
Evaluating Industrial Applicability of Virtualization
on a Distributed Multicore Platform

Nesredin Mahmud
Mälardalen University

Högskoleplan 1, 721 23 Västerås, Sweden
nesredin.mahmud@mdh.se

Kristian Sandström, Aneta Vulgarakis
ABB Corporate Research Center

Forskargränd 7, 722 26 Västerås, Sweden
kristian.sandstrom@se.abb.com
aneta.vulgarakis@se.abb.com

Abstract—Adoption of virtualization technology has been lim-
ited in industrial automation due to unavailability of mature
solutions, and strict timing requirements of control systems.
However, current advancement in Virtual Machine Monitor,
multicore technology, virtualization extension and network vir-
tualization has led to increased interest of virtualization in
industrial automation.

So far, many related research are focused on maximizing CPU
and I/O utilization, and optimization applicable to soft real-
time systems (i.e., outside industrial automation domain), e.g.,
multimedia applications. In this research, we make use of QoS for
CPU, memory and network bandwidth in pursuit of high speed
and predictability on a distributed multicore platform which is
constructed entirely from open source products. We evaluate the
platform for latency and jitter, network throughput and CPU
computation load. Finally, we analyze the result for applicability
in industrial control domain.

I. INTRODUCTION

Industrial automation covers many different domains of
control, e.g., process automation, motion control and discrete
control, and many different applications such as pulp and
paper manufacturing and assembly lines. In common for
most of the systems are strict requirements on reliability and
availability, and the fact that they are control systems and
require timely behavior. Although the systems require real-
time responses to events, the wide spectrum of applications
covers timing requirements ranging from micro seconds to
seconds. Industrial automation systems typically consist of
large number of connected devices such as controllers, sensors,
and actuators. In large process control systems the number of
devices can reach many thousands, and also include powerful
servers that provide data management, processing, and high
level control, as well as connection to systems for manu-
facturing and business processes. At the controller level the
interconnection between controllers are commonly realized
using standard Ethernet communication. For connecting I/O
devices to controllers there are a multitude of field buses using
different technologies, e.g., Controller Area Network (CAN),
Profibus; although, several recent field bus technologies are
Ethernet based, e.g., EtherCat [1].

The industrial automation systems follow some general
trends such as increased connectivity, more data, higher
bandwidth networks, adoption of multicore processors, and

increased amount of memory. In general there is an interest
in adopting standard components and technologies where
appropriate. The advances in hardware with e.g., multicore
and hardware assisted virtualization, as well as in software
e.g., with real-time hypervisors [2], opens up for new software
architectures in industrial automation systems. A lot of new
software technologies for flexible and efficient management
of hardware and software resources can be found in general
server systems, data centers and cloud based systems. Many of
these technologies are developed as large open source projects
with many contributors and stakeholders resulting in rapid
development of features.Although these systems are developed
for other target domain than industrial automation, many of
the applications have high requirements on reliability and
availability. The requirements of reliability and availability are
manifested through the support for e.g., advanced features for
redundancy. The timing requirements of these general systems
though may not be comparable to industrial systems and it
is therefore of interest to find out the applicability of these
technologies in industrial automation with respect to temporal
behavior.

From our experimental setup, we measure a round-trip time
from initiating an action in a user space application of a control
node to a user space application of another node (virtual
or physical node). This measurement could be interpreted
as what cycle times that could be reached involving two
cooperating virtualized nodes. This includes time spent in the
complete hardware and software stack, such as user application
software, operating system, virtualization software, network
virtualization, and network hardware. According to a study on
timing requirements, different industrial control applications
have different cycle times requirements. For high speed I/O
applications, such as Analog-to-Digital converter, Digital-to-
Analog converted, digital I/O, the cycle times required to
perform such functionality reaches 100µs. For motion control
applications and fast control loop applications, the cycle times
requirement could reach 1ms and 10ms, respectively.

The remainder of this paper is organized as follows. In
Section II, we describe our evaluation platform architecture
including a virtualized multicore framework and a baseline
framework. In Section III, we setup the virtual multicore
framework using open source software products with QoS for



CPU, memory and network bandwidth. Further, in Section IV,
we conduct measurements for latency, jitter, network through-
put and CPU computation on both frameworks with the setup
intact. In Section V we analyze the measurement results for
applicability in industrial automation. Finally in Section VI,
we review the related work, and in Section VII we conclude
the paper.

II. EVALUATION PLATFORM ARCHITECTURE

A. Hardware components

The evaluation platform depicted in Figure 1 consists of two
frameworks: baseline framework (Figure 1a) and virtualized
multicore framework (Figure 1b). Each framework is distinct
and comprises two computer nodes which are connected
using an Ethernet switch. The virtualized multicore framework
nodes (Node3 and Node4) are virtual hosts, each providing
service to four virtual nodes (node3.0-3, node4.0-3) connected
to the external network using virtual switch. The baseline
framework is used for comparison to evaluate the relative cost
of virtualization solution.

Computer nodes employed in this evaluation platform are
HP Compaq Elite 8300 Ultra-Slim Desktop; and the switch is
Cisco 2960 series. Each HP Compaq consists of 4x Intel(R)
Core(TM), 4G RAM and 1G Network Bandwidth. The CPU
type is Intel R© Core TMi5-3470S Processor; and supports
Intel R© Virtualization Technology (VT-x) and for directed I/O
(VT-d). The virtual nodes are installed with lightweight Linux
distribution. And node3 and node4 are installed with Ubuntu-
12-04 LTS. The kernel type employed in all Yocto and Ubuntu
distribution are patched with Real-Time support.

B. Open-source Software Products

The software components used in the evaluation platform
are all open source. We have used the xen hypervisor, Open-
vSwitch, PTPd daemon, Yocto Linux distribution and Ubuntu
distribution. We have chosen to use these products because
they are mature in functionality and documentation, and the
community support is active to receive and fix bugs. In
addition, these products are already used in production that
makes our evaluation result applicable in practice. Following
this, we give a description of the application of these software
products in our evaluation platform.

Xen Hypervisor

The xen R© Hypervisor [3] is a type-1 (bare-metal), open
source Virtual Machine Monitor (VMM) developed by then
Xen Project team; also virtualization enabler in Xen R© Cloud
platform and Xen R© ARM. It manages CPU, memory and
interrupts to virtual machines. Xen hypervisor relies on a
privileged virtual machine (aka driver domain) to manage I/O
transactions and virtual machines management. Three types of
virtual machines are supported in Xen: paravirtualized Virtual
Machine (PVM), Hardware-assisted Virtual machine Machine
(HVM) and Paravirtualized Hardware-assisted Virtual Maci-
hne (PVHVM). PVM is a lightweight and efficient machine
which does not require virtualization extension from a host

CPU; however, it requires virtual machines with a PV-enabled
kernel and Paravirtualization (PV) drivers, which makes it
not suitable to adapt any type of operating system without
modification. HVM, on the other hand, depends on CPU vir-
tualization extension; and has low I/O throughput as compared
to paravirtualized machines due to QEMU emulation overhead.
QEMU emulation provides virtual machines services such as
I/O, interrupt and BIOS services. PVHVM implements the best
features of PV and HVM, e.g., improved I/O performance as
compared to HVM, and support for unmodified host operating
system as compared to PV.

Virtualization extensions, e.g., Intel R© VT [4], ARM Archi-
tecture virtualization extension and Large Physical Address
Extension (LPAE) , AMD Virtualization (AMD-VTM, are im-
proving flexibility and robustness of virtualization solution. As
a result, in our evaluation, we choose PVHVM virtualization
due to support for virtualization extension in favor of PV, and
high I/O throughput as compared to HVM virtualization [5].
We created four virtual machines (or domUs) on a Logical
Volume Manager (LVM) partition on node3 and node4.

Open vSwitch

Virtualization has imposed stringent requirements on how
inter- and intra-virtual machines are networked and commu-
nicated. Open vSwitch [6] is a multilayer virtual switch spe-
cially designed to address network virtualization requirements
similar to VMware’s vNetwork, Cisco’s Nexus and Indigo’s
IVS. It supports advanced features found in standard switches;
and features which are unique requirements for virtualized
environment, such as the ability to expose external interfaces
for remote and programmable automated control of distributed
virtual switches placed across multiple physicals.

In this evaluation platform, an open vSwitch bridge, xenbr0
is created over eth0 where virtual nodes are connected to the
bridge using virtual interfaces. Virtual interfaces are created
and attached to virtual machines using hot-plug script pro-
vided in the xen software package. OpenvSwitch is also used
to throttle bandwidth of virtual machines in the virtualized
multicore framework.

Yocto Linux Distribution

Industrial control systems are application specific and op-
erate under limited hardware resources such as memory and
CPU. Therefore, developing application and building an oper-
ating system for such systems is not a trivial process. Usually
a simple cross compiler creates executable code for a target
system in which the compiler is not running. However, this is
not sufficient if we are developing for wide range of hardware
architectures and platforms for two main reasons. First, due
to the demand for more functionality, software packages built
into control systems are growing in size which proportionally
increases build time. Second, integration of tools, such as cross
compilation, emulation, debugger, application toolkit, is key
for a seamless build process and package management.

The Yocto Project fills these gaps found in conventional
cross compilation process. It is an open source collaboration



(a) baseline framework (b) Virtualized multicore framework

Fig. 1: Evaluation platform

project which delivers templates, tools and methods to help
create custom Linux embedded systems for several hardware
architecture, e.g., ARM, PPC, MIPS, x86 and x86-64. Similar
systems are Openmoko, Emdebian Grip, OpenEmbedded. As
compared to these solutions, Yocto project has strong collab-
orations with OpenEmbedded, especially on core component
recipes which are meta-data for software packages in a Linux
distribution.

In our evaluation platform, we generated a lightweight real-
time Linux distribution of a size less than 100MB based
on our specific CPU platform (i.e., Intel R© CoreTMi5-3470S
processor) using the Yocto project. Specifically, we used
BitBake, which is a Yocto cross compilation build engine,
and Yocto Application Development Toolkit (ADT) [7], to
develop microbench applications for network performance and
CPU computational load measurement. The microbenchmark
applications are syncproof and cpuload; and are discussed in
Section IV.

PTP daemon

Time driven communication in distributed control systems
demand high accuracy of clock synchronization. Due to the
inherent property of message delay in communication, it is
impossible to avoid a deviation of time in distributed clocks,
called sync error. Lundelius and Lynch [8] proved that n clocks
cannot by synchronized to one another with an error less than
d(n-n/2) units of sync error when there are no failures and no
clock drifts; where d is an uncertainty delay between clocks.
However, distributed clocks can be synchronized to accept-
able level on a specific application domain. Similar clock
synchronization algorithms are found in [9] [10] [11] [12].
For real-time distributed control applications, hight precision
of clock synchronizations is vital in order to minimize jitter
and increase over all performance of a control system. In our
platform, we used PTP daemon (PTPd) [13], which is an open
source software implementation of Precision Time Protocol
(PTP), to synchronize node3 and node4.

PTPd implements both versions of PTP (i.e., IEEE 1588-
2000 and IEEE 1588-2008) [14]. PTP is defined to achieve a

high clock sync accuracy on a local network that could not be
attained using a protocol such as the Network Time Protocol
(NTP). The NTP is a widely used protocol in the Internet
network; and has variation in granularity of 1 millisecond. As a
result, NTP is not suitable for industrial control systems whose
requirements are in microseconds. PTPd currently runs on
Linux, cLinux, FreeBSD and NetBSD. The IEEE 1588 stan-
dard defines PTP as a master/slave architecture; and it consists
of network segments and multiple clocks. A network segment
identifies a communication media and provides isolation of
synchronization. A normal clock is a master or slave clock
in a single network segment; and a boundary clock bridges
synchronization between one or more network segments. The
Best Master Algorithm (BMA) [14] selects which clock acts as
a master per network segment. Further, based on the average
Round Trip-Time (RTT) from slave to master and back, each
slave calculates the clock sync error and adjusts its clock to
the master clock.

III. EVALUATION SETUP

In this section, we describe the setup for the virtualized
multicore framework. In the context of xen virtualization,
we use the term driver domain (aka dom0) to refer to the
host machines (i.e., node3.0 and node4.0) on the virtualized
multicore framework. Similarly, we use the term domU to
refer to guest machines (i.e., node3.1-3 and node4.1-3) on the
virtualized multicore framework.

A. Domain Pinning to CPU cores

The Xen Credit scheduler [3] is the default scheduler in
Xen. It schedules Virtual CPUs (vCPUs) with proportionally
fair CPU time and high throughput. It uses the concept of
a credit to schedule vCPUs according to parameters such as
weight and cap, which respectively refers to CPU allocation
ratio as compared to other domains and maximum amount of
CPU a domain is allowed to consume regardless of idle CPU
time a host domain has. Basically, the algorithm is designed
to maximize throughput and fairness in contrast to predictable
execution of domains. In this setup, we pinned domains to a



dedicated CPU core in order to avoid preemption of domains
running on xen hypervisor. This implies, the credit scheduler
is exempted from scheduling domains.

Each domain core-affinity including the driver domain is
set to a single core. A core is not shared to other domains.
This establishes a one-to-one mapping between a core and a
domain. Furthermore, each core is scheduled with a dedicated
scheduling instance in contrast to pinning a domain to a
specific core with a shared scheduler. In the recent version
of xen (v4.2) this concept is realized using cpupools. Fig-
ure 2a shows credit scheduler execution trace on node3 in the
virtualized multicore framework before pinning. The driver
domain (or node3.0) is represented with A characters; and
domUs (or node3.1, node3.2 and node3.3) are represented with
characters B, C and D, respectively. The trace on figure 2a
shows how the domains are distributed across core0-3. After
pinning the domains, figure 2b shows each domain running on
a dedicated core without preemption from one another. The
trace is captured using xentrace and xenanalyzer tools.

B. Virtual Computational Resource (VCR)

A Virtual Computation Resource (VCR) is a resource
reservation as defined by Clara et al. [15]. In this context,
VCR refers to QoS for CPU, memory and network band-
width, which is a computing resource definition generated
by partitioning the actual hardware resources for allocation,
verification and analysis of application parts. A VCR allows
portability of application parts to multiple hardware archi-
tecture while preserving timeliness and predictability of an
application; e.g., porting an application from a single core to
a multicore while maintaining previous application execution
behavior. In this section, we develop a VCR and link it to
virtual machines. We use the term QoS in places of VCR since
it is more familiar.

QoS for CPU

In multicore systems, the number of vCPUs allocated to a
virtual machine affects CPU utilization and I/O throughput in
the system. This is largely discussed in [16], xen hypervisor
evaluation for hosting IP telephony application, and best
practices from the xen community. In our framework, we
establish a one-to-one mapping of a virtual machine to a core;
therefore, employing multiple vCPUs per virtual machine does
not maximize utilization of CPU or I/O throughput of the
system. To maximize predictability of applications running on
each virtual machine, we avoid parallel execution of threads
on a single domain.

The driver domain handles I/O communication, such as
network and disk transaction of virtual machines, and is
usually a bottleneck for I/O intensive and latency sensitive
control applications. To avoid this bottleneck the best practice
would be to allocate sufficient computing resources including
CPU and memory to the driver domain [17]. By default, Xen
allocates 4 vCPUs initially to driver domain; and the number
grows linear to the amount of load driver domain has.

QoS for Memory

Efficient memory management is a challenging task in
virtualization. The knowledge of current and future memory
requirements of a virtual machine is an important input
to the memory controller so that it can efficiently manage
system memory. Several memory optimization techniques are
implemented in the xen hypervisor, such as xen memory
paging [3], paravirtualized paging [18] and dynamic memory
virtualization [19]. However, these techniques do not estimate
accurate memory consumption of a virtual machine over time.
The main reasons to this challenge is that a working set of a
virtual machine cannot be measured accurately to determine
current required memory. It is also not feasible to accurately
predict future memory usage of a virtual machine due to
unpredictable application memory requirements. Therefore, a
memory intensive application on a particular virtual machine
has the tendency to raise memory thrashing, a problem which
may disrupt the behavior of a real-time application running on
other virtual machines. Therefore, it is important that static
memory is allocated to virtual machines to minimize the
problem.

Since the driver domain is usually the bottleneck for CPU
and I/O performance, in our evaluation framework we allocate
to the driver domain more memory (i.e., 2GBytes) than to
domUs (i.e., 128MBytes). Note that Xen hypervisor imple-
ments a balloon driver [20], a technique which grabs free
memory and allocates it to the driver domain. This may result
in memory starvation in domUs. In order to avoid memory
starvation on domUs; and increase predictability, we disable
this feature in the xen hypervisor.

QoS for Network Bandwidth

Open vSwitch is a shared resource among virtual nodes.
Therefore, it is possible that a traffic intensive or misbehaving
application on a particular virtual node could disrupt other
virtual nodes. This could result to deadline miss of higher
priority applications running on other virtual nodes. In these
kinds of scenarios, QoS for network bandwidth can be con-
figured for each virtual node on the virtual switch, which
guarantees maximum bandwidth limit. The Xenbr0 bridge has
a capacity of 1000Mbps; and we have limited the virtual
interfaces ingress rate policy to 100Mbps and ingress burst
policy to 1Mbps (for that matter it could be any value between
0 and 1000 as long as one has managed to generate sufficient
traffic to flood the interface).

IV. RESULT

In this section we discuss our benchmark applications,
workloads, and measurement procedure. Then, we show the
evaluation results in a table.

A. Benchmark Application

The evaluation is focused on the frameworks as a whole
in contrast to evaluation of software products in isolation.
We evaluate the frameworks against performance metrics, i.e.,
latency and jitter, network throughput and CPU computation



(a) Default Xen scheduler (b) Tuned Xen scheduler

Fig. 2: Domain execution trace vertical axis(cores), horizontal axis (elapsed time in millisecond).

with the help of latency-sensitive workload, bandwidth in-
tensive workload and CPU-intensive workload, respectively.
Figure 3 shows the client-server architecture of the benchmark
tools (Iperf, Syncproof, Cpuload) which traverses the TCP/IP
stack, operating system and physical link on the evaluation
platform.

Latency-sensitive workload

In this context, latency is the amount of time elapsed
for an Ethernet frame to make a round-trip from a client
node to a server node, and back to the client node. Jitter
is a variation of delay (measured in microseconds) due to a
clock synchronization error, operating system overheads and
application level overheads. We use the syncproof network
performance tool to measure latency and jitter of Ethernet
based communication. The tool is developed in-house and
is based on client-server architecture. It emulates real-time
network communication. The client and server applications
are guaranteed to run with higher priority compared to other
processes running in the Linux operating system. As such,
preemption by other processes is minimized; and latency
measurement accuracy is increased.

In figure 1a, the syncproof client runs at node1; and the
syncproof server runs on node2. Likewise, in figure 1b, the
syncproof client runs at node3.1; and the syncproof server
runs on on node4.1. The measurement procedure is describe
in the subsection IV-B.

Bandwidth and CPU intensive workload

Iperf [21] is an open source network performance tool used
to measure the maximum TCP bandwidth and the UDP com-
munication behavior, e.g., delay jitter and packet loss. Using
this tool, we perform two experiments. First, we measured
maximum TCP bandwidth of the baseline (see Figure 1a) and
the virtual multicore (Figure 1b). Second, we run a bandwidth-
intensive workload on virtual nodes, node3.2 and node3.3
using the iperf tool; and evaluate its impact on latency-
sensitive application running on the virtual node, node3.1.

Similarly, with a CPU intensive workload, we measure
the amount of time (measured in seconds) required to do a
floating-point computation on node1 and node3.1 (see Fig-
ure 1).

Fig. 3: Logical toplogy for running microbenchmark applica-
tion

node core vCPU Memory BW Limit
node1-2 0 N/A 2G no
node3.0 0 4 2G no
node3.1-3 1-3 1 128M 100Mbps
node4.0 0 4 2G no
node4.1-3 1-3 1 128M 100Mbps

TABLE I: Platform setup summary

B. Measurements

Measurements are taken from figure 1 according to our
setup. For clarity we summarize the setup in Table I. We
perform three experiments:

• Experiment 1: Latency and jitter measurement
• Experiment 2: Network throughput measurement
• Experiment 3: CPU load measurement

Experiment 1: Latency and jitter measurement

In Figure 3, the Syncproof client sends an Ethernet frame
of Maximum Transmission Unit (MTU) equals to 1500 bytes
to the Syncproof server. The number of frames sent is 10,000
with an inter-arrival time of 100 ms, a sufficient round-trip
time before the client tries to send the next frame. Then, the
average latency and the jitter are computed at the client side.
This test is repeated 400 times. Table II shows the average
latency and the average jitter on the baseline framework and
virtualized multicore framework.

We compared our result to a similar work presented by
Patnaik et al. [16] on the performance evaluation of Xen
for a telephony application with a similar xen scheduler and
CPU configuration. In contrast to our work, Patnaik et al.
allow multiple virtual machines to run on a single core. Our
experimental result for the RTT latency is 30% lower on



Avg. Latency Avg. Jitter
Baseline 265.66 5.72
PVHVM 344.96 16.90

TABLE II: Latency and jitter in microseconds

the PVHVM which shows that one-to-one mapping of virtual
machine to core has better performance as compared to other
xen scheduler and CPU configuration setups used in [16] [22].

A one-way latency distribution for both frameworks is show
in figure 4. The Average latency (RTT) can be calculated by
multiplying a one-way latency by two. The distribution is
modeled as a frequency distribution with a sampling period
of 1 millisecond. This distribution tells how often latency
values occur within a range of latency values. Throughout
the latency test for as long as ten hours or 400 request-
response times using the sycproof tool, some long tail latency
is observed, especially in the virtualized multicore framework.
As compared to the baseline framework, the virtualization
multicore framework experiences some long tail latency, e.g.,
as shown in the far right of figure 4b. However, the latency
distribution of the virtualized multicore framework closely
follows the frequency distribution of the baseline framework;
and it also shows improvement over results gained by Xu
et al. [23]. And this improvement is due to boosting the
responsiveness of latency-sensitive application running on a
virtual machines. This is accomplished in two ways in our
setup. First the virtual machines are not preempted by another
virtual machines in the xen hypervisor; second, the syncproof
client and server instances which simulate latency-sensitive
applications run as real-time Linux processes, hence higher
priority as compared to non real-time processes running in
the Linux operating system of the virtual machines.

Experiment 2: Network throughput measurement

The Network Interface Card (NIC) bandwidth capacity of
the client and server nodes is 1Gbps. The open vSwitch is
configured to handle 1Gbps traffic so that it will not be
a bottleneck. The Iperf client sends frame of MTU (1500
bytes) to the Iperf server, as shown in Figure 3. A total
of 195 GBytes is transmitted from the client to the server.
The network throughput is 934.26 Mbps and 932.05 Mbps
for the baseline and the virtualized multicore frameworks,
respectively. According to a study by Aravind Menon et al.
[24] on performance overhead in the xen hypervisor, the
reason for a degradation of a network throughput on the xen
hypervisor was due to higher instruction cost, higher L2 cache
misses and lower Translation Lookaside Buffer (TLB) miss
rates which led to more instruction stalling as compared to a
non virtualization Linux environment.

To observe the degree of virtual nodes isolation on the
virtualized multicore framework (presented in figure 1b), we
run bandwidth-intensive workload that is capable of generating
around 700 Mbps using TCP Iperf running on virtual nodes,
node3.1 and node3.2. Then we conduct Experiment 1 once
more to measure latency and jitter. The result turned out to

be the same as in Table II. We expected this result to be the
same due to the fact that node 3.1 and node3.2 are throttled
to 100 Mbps using open vSwitch.

Experiment 3: CPU load measurement

We run compute-intensive workload using a cpuload appli-
cation on a non-virtualized node (i.e., node1), and virtualized
node (i.e., node3.1) to measure CPU load computation. The
average amount of time required to compute the workload
is 10.16 seconds in node1, and 12.13 seconds in node3.1.
Even though node1 and node3.1 have the same CPU and
memory resource allocation, node1 performed better with 16%
advantage. The Xen virtualization overhead is discussed in this
paper [24].

V. DISCUSSION

Our evaluation results from Section IV-B show the per-
formance of the virtualized multicore framework (Figure 1b)
relative to the baseline framework (Figure 1a). The results
indicate the additional cost in terms of latency, jitter, band-
width throughput for introducing a virtualization technology.
This additional cost does not however directly say anything
about the applicability of the technology from a performance
perspective in industrial automation systems. In this section,
we present a discussion on how the results from the evaluations
can be interpreted with respect to applicability in industrial
automation. We compare the results from the experimental set-
up with cycle times found in different industrial application
types as summarized in Table III. As stated in section I,
the cycle times describes a round-trip time from initiating an
action in a user space application on one node to the user
space application of another node (virtual or physical node).

A. High speed I/O control applications

Speed is vital in high speed I/O control systems to perform,
e.g., A/D, D/A, digital I/O, counter/timer, communication and
other functions. Observe Table III, the cycle times required
to perform such functionality reaches 100µs. In this case, the
applicability of virtualization technology is unlikely, as we
can compare it to the PVHVM in Table II. High speed control
applications are usually hosted on dedicated I/O cards, DSP
or FPGA.

B. Motion control applications

Motion control applications serve to control the position
or velocity of an object using devices such as electric motors.
They are applied in robotics, semiconductor production and in-
dustrial processes, such as packaging and assembly industries,
and in other automation fields. Precision motion control appli-
cations, such as in the field of semiconductor for wafer probing
and memory repair, and in optical manufacturing require high-
speed, and sometimes ultra-precision positioning functionality,
usually in the range of 1ms (1000µs). Our evaluation results
show such precision. Therefore it is possible to satisfy the real-
time requirement of motion control applications on Ethernet
based cooperating nodes using a xen PVHVM virtualization



(a) Baseline (b) Xen PVHVM

Fig. 4: Frequency distribution of one-way latency, sampling period 1 millisecond

Cycle time Description
100µs High speed I/O applications - often managed by

dedicated I/O systems, FPGAs, or DSPs
1ms motion control applications - Commonly found in

semiconductor production, industrial process, e.g.,
packaging, printing, industrial assemblies

10ms fast control loops application - usually found in-
dustrial automation domains and applications, e.g.,
steam turbine control systems

10-100ms Common, e.g., in process automation
>100 ms Slow control systems

TABLE III: Cycle time requirements for various industrial
control applications.

solution with 345µs as compared to what is needed for these
types of applications, that is 1000µs.

C. Fast control loop applications

High speed control systems, e.g., turbine controllers, operate
with cycle times in the range of 5-10ms. This is the amount of
time required to sense speed, compute and adjust the level of
steam in case of steam turbine. It is therefore possible to host
such application on a xen PVHVM virtualization technology
(see Table II for latency or cycle times comparison). Also Xen
PVHVM virtualization in our virtualized multicore platform
shows applicability for the majority of the control loop systems
whose cycle times reach 100ms; and for slow control systems
with cycle times greater than 100ms.

VI. RELATED WORK

Somani et al. [25] evaluated the xen hypervisor isolation
strategy by running a CPU intensive and I/O intensive appli-
cations on a separate domains deployed on a single server. The
test is conducted on a default configuration of the xen credit
scheduler and SEDF. In our research, we pinned each domains
to a dedicated CPU core; and applied QoS for CPU, memory
and network bandwidth to virtual nodes before conducting
evaluation process.

Lee et al. [17] and Patnaik et al. [16] independently worked
on tuning the xen scheduler for optimal performance of a mul-
timedia application. Lee et al. emphasized measurement met-
rics such as sched count, sched latency and sched timeslice
to identify bottleneck in the xen hypervisor, and to describe
the performance of the media application. On the other hand,

Patnaik et al. used metrics such as UDP/TCP packet delay
and loss to describe performance of telephony application on
a multicore platform. However, neither of the experiments
considered one-to-one mapping between a core and a virtual
machine, and apply QoS (i.e., memory and network band-
width) to virtual machines.

To improve performance of I/O intensive processing in the
the xen virtualization, Ongario et al. [22] enhanced the xen
credit scheduler, e.g., minimizing driver domain preemptions
during processing of I/O transactions; and introduced a two-
level hierarchy of bit vectors to speed up processing of event
channels. In addition, the latency measurement in our setup
is between two virtual nodes hosted on different physical
location.

In [26] [27] the authors have already analyzed the impact of
CPU overload on I/O throughput and vice versa for different
xen schedulers and CPU configurations. Other interesting
works on a real-time scheduler for the xen hypervisor are
compositional scheduling in virtualization [28] and RT-Xen
[29].

VII. CONCLUSION

Due to constrained temporal and computing intensive re-
source requirement in embedded and industrial control sys-
tems, adoption of virtualization technology had been hindered
for a long time. Nowadays, advancement in multicore technol-
ogy, Virtual Machine Monitoring (VMM), CPU virtualization
extension technology (e.g., Intel-VT and AMD-V), and net-
work virtualization technology (e.g., openvSwitch, VMWare
NSX) has boosted virtualization performance. In this research,
we explore the potential for applying mature and commonly
used open source virtualization solutions to industrial control
systems. We apply the concept of virtual computational re-
source (VCR) and define QoS for CPU, memory and network
bandwidth to minimize latency and jitter, and maximize pre-
dictability of virtual node execution in distributed multicore
environment. To realize the introduced concept, an evaluation
platform has been developed based on the xen hypervisor, open
vSwitch, Yocto real-time Linux distribution, and PTP daemon.
The performance of the platform is evaluated with respect to
latency, jitter, and network bandwidth, and CPU computation.

Finally, we analyzed the result for industrial control ap-
plications, such as high speed I/O application, motion control



application and fast control loop application measured in cycle
times. The analysis showed possible application of then xen
PVHVM virtualization for many industrial control systems
with average cycle time (Round Trip Time) 345µs. The
drawback of the proposed solution is underutilization of CPU.
Further research direction could be to address this challenge
through a lightweight VMM scheduler which is applicable in
industrial control systems.

ACKNOWLEDGMENT

This work is conducted at ABB Corporate Research, Swe-
den. We would like to gratefully acknowledge the Software
Architecture department/ABB CRC for providing us the nec-
essary equipment, and we would also like to acknowledge
VINNOVA, Sweden, for supporting this work under the project
VeriSpec, number 16335.

REFERENCES

[1] H. Buttner and D. Jansen. Real-time Ethernet: the EtherCAT solution.
Computing and Control Engineering, 15(1):16–21, February 2004.

[2] Kristian Sandstrom, Aneta Vulgarakis, Markus Lindgren, and Thomas
Nolte. Virtualization technologies in embedded real-time systems. In
2013 IEEE 18th Conference on Emerging Technologies & Factory
Automation (ETFA), pages 1–8. IEEE, September 2013.

[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the
art of virtualization. SIGOPS Oper. Syst. Rev., 37(5):164–177, October
2003.

[4] R. Uhlig, G. Neiger, D. Rodgers, A.L. Santoni, F.C.M. Martins, A.V.
Anderson, S.M. Bennett, A. Kagi, F.H. Leung, and L. Smith. Intel
virtualization technology. Computer, 38(5):48–56, May 2005.

[5] Roger Pau Monnè. Performance tunning xen. Xen.org, April 2013.
[6] Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen,

and Scott Shenker. Extending networking into the virtualization layer.
In Hotnets, 2009.

[7] Michael Lauer. Building embedded linux distributions with bitbake and
openembedded. In Proceedings of the Free and Open Source Software
Developers European Meeting (FOSDEM), Brussels, Belgium, 2005.

[8] Jennifer Lundelius and Nancy Lynch. An upper and lower bound
for clock synchronization. Information and Control, 62(2-3):190–204,
August 1984.

[9] Jennifer Lundelius Welch and Nancy Lynch. A new fault-tolerant
algorithm for clock synchronization. Information and Computation,
77(1):1–36, April 1988.

[10] Hermann Kopetz and Wilhelm Ochsenreiter. Clock Synchronization in
Distributed Real-Time Systems. IEEE Transactions on Computers, C-
36(8):933–940, August 1987.

[11] Flaviu Cristian. Probabilistic clock synchronization. Distributed Com-
puting, 3(3):146–158, September 1989.

[12] Mikls Marti, Branislav Kusy, Gyula Simon, and kos Ldeczi. The
flooding time synchronization protocol. In Proceedings of the 2nd
international conference on Embedded networked sensor systems -
SenSys ’04, page 39, New York, New York, USA, November 2004.
ACM Press.

[13] Kendall Correll, Nick Barendt, and Michael Branicky. Design consid-
erations for software only implementations of the ieee 1588 precision
time protocol.

[14] K Lee, John C Eidson, Hans Weibel, and Dirk Mohl. Ieee 1588-
standard for a precision clock synchronization protocol for networked
measurement and control systems. In Conference on IEEE, volume
1588, 2005.

[15] Clara Otero Pérez, Martijn Rutten, Liesbeth Steffens, Jos van Eijnd-
hoven, and Paul Stravers. Resource reservations in shared-memory
multiprocessor socs. In Dynamic and Robust Streaming in and between
Connected Consumer-Electronic Devices, pages 109–137. Springer,
2005.

[16] Devdutt Patnaik, AS Krishnakumar, Parameshwaran Krishnan, Navjot
Singh, and Shalini Yajnik. Performance implications of hosting en-
terprise telephony applications on virtualized multi-core platforms. In
Proceedings of the 3rd International Conference on Principles, Systems
and Applications of IP Telecommunications, page 8. ACM, 2009.

[17] Min Lee, a. S. Krishnakumar, P. Krishnan, Navjot Singh, and Shalini
Yajnik. XenTune: Detecting Xen Scheduling Bottlenecks for Me-
dia Applications. 2010 IEEE Global Telecommunications Conference
GLOBECOM 2010, pages 1–6, December 2010.

[18] Daniel J Magenheimer, Chris Mason, Dave McCracken, and Kurt
Hackel. Paravirtualized paging. In Workshop on I/O Virtualization,
2008.

[19] XiaoLin Wang, YiFeng Sun, YingWei Luo, ZhenLin Wang, Yu Li,
BinBin Zhang, HaoGang Chen, and XiaoMing Li. Dynamic memory
paravirtualization transparent to guest OS. Science China Information
Sciences, 53(1):77–88, February 2010.

[20] Carl A. Waldspurger. Memory resource management in vmware esx
server. SIGOPS Oper. Syst. Rev., 36(SI):181–194, December 2002.

[21] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs.
Iperf: The tcp/udp bandwidth measurement tool. htt p://dast. nlanr.
net/Projects, 2005.

[22] Diego Ongaro, Alan L. Cox, and Scott Rixner. Scheduling i/o in
virtual machine monitors. In Proceedings of the Fourth ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, VEE ’08, pages 1–10, New York, NY, USA, 2008. ACM.

[23] Yunjing Xu, Michael Bailey, Brian Noble, and Farnam Jahanian. Small is
better: Avoiding latency traps in virtualized data centers. In Proceedings
of the 4th Annual Symposium on Cloud Computing, SOCC ’13, pages
7:1–7:16, New York, NY, USA, 2013. ACM.

[24] Aravind Menon, Jose Renato Santos, Yoshio Turner, G. (John) Janaki-
raman, and Willy Zwaenepoel. Diagnosing performance overheads
in the xen virtual machine environment. In Proceedings of the 1st
ACM/USENIX International Conference on Virtual Execution Environ-
ments, VEE ’05, pages 13–23, New York, NY, USA, 2005. ACM.

[25] G. Somani and S. Chaudhary. Application performance isolation in vir-
tualization. In Cloud Computing, 2009. CLOUD ’09. IEEE International
Conference on, pages 41–48, Sept 2009.

[26] G. Somani and S. Chaudhary. Application performance isolation in vir-
tualization. In Cloud Computing, 2009. CLOUD ’09. IEEE International
Conference on, pages 41–48, Sept 2009.

[27] Padma Apparao, Srihari Makineni, and Don Newell. Characterization of
network processing overheads in Xen. In First International Workshop
on Virtualization Technology in Distributed Computing (VTDC 2006),
pages 2–2. IEEE, November 2006.

[28] Jaewoo Lee, Sisu Xi, Sanjian Chen, L.T.X. Phan, C. Gill, Insup Lee,
Chenyang Lu, and O. Sokolsky. Realizing compositional scheduling
through virtualization. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2012 IEEE 18th, pages 13–22, April
2012.

[29] Sisu Xi, J. Wilson, Chenyang Lu, and C. Gill. Rt-xen: Towards real-
time hypervisor scheduling in xen. In Embedded Software (EMSOFT),
2011 Proceedings of the International Conference on, pages 39–48, Oct
2011.


