, with the execution of the TASM model
at runtime, different TASM constructs will generate massive
events which can be abstracted as a linear sequence of events.
The observer can spawn one or more child observers, together
to determine the satisfaction of the upcoming events with the
event pattern and to evaluate corresponding observations.

In particular, the events in the trace are consumed one by
one. When an event e is available, the EventsF ilter is applied
to filter out irrelevant events to the desired property. If the
available event is relevant, the expressions of the observer Eo
and its child observers Ec (if any exists) will be transformed
to the corresponding new expressions E′o and E′c by applying
the rewriting rules. Regarding the parent observer, if the new
expression can match ε (i.e., ε ∈ L(E′o)), which means
the Listener’s condition is satisfied, then the action will be
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executed and the observation will be concluded. If the new
expression is the empty set (i.e., E′o = ∅), which means
the current event can not satisfy the Listener’s condition,
then the event is dropped and the observer waits for the next
available event. If the new expression neither is the empty
set, nor matches ε, which means the current event is probably
the first event of one of the event traces that can satisfy the
Listener’s condition, then the observer will spawn a child
observer that inherits the new expression (i.e., Ec = E′o) and
the child observer starts to wait for the next available event,
as depicted in Figure 5.

Fig. 5. The observer execution process

Regarding the child observers, they will take over monitor-
ing whether the subsequent events match the event expression
Ec by applying the event pattern matching algorithm, as
illustrated in Figure 6. When a new relevant event is available,
the child observer event expression will be rewritten into E′c:
• If the condition is satisfied by the subsequent trace (i.e.,
ε ∈ L(E′c)), then the action will be immediately executed
to update corresponding variables. The observation pred-
icate will be concluded based on the updated observer
variables. In this situation, if the value of the predicate
is evaluated to be false, which means the represented
property is deemed to be violated, its parent observer
and all the other child observers will stop monitoring. On
the contrary, if the predicate is evaluated to be true, the
child observer is deemed to be satisfied. Then, its parent
observer and all the other child observers will continue
monitoring.

• If the subsequent events violate the event pattern (i.e.,
E′c = ∅), one of the two possible consequences will take

Fig. 6. The child observer execution process

place, which depends on the keyword of the Listener.
If the keyword is specified as optional, then the child
observer will be destroyed and its parent observer con-
tinues monitoring. If the keyword is compulsory, then the
property represented by its parent observer will directly
evaluate to be violated and the parent observer and all
the other child observers will stop monitoring.

Note that a running TASM model can be observed by several
observers at the same time. Meanwhile, an observer can have
many active instances (i.e., child observers) simultaneously
before the end of monitoring an event trace.

IV. ILLUSTRATION APPLICATION

In this section, we describe a simplified Vehicle Locking-
Unlocking (VLU) system. This is used to illustrate how to
specify the observer according to the requirement for valida-
tion purpose.

A. Vehicle Locking-Unlocking

The proposed VLU system aims at replacing the mechanical
key, as a control access to a vehicle, and it follows a common
pattern in feature-oriented requirements specification [10]: The
basic functionality is encapsulated as an individual feature,
and additional/optional enhancements are specified as features
that provide increments in functionality. Specifically, such
features are Central Locking (CL), Auto-lockout (AUL) and
Anti-lockout (ANL), where:
• Central Locking (a basic feature) locks and unlocks all

the doors of the vehicle upon receipt of a command from
the user key fob.

• Auto-lockout (an optional feature) locks all the doors
of the vehicle when a timeout expires. It provides theft
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protection in case that the driver forgets to manually lock
the doors.

• Anti-lockout (an optional feature) enables unlocking of
the doors while a key is in ignition. The purpose of this
feature is to prevent the driver from being locked out of
the vehicle.

Figure 7 shows the features of the VLU system in the form
of technical feature model tree presented in the EAST-ADL
language [11].

Fig. 7. The technical feature model tree of the VLU system.

B. Observer Specification

Assume that we are interested in monitoring the satisfaction
of the AUL feature requirement which states that “The system
shall lock all the doors of the vehicle when the vehicle is still
and a timeout (timer = 20 in this case) expires.” This feature
can show how to use the TASM language and the extended
observer-based technique to specify functional behaviors as
well as non-functional properties in terms of timing property
in this case. In addition, assume that we have two TASM
machines in terms of AUL (as shown in Figure 8) and DOOR
(as shown in Figure 9), modeling the behaviors of the AUL
feature and the doors, respectively. Recall that each event is
time-stamped during the model execution, and the time stamp
of the event can be obtained by referencing the time property
t of the event.

The observer is specified as shown in Figure 10. The
EventsF ilter will filter out the events of the ReUUE,
ChVE, and RuDE types. Since the auto-locking process
can be interrupted by either moving the vehicle or man-
ually locking the doors, the keyword of the Listener
is optional. The event pattern of the Listener con-
sists of three parts, as shown in Line 9, 10, and
11 respectively. The first part “||{AUL→Timer→RuEE,
∧AUL→TimerReset→RuEE},{20, ∗}||” models the be-
havior that the timer starts and then expires, where the
event AUL→Timer→RuEE is supposed to be triggered
20 times and there could be some other events but
TimerReset→RuEE events that will be triggered dur-
ing the expiring process. The second part “.∗” repre-
sents an arbitrary number of arbitrary events that could
be triggered by other TASM machines after the timer
expires but before the doors are locked. The last part
“DOOR→Lock→RuEE” models the behavior that the doors

R1:Timeout{ % the name of the rule
if aul_state = idle and door_state = close and

vehicle_state = still and timer = 20 then
aul_state := timeout;
timer := 0;

}
R2:Autolock{

if aul_state = timeout then
door_action := lock;
aul_state := idle;

}
R3:Timer{

t := 1; % the time duration of the rule
if aul_state = idle and door_state = close and

vehicle_state = still and timer < 20 then
timer := timer + 1;

}
R4:TimerReset{

t := next;
else then
timer := 0;

}

Fig. 8. The TASM machine models the behavior of the Auto-lockout feature.

R1:Close{
t:=closing_time; % the time duration of the rule
if door_action = close then
door_state := closed;

}
R2:Lock{

t:=locking_time; % the time duration of the rule
if door_action = lock then
door_state := locked;

}
R3:UnLock{

t:=unlocking_time; % the time duration of the rule
if door_action = unlock then
door_state := closed;

}
R4:Open{

t := opening_time; % the time duration of the rule
if door_action = open then
door_state := opened;

}

Fig. 9. The TASM machine models the behavior of the doors.

are locked. If the event pattern is matched, the observation
“obt2−obt1==20+DOOR→Lock→locking time” will be
evaluated accordingly, which indicates whether the doors are
locked properly when the timer expires.

If the observer is violated, it means there must exist some
inconsistencies in the requirements. Those inconsistencies
cause the doors not being locked properly when the timer
expires.

V. RELATED WORK

A. The Monitoring Logic

Giannakopoulou et al. [12] present an approach to checking
a running program against Linear Temporal Logic (LTL)
specifications. In particular, the LTL formulae representing the
properties of interests are translated into finite-state automata,
which are used as observers monitoring the program behaviors.

Roşu et al. [9] present lower bounds and rewriting algo-
rithms for testing membership of a word in a regular language
described by an extended regular expression. The algorithms
are based on an event consumption idea: a just arrived event is
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1 ObserverVariables:{
2 Time obt1 := 0; Time obt2:=0;
3 }
4 EventsFilter:{
5 irrelevant event types: ReUUE, ChVE, RuDE;
6 }
7 Listener:{
8 listening optional:
9 ||{AUL→Timer→RuEE,∧AUL→TimerReset→RuEE},{20,∗}||

10 .∗

11 DOOR→Lock→RuEE then
12

13 obt1:=AUL→Timer→RuEE(1)→t; %the stamped time of the
14 first event of the
15 AUL→Timer→RuEE type
16

17 obt2:=DOOR→Lock→RuEE→t;
18 }
19 Observation:{
20 obt2-obt1 == 20+DOOR→Lock→locking_time;
21 }

Fig. 10. The Observer for the AUL feature requirement

consumed by the regular expression, i.e., the extended regular
expression modifies itself into another expression dropping the
event.

Barringer et al. [13] present a compact and powerful logic,
namely Eagle, which is based on recursive parameterized rule
definitions over the standard propositional logic operators to-
gether with three primitive temporal operators in the sense of a
past-state operator, a next-state operator, and a concatenation-
state operator.

Basin et al. [14] extend the metric first-order temporal
logic (MFOTL) with aggregation operators in order to specify
observers that represent the compliance policies on aggregated
data. Compliance policies represent normative regulations,
which specify permissive and obligatory actions for system
users. The authors provide a monitoring algorithm for the
enriched observer specification language as well.

Comparing the aforementioned observer-based techniques,
EvML has a more succinct way to express unordered fixed-
count events sequence. Moreover, the observers defined in the
aforementioned techniques merely use logical expressions to
specify the property of interests, but we use the combination
of the logical expression (i.e., Listener′scondition) and other
constructs (i.e., Listener′saction, ObserverEnvironment
and Observation). By using the combination, more expres-
siveness power is possible to achieve, which will be discussed
in detail as our future work.

B. Other Related Work

Bauer et al. [15] discuss a three-value semantics (false,
true, inconclusive) for LTL and TLTL observers on finite
traces, where an observer outputs false when a finite prefix
is impossible to be the prefix of any accepting trace and, true
when a finite prefix can be accepted by any infinite extension
of the trace and, inconclusive in other cases. Additionally,
Falcone et al. [16] give an related and interesting discussion
about the monitorability of properties in the safety-progress
classification. Leucker et al. [17] present a brief account of the
field of runtime monitoring. They give a definition of runtime

monitoring and make a comparison to well-known verification
techniques in terms of model checking and testing.

VI. CONCLUSION

In this paper, we have enhanced our observer-based require-
ments validation technique presented in [4] via a proposed
new observer specification logic (namely EvML), as well as
a newly introduced rewriting-based monitoring algorithm for
EvML. EvML originates from the extended regular expres-
sions, and can help to specify the situation in which the
occurrence number of the events of interests is predefined and
the occurrence order is trivial. The rewriting-based monitoring
algorithm implements the incremental event consumption idea
which enables runtime monitoring. Our illustration application
using a Vehicle Locking-Unlocking system has shown that
EvML is capable to specify observers for validation purpose.
As a part of our future work, we are interested in having more
extensive industrial cooperations for validating our observer-
based technique, as well as improving the current implemen-
tation of our TASM TOOLSET.
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